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Abstract— This paper presents a new mathematical model
for the walking beam reheating furnace scheduling problem
(WBRFSP) in an iron and steel plant, which allows the mixed
package of hot and cold slabs and aims to minimize the energy
consumption and increase the product quality. An ant colony
optimization (ACO) algorithm is designed to solve this model.
Simulation results based on the data derived from the field data
of an iron and steel plant show the effectiveness of the proposed
model and algorithm.

I. INTRODUCTION

High energy consumption and high fund occupation are

two outstanding characteristics of metallurgical industry. Due

to the lack of energy in the world, how to reduce energy

consumption has become one core objective in the iron and

steel industry. For a long time, the production scheduling

problem in the iron and steel industry has attracted many

researchers’ attention. Indeed, many achievements have been

made in the steel-making, continuous-casting and hot-rolling,

solving the optimization problem with operational research

and intelligent algorithms. In recent years, many people have

paid their attention to integrate the production planning and

scheduling systems in iron and steel enterprises, aiming to

address the scheduling problem across the continuous-casting

and hot-rolling processes.

The reheating furnace process is located behind the

continuous-casting process and before the hot-rolling process

and consumes the most energy. Generally, the production

requires to optimize the scheduling of reheating furnaces,

reduce the heating time of slabs, and save the energy. As the

reheating furnace occupies a very important position, it has

become a hot spot in research in recent years. So far, the study

has mostly focused on the heat energy, such as the furnace

temperature control and the slabs heating optimal control.

The walking beam reheating furnace scheduling problem

(WBRFSP) was regarded as a multi-constraint knapsack

problem with unlimited knapsack capacity in [1]. In [1], a

genetic local search algorithm was also designed with the

target of minimizing the slabs heating time. Given the close

relationship between the reheating furnace and hot-rolling

process, the WBRFSP was described as multi-source, multi-

machine and parallel earliness/tardiness scheduling problem

in [2], which was solved with a hybrid algorithm based on

heuristic rules and evolutionary computation with the aim

of dispatching the slabs into the hot-rolling process on time.

But, neither [1] nor [2] considered the capacities of reheating

furnaces. Broughton et al. [3] brought forward an improved

genetic algorithm (GA) to solve the problem, without giving

the specific model.

The WBRFSP aims to decide to which furnace each slab

should be assigned for heating and the sequence of slabs in

each furnace, under the condition that the sequence in which

slabs should be output from the furnaces for the following

hot-rolling process is given beforehand. It requires to mini-

mize the slabs’ heating time to reduce energy consumption

and enhance the production quality, under the condition that

each slab should satisfy the heating temperature which is

given by the following hot-rolling process.

This paper establishes a new model for the WBRFSP,

which considers both hot and cold slabs and aims to min-

imize the energy consumption. Based on this model, an ant

colony optimization (ACO) algorithm is designed to solve

the WBRFSP. A simulation study is conducted based on the

data derived from the field data of an iron and steel plant.

The experimental results validate the effectiveness of both

the proposed model and algorithm for solving the WBRFSP.

II. THE REHEATING FURNACE SHCEDULING PROBLEM

A. Reheating Furnace Production Process

The hot-rolling process of slabs usually consists of three

stages, i.e., furnace reheating, rough rolling and finishing

rolling, where the furnace reheating stage consumes as much

as half of the energy in the hot-rolling process. A furnace has

the two major functions: heating the slabs to the required

rolling temperature for qualified products and playing an

essential role of buffer for the following hot-rolling process.

The slabs which need to be heated in furnaces come from

the slab storage, the soaking pit or the continuous-casting

process respectively. The process flow is shown in Fig. 1.
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Fig. 1. Flow of slabs for the furnace reheating process.

As shown in Fig. 1, there are four alternative routes for

the slabs to flow from continuous-casting to hot-rolling,

which are Hot Direct Rolling (HDR), Direct Hot Charge

Rolling (DHCR), Hot Charge Rolling (HCR), and Cold

Charge Rolling (CCR), where only HDR does not go through

the reheating furnace. The reheating furnace process is very

important and useful because only when the temperature of

slabs reaches a certain high level, which is usually over 1200

degree Celsius, can the slabs meet the hot-rolling working

condition. Slabs following different routes will have different

original temperatures before entering the reheating furnace.

