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Abstract: In today’s world, with increased competition, the service quality of Chinese commercial 

banks is recognized as a major factor that is responsible for enhancing competitiveness. Therefore, it is 

necessary to evaluate and analyse the service quality of Chinese commercial banks to realize their 

stable development. The service quality evaluation could be recognized as a multi-attribute 

decision-making (MADM) problem with multiple assessment attributes, both being of a qualitative and 

quantitative nature. Owing to the growing complexity and high uncertainty of the financial 

environment, the assessments of attributes cannot always possibly express using a real and/or type-1 

fuzzy number. Additionally, a heterogeneous relationship often exists among the attributes under many 

real decision cases. In this study, we create two MADM approaches to handle decision-making 

problems with interval type-2 fuzzy numbers (IT2FNs) and offer their application to service quality 

evaluations of commercial banks problems. Specifically, we first define some operations on IT2FNs 

based on Archimedean T-norms (ATs) and develop a bi-directional projection measure of IT2FNs. Next, 

by combining the generalized Banzhaf index, the Choquet integral and IT2FNs, we propose the interval 

type-2 fuzzy Archimedean Choquet (IT2FAC) operator, the Banzhaf IT2FAC (BIT2FAC) operator and 

the 2-additive BIT2FAC (2ABIT2FAC) operator. Then, we establish two optimal models for deriving 

the weights of attributes based on a bi-directional projection measure of IT2FNs and Banzhaf function. 

Finally, we create two novel MADM methods under interval type-2 fuzzy contexts, where an 

illustrative case concerning the service quality evaluation of Chinese commercial banks is used to 

explain the created MADM approaches. 

Keywords: multiple attributes analysis; service quality evaluation; Choquet integral; interval type-2 

fuzzy numbers; Archimedean T-norms 

1. Introduction 

A commercial bank is a financial institution that provides financial service products. Similar to 

general industrial and commercial enterprises, such a bank pursues the maximization of enterprise 

profit on the premise of satisfying customer demands. Commercial banks have played a crucial role in 

China's development and competitiveness and have received widespread attention in recent years [1] [7] 

[50], with the sector having experienced a significant increase. According to the statistics of the China 

Banking Regulatory Commission, as of the end of 2018, the total assets of the commercial bank sector 

increased by 55.5% compared to that in 2014, reaching RMB 203.4 trillion. During the same period, 

the total liabilities of the commercial bank sector also increased by 54.4% compared to that in 2014, 

reaching RMB 187.1 trillion. Although Chinese commercial banks develop rapidly, they are facing 

fierce competition and challenges from advanced foreign banks and internet finance due to the 
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incredible growth of globalization and the quick advancement of internet technology. Consequently, it 

is becoming more important to enhance the competitiveness of Chinese commercial banks to maintain 

stable development. Karatepe et al. [20] pointed out that the delivery of high service quality to 

customers provides enterprises with an opportunity to differentiate themselves in competitive markets. 

Moreover, Duncan and Elliot [8] argued that providing high quality service to customers can lead to 

customer satisfaction and customer loyalty, which are key to a bank’s long-term success and 

competitiveness. Based on these arguments, it can be seen that commercial banks should put more 

emphasis on service quality to enhance their competitiveness. Therefore, it is necessary to establish an 

effective service quality evaluation model of Chinese commercial banks with the goal of enhancing 

their competitiveness. 

The service quality evaluation of commercial banks could be recognized as a multi-attribute 

decision-making (MADM) problem with multiple assessment attributes [36] [46] [48], including 

technology level, service attitude, consultation service, waiting area environment, window opening 

situation, operational capacity, security and financial product. In real-world service quality evaluation 

problems, most of the assessment detailed information is unknown, and many factors are influenced by 

uncertainty. Consequently, classical type-1 fuzzy numbers (T1FNs) may be inappropriate to handle 

actual cases in which it is unreasonable to utilize an accurate membership degree (MD) for an uncertain 

item [18]. In this situation, type-2 fuzzy numbers (T2FNs) [47], which consist of primary MD and 

secondary MD, can be regarded as a feasible tool to cope with higher uncertainty [28]. Interval T2FNs 

(IT2FNs) are the most extensively utilized; MDs of IT2FNs take the form of crisp intervals, which 

make the calculations related to IT2FNs manageable. Therefore, the theory of IT2FNs is easy to utilize 

in practical management application domains [40] [41] [43]. 

There are usually two different ways to cope with interval type-2 fuzzy (IT2F) MADM problems: 

developing extended traditional decision-making approaches [17] [35] and/or developing aggregation 

operators’ methods [24] [25]. Aggregation operators’ methods are superior to extended traditional 

decision-making approaches because the aggregation operators’ methods provide comprehensive 

values of alternatives along with a ranking of alternatives, whereas extended traditional 

decision-making approaches only rank alternatives. Thus, aggregation operators’ methods are now 

receiving increased attention in the domain of decision-making [10] [21] [23]. For the aggregation 

operators’ methods, generally speaking, the following two aspects need to be considered: 

1) The operational laws. At first, most aggregation operators of IT2FNs utilized the arithmetic 

operational laws of IT2FNs to carry out the combination process [4]. Later, Gong et al. [13] 

studied some novel operational laws of IT2FNs based on Einstein operations. However, both 

operation approaches have two weaknesses. First, for the multiplication operation, the effect 

of a larger membership function on the decision result is omitted. Second, for the power 

multiplication operation, the influence of real value on the membership function of the 

element is neglected. To overcome these weaknesses, some improved operational laws of 

IT2FNs were explored based on special cases of Archimedean t-norm and t-conorm (ATT). 

For instance, Hu et al. [18] explored some algebraic operations of trapezoidal IT2FNs, Qin 

[32] designed some novel operations of symmetric triangular IT2FNs based on algebraic 



operations, while Qin and Liu [33] investigated some Frank operational laws of IT2FNs. 

Clearly, ATT can generate general and versatile operations, such as algebraic operations, 

Einstein operations, and Frank operations. Therefore, it is key to offer the operations of 

IT2FNs based on the ATT. 

2) Functional operators. Regarding the extended power averaging operator [26], extended 

Bonferroni mean [14], extended Heronian mean [43], extended Hamy mean [32] and 

extended Maclaurin symmetric mean [42], although some of the aforementioned operators 

capture the interrelationship of the attributes, they assume that each attribute is associated 

with the remaining attributes, i.e., they can only consider the homogeneous relationship of 

the attributes [9]. However, in real cases, the attributes do not always have a homogeneous 

relationship. There may be cases where a heterogeneous relationship exists among the 

attributes [38]. For instance, when evaluating the service quality of a commercial bank, we 

may consider the following attributes: service attitude, consultation service, operational 

capacity and security. Here, service attitude and consultation service can be regarded as 

negatively related attributes, consultation service and security can be regarded as independent, 

while service attitude and operational capacity can be regarded as positively related attributes. 

Consequently, the existing aggregation operators of IT2FNs may not be able to handle this 

type of MADM problem. Nevertheless, the Choquet integral [15] can capture the 

heterogeneous relationship of the attributes because it is based on the fuzzy measure (FM) 

[37], which is an effective tool to model the positive interaction, negative interaction or 

independence of the attributes [2]. It is worth mentioning that the Choquet integral only 

considers the heterogeneous relationship between adjacent combinations of attributes. To 

globally capture the relationship of the attributes, Meng et al. [31] combined the generalized 

Banzhaf index and the Choquet integral and presented some novel Choquet operators of 

intuitionistic fuzzy sets. Recently, many researchers have extended the Choquet integral to 

different kinds of fuzzy environments [22] [24] [39]. To the best of our knowledge, no 

attempt has been made to extend the Choquet integral with the generalized Banzhaf index for 

handling IT2FSs; this extension is the focus of the present article. 

As described above, the service quality evaluation procedure includes both uncertainty 

information aggregation and the interactive characteristics of the attributes. Consequently, the T1FNs 

may be inappropriate to handle real-world cases due to the growing uncertainty of the service quality 

evaluation problem, and the IT2FNs can be utilized instead. In addition, the ATT can provide general 

and versatile operations. Simultaneously, the Choquet integral with the generalized Banzhaf index 

can consider the heterogeneous relationship of the attributes. Therefore, it is justifiable to combine 

the ATT, the Choquet integral and the generalized Banzhaf index for handling service quality 

evaluation problems under the IT2FN environment. Additionally, a lack of knowledge and the 

experts’ limited expertise about service quality evaluation problems mean that the information on 

attributes may not be always completely known. In this case, we need to obtain the attributes’ weights 

first. Thus, we establish optimal models, based on the developed bi-directional projection measure of 

IT2FNs and the Banzhaf function for optimal FMs on the attributes set to derive the attributes’ 



weights. Motivated by these ideas, we propose two IT2F MADM approaches based on the ATT, the 

Choquet integral, and the generalized Banzhaf index for handling real-life service quality evaluation 

problems with incomplete weights information. As a conclusion of the above statements, this article 

has four sub-objectives: 

1)  To define novel operations of IT2FNs to address the weaknesses of the existing operations 

of IT2FNs [4] [13] and to generate general and versatile operations. 

