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Abstract

Zirconium and its alloys have found increasing applications in several industrial sec-

tors including the nuclear power generation, the chemical processing and the biomed-

ical industries, mainly due to the combination properties of neutron transparency,

excellent corrosion resistance and good biocompatibility [1] [2] [3]. However, with

a base hardness of about 200 HV, zirconium and its alloys have poor tribological

properties and find limited applications in other fields of engineering [4]. Efforts

have been made in this work to develop surface engineering techniques to enhance

the tribological properties of commercially pure zirconium (CP-Zr) and to charac-

terise the structures and properties of surface engineered CP-Zr. It can be stated

that there is limitation in the current research, no sufficient information on thermal

oxidation and carburising of Zr has been released in open literature. In this research

better wear resistances have been achieved for surface engineered zirconium using

Thermal Oxidation (TO) and Pack Carburising (PC) treatments.

Two surface engineering techniques have been investigated in this work. One

is thermal oxidation (TO) and another is pack carburising (PC). Both processes

have been investigated under a wide range of processing conditions, including pro-

cessing temperature, time, surface roughness and compositions. The structures and

compositions of the resultant surface and subsurface layers have been characterised

using a variety of analytical and experimental techniques, including metallography,

scanning electron microscope, X-ray diffraction, glow discharge spectrometer and

ball-cratering. The properties of the surface engineered CP-Zr have been charac-

terised by microhardness testing, scratch testing, and tribological testing under both

dry, unlubricated and simulated body fluids (Ringer’s solution) conditions. The re-

sults show that TO is a very effective surface engineering technique to enhance the

tribological properties of CP-Zr. TO produces a hard ZrO2 oxide layer (OL) of 5

to 12 microns on the surface and an oxygen diffusion zone (ODZ) of a few microns

in the subsurface. The OL offers good wear resistance while the ODZ provides load



bearing capacity. Thus, the combination of the OL and ODZ offers CP-Zr excellent

tribological properties under high contact loads. However, the performance of TO

CP-Zr depends on the TO process conditions and the surface roughness of the TO

surface. This work investigated the effect of TO temperature, time, initial surface

toughness and roughness after TO, on the tribological performance. It has been

determined that the optimum TO temperature is 650oC and optimum time is 6

h. Too high a temperature and too long a TO time can lead to the formation of

pores and cracks in the OL, leading to deterioration in tribological properties. This

happens due to the fact that the created OL using those conditions can be poor,

damaged and flakes off easily. It has also been found that a slightly rough surface

before and/or after TO is beneficial in delaying crack formation in the OL during

sliding and enhancing the load bearing capacity of TO CP-Zr. This happens because

there is minimal contact between the alumina ball and surface of the sample during

friction and wear testing.

A further investigation has been conducted to compare TO Zr with TO Ti.

Both Zr and Ti are important biometals used in medical implants. But they show

very different TO characteristics in terms of OL growth kinetics and mechanical

properties. This investigation has shown that TO produces a much thicker OL on

Zr than on Ti and the OL on Zr is very adherent to the substrate. As a result,

the TO Zr performs much better during sliding tests under dry conditions and in

Ringer’s solution.

Another surface engineering technique investigated is pack carburising (PC).

Although very few work has been reported on carburising of zirconium, there have

been some reports on pack carburising of titanium. It is thus necessary to investigate

the feasibility of pack carburising CP-Zr in this work. PC was conducted at various

temperatures (825 − 980oC) and for various duration (3-40 h) and with different

pack compositions. The results show that CP-Zr can be effectively carburised at

temperatures higher than 900oC for sufficiently long duration (more than 10 h).

Low temperatures and short duration favour oxidation rather than carburisation.

Successfully carburised CP-Zr comprises a ZrC carbide layer of a few microns on

the surface, followed by a thick diffusion zone (200 microns) containing oxygen

and carbon in the subsurface. The carburised CP-Zr offers enhanced tribological

properties, but is not as effective as thermal oxidised CP-Zr.
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Chapter 1

Introduction

1.1 Background

Zirconium is an engineering metal widely used in nuclear power industry because of

the ability of resisting hydrogen [11]. Due to its extremely good corrosion resistance

and biocompactivity, it is also found that Zr has common uses in the biomedical

field, such as in artificial hip and knee joints [12]. However, Zr is a relative soft

metal and suffers from high friction and wear [13].

Therefore efforts have been made to improve the tribological behaviour of Zr,

mainly by thermal oxidation [14]. Unfortunately, unlike thermal oxidation of ti-

tanium which has been investigated widely in detail [15], no sufficient information

on thermal oxidation of Zr has been released in open literature [16]. Furthermore,

very little work has been reported regarding carburising of Zr, although recent work

done at De Montfort University showed that carburising can be used to improve the

surface properties of titanium [17]. Therefore it is necessary and timely to have a

detailed study on process optimisation of thermal oxidation of Zr and on carburising

of Zr, and further to study the structure and properties of surface engineered Zr for

general engineering and biomedical application.

Efforts have been made by other investigators to improve the wear resistance of

zirconium through extending the oxide film on the surface, mainly by thermal oxida-

tion [4][14] [18] [19] [20] and plasma electrolytic oxidation [21] [22][23]. With a bulk

hardness of 1200 to 1300HV, a sufficiently thick ZrO2 film can provide zirconium

with excelent resistance to abrasion and wear [4][14] [18] [19] [21] [22].

Thermal oxidation is thus an effective surface engineering technique to harden

the surfaces of zirconium (Zr) and its alloys for improvement in friction and wear

performance. Unlike thermal oxidation of titanium where the rutile oxide layer

22



Chapter 1. Introduction

formed tends to be fragile and flake off easily when it is thicker than about 2µm

[15][24], thermal oxidation of zirconium can produce a thick and adherent ZrO2 layer

without the danger of flaking off [25] [26][27][28][29]. The adherent and protective

nature of the thick oxide layer on zirconium can be explained by the plasticity of

zirconium oxide at elevated temperatures [30].

Indeed, oxidized zirconium (OxZr) has recently been introduced as an alternative

bearing in total joint arthroplasty for artificial hip and knee joints [3][16] [19] [31] [32]

[33] [34]. OxZr possesses a good combination of a ceramic bearing surface to resist

wear and a tough metallic core to resist fracture. Both in vivo and in vitro tests

demonstrate that, as compared to the most commonly used Co-Cr bearing, OxZr

with a ZrO2 layer about 5µm thick offers several advantages, including reducing

polyethylene (PE) wear and enhanced resistance to surface roughening caused by

third body particles [33] [35] [36] [37] [38]. Most of the published reports on clinic

use of OxZr is based on the commercial process, OXINIUM (Smith and Nephew

Inc.), which produces an ZrO2 layer about 5µm thick and an oxygen diffusion zone

(ODZ) of 1.5 to 2µm thick on Zr-2.5 wt% Nb alloy. The thicknesses of the oxide

layer and ODZ, which can be controlled easily by altering processing conditions, are

expected to have significant effects on the tribological and load bearing properties

of OxZr. However, information in this respect is limited in open literature. Thus,

it is necessary to investigate the details of the effect of processing parameters and

surface conditions on the response of Zr to thermal oxidation.

In a recent investigation [15][17] [39][40], it is found that CP-Ti can be carburised

in a carburising pack containing a mixture of charcoal and carbonates to produce a

titanium carbide layer of more than 10 micron thick on the surface and a thick oxygen

diffusion zone up to 400 microns thick in the subsurface. Such pack carburised CP-

Ti possesses extremely good tribological properties under high contact loads. It has

been reported by Bailey and Sun [39], that carburised CP-Ti performs much better

than oxidised CP-Ti and even better than bearing steel under dry sliding conditions.

However, very few work has been reported on carburising Zr [41][42][43],and no

report has been found on pack carburising Zr. The promising results from pack

carburising CP-Ti suggest that it is possible to employ the same technique to Zr to

achieve enhanced tribological properties.
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1.2 Objectives

The aim of this work is therefore to develop surface engineering techniques to achieve

enhanced tribological properties of CP-Zr. Two techniques have been investigated,

i.e. thermal oxidation (TO) and pack carburising (PC). The objectives are as follows:

• To optimise the TO process through detailed investigation on the effect of

temperature, time and surface roughness.