Since directly going down from continuous-casting, the tem-

perature of slabs using DHCR is much higher than that of

slabs using HCR, which are insulated in the soaking pit.

The temperature of slabs using CCR is the lowest since their

temperature almost equals the room temperature. Because of

the different original temperatures, the heating time and the

elevated temperature curve of slabs are also different.

In modern iron and steel enterprises, walking beam reheat-

ing furnaces are commonly used. A walking beam reheating

furnace has three heating zones, i.e., the preheating zone,

heating zone and soaking zone, and thus can hold multiple

slabs at the same time. The temperature of a slab will reach

the expected target during these three zones. Figure 2 shows

the internal structure of a walking beam reheating furnace.

In the iron and steel industry, the devices are usually

equipped as follows: one multi-strand casting machine or

several parallel single strand casting machines; one reheating

furnace group, which contains two to five furnaces with

different capacities; one hot-rolling machine. The operation

of a reheating furnace can be briefly described as follows. At

the beginning, the slabs are fed into the furnace one by one

through the entrance. If the furnace is full, the excess slabs

can not enter it until some slabs inside are drawn out. In the

Fig. 2. Internal structure of a walking beam reheating furnace.

furnace, the slabs move through the three zones to get a full

and even heating. Finally, the slabs are drawn out one by one

through the end of furnace when their temperatures reach the

required hot-rolling goals. However, if a slab has not been

drawn out, the next adjacent slab can not leave even if it has

reached the temperature.

So, how to distribute slabs reasonably to different furnaces

to minimize the heating time of slabs in furnaces under the

situation that the production quality do not decline is the

main objective. The technological requirements that must be

considered are summarized as follows.

1) The sequence of slabs drawn out from furnaces must be

strictly the same as the sequence of slabs entering the

hot-rolling process, which is formulated in the rolling

plan.

2) Each furnace can heat a number of slabs at the same

time, but the capacity of each furnace is limited.

3) Each slab has its minimum heating time. Non-adequate

heating time can not guarantee the production quality.

4) Each slab has its maximum heating time. Excess heat-

ing will bring unnecessary burning loss and lower

quality.

5) A heated slab must wait inside a furnace before its time

to roll.

6) In one furnace, the input slab sequence is the same as

the output slab sequence.

7) The hot-rolling machine has the maximum waiting time

between two adjacent slabs. Since the production power

of a hot-rolling machine is huge, too much waiting time

will result in too much loss. So, the waiting time should

be limited when it is working.

8) The hot-rolling machine also has the minimum wait-

ing time between two adjacent slabs due to technical

requirements. So, the exit time gap between any two

adjacent slabs from all furnaces must be larger than the

minimum waiting time of the hot-rolling machine.

9) At one time, only one furnace can output slabs to the

hot-rolling machine.
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Nowadays, the scheduling method used in the iron and

steel production usually distributes slabs to different furnaces

in order, i.e., the first slab is sent to furnace 1, the second

slab is sent to furnace 2, and so on. This method works, but

with a low efficiency. To increase the efficiency, the following

should be considered:

1) In one furnace, the smaller the difference of the en-

trance temperature between two adjacent slabs and the

difference of the exit temperature between them, the

better. That is, the closer the heating curves of two

adjacent slabs, the better.

2) The shorter the time the hot-rolling machine waits, the

better. As mentioned above, too much waiting time of

the hot-rolling machine will bring too much economic

loss.

3) The shorter the time the slabs need to be heated

in furnaces, the better. Under the same production

quality, reducing the slab heating time can cut down

the economic cost.

B. Mathematical Model for the WBRFSP

According to the above description, the model for the

WBRFSP can be established. The following parameters will

be used in this model.

• N : The number of slabs that need to be heated

• M : The number of working furnaces

• S: The sequence of slabs S = {S1, S2, . . . , SN}, where

slab Si will be the i-th one among all slabs to enter the

hot-rolling process. In other words, the sequence number

of a slab in S is equal to the sequence number in which

the slab will be rolled by the hot-rolling machine.