2)  To propose the interval type-2 fuzzy Archimedean Choquet (IT2FAC) operator, the Banzhaf 

IT2FAC (BIT2FAC) operator and the 2-additive BIT2FAC (2ABIT2FAC) operator to 

reflect the positively related, negatively related or independent characteristics of the 

attributes and to effectively fuse IT2F information. 

3)  To construct linear programming models for optimal FMs on the attributes set, based on the 

developed bi-directional projection measure of IT2FNs and the Banzhaf function, to 

objectively determine the attributes’ weights. 

4)  To create novel MADM approaches based on the IT2F Choquet integral operators and the 

constructed optimal models to overcome the drawbacks of the existing methods [13] [14] 

[18] and to handle service quality evaluation problems.  

To achieve the above research goals, the rest of this manuscript is organized as follows: Section 2 

introduces some basic knowledge of IT2FNs and Choquet integral. Section 3 proposes the IT2FAC 

operator, the BIT2FAC operator and the 2ABIT2FAC operator for IT2FNs, and analyses their 

corresponding properties. Section 4 defines a novel bi-directional projection measure of IT2FNs and 

constructs optimal models to derive the attributes’ weights. Section 5 creates two algorithms to cope 

with MADM problems under IT2FNs environment. In Section 6, a practical case is given to delineate 

the applicability and usefulness of the created approaches. Section 7 concludes this study. 

2. Preliminaries 

In this section, we shall introduce some basic knowledge related to IT2FNs, the ATT and the 

Choquet integral that will be utilized later in the article. 

2.1 IT2FNs 

Definition 1 [34]. An IT2FN is called trapezoidal IT2FN (See Fig. 1) when the upper membership 

function (MF) and the lower MF are both trapezoidal fuzzy values, i.e., 
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Fig. 1．A trapezoidal IT2FN A . 

To rank trapezoidal IT2FNs, the following ranking functions were defined by Qin and Liu [34]. 

Definition 2 [34]. It is assumed that  ,u lA A A  is a trapezoidal IT2FN. Then, the arithmetic 

average ranking function 1( )R A , the geometric average ranking function 2 ( )R A  and the harmonic 

average ranking function 3( )R A  of  ,u lA A A are: 
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To improve the reliability of the decision-making process, Qin and Liu [34] further defined the 

following combined ranking function of trapezoidal IT2FN. 

Definition 3 [34]. It is assumed that  ,u lA A A  is a trapezoidal IT2FN. Then, the combined 

ranking function of  ,u lA A A  is: 
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. For simplicity, it is assumed 0.5   in this paper. 

Qin and Liu [34] gave the following ranking technique to compare two trapezoidal IT2FNs. 

Definition 4 [34]. It is assumed that  1 1 1,u lA A A
 

and  2 2 2,u lA A A  are two trapezoidal IT2FNs.  

(1) If 1 2( ) ( ),R A R A
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(3) If 1 2( ) ( ),R A R A
 

then 1 2 .A A  

2.2 The operations of IT2FNs based on T-norm 

Intersection (meet) and union (join) of IT2FNs are defined based on ATT, respectively. Given a 

monotonic decreasing function ( ) : (0,1]g t R  such that 1( ) : (0,1]g t R    verifies: 

1lim ( ) 0
t
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  and 1(0) 1,g    then, 1( , ) ( ( ) ( ))T x y g g x g y   is a T-norm with ( )g t  as its 

additive generator [6]. Table 1 shows four of the most used families of ATs and their additive 

generators. 

Table 1. ATs and their additive generators 

Name Formulas of the t-norms Additive generators 
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Given a T-norm ( , )T x y , the following operations of trapezoidal IT2FNs are defined. 

Definition 5. It is assumed that  1 1 1,u lA A A
 

and  2 2 2,u lA A A  are any two trapezoidal IT2FNs. 

Given a T-norm ( , )T x y  with additive generator function: 
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Note that Eqs. (6)–(7) are the general formulations with additive generator function ( )g t . In what 

follows, we provide some special cases using the additive generators of Table 1. 

(1) For the algebraic T-norm ( , )AT x y , Eqs. (6)–(7) become the operations defined by Hu et al. [18]  
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(2) For Einstein T-norm ( , )ET x y , Eqs. (6)–(7) become ( 0  ): 
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1 2 2 2 1 2 2 2( ) ( ) ( ) ( ) 1,u u l lh A h A h A h A     Eqs. (12)–(13) become the operations defined by Qin and Liu 

[33]. 

(4) For the Aczel-Alsina T-norm ( , )AAT x y , Eqs. (6)–(7) become ( 0   and 0  ): 
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2.3 Fuzzy measure and Choquet integral operator 

A FM [37] on the set 1 2{ , ,..., }nZ z z z  is a function : ( ) [0,1]P Z  , where ( )P Z  denotes 

the power set of Z , which satisfies the following two restrictions: 

(1) Boundedness: ( ) 0,   ( ) 1Z  ; 

(2) Monotonicity: If , ( )B D P Z  and D B , then ( ) ( )D B  . 

The value μ(D) can be considered as the grade of importance of the set D, where ( )D P Z . Thus, 

in addition to the traditional weight on a single element iz Z , weights on any coalition of elements 

iz Z  are also defined with an FM μ. 

FMs can be utilized for fusion purposes in conjunction with the Choquet integral. 

Definition 6 [37]. Let μ be an FM on the set Z  and f  a function on the set Z . The Choquet 

integral of f  is: 

 
(1) (2) ( ) ( ) ( ) ( 1)
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( ( ), ( ),..., ( )) ( )( ( ) ( ))
n

n i i i

i

C f z f z f z f z Z Z   



  ,  

where the subscript (.)  represents the permutation of the elements in the set Z  such that 

(1) (2) ( )( ) ( )  ... ( )nf z f z f z   , and ( ) ( ) ( 1) ( ){ , ,..., }i i i nZ z z z  with ( 1)nZ    (i = 1, 2, …, n). 

3. The Choquet integral of IT2FNs based on Archimedean T-norms 

In this section, we propose the IT2FAC operator, the BIT2FAC operator and the 2ABIT2FAC 

operator for aggregating IT2FNs. Then, several features and special cases of these novel operators are 

studied. 

3.1 The IT2FAC operator 

Definition 7. It is assumed that 1 2{ , ,..., }nZ z z z  is a collection of attributes and 1 2{ , ,..., }nA A A   

is a set of trapezoidal IT2FNs on Z . The IT2FAC operator is expressed as follows:  
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where ( )kA  denotes the k-th smallest element in the set 1 2{ , ,..., }nA A A  , ( )kz  is the attribute 

corresponding to ( ) ,kA
 ( ) ( ) ( 1) ({ , ,..., }k k k nZ z z z ）  with ( 1) ,nZ    and μ represents an FM on Z . 

Based on the operations of IT2FNs listed in Eqs. (6)–(7), from Eq. (16), we can derive the 

following result. 

Theorem 1. The aggregation output of the set 1 2{ , ,..., }nA A A   of trapezoidal IT2FNs by the 

IT2FAC operator is the following trapezoidal IT2FN: 
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The proof of Theorem 1 is provided in the supplementary material Appendix 1. 

Corollary 1. When all elements ( 1,2,..., )kz k n  in the set Z  are independent, the FM μ is an 

additive measure, i.e., ( ) ({ })
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  for any D Z , and the IT2FAC operator becomes the 

following IT2F Archimedean weighted average (IT2FAWA) operator: 
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Corollary 2. If 
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then the IT2FAC operator becomes the following IT2F Archimedean ordered weighted average 

(IT2FAOWA) operator: 
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In what follows, some fundamental features of the proposed IT2FAC operator are investigated. 

Theorem 2. Let 1 2{ , ,..., }nA A A   and 1 2{ , ,..., }nA A A      be two sets of trapezoidal IT2FNs on Z , 

B  a trapezoidal IT2FN and 0  . The IT2FAC operator verifies the following properties: 

(1) Idempotency: 2 ( , ,..., )IT FAC A A A A , where ( 1,2,..., )kA A k n  . 

(2) Commutativity: 1 2 1 22 ( , ,..., ) 2 ( , ,..., ),n nIT FAC A A A IT FAC A A A     where 1 2{ , ,..., }nA A A    is 

any permutation of 1 2{ , ,..., }nA A A . 
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(5)  1 2 1 22 ( , ,..., ) 2 ( , ,..., ) .n nIT FAC A B A B A B IT FAC A A A B
        

(6) 1 1 2 2 1 2 1 22 ( , ,..., ) 2 ( , ,..., ) 2 ( , ,..., ).n n n nIT FAC A A A A A A IT FAC A A A IT FAC A A A         

 
The proof of Theorem 2 is provided in the supplementary material Appendix 2. 

In what follows, we derive the special cases of the proposed IT2FAC operator when using the 

different additive generator functions of Table 1. 