• To explore the feasibility of pack carburising Zr and its impact on tribological

properties.

• To characterise the structures and properties of surface engineered zirconium

using a variety of experimental and analytical techniques.

• To compare surface engineered zirconium with surface engineered titanium

and identify its application potentials in biomedical and general engineering

sectors.

1.3 Research Plan

The research involves surface engineering processing, structural and properties char-

acterisation and theoretical analysis. Investigation was conducted in several stages,

as described below.

1. Thermal oxidation of Zr was investigated first in terms of process optimisation.

The effect of oxidation temperature and time is studied in details. A high

temperature furnace available in the Materials Lab DMU was used.

2. The oxidised Zr was then characterised to study the composition, structure

and surface properties as a function of oxidising conditions. A variety of mea-

surement and testing techniques has been used, such as optical microscopes,

scanning electron microscopes, microhardness tester and surface roughness

tester. All these facilities are available in DMU.

3. The oxidised Zr was tested by friction and wear tests, corrosion tests and

tribocorrosion tests. The wear mechanisms were analysed and studied in de-

tails. The Materials Lab houses all these surface properties testing facilities.

Mechanism study was aided by microscopic techniques.
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4. In the second stage, carburising of Zr was investigated. The carburised Zr was

then optimised and characterised as in 1-3 above. Pack carburising method

was used, which can be carried out using a high temperature furnace and a

custom designed container to be manufactured in the mechanical workshop.

1.4 Thesis Organisation

This thesis contains nine chapters:

• Chapter 1 gives a brief introduction to the background information relevant

to this research and defines the aim, objectives and the work to be conducted.

• Chapter 2: presents an literature survey on subject matters related to this

work.

• Chapter 3: describes the experimental techniques and methodology used in

this work.

• Chapter 4: based on a paper I presented at an international symposium,

presents the results and discussion on the effect of TO temperature and initial

surface roughness on the structures and tribological performance.

• Chapter 5: based on the paper I published in Surface and Coatings Technol-

ogy, presents the results and discussion on the effect of TO time at a specific

temperature of 650oC.

• Chapter 6: based on the paper I published in Transations of the Non-ferrous

Metal Society of China, presents the results and discussion on the effect of

surface roughness after TO.

• Chapter 7: based on the paper I published in Journal of the Mechanical Be-

havior of Biomedical Materials, compares the response of CP-Zr to thermal

oxidation with that of CP-Ti .

• Chapter 8: presents the results on pack carburising of CP-Zr.

• Chapter 9: contains main conclusions that can be drawn from this work and

recommendations for future work.
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Literature Survey

2.1 Zirconium

2.1.1 General properties and Applications

In the field of biomedical engineering and science, zirconium alloys have been used

and investigated in many orthopaedics applications. Zirconium was discovered to

the world in 1789 by a Klaproth [44][45][46], who isolated zirconium oxide from

a sample of zircon (ZrSiO4), zircon or zargun as it was called by Arabs which

was known as a gemstone in past. However when Neils Bohr [47][48] was working

on the atomic theory he was sure that both Hafnium and Zirconium were rare to

find on earth, meaning that it actually comprises 0.016 percent of crustal rocks on

earth. In fact the researches show that only Iron, Titanium and Manganese are more

abundant than zirconium. The main minerals in zirconium element are baddeleyite

(ZrO2) and zircon (ZrSiO4) which can be found mostly in Australia, United States

and South Africa [49]. Zirconium commercial production was intended by the Kroll

process which uses magnesium (Mg) to reduce minerals [50]. However removing

oxygen and nitrogen is also another way which was called the Arkel-de Boer process

[51][52][53]. In this method a vessel with a little amount of iodine is used to heat

the crude zirconium and the temperature can go up to 200oC for the volatilization

of ZrI4 to provide pure zirconium. The properties of zirconium make it one of most

wanted materials due to the low density and good strength beside the very good

resistance against corrosion (see table 2.1).
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Table 2.1: Properties of commercially pure zirconium

Property value

Young modulus 88 GPa

Thermal conductivity 22.6 Wm−1K−1

Density 6.53gcm−3

Electrical resistivity 4.21x10−7 Ωm

Specific heat capacity 0.278Jg−1K−1

Tensile strength 330 MPa

Yield strength 230 MPa

Poisson’s Ratio 0.34

Thermal expansion coefficient 5.8x10−10K−1

Due to its extremely good corrosion resistance and the ability to resist hydrogen,

zirconium has been used in nuclear industry, for example creating the cans that holds

bars of fuel reactors and in pressure tubes in some of the nuclear reactors [54][55].

One of the important uses of zirconium is that when combined with magnesium

which will give it more strength, which helps reducing the fuel consumption as well

as reduction air pollution when it is used in aircrafts [56][57][58]. More recently

zirconium has found interesting biomedical uses particularly for making hip and

knee joints replacement or in other word orthopaedics applications [59].

Zirconium has also found applications in many other sectors of industry. Table

2.2 summarises typical applications in industry for making various components.
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Table 2.2: Typical applications of zirconium and its alloys

Industry Components Useful properties

Nuclear industry

nuclear reactors, Nuclear

power stations,

cladding of fuel rods and

sheathing of nuclear power

rods .

Corrosion resistance,

low neutron capture,

thermal conductivity

and hydrogen

embrittlement or

absorption.

Chemical industry

Heat exchangers, acid

pipes, pressure vessels,

vacuum tubes,

reboilers, evaporators

and Fittings.

Corrosion resistance,

difficult to ignite and

has heat resistance,

resistance to

acids alkalis and

seawater, low toxicity.

Space and aeronautic

Space vehicle, grinding

wheels, flash bulbs, gas

turbines and

jet engine blades.

Low cost, High

temperatures or heat

resistance, water

resistance

biocompatible.

Biomedical

Hips and knee joints

replacement

and dental implants

and

Hemofiltration(Kidney

injuries).

Corrosion resistance,

does not get

effected in room

temperature and it

is non-toxic and has

low radiation.

2.1.2 Zirconium Crystal Structure

Zirconium has a hexagonal closed pack structure (HCP) and this is from the Tetrag-

onal phase family [60][61]. Similar to titanium, zirconium has the same crystal

structure and similar atomic size. There are three polymorphic forms of zirconium:

alpha zirconium (α-Zr), beta zirconium (β-Zr) and alpha-beta zirconium (α-(β-Zr)

[17][62]. However this is dependent on thermal and thermo-chemical treatments,

which mean that the microstructure can be modified and controlled for various

applications [63][64]. The allotropic phase transformation of commercially pure zir-
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conium starts at temperature of 1170oC; this is where the structure changes from the

hexagonal closed-pack phase (αHCP ) to the body-centered cubic phase (βBCC). The

hexagonal closed-pack structure of the α-Zr phase has lattice parameters of a=3.25Å

and c=5.14Å, which result in c/a of 1.582 [65]. Figure 2.1 shows a comparison of

the temperature dependence of c and a.

Figure 2.1: comparison of the temperature dependence of c and a

The hexagonal closed-pack structure of the α-Zr phase can actually be seen

in a schematic diagram as shown in figure 2.2a, which shows the most densely

packed lattice planes highlighted with the crystal system directions. When the

transformation starts from the α-Zr phase to the β-Zr phase, the crystal structure

changes to body-centered cubic (BCC) with lattice parameter of a=3.25Å.

Figure 2.2: The unit cell crystal structure of (a) α-Zr planes and (b) β-Zr planes [5]

Figure 2.2b shows the unit cell crystal structure of β-planes. The densely packed
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plane in this phase is [110] plane as highlighted. The transition temperature after

changing from HCP structure to BCC structure is dependent on the composition of

zirconium. In some cases there is a possibility to stabilise the β phase of zirconium

in room temperature.