• F : The set of furnaces. F = {F1, F2, . . . , FM}
• Ck: The capacity of furnace Fk, i.e., the maximum

number of slabs Fk can heat at the same time

• Nk: The number of slabs to be heated in furnace Fk ∈ F

• Tik: The entrance temperature of slab Si in furnace FK

• T ∗
ik: The exit temperature of slab Si in furnace FK

• ti,start: The entrance time of slab Si

• ti,exit: The exit time of slab Si

• tik,start: The entrance time of slab Si in furnace FK

• tik,exit: The exit time of slab Si in furnace FK

• Uikmin: The minimum heating time of slab Si in furnace

FK

• Uikmax: The maximum heating time of slab Si in

furnace FK

• qik: The minimum entrance time gap between slab Si

and its next slab in furnace Fk

• thmin: The minimum hot-rolling machine waiting time

between two adjacent slabs

• thmax: The maximum hot-rolling machine waiting time

between two adjacent slabs

• aik =

{

1, if slab Si is heated in furnace Fk

0, otherwise

• oijk =

{

1, if in furnace Fk, slab Sj is subsequent to slab Si

0, otherwise

• tijk =















1, if in furnace Fk, slab Sj is the Ckth slab to

be heated after slab Si (so Fk is full), i.e.,
∑j

m=i

∑j

l=m+1 omlk = Ck

0, otherwise
• δ01: Penalty coefficient of slab entrance temperature

• δ02: Penalty coefficient of slab exit temperature

• δ1: Penalty coefficient of hot-rolling machine waiting

time

• δ2: Penalty coefficient of slab heating time

Based on the above parameters, the model is given as:

min



















δ01
∑M

k=1[
∑Nk

i=1(| Tik −
∑

i6=j Tjkoijk |)]+

δ02
∑M

k=1[
∑Nk

i=1(| T
∗
ik −

∑

i6=j T
∗
jkoijk |)]+

δ1
∑N

i=1(ti+1,exit − ti,start − thmin)+

δ2
∑M

k=1[
∑Nk

i=1(tik,exit − tik,start)]



















(1)

∑

k∈{1,...,M},i∈{1,...,N}

aik = 1 (2)

tik,exit − tik,start >

M
∑

k=1

Uikminaik (3)

tik,exit − tik,start 6

M
∑

k=1

Uikmaxaik (4)

ti+1,exit − ti,exit > thmin,

j > i, i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,M}
(5)

ti+1,exit − ti,exit 6 thmax,

j > i, i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,M}
(6)

tj,exit > ti,exit,

j > i, i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,M}
(7)

(tjk,start − tik,start − qik)oijk > 0,
j > i, i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,M}

(8)

(tjk,start − tik,exit)tijk 6 0,
i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,M}

(9)

In the above model, object (1) is to minimize the economic

expenses. Constraint (2) ensures that each slab will go into

one and only one furnace. Constraints (3) and (4) ensure

that the heating time of a slab in a furnace is longer than its

minimum heating time and shorter than the maximum heating

time. Constraints (5) and (6) ensure that the exit time gap of

two adjacent slabs into the hot-rolling machine is larger than

the hot-rolling machine’s minimum waiting time but smaller

than the maximum waiting time. Constraint (7) ensures that

all the slabs exit furnaces in the same order as the sequence
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required by the hot-rolling machine. Constraint (8) ensures

that two adjacent slabs in a furnace satisfy the minimum

entrance time gap condition. Constraint (9) ensures that each

furnace satisfies its capacity limit.

III. PROPOSED ACO ALGORITHM FOR THE WBRFSP

In the WBRFSP, since slabs must exit furnaces in the hot-

rolling sequence, and slabs in a same furnace follows the

first-in-first-out rule, the task of assigning slabs into furnaces

may be regarded as a knapsack problem in combinatorial

optimization with the goal to minimize the energy consump-

tion. Given that there are some relationships between two

adjacent slabs in a furnace, the WBRFSP can be considered

as a two-dimension expense knapsack problem, which is

an NP-hard problem [4]. The larger the problem size, the

harder the calculation. Due to this, we can use metaheuristic

algorithms, e.g., ACO, to solve the problem. ACO simulates

the action of ants and has shown to be one of most effective

algorithms in solving traveling salesman problems, vehicle

routing problems and scheduling problems [5, 6, 7].