(1) When we utilize the algebraic operations, the IT2FAC operator becomes the IT2F Choquet 

(IT2FC) operator, i.e.: 
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(2) When we utilize the Einstein operations, the IT2FAC operator becomes the Einstein IT2FC 

(EIT2FC) operator, i.e.: 
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(3) When we utilize the Frank operations, the IT2FAC operator becomes the Frank IT2FC (FIT2FC) 

operator, i.e.:
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(4) When we utilize the Aczel-Alsina operations, the IT2FAC operator becomes the Aczel-Alsina 

IT2FC (AAIT2FC) operator, i.e.:
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To illustrate how to use the developed operators, the following case is given. 

Example 1. It is assumed that an expert assesses the alternative p1 concerning the criteria z1, z2 and z3. 

The FMs of the criteria set {z1, z2, z3} are: ( ) 0,    1({ }) 0.4,z   2({ }) 0.2,z   3({ }) 0.3,z   

1 2({ , }) 0.5,z z   1 3({ , }) 0.7,z z   2 3({ , }) 0.6z z   and 1 2 3({ , , }) 1z z z  . The criteria values are:

 1 (0,0,0,0.1;1,1),(0,0,0,0.05;0.9,0.9) ,A   2 (0.15,0.3,0.35,0.5;1,1),(0.2,0.25,0.3,0.4;0.9,0.9) ,A 

and  3 (0,0.1,0.15,0.3;1,1),(0.05,0.1,0.1,0.2;0.9,0.9)A  . If The IT2FC operator is applied, we can get 

a collective value  1 2 3 4 1 2 1 2 3 4 1 2( , , , ; ( ), ( )), ( , , , ; ( ), ( ))u u u u u u l l l l l lA a a a a h A h A a a a a h A h A . The detailed steps 

are depicted as follows: 

By Definition 4, we get 1 3 2.A A A  Then, we get (1) (2) 1 2 3 2 3( ) ( ) ({ , , }) ({ , }) 0.4,Z Z z z z z z         

(2) (3) 2 3 2( ) ( ) ({ , }) ({ }) 0.4Z Z z z z        and (3) 2( ) ( ) ({ }) ( ) 0.2Z z         . Besides, by 



the operations of IT2FNs, we get (1) (2) (2) (3) (3)( ) ( ) ( ) ( ) ( ) ( )

1 11 13 12( ) ( ) ( ) 0
Z Z Z Z Zu u u ua a a a

        
    . 

Similarly, it is obtained: 2 0,ua   3 0,ua   4 0.2141,ua   1( ) 1,uh A   2 ( ) 1,uh A   1 0,la   

2 0,la   3 0,la   4 0.132,la   1( ) 0.9lh A   and 2 ( ) 0.9lh A  . 
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3.2 The BIT2FAC operator 

Note that the proposed IT2FAC operator only captures the interaction between adjacent coalitions 

of attributes, ( )kZ  and ( 1) ( 1,2,..., ).kZ k n   For instance, suppose that 1 2 3{ , , }Z z z z  and 

1 2 3;A A A   then, it is: 
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Obviously, the proposed IT2FAC operator only captures the coalitions of attributes (1) 1 2 3{ , , }Z z z z , 

(2) 2 3{ , }Z z z  and (3) 3{ }Z z . Actually, we also need to consider the coalitions of attributes 1{ },z  

2{ },z  1 2{ , }z z  and 1 3{ , }z z . Thus, the proposed IT2FAC operator may not always be appropriate 



because some coalitions of attributes of interest might not be considered. In what follows, to globally 

capture the various coalitions of attributes, we extend the generalized Banzhaf index to IT2FAC 

operator, and then propose the BIT2FAC operator. 

The generalized Banzhaf index below is an interaction index presented by Marichal [27]: 

  
| |

\

1
( ) ( ) ( ) ,

2n B
D Z B

B B D D  




     (22) 

where μ denotes an FM on the set Z , B  denotes any subset of ,Z  \Z B  denotes the difference set 

between Z  and B , | |B  and n are the cardinalities of the set B  and Z , respectively, and D  

denotes any subset of \Z B . Through Eq. (22), we find that when there is only one element iz  in the 

set ,B  i.e., { },iB z  Eq. (22) becomes the Banzhaf function [27]: 

  
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1
({ }) ({ } ) ( ) .

2
i

i in
D Z z

z z D D  




    (23) 

Eq. (22) represents an expected value of the overall interaction between the coalition B  and any 

coalitions in \Z B , which in a MADM would be considered as the weight (importance) of the 

attribute set .B  Additionally, Meng et al. [31] pointed out that the generalized Banzhaf index is also a 

special type of FM. Thus, we extend the Choquet integral with generalized Banzhaf index to handle 

IT2FNs and propose the BIT2FAC operator to globally capture the interactions of the attributes. 

Definition 8. It is assumed that 1 2{ , ,..., }nZ z z z  is a collection of attributes and 1 2{ , ,..., }nA A A   

is a set of trapezoidal IT2FNs on Z . The BIT2FAC operator is:  
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1 2 ( )
1

2 ( , ,..., ) k k

n
Z Z

n k
k

BIT FAC A A A A
  


  , (24) 

where 
( ) ( ) ( )( , )u l

k k kA A A  denotes the k-th smallest element in the set 1 2{ , ,..., }nA A A  , ( )kz  is the 

attribute corresponding to ( ) ,kA ( ) ( ) ( 1) ({ , ,..., }k k k nZ z z z ） with ( 1) ,nZ    and ( )( )( 1,2,..., 1)kZ k n    

represents the generalized Banzhaf index on the criteria set ( )kZ . 

Based on the operations of IT2FNs listed in Eqs. (6)–(7), from Eq. (24), we derive the following 

result. 

Theorem 3. The aggregation output of the set 1 2{ , ,..., }nA A A   of trapezoidal IT2FNs by the 

BIT2FAC operator is the following trapezoidal IT2FN: 
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 (25) 

The proof of Theorem 3 is similar to the proof of Theorem 1; thus, it is omitted here. 

Corollary 3. When all elements ( 1,2,..., )kz k n  in the set Z  are independent, the generalized 

Banzhaf index ( )D
 

is an additive measure, i.e., ( ) ({ })
k

kz D
D z 


  for any D Z , and the 

BIT2FAC operator becomes the IT2FAWA operator. 

Corollary 4. If 
| |

1

( )
D

k

k

D w


  for any D Z , where | |D  represents the cardinality of ,D  then 

the BIT2FAC operator becomes the IT2FAOWA operator. 

Similar properties to those proved for the IT2FAC operator, can also be proved for the BIT2FAC 

operator. Their proofs are therefore omitted here. In addition, for the additive generators of Table 1, the 

following BIT2FAC operators are derived: the Banzhaf IT2FC operator (algebraic); the Banzhaf 

EIT2FC operator (Einstein); the Banzhaf FIT2FC (Frank); and the Banzhaf AAIT2FC operator 

(Aczel-Alsina). The expressions of these four operators can be derived by replacing 

( ) ( 1)( ) ( )k kZ Z    in Eqs. (18)–(21) with ( ) ( 1)( ) ( )k kZ Z   , and therefore they are omitted here. 

3.3 The 2ABIT2FAC operator 

FMs have an effect on the computational complexity of problems where it becomes exponential 

because of the involvement of the cardinality of the power set of a set. As a result, when the cardinality 

of the set Z  is high, it is not easy to derive the FMs of all its coalitions. The proposed BIT2FAC 

operator is based on FMs, and therefore its computational complexity is also exponential. To improve 

the practicability of the proposed BIT2FAC operator, we shall propose the 2ABIT2FAC operator using 

2-additive fuzzy measures (2AFMs) [16]. 

For 2AFM, given any S Z  with | | 2S  : 
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where { }jze  and { , }j iz ze indicate the Möbius transform coefficients [16],
{ }({ })

jj zz e  , 



({ }) ({ }) ({ , })({ , })
j i j ij i z z z zz z e e e    , j  represents a Boolean variable ( 1j j S    ), and | |S  

is the cardinality of the set S . Obviously, to derive 2AFM, only n (n+1)/2 coefficients ({ })jz  and

({ , })j iz z  are needed. 

The following theorem was proved by Grabisch [16] to derive a 2AFM. 

Theorem 4 [16]. Given the set Z , μ is a 2AFM on Z  if for all ,j iz z Z , the following conditions 

are verified: 

(1) ({ }) 0,j jz z Z    ; 

(2) 
{ , } { }
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j i j

j i j
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z z n z 
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    ; 
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j i

j i j i

z S z

z z z S z  


    S Z   with iz S  and | | 2S  . 

Menget al. [31] presented the explicit expression of the generalized Banzhaf index with 2AFM 

below: 

Theorem 5 [31]. It is assumed that μ denotes a 2AFM on the set Z . The generalized Banzhaf index 

with 2- additive measure μ is: 
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where B  denotes any subset of ,Z  \Z B  denotes the difference set between Z  and B , and | |B  

is the cardinality of the coalitions B . When there is only one element iz  in the set B , i.e., { }iB z , 

then, Eq. (27) becomes the Banzhaf function with 2AFM: 
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Theorem 6 [31]. It is assumed that μ denotes a 2AFM on the set Z , and   is the generalized 

Banzhaf index with 2AFM μ. Then,  

 ( { }) ({ }) ( ),j jS z z S      (29) 

for any jz Z  and any S Z  with jz S . 