In general the ideal c/a ratio of Hexagonal closed-pack structure is about 1.633.

In hexagonal closed-pack metals, a slip normally starts in the bergers vector (−→a )

or in <112̄0> direction. Figure 2.3 shows the slip planes, it shows that the slip

planes can be basal (0002) or prism (101̄0) with two independent planes of slip. A

pyramidal slip <101̄1> could appear due to the impact made by basal slip and prism

slip. However this will result in the existence of four different slip systems [17] [66]

[67]. Since the c/a ratio of zirconium (α-Zr) is less than the ideal value, this will

lead in having large gaps or spaces between the prism planes. The spacing between

planes will result in the packing density of planes, and it will increase relative to the

basal plane (0002). This means that the slip will favour prismatic plane more than

basal planes[68].

Figure 2.3: HCP crystal lattices slip systems

The requirement of Von Mises principle is to have five independent slip systems

for the plastic deformation to occur [69][70]. For hexagonal closed-pack systems,

another slip system is required to reach good ductility. For homogenous deformation

to happen, strain in the −→c direction is necessary along with −→a . This new slip can be

represented as −→a +−→c slip <112̄3>. This slip will help in providing five independent

systems as listed in table 2.3 [66][68].
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Table 2.3: HCP crystal lattices slip systems

Slip System Bergers Vector Slip plane Slip direction
Number of slip systems
Total Independent

1 −→a [0002] <112̄0> 3 2
2 −→a [101̄0] <112̄0> 3 2
3 −→a [101̄1] <112̄0> 6 4
4 −→a +−→c [101̄1] <112̄3> 12 5

2.2 Zirconium Oxide (ZrO2)

2.2.1 General properties

Zirconium dioxide is mainly used for ceramic materials. This compound can natu-

rally be found in the earth crust with small percentage (0.016%). It has many good

mechanical properties such as hardness, high melting point and low reactivity. ZrO2

is produced from zirconium mineral concentrates, by chloride and sulphate process

[71][72][73][74]. The chloride process includes natural rutile that is then converted

to ZrCl4. Zirconium chloride (ZrCl4) is different to Titanium chloride (TiCl4),

because it has a polymeric structure [75][76]. Another difference is that ZrCl4 has

a solid structure, where TiCl4 is distillable. However, when ZrCl4 is oxidized at

high temperature (1000oC) this will result in ZrO2. This new compound is then

cleaned from chloride and hydrochloric acid residuals that were formed during the

process. On the other hand, in sulphate process zirconium slag reacts with sulphuric

acid. Zirconium hydroxide (ZrO(OH)2) is then formed through hydrolysis, which

is cleaned after [17] [77]. Both processes can produce ZrO2. In the final stage ZrO2

is milled to provide a controlled particle size. After that the surface is coated to

improve the functional behaviour in many applications.

Zirconium dioxide is widely used but mainly for producing hard ceramics [78][79].

ZrO2 is also used in nuclear power industry and biomedical industry such as hips

and knee joints replacements. ZrO2 can also be used on oxygen sensors because

it has the ability to let oxygen move freely through the crystal structure at high

temperatures [80]. Furthermore, zirconium dioxide is one of the most important

electroceramics and it can be used as solid electrolyte in electro-chromic machines

[81][82]. Zirconium dioxide has a great mechanical, thermal and electrochemical

properties as listed in table 2.4.
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Table 2.4: Zirconium dioxide properties

Properties ,Value
Density 5.68 g cm−3

Hardness 1350 HV
Poisson’s Ratio 0.3
Shear modulus 85 GPa

Young’s modulus 210 GPa
Thermal conductivity 4.3 W/mK

Liner thermal expansion coefficient 10 x 10−6 K−1

Melting point 2700oC
Specific heat capacity 540Jkg−1K
Electrical resistivity 4.5 x 1018Ω m
Offset yield strength 350 MPa

Ultimate,tensile strength 450 MPa

2.2.2 Zirconium Oxide Crystal Structure

There are three crystallographic phases of zirconium dioxide: Monoclinic phase (M),

Tetragonal phase (T) and Cubic phase (C) [83][84][85][86]. The monoclinic phase

comes in the form of deformed prism with parallel-piped sides and it is stable at

temperature of 1170oC. It has lower mechanical properties and this is due to the

reduction of ceramic particles cohesion. The tetragonal phase comes in the form of

a straight prism that has rectangular sides and it is stable between temperatures

of 1170oC and 2370oC with good mechanical properties. Finally the cubic phase,

which comes in the shape of straight prism with square sides and it is stable above

temperature of 2370oC with sufficient mechanical properties [87] [88][89]. Figure 2.4

shows the temperature range for the three phases.

Figure 2.4: Crystallographic phases of ZrO2

Figure 2.5 shows the crystal structure for (a) monoclinic, (b) tetragonal and (c)

cubic phases. Both monoclinic and tetragonal structures have six oxygen atoms

and each atom is bonded to three Zr atoms. Where cubic structure has seven fold

coordination or oxygen atoms (Zr4+). The distance between Zr and O is about

0.216nm. Monoclinic phase has a Baddeleyite structure type and this type the

crystals are commonly tabular on 100 and it is elongated on [010] or short to long
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prismatic along < 001 >. The prism faces are parallel to [001]. Tetragonal phase

has a rutile structure type, which means that it is commonly observed to exhibit a

prismatic growth habit along the c axis direction [001]. Cubic phase has a fluorite

structure type; this means that zirconium atoms are situated at the corners of the

cubic elementary cell also at the center of < 110 > directions. This also means that

the oxygen atoms lie on the quarters of < 111 > directions [87][90][91]. Zirconium

dioxide crystals are in two different directions of 11̄0 and 1̄ 1̄1. This gives two

different slip systems: primary slip system (001)[110] and secondary slip system

such as (1 1̄ 1̄)[101] and (11̄1) [011] [92].

Figure 2.5: The unit cell crystal structure of a) monoclinic, b) tetragonal and c)
cubic

2.3 Zirconium Carbide (ZrC)

2.3.1 General properties

Zirconium Carbide (ZrC) is a very hard ceramic material and it is commonly used

to make cutting tools [93]. This type of material has great hardness, high melting

point, high strength and good electrical conductivity. However, in industrial field,

Zirconium carbide is produced through sintering process [94][95]. ZrC is one of the

most important and widely used ceramic, and it comes in the appearance of dark
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Table 2.5: Zirconium Carbide properties

Properties ,Value
Density 6.73 g cm−3

Hardness 3000 HV
Poisson’s Ratio 0.25
Shear modulus 175 GPa

Young’s modulus 430 GPa
Thermal conductivity 25 W/mK

Liner thermal expansion coefficient 6.8 x 10−6 K−1

Melting point 3250oC
Specific heat capacity 368Jkg−1K
Electrical resistivity 82 x 10−8Ω m
Offset yield strength 790 MPa

Ultimate,tensile strength 875 MPa

Table 2.6: Zirconium Carbide crystal structure properties

Properties Value
Crystal,structure Cubic, cF8

Space group Fm3̄m

Lattice parameters
a=b=c= 5.065Å
α = β = λ = 90o

grey metallic powder. It is mainly used in commercial applications (prototypes) and

in nuclear industry (coating of nuclear power reactors) [96]. In the biomedical field,

the interest of zirconium carbide has increased. This is due to the great mechanical,

physical, chemical and thermal properties as shown in Table 2.5 [97].

Zirconium carbide is similar to most carbides of refractory metals. It is a sub-

stoichiometric, which means that it contains carbon atoms. However, the carbon

content is higher with higher temperature [98][99].

2.3.2 Zirconium Carbide Crystal Structure

Zirconium carbide has face centered cubic crystal (FCC) structure [100][101][102].

The parameters of ZrC crystal structure are as listed in Table 2.6 and it is also

represented graphically in Figure 2.6. The cubic crystal structure has unit cell in

the shape of cube, this is one of the simplest crystal structures.