This paper designes an ACO algorithm for solving the

WBRFSP. According to the features of the WBRFSP, slabs

and furnaces are taken as routing points in the solution

construction process. An ant is first sent out from the first

slab and chooses a furnace for it via the state transition rule,

and then, moves to the next slab and chooses a furnace for

it, and so no. The process continues until the ant reaches the

last slab and chooses a furnace for it. The key components

of the proposed ACO algorithm are described as follows.

A. Heuristic Information

Heuristic information ηik reflects the expectation that an

ant, when at slab Si, chooses furnace Fk. To reduce the

frequency of mixed hot and cool slabs and enhance the

productivity of reheating furnaces and hot-rolling machine,

this paper defines ηik as:

ηik =
1

(ε1hsum
k + ε2 | Tik − T(i−1)k | +ε3 | T ∗

ik − T ∗
(i−1)k |)

(10)

where hsum
k represents the total heating time of existing

slabs in furnace Fk; Tik and T(i−1)k represent the entrance

temperatures of Si and S(i − 1) in Fk; T ∗
ik and T ∗

(i−1)k

represent the corresponding exit temperatures; ε1, ε2 and ε3
are coefficients. From Eq. (10), slab Si can be sent to a

furnace with the following characteristics:

1) The total heating time of existing slabs in the furnace

should be small.

2) The entrance temperature difference and exit temper-

ature difference between two adjacent slabs in the

furnace should be small.

B. State Transition Rule

In this paper, the state transition rule is designed as follows.

Initially, all pheromone trails are initialized with an equal

amount of pheromone, and each ant starts from the first slab.

When an ant is at slab Si, with a probability 1 − q0, where

0 6 q0 6 1 is a parameter of the decision rule, the ant

chooses furnace Fk for Si probabilistically as follows:

pik =
(τik)

α(ηik)
β

∑

l∈ωi
(τil)α(ηil)β

, k ∈ ωi (11)

where α and β indicate the weight of pheromone and heuris-

tic information respectively; τik represents the pheromone

between slab Si and furnace Fk; wi is the set of available

furnaces for slab Si. With the probability q0, the ant chooses

the furnace with the maximum probability, i.e., the furnace

that satisfies the following formula:

k = argmax
g∈ωi

{(τig)
α(ηig)

β} (12)

C. The Objective Function

Initially, we assume all furnaces are empty, and the initial

time is set to zero. When an ant constructs a complete

solution, the solution represents the assignment of furnaces

to slabs. From the solution, according to Constraints (3)–

(9), we can determine the entrance time and exit time of

each slab in the assigned furnace, based on the pre-condition

of the hot-rolling sequence of slabs. Finally, we calculate

the objective value with Eq. (1). Suppose the entrance time

difference between two adjacent slabs is tdif , the entrance

and exit times of slab Si are calculated as follows:

• If i = 1, then tik,start = 0 and tik,exit = Uikmin.

• If i > 1, but Si is the first slab in furnace Fk,

then tik,start = i ∗ tdif , tik,exit = max(t(i−1)k,exit +
thmin, t1k,exit + i ∗ tdif ).

• If i > 1, and the number of slabs in furnace Fk is less

than its capacity, then, assuming the previous slab in

Fk is Sj , we have tik,start = tjk,start+(i − j) ∗ tdif ,

tik,exit = max(t(i−1)k,exit + thmin, t1k,exit + i ∗ tdif ).
• If i > 1 and the number of slabs in furnace Fk is equal to

its capacity, then, assuming slab Sj has just left Fk, we

have tik,start = tjk,exit, tik,exit = max(t(i−1)k,exit +
thmin, t1k,exit + i ∗ tdif ).