By Theorem 6, the 2ABIT2FAC operator can be defined as below: 

Definition 9. It is assumed that 1 2{ , ,..., }nZ z z z  is a collection of attributes and 1 2{ , ,..., }nA A A   

is a set of trapezoidal IT2FNs on Z . The 2ABIT2FAC operator expression is:  
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where kz  is the attribute corresponding to ,kA  and ({ })( 1,2,..., )kz k n   represents the Banzhaf 

function with 2AFM on the criterion kz . 

Based on the operations of IT2FNs listed in Eqs. (6)–(7), from Eq. (30), we derive the following 

result. 

Theorem 7. The aggregation output of the set 1 2{ , ,..., }nA A A   of trapezoidal IT2FNs by the 

2ABIT2FAC operator is the trapezoidal IT2FN: 
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  (31) 

The proof of Theorem 7 is similar to the proof of Theorem 1; thus, it is omitted here.  

Similar properties to those proved for the IT2FAC operator, can also be proved for the 

2ABIT2FAC operator and therefore their proofs are also omitted here. In addition, for the additive 

generators of Table 1, the following BIT2FAC operators are derived: the 2-additive Banzhaf IT2FC 

operator (algebraic); the 2-additive Banzhaf EIT2FC operator (Einstein); the 2-additive Banzhaf 

FIT2FC operator (Frank); and the 2-additive Banzhaf AAIT2FC operator (Aczel-Alsina). The 

expressions of these four operators can be derived by replacing ( ) ( 1)( ) ( )k kZ Z    in Eqs. (18)–(21) 

with ( )({ })kz , and therefore they are omitted here. 

4. Bi-directional projection-based models for the optimal fuzzy measures 

The projection method is a powerful tool for obtaining attributes’ weights [19]. In what follows, 

we shall utilize the bi-directional projection measure within the context of IT2FNs for determining the 

optimal FMs on the attributes set. 

4.1 A novel bi-directional projection measure of IT2FNs  

To develop the bi-directional projection measure of IT2FNs, based on the cosine measure and 

projection measure of picture fuzzy sets defined by Wang et al. [44], we first develop the cosine 

measure and general projection measure of IT2FNs. 

Definition 10. It is assumed that  ,u lA A A
 

is a trapezoidal IT2FN. The module of A  is: 
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Definition 11. It is assumed that  1 1 1,u lA A A
 

and  2 2 2,u lA A A  are two trapezoidal IT2FNs. The 

inner product of 1A  and 2A  is: 
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Definition 12. It is assumed that  1 1 1,u lA A A
 

and  2 2 2,u lA A A  are two trapezoidal IT2FNs. The 

cosine of the angle between 1A  and 2A  is: 
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.  (34) 

Definition 13. It is assumed that  1 1 1,u lA A A
 

and  2 2 2,u lA A A  are two trapezoidal IT2FNs. The 

projection of 1A  on 2A  is: 
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     

   

   

   

 (35) 

The projection measure 
2 1( )APoj A  reflects both the distance and the angle between 1A  and 2A . 

Generally, the larger the value of 
2 1( )APoj A  is, the closer 1A  and 2A  are. 

On the basis of the developed projection measure between IT2FNs, a bi-directional projection 

measure of IT2FNs is defined below: 

Definition 14. It is assumed that  1 1 1,u lA A A
 

and  2 2 2,u lA A A  are two trapezoidal IT2FNs. The 

bi-directional projection between 1A  and 2A  is: 

4 4 2 2

1 2 1 2 1 2 1 2

1 1 1 11 2

1 2 2 2 2 4 4 2 2
1 2 2 2 2 2

1 1 1 1 1

2 ( ) ( ) ( ) ( )
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( , )
| | | |

( ) ( ) ( ( )) ( ( ))

u u l l u u l l
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k k k k

u l u l

tk tk k t k t

t k k k k

a a a a h A h A h A h A
A A

Bpoj A A
A A

a a h A h A

   

    

   
      

    
 

     
      

    

   

    
, (36) 

The bi-directional projection measure of IT2FNs reflects not only the distance and the angle 

between 1A  and 2A  but also the bi-directional projection magnitudes between 1A and 2A . Clearly, the 

greater the value of 1 2( , )Bpoj A A is, the closer 1A  and 
2A  are. The bi-directional projection measure 

is a normalized measure, i.e., 1 20 ( , ) 1Bpoj A A  . 

To explain the difference between the developed projection measure of IT2FNs and the developed 

bi-directional projection measure of IT2FNs, we provide the following example. 

Example 2. Consider the following IT2FNs:  1 (0.4,0.5,0.5,0.8;0.9,0.9),(0.5,0.7,0.7,0.8;1,1)A   and 

 2 3 (0.3,0.5,0.5,0.7;0.9,0.9),(0.4,0.6,0.6,0.7;1,1) .A A   

By Eq. (35), we obtain that 
3 1( ) 3.3792APoj A   and 

3 2( ) 2.9781.APoj A   In this situation, 

because 
3 31 2( ) ( ),A APoj A Poj A  we conclude that 1A  is closer to 3A  than 2 ,A  which contradicts 

that 1 2 3A A A  . From Eq. (36), we obtain that 1 3( , ) 0.9893Bpoj A A   and 2 3( , ) 1Bpoj A A  , 

agreeing with 1 2 3A A A  . This example illustrates that the projection measure of IT2FNs is not 

always viable in some situations, whereas the bi-directional projection measure of IT2FNs is viable and 

useful. Thus, the developed bi-directional projection measure of IT2FNs is better than the projection 

measure of IT2FNs to handle decision-making problems. 



4.2 The models for deriving the optimal fuzzy measures  

Without loss of generality, in a MADM problem, it can be assumed that 1 2{ , ,..., }mP p p p  is a 

collection of m  alternatives, 1 2{ , ,..., }nZ z z z  is a collection of n attributes, and [ ]kj m nA    is 

the decision matrix, where  1 2 3 4 1 2 1 2 3 4 1 2( , , , ; ( ), ( )), ( , , , ; ( ), ( ))u u u u u u l l l l l l

kj kj kj kj kj kj kj kj kj kj kj kj kjA a a a a h A h A a a a a h A h A  

( 1,2,..., ; 1,2,..., )k m j n  is an IT2FN that represents how attribute jz  is verified by alternative kp . 

To handle the cases where the attributes’ weights are partly known, this section constructs two models 

for deriving the optimal FMs and 2AFMs on the attributes set based on the developed bi-directional 

projection measure of IT2FNs, respectively.  

It is assumed that 1 2( , ,..., )nA A A    
 

and 1 2( , ,..., )nA A A      represent the positive and 

negative ideal alternatives, respectively, i.e.:  
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 (37) 
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 (38) 

Then, according to the subtraction operation of trapezoidal IT2FNs [5], we compute the difference 

between jA 
 and ,jA 

 the difference between jA
 and kjA , and the difference between kjA  and

jA 
: 
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In addition, by Eq. (36), we obtain the bi-directional projection between j jA A   and ij jA A , 

and the bi-directional projection between j jA A   and j ijA A : 

  2 2

2( ) ( )
, ,

| | +| |

j j kj j

j j kj j

j j kj j

A A A A
Bpoj A A A A

A A A A

  

  

  

  
  

 
 

  2 2

2( ) ( )
, .

| | | |

j j j kj

j j j kj

j j j kj

A A A A
Bpoj A A A A

A A A A

  

  

  

  
  

  
 

Next, based on the TOPSIS methodology [17], the closeness degree between 



 ,j j kj jBpoj A A A A     and  ,j j j kjBpoj A A A A     is obtained: 
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  (39) 

To achieve the optimal FMs on the attributes set Z , the following model is solved: 
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  (40) 

where 
jzH  is the range of known weights information of attribute ( 1, 2,..., ).jz j n  Once model (40) 

is solved, using Eq. (22), the generalized Banzhaf values of the attributes are derived and regarded as 

the attributes’ weights. 

Using Eq. (28) and Theorem 4, model (40) can be equivalently converted into:  
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 (41) 

Once model (41) is solved, using Eq. (28), the Banzhaf values with 2AFMs of the attributes are derived 

and regarded as the attributes’ weights. 

5. The created approaches to interval type-2 fuzzy MADM problems 

In what follows, based on the proposed operators and constructed linear models, two novel 

MADM approaches for handling IT2F decision-making problems with interactive attributes and 

incomplete weights information are presented. 

1) The first MADM approach based on the BIT2FAC operator 

Step 1: Evaluate the alternatives ( 1,2, , )kp k m   on the attributes ( 1,2, , ),jz j n  and build the 

IT2F decision matrix [ ] .kj m nA    

Step 2: If the criteria weighting vector is partly unknown, use model (40) to derive the optimal FMs 

( )B  on the attributes set B Z ; otherwise, go to step 3. 

Step 3: Compute the generalized Banzhaf value ( )B  with FM ( )B
 

on the attributes set B  

using Eq. (22). 