Similar to most transition carbides, zirconium carbide is dominated by slip of

[111] < 11̄0 > and [110] < 11̄0 >. The slip occurs in the [111] planes; which gives

twelve slip planes. At very high temperatures the [111] < 11̄0 > slip occurs [17] [62].
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Figure 2.6: The unit cell crystal structure of Zirconium Carbide

2.4 Zirconium Surface Modification

As can be seen from Table 2.1, zirconium has a relevily low strength [103][104].

Under tribological conditions, zirconium is expected to suffer from high friction

and wear. Surface engineering is the most effective to improve surface properties

of engineering materials, such as wear resistance and corrosion resistance. Surface

modification can be applied with many techniques to modify the surface proper-

ties of zirconium and fight in having high friction or wear and other galling issues

that is linked with zirconium. These techniques can include coating of the surface,

heat treatments, chemical treatments and treating the surface by improved chemical

bonding or thermochemical technique [99][105]. Typical thermochemical treatments

includes thermal oxidation and carburising, which are discussed further below for

zirconium.

2.4.1 Oxidation

Oxidation is a treatment that is applied to increase the surface hardness and corro-

sion resistance of zirconium. This will creat a film that is 1.2− 12µm(more or less)

thick on zironium’s surface [28][106][107]. While knowing that the chemical envi-

ronment can have a significant effect on zirconium, oxidation can help to improve

the chemical properties. There are many techniques that were implemented to pro-

vide a solution such as forming a thin oxidised film on the surface of zirconium by

using thermal oxidation or anodising or in other word the growth of anodic film[28].

Oxidation also includes effective techniques such as oxygen diffusion[108], plasma

electrolytic oxidation[109]. Thermal oxidation is the cheapest method offering very
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good results in terms of improving the surface of zirconium against friction, wear

and corrosion[40].

2.4.2 Thermal oxidation

Thermal oxidation is normally to create a thin oxide layer on a metal surface

[110][111][112]. This technique uses reletevly high temperatures and as the temper-

ature increases the oxide layer becomes thicker. For zirconium, thermal oxidation

is normally curried out between 500 and 1200oC for several hours. Former studies

have shown that thermal oxidation creates multilayer structure on the surface of

the material. This is because when the oxide layer forms on the surface, there is

a process of oxygen diffusion as well as absorption, producing an oxygen diffusion

zone(ODZ) beneath the oxide layer[111]. Once the oxygen diffusion zone occurs

at the required level this will give zirconium dioxide layer(ZrO2). Normally the

surface will be darker and this process will give zirconium better resistance against

corrosion, friction and wear[15][110]. Figure 2.7 is a schematic diagram showing the

structure of typically thermal oxidised zirconium, comprising a ZrO2 layer on top

of an oxygen diffusion zone.

Figure 2.7: Schematic diagram for zirconium thermal oxidation structure

Although there are very few reports on the effect of TO parameters on Zr for

biomedical applications, there are many reports on the oxidation behaviour of Zr and

its alloys in nuclear reactors which involve exposure to high temperatures and long

duration [113][114][115][116]. A very important phenomenon observed is oxidation

breakway, which marks the transition from parabolic growth governed by solid state

diffusion to linear growth governed by the formation of pores and cracks in the oxide

layer. Figure 2.8 shows typical examples of oxide layer after oxidation breakway

[6][25][29][117][118].
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Figure 2.8: Cross section of a oxidised Zr at 900oC for 30 min, showing formation
of pores and cracks in the OL due to oxidation breakway [6]

Before breakway, the oxide layer formed is compact, dense and adherent to the

substrate [6][119][120]. After breakway, the oxide layer becomes porous, cracked

and crumbly, and tends to flake from the substrate. The breakway is favours by

high temperature and long time oxidation and is associated with the formation of

oxygen gases inside the oxide layer and the build up of residual stress [6][121][122].

Formation of gases inside the OL leads to the formation of pores, while larger residual

stresses can lead to the formation of cracks in the OL. It is thus very important that

TO of Zr for tribological applications should be carried out under conditions that

oxidation breakway does not occur. This is to ensure that a dense and adherent OL

is formed to provide protection to Zr. The formation of pore and cracks in the OL

is expected to deteriorate the tribological performance and load bearing capacity of

TO-Zr [6].

2.4.3 Carburising

Carburising is a technique used to improve the wear resistance and fatigue strength

of steels. It has been used recently to improve the wear resistance of titanium[39].

Since then carburising has been applied to zirconium [123]. It has been shown that

zirconium carbide (ZrCO2) has linear type of reaction, combining it with a layer of

boron oxide will give zirconium diboride (ZrB2O2) which will increase wear resis-

tance [124]. Zirconium carburisation has been realised using plasma carburising[125].

Plasma carburising is a thermochemical technique used to improve metal hardness

and wear properties. During this process there are gaseous reactant that produce
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heat on the surface of the metal. This technique creates a carburised layer on

the surface of the metal, improving wear and corrosion resistance. The carburis-

ing in[125] was carried out in a vacuum chamber with 1× 10−2mbar vacuum level.

The chamber was filled with pure methane gas. The gas was ionised in a plasma

with a high density of 1025 ∼ 1026 ions
m3 and high ion energy of 1 ∼ 2keV . This

process produced a thermally effected layer of about 80µm with a surface hardness

up to 8.5GPa. However, very few studies have been conducted on carburising Zr

using other conventional and industrial processes, such as gas carburising and pack

carburising.

2.5 Tribology

Tribology is known as the technology of interacting surfaces in relative motion and

it also can be defined as the technology of friction, wear and lubrication [126][127].

Materials surfaces are not perfectly flat, so when two surfaces are in contact only

small percentage of the apparent surface area is actually supporting the load; this

will result in high contact stress which will lead to increase of friction and wear [128].

2.5.1 Friction

Friction is the resistance to motion when two bodies in contact are forced to move

relative to each other. It is associated with any wear mechanism that may be

operated with a lubricant or surface films that may be present as well as the surface

topographies [128]. From the frictional interaction heat can be generated and it can

affect the performance of the lubricants and change the properties of the contacting

materials or their films and in some cases it can change the properties of the product

being processed. Furthermore any of these frictional heating can cause a safety

problem because of the danger of mechanical failure of components such as fire or

explosion [8][126][128]. Thus, friction reduction becomes one of the main tasks of

surface engineering of materials.

The Friction Law

Under the conditions of sliding, the coefficient of friction (µ) for a given pair of ma-

terials and fixed conditions of lubrication may be almost constant. This observation

led to two realistic laws of sliding friction, which was discovered in 1699 by Leonardo

Da Vinci. The laws of friction are then stated as follows[8]:
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1. The friction force is proportional to the load.

2. The friction force is independent of the apparent area of contact.

3. The friction force is independent of the sliding velocity.

Friction Coefficient

As shown in figure 2.9,in both ideal rolling and sliding, a tangential force F is needed

to move the upper body over the stationary counter-face.

Figure 2.9: Friction force (F) is needed to cause motion by rolling and sliding

It is very important to separate the various terms and concepts associated with

friction such as:

1. Friction force.

2. Friction Coefficient.

3. Frictional energy.

4. Frictional heating.

These four issues are defined as the context of solid friction, which also can

be defined as the resistance to movement of one solid body over another. This

movement can be sliding or rolling. When two bodies are forced to move to each

other, the friction force (F) is tangential force that must be overcome in order for one

solid contacting body to slide over another. It acts in the plane of the surfaces and

is usually proportional to the Normal load N, as seen in Equation 2.1 [8][126][128].

F = µN (2.1)
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The frictional constant is known as the friction coefficient (µ) and therefore the

equation can be expressed as:

µ =
F

N
(2.2)

Factors that affect friction

Controlling friction between two contacting bodies is possible, but it can be con-

trolled with specific conditions. There are many factors that affect friction such

as:

• The nature of the surface.

• The load applied.

• Surface finishing.

• Temperature.

• Nature of relative motion.

• Characteristic of lubricants.