D. Local Search

To accelerate the convergence speed and reduce the op-

eration time, we use a neighborhood search algorithm as

the local search scheme for each ant in each iteration. The

local search scheme selects stochastically two slabs which

are not assigned to the same furnace to produce a critical

region solution. If the critical region solution is better than

the original solution, the original one is replaced; otherwise,

we repeat the local search process until the maximum number

of local search iterations is reached.
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E. Pheromone Update Rule

The pheromone trails between slabs and furnaces are

locally updated after each ant constructs a solution as follows:

τik =

{

τik + (fl)
−1, if i, k ∈ rl;

τik, else.
(13)

τik = min{τmax,max{τmin, (1− ρ)τik}} (14)

where rl is the solution found by the current ant; fl is the

objective value of rl; τmax and τmin are the upper and lower

pheromone limits respectively; ρ ∈ (0, 1) is the evaporation

rate.

After an iteration of the ACO algorithm, i.e., all ants finish

constructing solutions, the pheromone trails are also updated

as follows:

τik =

{

τik + (fb)
−1, if i, k ∈ rb;

τik, else.
(15)

τik = min{τmax,max{τmin, (1− ρ)τik}} (16)

where rb is the best solution found over all ants and fb is

the objective value of rb.

F. Algorithm Framework

The framework of the proposed ACO algorithm for solving

the WBRFSP is summarized as follows:

1) Get the information of slabs

2) Initialize the parameters, such as α, β, τmax, τmin, q0,

τik = τmin and the initial heuristic information ηik.

3) Set each ant out at slab S1

4) Each ant constructs a solution according to the state

transition rule. Get the best solution locally and update

the pheromone with Eqs. (13) and (14).

5) After one iteration, update the pheromone according to

Eqs. (15) and (16).

6) Repeat Step 3 to Step 5 till the maximum number of

iterations is reached.

IV. SIMULATION STUDY

To validate the effectiveness of the proposed model and

ACO algorithm, we generate some simulation data for our

experiments based on field examples taken from one iron

and steel plant in China and the information mentioned in

[7, 8]. These data were divided into three types according

to the entrance temperature to furnaces: cold slab (entrance

temerature 25◦C), insulating pit’s slab (entrance temerature

500◦C) and hot slab (entrance temerature 930◦C), as shown

in Table I.

In this paper, we carry out two groups of experiments.

In both groups of experiments, the main parameters of the

ACO algorithm were set as follows: the maximum number

of iterations was set to 50; α = 1, β = 7, ρ = 0.1,

τmax = 1, τmin = 0.01, q0 = 0.8, the iteration step-size

of neighborhood search was 10. The production parameters

TABLE I

EXPERIMENT DATA TYPE

Type Entrance Temp. Exit Temp. Min. Heating Time

1 930◦C 1200◦C 90 min
2 500◦C 1200◦C 90 min
3 25

◦C 1500
◦C 160 min

TABLE II

COMPARISON OF TWO MODELS ON HOMOGENEOUS SLABS

Slab Existent Proposed Model
Number Model Best Average Worst

60 4183.2 4104.3 4183.2 4224.5
80 4294.8 4267.5 4294.8 4319.5
100 4405.7 4394.4 4405.7 4416.2
143 6587.9 6566.2 6587.9 6598.7

TABLE III

COMPARISON OF TWO MODELS ON MIXED COLD AND HOT SLABS

Slab Existent Proposed Model
Number Model Best Average Worst

60 2715
◦C 1810

◦C 1810
◦C 1810

◦C
100 2715

◦C 1810
◦C 1810

◦C 1810
◦C

were set as follows: Each furnace has a capacity of 30,

qik = 2 minutes, thmin = 2 minutes, thmax = 10 minutes,

and the minimum heating time Uikmin was set as shown in

Table I, and Uikmax = 1.5× Uikmin.

In the first group of experiments, we try to validate the

effectiveness of the proposed model in comparison with the

existent model used in the literature for the WBRFSP based

on the proposed ACO algorithm. In the existent model, the

objective function is given as follows:

min

{

δ1
∑N

i=1(ti+1,exit − ti,start − hmin)+

δ2
∑M

k=1[
∑Nk

i=1(tik,exit − tik,start)]

}

. (17)

In the experiment, the main parameters of the ACO algorithm

are as given above. The number of ants in the ACO algorithm

was set to 30, and there were 3 furnaces. We run the ACO

algorithm 50 times for each group of data. The results

regarding the best, worst, and average solutions over 50 runs

on homogeneous slabs (i.e., there are only one type of slabs

involved) are shown in Table II. From Table II, it is easy to

find out that the results of the two models are quite similar.