Step 4: Calculate the comprehensive attribute value kA  of alternative ( 1,2,..., )kp k m  using the 



proposed BIT2FAC operator with Eq. (25). 

Step 5: Compute the combined ranking values ( )kR A  of the comprehensive attribute values

( 1,2,..., )kA k m  using Eq. (5).
 

Step 6: Apply Definition 4 to derive the ranking of the alternatives 1 2, ,..., mp p p  and select the 

optimal alternative. The larger the ranking value ( )kR A , the better the alternative ( 1,2,..., ).kp k m  

2) The second MADM approach based on the 2ABIT2FAC operator 

Step 1: Evaluate the alternatives ( 1,2, , )kp k m   on the attributes ( 1,2, , ),jz j n  and build the 

IT2F decision matrix [ ] .kj m nA    

Step 2: If the criteria weighting vector is partly unknown, use model (41) to derive the optimal 2AFMs 

( )B  on the attributes set B Z ; otherwise, go to step 3. 

Step 3: Compute the Banzhaf value ({ })jz  with 2AFM ({ })jz
 

on the attribute jz  using Eq. 

(28).  

Step 4: Calculate the comprehensive attributes value kA  of alternative ( 1,2,..., )kp k m  using the 

proposed 2ABIT2FAC operator with Eq. (31). 

Step 5: Compute the combined ranking values ( )kR A  of the comprehensive attribute values

( 1,2,..., )kA k m  using Eq. (5).
 

Step 6: Apply Definition 4 to derive the ranking of the alternatives 1 2, ,..., mp p p  and select the 

optimal alternative.  

Although the two created MADM approaches can handle IT2F decision-making problems, some 

differences exist between them. 

1) Regarding computational complexity, the first MADM approach is based on FM, which 

requires 2
n
 coefficients; however, the second MADM approach is based on 2AFM, which 

only needs n×(n+1)/2 coefficients. Therefore, the computational complexity of the second 

MADM approach is lower, and it is more practical than the first one. 

2) To reflect the interactions of the attributes, the first MADM approach is based on a 

generalized Banzhaf index with Eq. (22), which globally considers the interactions of the 

attributes, whereas the second MADM approach is based on the Banzhaf function with 

2AFM with Eq. (28), which only reflects the interrelations between any two attributes. 

Consequently, the first MADM approach can reflect the interactions of the attributes more 

comprehensively than the second one. 

In real MADM environments, when decision-makers (DMs) can endure a long computational time 

period and expect to globally reflect the interactions of the attributes, the first MADM approach is the 

best choice. Otherwise, the second MADM approach is the optimal choice. 

6. Application examples 

In this section, an illustrative case is offered to present the application of the created approaches to 

the service quality evaluation of commercial bank problems. Additionally, a comparative study with 



existing methods [13] [14] [18] is carried out to illustrate the superiority of the created approaches. 

6.1 Application of the created MADM approaches  

Example 3. To better understand the service quality of commercial banks in China, four famous 

commercial banks are considered for assessment, anonymously denoted as p1, p2, p3 and p4. Eight 

attributes of service quality are identified by reviewing the relevant literature [36] [46] [48], and they 

are: 

z1: 
Technology level, which assesses the hardware equipment for banking business, the application 

level of science and technology, the networking level of the bank and the speed of technological 

renewal;  

z2: 
Service attitude, which assesses the warm greetings of customers by staff and the courtesy of 

staff to customers;  

z3: 
Consultation service, which assesses the number of staff in the lobby for consulting service, the 

level of business proficiency, the status of the job, the scope of the consulting business and the 

implementation of consulting services;  

z4: 
Waiting area environment, which assesses the waiting area, the decoration status, the lighting, 

the temperature control, the number of seats and their comfort, the wireless network service, the 

electronic information display and the voice prompts;  

z5: 
Window opening situation, which assesses the number of service opening windows and waiting 

time of customers; 

z6: 
Operational capacity, which assesses the skills of business people, the proficiency in business, 

the efficiency of work, the error rate and the customer satisfaction; 

z7: 
Security, which assesses the soundness of security monitoring equipment, the provision of 

security personnel, the responsibility of security personnel to perform their duties, the anti-information 

leakage, the anti-copy and the anti-theft brush technology;  

z8: 
Financial product, which assesses the richness and the management of financial management 

varieties, the interest rate of property products and the safety of financial products.  

The seven IT2FNs linguistic terms below are utilized to assess the service quality of the four 

commercial banks on the above eight attributes (Table 2). The decision matrix is shown in Table 3. 

Table 2. Linguistic ratings and their corresponding trapezoid IT2FNs 

Linguistic Terms  Trapezoid IT2FNs 

Extremely Poor (EP)   (0,0,0,0.1;1,1),(0,0,0,0.05;0.9,0.9)  

Poor (P)   (0,0.1,0.15,0.3;1,1),(0.05,0.1,0.1,0.2;0.9,0.9)  

Slightly Poor (SP)   (0.15,0.3,0.35,0.5;1,1),(0.2,0.25,0.3,0.4;0.9,0.9)  

Fair (F)   (0.3,0.5,0.55,0.7;1,1),(0.4,0.45,0.5,0.6;0.9,0.9)  

Slightly Good (SG)   (0.5,0.7,0.75,0.9;1,1),(0.6,0.65,0.7,0.85;0.9,0.9)  

Good (G)   (0.7,0.9,0.95,1;1,1),(0.8,0.85,0.9,0.95;0.9,0.9)  

Extremely Good (EG)   (0.9,1,1,1;1,1),(0.95,1,1,1;0.9,0.9)  

  



Table 3. The decision matrix 

 1z  
2z

 3z
 4z  

5z  
6z

 7z  
8z  

1p  SG F F G F SP SP SG 

2p  SP EG SP F EG EG SP F 

3p  F G SP SG G G SP F 

4p  G EG MG F SP EG G SP 

Using the first MADM approach, based on the BIT2FAC operator, 2
8
 coefficients are to be 

determined, while with the second MADM approach, based on the 2ABIT2FAC operator, (8×9)/2 

coefficients are needed. Therefore, we select the second MADM approach to solve Example 3 and its 

calculation procedure are given below: 

[Step 1] It is assumed that the attributes are independent, and the following importance values of 

attributes ( 1,2,...,8)jz j   are provided by experts: 

1 2 3 4 8 5 7 6({ }) ({ }) ({ }) ({ }) ({ }) 0.1, ({ }) ({ }) 0.15, ({ }) 0.2.z z z z z z z z                

Because all the attributes are independent, according to the property of additive measure, we obtain 

1 2 1 2({ , }) ({ }) ({ }) 0.2z z z z     . Similarly, the other 2AFMs ( )B
 

on the attribute set B Z  

are obtained: 

1 3 1 4 1 8 2 3 2 4 2 8 3 4

3 8 4 5 4 8 1 5 1 7 2 5 2 7

3 5 3 7 4 7

({ , }) ({ , }) ({ , }) ({ , }) ({ , }) ({ , }) ({ , }) 0.2,

{ , }) ({ , } ({ , }) 0.2, ({ , }) ({ , }) ({ , }) ({ , }) 0.25,

({ , }) ({ , }) ({ , }) ({

z z z z z z z z z z z z z z

z z z z z z z z z z z z z z

z z z z z z
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      

   5 8 7 8 1 6

2 6 3 6 4 6 5 7 6 8 5 6 6 7

, }) ({ , }) 0.25, ({ , }) 0.3,

({ , }) ({ , })= ({ , }) ({ , }) ({ , }) 0.3, ({ , }) ({ , }) 0.35.

z z z z z z

z z z z z z z z z z z z z z

 

      

  

    

 

[Step 2] Eq. (28) is used to compute the Banzhaf value ({ })jz  with 2AFM ({ })jz
 

on the 

attribute ( 1,2,...,8)jz j  . An example is illustrated below: 

 
1

1 1 1

\

5 1
({ }) ({ }) ({ , }) ({ })

2 2

5 1
0.1 (0.2 0.1 0.2 0.1 0.2 0.1 0.25 0.15 0.3 0.2 0.25 0.15 0.2 0.1) 0.1.