2.5.2 Wear

In general wear is defined as the damage to a solid surface caused by the removal

or displacement of material by the mechanical action of a contacting solid, liquid

or a gas. Wear is usually observed when there is friction; wear can be achieved

through the physical contact of material in motion. In most cases wear can cause

material loss which at the end will lead to failure [126][128][129]. When there are

two materials in contact specifically sliding contact, then this will cause material

degradation. However the sliding movement will affect the material, since some

material will be lost or removed. This wear loss can be expressed in equation 2.3,

which can help to calculate the rate of abrasive wear for the softer material during

the contact [17]

V

L
= K

Fn
H

(2.3)

where:

V=material lost volume, L=Distance of total sliding, Fn=Normal applied load,

H=Hardness of the softer material, K=coefficient of wear.
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By rearranging Equation 2.3 and K
H

can be made the subject, which is known

as the coefficient of dimensional wear (kd) with the unit of (mm3N−1m−1). The

coefficient of dimensional wear helps in finding the removed material volume, per

unit distance, per unit load, as shown in Equation 2.4 [8][17].

kd =
V

LFn
(2.4)

Wear Mechanisms

Wear is classified in many different ways. For example, it can be classified as lu-

bricated wear and non-lubricated wear or in other words dry wear. However the

common practice is classifying the wear mechanism that is operating. In practice

wear involves more than one mechanism or multi-mechanisms operating in the same

time, which makes it hard to tell the differences between wear types. However,

this motivated researches to develop methods to understand types of wear, which

was introduced by Budinski. In his approach he classified the creation of wear into

four different categories: Abrasion, erosion (corrosive), adhesion and surface fatigue.

These four types are as shown in Figure 2.10. [17][128].

Figure 2.10: Four types of wear [7]
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Abrasive wear

Abrasive wear occurs when forcing hard or rough surface to move against a solid

surface. This wear type is identified by noticing the scratches (grooves) on the softer

material surface. When a harder material moves over a softer material, the softer

material is abraded, and this is known as the two body wear, There are however an

observation of wear particles formation. The creation of wear particles introduces a

different mode of wear which is known as the three body wear. Abrasive wear can

be avoided by the right selection of material and by surface engineering treatment

to increase surface hardness. Generally, when talking about the abrasive wear, it

can be separated into four different categories depending on the type of contact

happening [17][128]:

• Low-stress abrasion; this type of abrasion occurs due to the light rubbing

contact to the metal surface under a low contact stress and minimal plastic

deformation if there is any. However, wear is noticed when scratches appear

on the surface of the metal or specifically on the wear track.

• High-stress abrasion; this type of abrasion occurs due to the high strain

hardening on the surface of the metal under high contact stress which is enough

to damage the surface due to severe plastic deformation and scoring.

• Gouging Abrasion; this type of abrasion involves very high stress which re-

sults in having big grooves or houges. In this type of abrasion strain hardening

and plastic deformation are involved and they are both leading factors.

• Polishing wear; this type of wear is a very mild form as it is hard for scratches

to be observed. The surface of this type of wear is usually smooth and bright

due to the polishing effect of the counterface or abrasives.

Adhesive wear

Adhesive wear can be introduced as the removal of material from surface and transfer

to another. This is due to cold welded junctions, which is formed between two

surfaces during relative motion or in sliding motion. In this case, usually the removed

material from the soft body sticks on the surface of the harder body. Since material

transfer is involved in the wear process, if the removal is in larger scale this will

cause large removal and material tearing. This type of wear will have a big issue if

the contacting surfaces are both from the same material. However there are other
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factors that can also cause issues such as high temperatures, poor lubrication, high

loads and high sliding speed which can cause galling which can be easily visible on

both surfaces. To avoid adhesive wear it is better if the two contacting surfaces

are not from the same material, also it is necessary to avoid sliding hard material

against another hard material, and finally by lubrication since it will reduce wear.

[17][128].

Erosion wear (Corrosive)

This type of wear occurs when the sliding contact is running in a corrosive environ-

ment. Erosion wear is also known as the material chemical degradation when both

wear and corrosion are included in the process [128]. The present of fluids can have

lubricating effects, which is something hard to avoid. On the other hand, to avoid

erosion wear some methods were investigated such as reducing the temperature,

speed of sliding and load. If the sliding process was done in a corrosive environment

and using a passive material, this will lead to:

• The formation of the lubricating film in the contact zone, which will reduce

wear and corrosion.

• Producing a weak film, that will be removed continuously and will result in

increasing the wear rate.

• The formation of protective film on the surface, which will produce pitting on

the surface [17].

Surface fatigue wear

This type of wear is associated with continuous sliding and rolling of one body over

another, which will cause the subsurface to be cyclically stressed or in other words

it can result in micro-cracking and cycle stresses to the subsurface. This high stress

that the subsurface has experienced will produce plastic deformation. These factors

will change the structure of the material and will create visible larger cracks and

cause fracture.

2.5.3 Surface Roughness

In general no surface is perfectly flat, and to prove that a microscope is needed. In

fact even polished samples are not flat and they have surface irregularities or surface
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roughness. The profilometer can help in describing the surface’s topography in a

single direction but the graph will be hard to read and the measurements are not

always accurate. The material’s surface roughness can be identified in equation 2.5.

This equation is working by using a centre line average and the height (y) above the

mean line in order to calculate the average roughness (Ra) over a length (L). The

mean line is constant so when the equal areas can lie above and below the line as

shown in figure 2.11. When the average roughness fails to produce information of

the differences between spiky surfaces and smoother surfaces, the root mean square

roughness r.m.s (Rq) offers a better significance to various surfaces as shown in

equation 2.6 [8]:

Ra =
1

L

∫ L

0

|y(x)|dx (2.5)

Rq =
1

L

√∫ L

0

y2(x)dx (2.6)

However for majority of surfaces the value of root mean square roughness is

nearly similar to the value of the average roughness, and in some of the cases such

as the distribution of Gaussian of height of surfaces Rq = 1.25Ra[8].

Figure 2.11: The profile of a surface showing the height of the surface with relation
to centre line average

2.5.4 Lubrication

One of the best solutions to reduce wear is lubrication. Friction can also be reduced

by applying lubricants between the two surfaces. Lubrication helps in reducing

the consumption of power which is needed to overcome the friction and this will

help both sliding and rolling process when two materials are in contact. In general

lubricants help in reducing wear but not eliminating it, so wear always occurs when

two contacting bodies have relative motion [8].
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Lubrication types

There are many ways of lubrication such that the surfaces is separated by a lubricant;

which could be solid or semi solid, liquid or even gas. When lubrication is included,

then the value of Lambda (λ) helps in measuring the contact of asperities during

sliding process, expressed in equation 2.7 [17].

λ = hmin/σ
x (2.7)

where hmin is the thickness of the minimum film and σx is root mean square

surface roughness of the two surfaces in contact ,which is expressed in equation 2.8.

σx2 = (R2)q1 + (R2)q2 (2.8)

where (R2)q1 and (R2)q1 are the root mean square surface roughness for both

the first and second surfaces. The value of lambda will help identifying the type of

lubrication between the two surfaces. There are four situations that lambda could

be located in between the contacting surfaces:

• Hydrodynamic lubrication; in this case there is a full film of fluid which

will detach the surfaces from each other. This will help to gain low friction

and low wear. Therefore this situation can be achieved when λ > 5.

• Elastohydrodynamic lubrication; in this type of lubrication there is less

wear and friction, because there is no high pressure between the two surfaces.

However there could be a concentrated contact in some of the areas on one

surface or maybe both. This type of lubrication can be gained when 3 < λ < 5.

• Mixed elastohydrodynamic lubrication; in this situation there is contact

between the asperities even when there is a film between the surfaces. This

situation also has a reduction in both wear and friction and it is more realistic

comparing with hydrodynamic lubrication. Therefore this situation can be

achieved when 1 < λ < 3.

• Boundary lubrication; in this type of lubrication there is a high pressure

which can create pitting or pockets full of locked lubricants between the two

surfaces. There is damage on the material due to the high load or low sliding

speed, therefore λ < 1.
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These lubrication boundary conditions can be related to a parameter of lubri-

cation, which is proportional to the viscosity of the lubricant (η) and the surface’s

speed (ω) and the inverse of the pressure (ρ), as expressed in equation 2.9 [8].