So, for only one kind of slabs, both models can work well.

But, how about mixed cold and hot slabs? The results for

mixed cold and hot slabs are shown in Table III.

The data chosen in this paper included two kind of

slabs: cold slabs and hot slabs. The entrance temperature

difference bewteen these two kinds of slabs was almost 900

degrees centigrade. To avoid damaging the slabs’ equity, hot
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TABLE IV

BASIC RESULTS OF ACO WITH ρ = 0.1 ON MIXED SLABS

Slab Slab ACO
Type Nos. b sol w sol b t w t

1 60 5400 5400 178 178
1 150 14400 14400 418 418
3 60 9600 9600 278 278
1,2 60 5486 5486 178 178
2,1 60 5486 5486 178 178
1,3 60 8488 8602 224 220
1,3 300 37790 38290 1010 978
1,2,3 60 7480 8230 208 208
1,2,3 300 35019 37448 748 805

TABLE V

RESULTS OF ACO WITH DIFFERENT EVAPORATION RATES

Slab Slab ACO, ρ = 0.3 ACO, ρ = 0.4

Type Nos. b sol w sol b t w t b sol w sol b t w t

1,3 60 8488 8488 224 224 8488 8488 224 224

1,3 300 37790 37790 1010 1010 37790 37790 1010 1010

1,2,3 60 7460 7480 208 208 7480 8340 208 243

1,2,3 300 35019 36065 748 771 35019 37236 748 790

slabs and cold slabs should be heated separately if possible.

The information shown in Table III were the summation

of the entrance temperature difference and exit temperature

difference of slabs. From Tables II and III, the effectiveness

of the model designed in this paper is validated, especially

for mixed slabs heating problem. The simulation data were

derived in this paper, which is much less complicated than

the data in the real world. If we use real-world data, the

advantage of the new model would be much larger.

The second group of experiments aims to investigate the

effect of one key parameter, i.e., the pheromone evaporation

rate ρ, on the performance of the proposed ACO algorithm.

The main parameters of the ACO algorithm were set the same

as given above. The number of ants was set to 50, and the

number of furnaces was 4. There are three types of slabs,

as shown in Table III. The results regarding the basic results

with ρ = 0.1 and different values of ρ are shown in Tables

IV and V, respectively. In these two tables, “b sol” and “w

sol” mean the best and worst solutions resepctively, while

“b t” and “w t” are the total heating time of all slabs in the

best and worst solutions resepctively. When there were more

than one type of slabs heating, this paper assumed that the

number of each type was equal.

From Tables IV and V, it can be seen that the performance

of the ACO algorithm is sensitive to the value of the

evaporation rate. When the evaporation rate is increased from

0.1 to 0.3, the algorithm’s performance is improved. This is

because increasing the evaporation rate enhances the ACO

algorithm’s ability of escaping from local optima. However,

the algorithm becomes divergent while the evaporation rate

is further increased to 0.4.

V. CONCLUSIONS

The walking beam reheating furnace scheduling problem

(WBRFSP) is an important production scheduling problem in

iron and steel enterprises. Considered the mixed packing of

hot and cold slabs, this paper proposes a new mathematical

model for the WBRFSP, which aims to minimize the heating

time, the hot-rolling machine waiting time and the entrance

and exit temperature differences between two adjacent slabs

to furnaces. Based on the model, the paper designs an ACO

algorithm to solve the WBRFSP. A simulation study was

conducted, which validated the effectiveness of the proposed

WBRFSP model in comparison with the existent model in

the literature and the effectiveness of the proosed ACO algo-

rithm in solving the WBRFSP. The experimental results also

showed that even though the ACO algorithm has a problem

of being tracked to local optima, properly increasing the

evaporation rate of pheromone trails may help the algorithm

to avoid this problem.

In the future, we will further improve the proposed ACO

algorithm for solving the WBRFSP and develop other algo-

rithms, e.g., GAs, to solve the problem and compare their

performance.
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