2 2

i

i i

z Z z

z z z z z   


   

                  


 

Similarly, it is obtained: 

2 3 4 8 5 7 6({ }) ({ }) ({ }) ({ }) 0.1, ({ }) ({ }) 0.15, ({ }) 0.2.z z z z z z z            

 

[Step 3] The proposed 2ABIT2FAC operator (algebraic) with Eq. (31) is used to derive the 

comprehensive attribute values kA
 

of the alternatives ( 1,2,3,4)kp k  . The detailed computation of 

1A  is shown below: 

8
( )

1 11 12 18 1
1

8 8 8 8 8 8
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1 3 1 4 1 1 2 1

1 1 1 1 1 1

8 8
( ) (

1 1 1 2

1 1

2 2 ( , ,..., )

( ) , ( ) , ( ) , ( ) ; ( ( )) , ( ( )) ,

( ) , ( )

j

j j j j j j

j

z

j
j

z z z z z zu u u u u u

j j j j j j

j j j j j j

zl l

j j

j j

A ABIT FAC A A A A

a a a a h A h A

a a



     

 



     

 

  

 
  

 
     

 

 

8 8 8 8
) ( ) ( ) ( ) ( )

1 3 1 4 1 1 2 1

1 1 1 1

, ( ) , ( ) ; ( ( )) , ( ( ))

(0.2837,0.4743,0.5276,0.6781;1,1), (0.3648,0.4202,0.4743,0.5844,0.9,0.9) .

j j j j jz z z z zl l l l

j j j j

j j j j

a a h A h A
   

   

 
 

 



   

 

Similarly: it is obtained: 



 

 
2

3

4

(0.3859,0.5712,0.6145,0.7306;1,1), (0.4632,0.5247,0.5712,0.6552;0.9,0.9) ,

(0.3887,0.5929,0.6480,0.7748;1,1), (0.4785,0.5366,0.5929,0.6903;0.9,0.9) ,

(0.4562,0.6490,0.6950,0.8029;1,1), (0.5400,0.600

A

A

A





  4,0.6490,0.7340;0.9,0.9) .

 

[Step 4] Eq. (5) is used to compute the combined ranking value ( )kR A
 

of the comprehensive attribute 

value ( 1,2,3,4)kA k  : 

1 2 3 4( ) 0.6578, ( ) 0.8342, ( ) 0.8792, ( ) 0.9952.R A R A R A R A   
 

[Step 5] By Definition 4, we find that the final ranking of commercial banks is 4 3 2 1,p p p p    

and 4p  is the best commercial bank. 

6.2 Discussion about some special cases 

Below we analyse the effects of four special cases of ATs on the final ranking values and on the 

corresponding ranking alternatives. As we can see from Table 4 (γ=2 in the Frank and Aczel-Alsina 

operations), the ranking values by different operations are different; however, the preferred ordering of 

the commercial banks are identical in the four cases. 

Table 4. Ranking results in light of four special cases of AT 

Operations Ranking values of ( 1,2,3,4)kp k   Preferred order
 

Algebraic operations 1 2 3 4( ) 0.6578, ( ) 0.8342, ( ) 0.8792, ( ) 0.9952.R A R A R A R A     
4 3 2 1p p p p    

Einstein operations 1 2 3 4( ) 0.6786, ( ) 0.9051, ( ) 0.9256, ( ) 1.0653.R A R A R A R A     
4 3 2 1p p p p    

Frank operations 1 2 3 4( ) 0.6676, ( ) 0.8649, ( ) 0.9002, ( ) 1.0261.R A R A R A R A     
4 3 2 1p p p p    

Aczel-Alsina operations 1 2 3 4( ) 0.5825, ( ) 0.6316, ( ) 0.7057, ( ) 0.7441.R A R A R A R A     
4 3 2 1p p p p    

Further, we discuss the effects of the parameter γ on the preferred ordering of this example. We 

use the Frank and Aczel-Alsina operations to illustrate the effects. The ranking results for
 
different 

values of γ from Frank and Aczel-Alsina operations are depicted in Figs. 2 and 3. The following 

conclusions are drawn: 

1) The ranking values derived by the created approach based on Frank operations are not lower 

than those derived by the created approach based on Aczel-Alsina operations for the same 

value of the parameter γ, and their deviations become larger as the value of parameter γ 

increases. 

2) The ranking values derived by the created approach based on Frank operations increase as
 

parameter γ increases (for the same alternative). However, the ranking values derived by the 

created approach based on Aczel-Alsina operations decrease as parameter γ increases (for the 

same alternative).
 

3) For the Frank and Aczel-Alsina operations, the same preferred ordering of alternatives is
 

obtained for different values of parameter γ. This denotes that the created approach verifies 

the isotonicity property.
 

4) We could consider the parameter γ as the “DMs’ attitude”. For the Frank operations, the
 

larger the value of parameter γ becomes, the more optimistic the DMs are; the smaller the 

value of γ becomes, the more pessimistic the DMs are. However, for the Aczel-Alsina 



operations, the inverse interpretation applies.
 

    
(1) γ = 1                   (2) γ = 2                   (3) γ = 3                  (4) γ = 4 

    
(5) γ = 5                   (6) γ = 7                   (7) γ = 9                  (8) γ = 10 

Fig. 2. Ranking results of the alternatives with different values of γ 

 
 

(1) Frank operations                                  (2) Aczel-Alsina operations 

Fig. 3. Ranking results of the alternatives with different operations 

6.3 Validity test of the created approach 

The different MADM approaches might provide different ranking results for the same 
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decision-making problem. Therefore, the following test criteria provided by Wang and Triantaphyllou 

[45] is applied to analyse the reliability and validity of the created MADM approach. 

Test criterion 1. An effective MADM approach should not alter the optimal alternative when 

substituting a non-optimal alternative for another non-optimal alternative without changing the 

attributes’ weights.
 

Using test criterion 1, the worse alternative p1= {F, SP, F, G, F, SP, SP, F} is substituted for the 

non-optimal alternative p1 = {SG, F, F, G, F, SP, SP, SG} in the initial decision matrix. Using the 

BIT2FAC operator with Frank operations and γ = 2, in Step 3 to this adjusted data, the following 

comprehensive values of each commercial bank ( 1,2,3,4)kp k   are obtained:  

 

 

1

2

3

(0.2880,0.4799,0.5333,0.6828;1,1), (0.3703,0.4258,0.4799,0.903;0.9,0.9) ,

(0.4033,0.5870,0.6281,0.7386;1,1), (0.4810,0.5427,0.5870,0.6668;0.9,0.9) ,

(0.3983,0.6039,0.6589,0.7822;1,1), (0.4898,0.5478

A

A

A





  

 4

,0.6039,0.6996;0.9,0.9) ,

(0.4724,0.6638,0.7083,0.8110;1,1), (0.5568,0.6169,0.6638,0.7453;0.9,0.9) .A 

 

The combined ranking values of all commercial banks are: 

1 2 3 4( ) 0.5680, ( ) 0.8649, ( ) 0.9002, ( ) 1.0261.R A R A R A R A     

Thus, the ranking result is 4 3 2 1p p p p   , i.e., the best commercial bank is again 4p . 

Therefore, the created MADM approach is shown to verify test criterion 1. 

Test criterion 2. An effective MADM approach needs to verify transitive property.  

Test criterion 3. When a MADM problem is decomposed into several sub-problems, and the same 

approach is used to handle these sub-problems to provide the ranking of the alternatives, the integrated 

ranking of the alternatives needs to be the same as the original MADM problem. 

Using test criteria 2 and 3, we decompose the initial MADM problem into two smaller MADM 

problems 1 2 4{ , , }p p p  and 2 3 4{ , , }p p p . According to the procedure of the created MADM approach, 

we derive preferred orders 4 2 1p p p   and 4 3 2p p p   for the two sub-problems, respectively. 

If the orderings of the sub-problems are integrated together, we derive the integrated preferred order as 

4 3 2 1,p p p p    which is the same as the ranking in the initial MADM problem and consistent with 

the transitive property. Therefore, the created MADM approach is shown to verify test criteria 2 and 3. 

6.4 Comparison with existing methods  

To further verify the effectiveness of the two created approaches, experimental results are 

compared with results from existing MADM approaches: Hu et al.’s approach [18] based on the 

weighted averaging operator of trapezoidal IT2FNs (TIT2-WAA) and maximizing deviation method; 

Gong et al.’s approach [13] based on the Einstein weighted geometric operator of trapezoidal IT2FNs 

(TIT2FEWG); and Gong et al.’s approach [14] based on the weighted geometric Bonferroni mean of 

trapezoidal IT2FNs (TIT2FWGB). It is assumed that p = q = 1 for Gong et al.’s approach [14], and it is 

assumed that the operational laws are Frank operations and γ = 2 for the created approach. The 

preferred orderings of the commercial banks in Example 3 for the different approaches are listed in 

Table 5. 

 



 

Table 5. Ranking results from different approaches for Example 3 

Approaches Ranking values (R)  Preferred order 

Hu et al’s approach [18]
 

(Based on the TIT2-WAA operator) 

1 2

3 4

( ) 0.0071, ( ) 0.1449,

( ) 0.1369, ( ) 0.2253.

R A R A

R A R A

  

   4 2 3 1p p p p  
 

Gong et al’s approach [13] 

(Based on the TIT2FEWG operator) 

1 2

3 4

( ) 0.1333, ( ) 0.2570,

( ) 0.2707, ( ) 0.3390.

R A R A

R A R A

 

   4 3 2 1p p p p  
 

Gong et al’s approach [14] 

 (Based on the TIT2FWGBM operator) 

1 2

3 4

( ) 0.1447, ( ) 0.2464,

( ) 0.2724, ( ) 0.3365.

R A R A

R A R A

 

   4 3 2 1p p p p  
 

The created approach 

(Based on the Frank operations) 

1 2

3 4

( ) 0.5460, ( ) 1.5969,

( ) 1.3971, ( ) 0.9023.