ParameterofLubrication =
ηω

ρ
(2.9)

The four types of lubrications can be represented graphically in a Stribeck curve

diagram as shown in figure 2.12. The diagram expresses the boundary limitation of

each type of lubrication and also presents the amount of friction on the surface for

each stage during the surface contact. It can be seen that as the speed increases

the film is starting to be created. In some points the lubrication will give the best

conditions with minimum amount of friction. However when the viscosity of the

lubricant increases this will lead to the increase the friction coefficient.

Figure 2.12: The Stribeck Curve [8]

2.6 Corrosion

Each year, corrosion and wear or the combined effects costs hundreds of billions of

dollars in many industrial economies around the world. Corrosion and wear dam-

age can be reduced with surface engineering such that engineering components can

perform functions that are distinct from the bulk of the material. Metal corrosion

is known as chemical or electrochemical processes where the exposed surface is in
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contact with a corrosive environment [128][130].

2.6.1 Electrochemical Corrosion

When Electrochemical corrosion is involved with an active metal, no matter what

environment involved (in water or not), there will always be an electricity flow from a

metal to other metal, or from a metal surface to the other part of the same metal’s

surface [131]. Electrons loss occurs when the metal is in an electrolytic solution,

leading to the formation of metal ions and thus corrosion. When the reaction of

corrosion is applied to the atoms of a metal, these atoms will be converted to ions,

because of the loss of electrons to the corrosive medium as described in equation

2.10 [17][128].

M →Mn+ + ne− (2.10)

knowing that: M = Metal, n = V alence, e = Electron. This reaction is known

as the anodic reaction or oxidation, causing the metal to be oxidised as there is a

transmission of electrons. However this movement of electrons must be followed by a

cathodic reaction called reduction. This cathodic reaction will cause the electrons to

be consumed, thus maintaining mass conservation. It is possible to have both anode

and cathode existing in the same metal, where the cathode is linked to the anode,

in other words cathode is followed by anode and they produce what is called a wet

corrosion cell when they are electrical contact in an electrolyte [17].What is common

in most corrosion reaction is that oxidation and reduction are always in different

locations on the metal, the reason being that metals are in general conductive. It

is clear that for corrosion to happen both anodic and cathodic reactions must be

included and if one or both are not included this will stop corrosion from happening

[128][132].

2.6.2 Corrosion forms and Mechanisms

In general, corrosion is known as the change of material from its original state after

a long period which makes it less desirable and the material will no longer function

properly, which can lead to the breakdown of the whole system. Corrosion can

have many forms or specifically eight forms depending on the damage caused or the

appearance of the metal after corrosion attack.

Uniform Corrosion: it is also known as general corrosion. Uniform corrosion
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occurs to majority of metals and it is not really a big issue because it is predictable.

Uniform corrosion is usually occurring in industrial environment due to the pollution

or in salt water environment.

Galvanic Corrosion: this type of corrosion only occurs when two metals are

in contact electrically, causing the flow of electrons from a metal to another but one

of the two metals needs to have better corrosion resistance in terms of giving up

electrons to the other metal. In this way the less anodic metal will be experiencing

more corrosion. The reaction of the two metals will depend on the position of both

metals in the galvanic series. If both selected metals are close to each other in the

galvanic series, galvanic corrosion will be minimised.

Pitting Corrosion: this type of corrosion is very detrimental and it can cause

holes on the metal which will lead to direct functional failure. Pitting happens in

a lot of metals and it is common in engineering applications. It normally occurs in

metals with protective films or coatings and it appears on the surface of the damaged

area of the metal.

Crevice Corrosion: this type of corrosion is one of the attacking types caused

at narrow opening or gaps between two different metals or between a metal to a

non-metal edges and interfaces. The crevice corrosion is normally caused by either

an accident or a crevice design such as rolled tube ends and threaded joints. This

type of corrosion can affect passive metals and active metals.

Erosion Corrosion: this type of corrosion is caused when the rate of the attack

to the metal is increased, because of the combination of the wear and corrosion.

Erosion corrosion includes cavitation which is formed on the surface of the metal.

This type of corrosion also includes fretting which is known as a relative motion

between two different surfaces with a type of contacting called stick slip contact.

Intergranular Corrosion: this type of corrosion is also known as the grain

boundaries corrosion, where the grains are not actually attacked. This is generally

caused by the potential variances between both the grain boundaries regions and

the precipitates, which then will cause impurities around grain boundaries. The

Intergranular corrosion includes Exfoliation which happens in many industrial envi-

ronments, and particularly aluminium alloys.

Dealloying Corrosion: in this type of corrosion active metal is removed from

the alloy by selective corrosion. This type of corrosion can be avoided by alloy

substitution.

Enviromentally assisted cracking: this type of corrosion can cause cracks

due to the stress experienced and this is called Stress corrosion cracking (SCC). It
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occurs frequently in engineering structures. This type can cause corrosion fatigue

which can be best explained as the metal being under a cyclic stress. This type

of corrosion also includes hydrogen damage which can deteriorate the mechanical

properties of a metal. All these environmental situations can lead to accelerated

crack formation and propagation of the metal.

2.7 Tribocorrosion

Tribocorrosion is the study of the combined effect of wear and corrosion [133]. Tri-

bocorrosion includes the combination of chemical and mechanical interaction, where

corrosion is caused by electrochemical reactions whilst wear is the mechanical part

when there is sliding or rubbing on the surface. From the interactions of wear and

corrosion it can be seen that there is a close relationship, meaning that the in-

censement of corrosion will increase wear, and wear will accelerate corrosion. The

interactions depends on the load and the structure of the tribo-system [134]. Fig-

ure 2.13 below shows the process of surface degradation and how mechanical and

chemical actions combined to become tribocorrosion.

Figure 2.13: process of surface degradation
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2.7.1 Tribocorrosion forms and Mechanisms

Tribocorrosion normally involves sliding contact in typical corrosive environments.

This situation can be seen in many of today’s applications such as hip and knee

joints replacements, moving engine components, electromechanical machines and

in plumbing. It can be noticed that cases such as hip and knee joints (artificial

joints) and dental implants or in other words implantation in human body in general

has been studied. Tribocorrosion have been listed under two different categories

[133][135][136]:

• Tribocorrosion in living systems.

• Tribocorrosion in industrial systems.

Similar to corrosion, tribocorrosion can take different forms, depending on the

contact mode such as sliding, fretting or rolling. Tribocorrosion forms are as fol-

lowed:

• Abrasion; Rolling, grooving and sliding.

• Erosion; Cavitation erosion, liquid droplet and solid particle.

• Fretting.

• Tribo-oxidation.

Tribocorrosion can be caused by two body contacts or even three body contacts,

and the relative motion can be in both direction or unidirectional such as in the case

of pin sliding on a disk. On the other hand when fretting is involved, a special type

of contact is defined as small magnitude motion. Rolling elements also experience

tribocorrosion specifically in the case of ball bearings. One of the most important

cases is erosion, which causes the attack by the combination of both mechanical and

chemical actions, especially in plumbing pipes and pumps [137][138][139].

2.7.2 Tribocorrosion process affecting factors

Tribocorrosion process can be affected in many different ways [140][141]; there are

many factors that play a role in influencing tribocorrosion and these factors are

listed as follows:
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• Electrochemical parameters: the electrochemical side of tribocorrosion is very

important because corrosion occurs by the help of the basic electrochemistry.

Many scientists have been working on this aspect, but the scientist are di-

vided into two categories: tribologists and electrochemists. While tribologists

are working on surface oxidation and mechanical wear, electrochemists are con-

centrating on the study of surface scratching on re-passivation kinetics. In this

respect there are many parameters that can be considered such as corrosion re-

sistance, the growth of passive films and active dissolution [142][143][144][145].