R A R A

R A R A

 

   4 3 2 1p p p p  
 

From Table 5, we find that the created MADM approach, Gong et al’s approach [13], and Gong et 

al’s approach [14] derive the same preferred ordering of commercial banks, i.e., 4 3 2 1,p p p p   , 

which is slightly different to the preferred ordering derived using Hu et al’s approach [18], i.e., 

4 2 3 1p p p p   , although the optimal commercial bank is the same for all four approaches. One 

reason for these methods to derive different preferred orderings of commercial banks is that the created 

MADM approach, and the existing MADM approaches  [13] [14] are all based on the geometric 

operator, while Hu et al’s approach [18] is based on the averaging operator. Moreover, using the 

geometric operator instead of the averaging operator in Hu et al’s approach [18] results in the same 

preferred ordering of the commercial banks, i.e., 4 3 2 1,p p p p    and all four approaches would 

derive the same outcome. 

In the above section, we have demonstrated the effectiveness of the created approach. However, as 

the existing approaches [13] [14] and the created approach derive the same preferred ordering of 

commercial banks, it is hard to illustrate the merits of the created approach well. Thus, in what follows, 

an application case is provided to conduct a further comparative analysis with the existing approaches 

[13] [14] [18] that shows the superiority of the created approach. 

Example 4. In the context of real MADM problems, the interactions of the attributes are common, 

ranging from complementariness to redundancy. In addition, because of the reasons of time pressure, 

lack of knowledge and experts’ limited expertise about decision-making problems, the information 

about attributes may not always be completely known. Considering such situations, Example 3 is 

modified to presume that the attributes are dependent on the following incomplete attributes’ weights 

information: 

1 2 3 4 5

6 7 8 2 6 3 7

0.1 ({ }) 0.2,0.05 ({ }) 0.1,0.1 ({ }) 0.2,0.2 ({ }) 0.3,0.05 ({ }) 0.1,

0.1 ({ }) 0.15,0.05 ({ }) 0.1,0.25 ({ }) 0.4, ({ , }) 0.35, ({ , }) 0.3.

z z z z z

z z z z z z z

    

    

         

       
 

The assessment values remain identical to the Table 3 decision matrix. To illustrate the superiority of 

the created approach, we use Hu et al’s approach [18], Gong et al’s approach [13], and Gong et al’s 

approach [14] to handle Example 4. It is noteworthy that both Hu et al’s approach [18], and Gong et 

al’s approach [13] assume that the attributes’ weights are known, so they cannot directly handle 

MADM problems with incomplete weights. To apply these two approaches to handle Example 4, we 

first determine the attributes’ weights using the maximum deviation approach [14], which results in the 



same values provided in Table 5. The experimental results from the existing approaches [13] [14] [18] 

and our created approach are listed in Table 6, where we assume γ=2 for the created approach. 

Table 6. Ranking results from different approaches for Example 4 

Approaches Ranking values (R)  Preferred order 

Hu et al’s approach [18]
 

(Based on the TIT2-WAA operator) 

1 2

3 4

( ) 0.0071, ( ) 0.1449,

( ) 0.1369, ( ) 0.2253.

R A R A

R A R A

  

   4 2 3 1p p p p  
 

Gong et al’s approach [13] 

(Based on the TIT2FEWG operator) 

1 2

3 4

( ) 0.1333, ( ) 0.2570,

( ) 0.2707, ( ) 0.3390.

R A R A

R A R A

 

   4 3 2 1p p p p  
 

Gong et al’s approach [14] 

 (Based on the TIT2FWGBM operator) 

1 2

3 4

( ) 0.1447, ( ) 0.2464,

( ) 0.2724, ( ) 0.3365.

R A R A

R A R A

 

   4 3 2 1p p p p  
 

The created approach 

(Based on the Algebraic operations) 

1 2

3 4

( ) 0.5414, ( ) 1.5733,

( ) 1.3844, ( ) 0.8655.

R A R A

R A R A

 

   4 3 2 1p p p p  
 

The created approach 

(Based on the Einstein operations)
 

1 2

3 4

( ) 0.5507, ( ) 1.6279,

( ) 1.4126, ( ) 0.9503.

R A R A

R A R A

 

   4 3 2 1p p p p  
 

The created approach 

(Based on the Frank operations)  

1 2

3 4

( ) 0.5460, ( ) 1.5969,

( ) 1.3971, ( ) 0.9023.

R A R A

R A R A

 

   4 3 2 1p p p p  
 

The created approach 

(Based on the Aczel-Alsina operations)
  

1 2

3 4

( ) 0.5063, ( ) 1.1830,

( ) 1.1600, ( ) 0.6240.

R A R A

R A R A

 

   4 3 2 1p p p p  
 

From Table 6, we observe that when the MADM problem with independent attributes are changed 

to dependent attributes, Hu et al’s approach [18], and Gong et al’s approach [13] still result in the same 

rankings; thus, they cannot handle dependent attributes in Example 4. Here, consultation service and 

service attitude are negatively related. In general, a commercial bank with a good consultation service 

also has a satisfied service attitude; thus, the comprehensive weight of the two attributes considered 

together should be smaller than the sum of the weight of the two attributes when considered alone. 

Therefore, the ranking results derived by the approaches [13] [18] are not fit for this purpose because 

they ignore the interactions of the attributes. In addition, it is noteworthy that, in the MADM problem 

with independent attributes, when they are changed to dependent attributes, Gong et al’s approach [14] 

also keeps the same preferred ordering. Although Gong et al’s approach [14] can reflect the 

homogeneous relationship by aggregated elements, it cannot model the related relationship by the 

attributes’ weights; i.e., it is based on the following equation: ( ) ({ })( ),
j

jz B
B z B Z 


    which 

is invalid in Example 4. Therefore, the ranking result derived by Gong et al’s approach [14] is also not 

fit for this purpose. Furthermore, when the MADM problem with independent attributes are changed to 

dependent attributes, the preferred ordering derived by the created approach changes from 

4 3 2 1p p p p    to 2 3 4 1p p p p   , so the optimal commercial bank changes from 4p  to 2p . 

Obviously, the ranking result of the banks derived by the created approach is reasonable because it is 

based on the following inequalities:  

2 3 2 3 2 6 2 6

3 7 3 7

({ , }) 0.2667 ({ }) ({ }) 0.3; ({ , }) 0.35 ({ }) ({ }) 0.25;

({ , }) ({ }) ({ }) 0.3.

z z z z z z z z

u z z u z u z

            

  

 

Thus, the created approach can capture the negative relationship of attributes z2 and z3, the positive 

relationship of the attributes z2 and z6, and the independent relationship between the attributes z3 and z7. 



Therefore, the created approach derives a realistic ranking result, which is not the case with the existing 

approaches [13] [14] [18]. 

7. Conclusions 

This article focused on MADM in an IT2FNs context for service quality evaluation of commercial 

banks based on the ATs, the Choquet integral and the generalized Banzhaf index. First, novel 

operations of IT2FNs based on the ATs were defined and shown to be more versatile and flexible when 

fusing fuzzy information rather than the existing operations of IT2FNs. Then, the T2FAC operator was 

proposed, and it not only weights the aggregated arguments or their ordered positions but also 

considers the related characteristics of the aggregated arguments or their ordered positions. However, 

the T2FAC operator results in information loss because not all coalitions of attributes are considered. 

For this reason, the BT2FAC operator was proposed to globally capture the interactions of the 

attributes. Because the BT2FAC operator is based on the FM, and the FM is defined on the power set, 

it makes the problem complexity exponential. To enhance the practicality of the BT2FAC operator, the 

2ABT2FAC operator was proposed. Besides, when the weighting information is partly known, two 

linear programming models for the optimal FMs were constructed based on the developed 

bi-directional projection measure of IT2FNs and the Banzhaf function. As a series of development, two 

methods were created for handling IT2F MADM problems with incomplete weight information and 

independent attributes. Moreover, we provided a case concerning the service quality evaluation of 

commercial banks to illustrate the specific application and the superiority of the created approach. 

From the experimental results shown in Example 3 and Example 4, we could see that the proposed 

method could overcome the drawbacks of Hu et al.’s approach [18], Gong et al.’s approach [13] and 

Gong et al.’s approach [14] for MADM under IT2F environments. The proposed approaches offer us a 

helpful way for IT2F MADM. The major contributions of this article are: 1) the defined new operations 

of IT2FNs can better aggregate input arguments and ensure the accuracy of final results; 2) the 

proposed IT2F Choquet operators can globally reflect the heterogeneous relationship of the criteria; 3) 

the constructed models can objectively determine attributes’ weights and avoid subjective randomness; 

4) the created MADM approaches can effectively handle service quality evaluation problems. As future 

work, we want to explore the created MADM methods in the field of different areas, such as mobile 

phone evaluation [30], group recommender systems [3] and investment management [29]. Besides, we 

shall propose some MADM methods based on intelligent optimization algorithms [49] and granular 

computing techniques [11] [12]. 
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APPENDIX 1. 