• Environment: environmental variables play a very important role in the science

of tribocorrosion, because the electrolyte determines the surface state, passiv-

ity and activity of the surface which will change the mechanisms of corrosion

and tribocorrosion.

• Material: the properties of materials play a very important role in tribocorro-

sion. Properties such as the yield strength, ductility, roughness and hardness

are relevant. However the link between these properties and tribocorrosion is

unclear. A lot of materials rely on a thin oxide passive film to resist corrosion,

but this film can be removed by mechanical wear, which will cause a charge

transfer at the interface and the film will be damaged depending on thickness

of the film and the mechanical load [137][145][146][147].

• Operating parameters; the force applied and the type of contact whether its

sliding, rolling or fretting, can affect the tribocorrosion of a metal for a given

environment. However some other factors can affect the operating system such

as the velocity of sliding and also the motion type such as circular motion.

One important parameter is the size of the contacting bodies and vibrations,

for example in fretting corrosion, there is small oscillations happening in the

corrosive environment [137][146][148][149].

2.7.3 The Mathematical approach

Under conditions of tribocorrosion, the total material removal rate cannot be consid-

ered as the sum of mechanical wear and corrosion, because both wear and corrosion

affect each other. The combination of such effect was termed corrosion-wear syner-

gism, introduced by Watson [150], as represented in equation 2.11 [17].

Vt = Vw + Vc + Vs (2.11)
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Where Vt is the total volume of removed material, Vw and Vc are the material’s

lost volume due to mechanical wear and corrosion respectively, whereas Vs is the vol-

ume loss due to the combination effect of wear and corrosion. The testing of both

properties of corrosion and pure wear of material cannot be monitored separately.

However this calculation gives a small clue to the process of tribocorrosion mecha-

nism and to define the wear caused from the combination of wear and corrosion.

On the other hand many researchers use another mechanistic approach in tribo-

corrosion study [133][143]. This approach considers that sliding is actually combined

with corrosion to cause two types of mechanisms as shown in equ 2.12 [143].

Vtotal = Vchemical + Vmechanical (2.12)

Where Vchemical is chemical wear caused by accelerated corrosion due to the slid-

ing action. Vmechanical is the mechanical wear which may be affected by corrosion.

This process can be best explained when the metal is exposed to a corrosive envi-

ronment and experienced mechanical contact. By combining these two mechanisms,

the total lost volume Vtotal can be determined. Both mechanical wear and acceler-

ated chemical wear affect each other, and the volume wear rate is affected by many

variables such as speed and load.

2.8 Limitations of previous achievements

The current research of thermal oxidation (TO) and pack carburising (PC) of zir-

conium is limited due to many reasons:

• Previous achievements did not include optimising thermal oxidation or pack

carburising processes. However, in this research an investigation of differ-

ent effects has been done for both techniques such as temperature, time and

roughness.

• In terms of exploring the feasibility of pack carburising, there is not many

achievements to investigate the pack carburising of zirconium and its impact on

tribological properties. In this research pack carburising has been investigated

in depth and many effects has been processed including the effect of pack

composition.

• The current research does not include deep characterisation of the structure

and the properties of surface engineered zirconium. Therefore it is necessary
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and timely to have a detailed study on process optimisation of thermal ox-

idation of Zr and on carburising of Zr, and further to study the structure

and properties of surface engineered Zr for general engineering and biomedical

application.

• Previous achievements did not include a comparison study between surface

engineered zirconium and surface engineered titanium. In this research a deep

investigation was done to compare surface engineered zirconium with titanium

and to identify its application potentials in biomedical and general engineering

sectors.

53 Abdulkarim Alansari



Chapter 3

Methodology and Experimental Procedures

3.1 Material and Sample Preparation

In this research all tests were done by using commercially pure zirconium grade 2

(99.2%) see table 3.1. Pure zirconium was used to avoid the complex effect of other

alloying elements on thermal oxidation. Zirconium plates were received from Good-

fellow Cambridge Limited and were cutted into specimens of 15mmx18mmx1mm

sizes.

The samples were then ground using SiC grinding papers from P120 to P1200

grades. After grinding the samples were polished using 6µm and 1µm diamond

polishing. Finally methanol was used to clean the samples ultrasonically for about

10 minutes.

In another series of experiments, different material surface finishes were prepared

before thermal oxidation, by grinding the sample to P600, P1200 grades, and 1µm

polish; respectively. The initial surface finish was measured by a profilometer and

the roughness parameter values are listed in Table 3.2.

Table 3.1: Chemical composition of CP-Zr samples

Element Total Percentage(%)

O 0.16

N 0.025

C 0.05

H 0.005

Fe ≤0.2

Hf >0.2

Zr Rest
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Table 3.2: Initial surface finish after grinding/polish

Preperation Ra(µm) Rq(µm) Rt(µm)

P600 0.26 0.34 2.4

P1200 0.2 0.25 1.5

Polished 0.12 0.16 1.2

3.2 Thermal Oxidation

Thermal oxidation (TO) in this research was done in a CWF 110 thermal furnace

manufactured by Carbolite and it was done at different temperatures of 550,600,625,650

and 700oC and for a duration of 6 hours(360 minutes). After the process of thermal

oxidation the samples were cooled down to normal room temperature in the furnace.

This type of cooling is called furnace cooling (FC). Normally it takes from 6-7 hours

to cool down from 700oC to 100oC. Table 3.3 and Table 3.4 shows all the different

conditions used during this project.

Two series of experiments were conducted. Firstly, the effect of oxidation tem-

perature was studied by varying the TO temperature from 550oC to 700oC for a

fixed TO time of 6 h, with the purpose to find the optimal TO temperature (Table

3.3). Secondly, the effect of TO time was investigated by varying the oxidation time

from 1 h to 72 h at the optimal temperature of 650oC (Table 3.4)

Table 3.3: Thermal oxidation conditions used for the first series of experiments

Temperatures(oC) Time (h) Cooling Method

550 6 Furnace Cooling

600 6 Furnace Cooling

625 6 Furnace Cooling

650 6 Furnace Cooling

700 6 Furnace Cooling
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Table 3.4: Thermal oxidation conditions used for the second series of experiments

Time(h) Temperatures (oC) Cooling Method

1 650 Furnace Cooling

6 650 Furnace Cooling

12 650 Furnace Cooling

24 650 Furnace Cooling

72 650 Furnace Cooling

3.3 Pack Carbuising

Pack carburising (PC) in this research was done in a CWF 110 thermal furnace

manufactured by Carbolite and it was done at different temperatures of 825,880,925

and 980oC and for durations of 3, 10, 20 and 40h hours. After the process of

pack carburising the samples were cooled down to normal room temperature in the

furnace. This type of cooling is called furnace cooling (FC). Normally it takes from

10-12 hours to cool down from 980oC to 100oC. Table 3.5 shows all the different

conditions used during this period of the project.

Table 3.5: Pack carburising conditions used

Temperatures(oC) Time (h) Cooling Method

825 3,10,20,40 Furnace Cooling

880 3,10,20,40 Furnace Cooling

925 3,10,20,40 Furnace Cooling

980 3,10,20,40 Furnace Cooling

To effect pack carburising, some procedures must be followed strictly. These

involve the use of carburising compounds (powders), packing the compounds in a

container together with the samples to be treated, sealing the container to achieve

air-tight, and heating the container to the carburising temperature, and holding at

that temperature for the preset treatment time. Details of these procedures are

given in Section 8.1.
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3.4 Oxidised and carburised Sample Characteri-

sation

After thermal oxidation the samples were characterised using several experimental

and analytical techniques, as described below.

3.4.1 Weight gain measurement and calculation for oxidised

samples

The measurement of weight gains helps to find the oxygen uptake by the samples

and the thickness of oxidise layer in a theoretical way. This will be compared to the

thickness measured through ball cratering technique and cross-sectional metallogra-

phy. The measurements and calculations steps are as follow:

• First step is measuring the sizes of the samples to work out the total surface

area exposed to thermal oxidation.