Theorem 1. The aggregation outputs of the set 1 2{ , ,..., }nA A A   of trapezoidal IT2FNs by the 

IT2FAC operator is the trapezoidal IT2FN: 
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 (17) 

Proof. We prove that Eq. (17) holds and the result of Eq. (17) is a trapezoidal IT2FN. 

(1) We first prove that Eq. (17) holds by mathematical induction on n .  

a) For 2n  , since ( ) ( 1)0 ( ) ( ) 1k kZ Z     for any permutation (.)  of the elements in the set 

Z , by the operations of trapezoidal IT2FNs, the following is derived: 
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b) It is assumed that Eq. (17) holds for ,mn  i.e.: 
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c) For 1,n m  the following is derived: 
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Thus, by a), b) and c), it is proved that Eq. (17) holds. 

(2) We prove that Eq. (17) is a trapezoidal IT2FN. It is assumed that: 
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Then, we prove 
t

jb  and 
t

jv  satisfy the following conditions: 

a) 0 1( 1,2,3,4; , )t

jb j t u l     and 0 1( 1,2; , )t

jv j t u l    ; 

b) 1 2 3 4 ( , )t t t tb b b b t u l     and 1 2 ( , ).t tv v t u l   

① We provide the proof of condition a). First, it is proved that 10 1ub  . Since ( )10 1,u

ka   

and ( )g t  is a monotonic decreasing function, the following is derived: 
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② We provide the proof of condition b). First, it is proved that 1 2
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Simultaneously, it can be proved that 1 2 2 3 4, ( , )l l t t tb b b b b t u l     and 1 2 ( , )t tv v t u l  . Thus, by 

① and ②, the aggregation result of Eq. (17) is a trapezoidal IT2FN and Theorem 1 is proved true.                                                                                   

□ 

APPENDIX 2. 

Theorem 2. Let 1 2{ , ,..., }nA A A   and 1 2{ , ,..., }nA A A      be two sets of trapezoidal IT2FNs on Z , 

B  a trapezoidal IT2FN and 0  . The IT2FAC operator verifies the following properties: 

(1) Idempotency: 2 ( , ,..., )IT FAC A A A A , where ( 1,2,..., )kA A k n  . 

(2) Commutativity: 1 2 1 22 ( , ,..., ) 2 ( , ,..., ),n nIT FAC A A A IT FAC A A A     where 1 2{ , ,..., }nA A A    is 

any permutation of 1 2{ , ,..., }nA A A . 
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smallest value of the set .  
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(2) Since 1 2{ , ,..., }nA A A    is any permutation of 1 2{ , ,..., },nA A A  by Definition 7, the following is 

derived: 1 2 1 22 ( , ,..., ) 2 ( , ,..., ).n nIT FAC A A A IT FAC A A A     
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Additionally, since 
1( )g t

 is a monotonic decreasing function, the following is derived: 
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by the monotonicity property of the proposed IT2FAC operator, the following is derived: 

1 22 ( , ,..., ) 2 ( , ,..., ) 2 ( , ,..., ).nIT FAC A A A IT FAC A A A IT FAC A A A      
 

Then, by the idempotency property of the proposed IT2FAC operator, the following is derived: 

2 ( , ,..., )A IT FAC A A A     and 2 ( , ,..., ).A IT FAC A A A     

Thus, we conclude that:  

1 22 ( , ,..., ) .nA IT FAC A A A A    



(5) Since ( , )u lB B B  is a trapezoidal IT2FN and 0,   by Eqs. (6)–(7), the following is 
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(6) By Eq. (6), the following is derived: 
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Then, by Theorem 1, the following is derived: 

1 1 2 2

1 1

( ) ( 1) ( )1 ( )1

1

1 1

( ) ( 1) ( )2 ( )2

1

1 1

( ) ( 1) ( )3

2 ( , ,..., )

( ( ) ( )) ( ( ( ) ( ))) ,

( ( ) ( )) ( ( ( ) ( ))) ,

( ( ) ( )) ( ( (

n n

n
u u

k k k k

k

n
u u

k k k k

k

u

k k k

IT FAC A A A A A A

g Z Z g g g a g a

g Z Z g g g a g a

g Z Z g g g a

 

 

 

 





 





 



    

  
    

 

 
  

 







( )3

1

1 1

( ) ( 1) ( )4 ( )4

1

) ( ))) ,

( ( ) ( )) ( ( ( ) ( ))) ;

n
u

k

k

n
u u

k k k k

k

g a

g Z Z g g g a g a 



 





 
 

 

 
  

 





 



1 1

( ) ( 1) 1 ( ) 1 ( )

1

1 1

( ) ( 1) 2 ( ) 2 ( )

1

1 1

( ) ( 1) ( )1 ( )1

1

( ( ) ( )) ( ( ( ( )) ( ( )))) ,

( ( ) ( )) ( ( ( ( )) ( ( )))) ,

( ( ) ( )) ( ( ( ) ( )))

n
u u

k k k k

k

n
u u

k k k k

k

n
l l

k k k k

k

g Z Z g g g h A g h A

g Z Z g g g h A g h A

g Z Z g g g a g a

 

 

 

 





 





 





 
  

 

 
   

 

 
  

 







1 1

( ) ( 1) ( )2 ( )2

1

1 1

( ) ( 1) ( )3 ( )3

1

1 1

( ) ( 1) ( )4 ( )4

1

1

( )

,

( ( ) ( )) ( ( ( ) ( ))) ,

( ( ) ( )) ( ( ( ) ( ))) ,

( ( ) ( )) ( ( ( ) ( ))) ;

( (

n
l l

k k k k

k

n
l l

k k k k

k

n
l l

k k k k

k

k

g Z Z g g g a g a

g Z Z g g g a g a

g Z Z g g g a g a

g Z

 

 

 



 





 





 











 
  

 

 
  

 

 
  

 







1

( 1) 1 ( ) 1 ( )

1

1 1

( ) ( 1) 2 ( ) 2 ( )

1

1

( ) ( 1) ( )1 ( )1

1

1

) ( )) ( ( ( ( )) ( ( )))) ,

( ( ) ( )) ( ( ( ( )) ( ( ))))

( ( ) ( ))( ( ) ( )) ,

(

n
l l

k k k

k

n
l l

k k k k

k

n
u u

k k k k

k

Z g g g h A g h A

g Z Z g g g h A g h A

g Z Z g a g a

g



 

 







 













 
  

 

 
    

 

  
    

 







( ) ( 1) ( )2 ( )2

1

1 1

( ) ( 1) ( )3 ( )3 ( ) ( 1) ( )4 ( )4

1 1

1

( ) ( 1) 1 ( )

( ) ( ))( ( ) ( )) ,

( ( ) ( ))( ( ) ( )) , ( ( ) ( ))( ( ) ( )) ;

( ( ) ( ))( ( ( ))

n
u u

k k k k

k

n n
u u u u

k k k k k k k k

k k

u

k k k

Z Z g a g a

g Z Z g a g a g Z Z g a g a

g Z Z g h A

 

   

 





 

 

 





 
  

 

   
       

   

 



 

1 ( )

1

1

( ) ( 1) 2 ( ) 2 ( )

1

1 1

( ) ( 1) ( )1 ( )1 ( ) ( 1) ( )2 ( )2

1 1

( ( ))) ,

( ( ) ( ))( ( ( )) ( ( ))) ,

( ( ) ( ))( ( ) ( )) , ( ( ) ( ))( ( ) ( ))

n
u

k

k

n
u u

k k k k

k

n n
l l l l

k k k k k k k k

k k

g h A

g Z Z g h A g h A

g Z Z g a g a g Z Z g a g a

 

   









 

 

 

 
 

 

 
   

 

   
      

 





 

1 1

( ) ( 1) ( )3 ( )3 ( ) ( 1) ( )4 ( )4

1 1

1 1

( ) ( 1) 1 ( ) 1 ( ) ( ) ( 1)

1

,

( ( ) ( ))( ( ) ( )) , ( ( ) ( ))( ( ) ( )) ;

( ( ) ( ))( ( ( )) ( ( ))) , ( ( ) (

n n
l l l l

k k k k k k k k

k k

n
l l

k k k k k k

k

g Z Z g a g a g Z Z g a g a

g Z Z g h A g h A g Z Z

   

   

 

 

 

 

 




 
 

   
       

   

 
   

 

 




1

2 ( ) 2 ( ) 1 2 1 2

))

( ( ( )) ( ( ))) 2 ( , ,..., ) 2 ( , ,..., ).

n

k

l l

k k n ng h A g h A IT FAC A A A IT FAC A A A







     



 

 



Author Contributions 

 

 

The first author (Guolin Tang): Conceptualization, Formal analysis, Methodology, Validation, Writing - 

original draft. 

 

The second author (Francisco Chiclana): Formal analysis, Methodology, Construct, Resources, Writing 

- review & editing 

 

The third author (Xiangchun Lin): Data curation, Investigation, Resources, Visualization, Writing - 

review & editing 

 

The third author (Peide Liu): Conceptualization, Formal analysis, Methodology, Funding acquisition, 

Supervision, Writing - review & editing 

  

*Author Contributions Section