• Second step is measuring the weight of the sample before oxidation(wo) and the

weight after oxidation(wA) in order to get the weight gain(∆w) as expressed

in equation 3.1.

∆w = wA − wo (3.1)

• Third step is to find the Area (Ao) by using equation 3.2. This requires

height(h) and width(w) and thickness of the sample(t) in centimetres(cm).

Ao = (h× w × 2) + 2(h+ w)× t (3.2)

• Fourth step is finding the mass fraction of oxygen(Ow) in ZrO2 as shown in

equation 3.3.

Ow =
2× wo

wZr + 2× wo
=

2× 16

91 + 2× 16
= 0.26 (3.3)

where wo and wZr are the atomic weights of oxygen and zirconium, respectively.

• Finally to find the thickness of oxidise layer(hol) by Equation 3.4. The equation

requires the density of ZrO2(ρ) 5.68 g
cm2 , weight gain(∆w) and the area(Ao).
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hol =
∆w

Ao × ρ×Ow

(3.4)

The calculation in 3.4 is based on the assumption that all oxygen gained by the

sample during thermal oxidation is used to form ZrO2 layer. This deviates from

reality since it is known that thermal oxidation produces two layer structure on

zirconium: a ZrO2 layer on the surface and an oxygen diffusion zone (ODZ) below

the surface. Thus, not all oxygen gained is in the ZrO2 layer, and some oxygen atoms

diffuse inwards to form the ODZ. Therefore the calculated ZrO2 layer thickness (hol)

overestimate the actual oxide layer thickness. The degree of deviation depends on

the amount of oxygen diffusing to ODZ and depends on thermal oxidation processing

temperature.

3.4.2 Ball Cratering

Ball Cratering is a technique mainly used to measure the thickness of thin coatings

[151][152]. This is done by using a large bearing steel ball with a diameter of 25.4mm.

This ball rotates on the surface of the sample with the use of diamond paste (1µm).

The rotation speed can be controlled between 10 and 120 rpm. As the ball rotates,

it will gradually penetrate the coating on the surface producing a ball crater on the

surface, revealing the coating and the substrate. An optical microscope is then used

to measure the dimensions of the ball crater as shown in figure 3.1. This will make

it easy to measure the thickness of the coating by using equation 3.5.

t =
x× y
D

(3.5)

where

t = the coating thickness, D = the diameter of the metal ball, x = the thickness

of the visible part of the film, y = the diameter of the crater.

In the present work, a laboratory-made ball cratering machine was used. To

produce a ball crater revealing the oxide or carbide layer, 10-20 minutes of ball

rotation was required depending on the oxide layer thickness.
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Figure 3.1: Ball crater technique for coating thickness measurements

3.4.3 Surface hardness measurement

In order to evaluate the hardening effect arising from thermal oxidation or pack car-

burising, microhardness testing was conducted on the oxidised or carburised surface

under various indentation loads. ZHV microhardness tester was used in this work.

This machine uses a Vickers indenter with a square based diamond pyramid. The

loads applied were from 0.025kg to 0.5kg. The indentation sizes created on the sur-

face were measured and hardness was calculated using equation 3.6, with reference

to figure 3.2.

V HN =
P × 2Sin(136

2
)

d12
2 (3.6)

Five measurements were performed under each load to obtain the average value.

Hardness profiles below the surface in the cross-sections of the TO and PC samples

were also measured using an indentation load of 0.025 kg. This allows for the

assessment of the hardening effect in the subsurface across the diffusion zone.
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Figure 3.2: Process of Microhardness [9]

3.4.4 Surface roughness measurments

The surface profiles of the untreated and TO and PC treated surfaces were measured

using a contact mode profilometer, Mitutoyo SJ-400 as shown in figure 3.3 [10].

Figure 3.3: Mitutoyo SJ-400 profilometer [10]

The surface roughness parameters were derived from the measurements repeated

three times. The same technique was also used to measure the surface profile cross

the wear tracks, which was then used to evaluate the wear volume, as detailed in

section 3.6.
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3.4.5 XRD Analysis

X-ray diffraction is known as non destructive testing tool to analyse the crystal

structure of materials. This technique includes radiation diffraction by the material

crystalline, which is dependant on Bragg’s law [17][153][154]. The law of Bragg

states that there is a relationship between the maximum diffraction position and

the spacing of the atomic plane. This explains that x-rays reflects from the surface

of the material will travel less distance than the x-rays that reflects from the atomic

plane within the crystal, and the distance travelled is depending on the spaces

between layers. Equation 3.7 expresses the law of Bragg[155].

λ = 2dsin(θ) (3.7)

where

λ=wave length of x-ray, θ= half of the diffraction angle between the crystal plane

and the x-ray, d= the spacing between the atomic planes.

Since De Montfort University initially did not have an x-ray diffraction machine

till third year (2017), for oxidised samples the XRD was conducted by Dr.Bertram

Mallia of the university of Malta, using Cu-kα radiation. For carburised samples

the XRD was conducted at De Montfort university. After XRD measurement, the

diffraction spectra were compared with standard ones from pure Zr, ZrO2 and ZrC

to identify the phase composition on the oxidised or carburised samples.

3.4.6 Cross sectional sample preparation

To facilitate microscopic examination of the subsurface structure and measurements

of layer thickness, cross-sectional metallography samples were prepared following

standard procedures. These include sectioning the TO and PC samples, mounting

the cross-sectioned samples in Bakelite using the hot mounting machine, then grind-

ing the mounted samples using SiC papers from P120 to P1200 grades, followed by

diamond polishing down to the 1 micron finish. This produced a polished sample

with a mirror-like surface to allow for the examination of the layer structure.

3.4.7 Optical microscopic examination

A standard optical microscope (Nikon) was used to examination the TO and PC

surfaces, the cross-sections and the wear tracks. TO and PC layer thicknesses were
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also measured from the cross-sectional samples using optical microscope. The mag-

nifications used in examination are typically 40x to 1000x.

3.4.8 Scanning electron microscopic examination

The Leica S430 field emission scanning electron microscope was used to examined

further details of the TO and PC samples and the wear track morphology and

composition. The SEM is equipped with Energy dispersive X-ray microanalysis

(EDX) facilities to allow for chemical composition analysis, including spot analysis,

line analysis and area mapping.

3.4.9 Glow discharge optical spectrometry (GDOS)

Glow discharge optical spectrometer (GDOS) has found increasing use in chemical

composition profiling analysis of surface coatings and surface treated materials [156].

It uses argon ions to sputter the sample surface, releasing atoms from the surface

material. The sputtered material is then excited in plasma charge of low pressure.

Light emissions from the excited plasma is then analysed with reference to standard

spectra for individual elements. Continuous sputtering of the sample allows for the

analysis layer by layer. In this work, the GDOS analysis was conducted at the

University of Birmingham.

3.4.10 Scratch test

Scratch test has been widely used to measure the adhesion strength of coating sys-

tems [157][158][159]. It involves sliding a standard diamond tip over the coating

surface under controlled load and speed conditions. The critical load at which the

coating starts to debond from the substrate is used as a measure of the adhesion

strength. In this work, a Rockwell diamond tip with a radius of 200 microns was

used. The applied scratch load ranged from 1 N to 30 N. Under each load, the tip

slide over the sample surface over a distance of 5 mm. After each test, the resultant

scratch was examined microscopically to assess failure modes and the critical failure

loads of the oxide layer. Only the TO samples were tested, while the PC samples

were not tested due to the large thickness of the carburised layers.
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3.5 Friction and Wear Testing

Friction and wear testing was mainly done in this study by a pin on disk (POD)

tribometer, provided from Teer Coatings Ltd. This test involves unidirectional slid-

ing of the sample (disk) against a stationary ball (pin) under controlled load and

speed conditions. Some tests (in Chapter 7) were also conducted in a laboratory

scale reciprocating wear test machine. These tests help in finding anti-wear perfor-

mance of each sample and finding the wear rate by a sliding contact. In the POD

configuration, the sample was placed on a rotating holder and the sample was ro-

tating against an alumina ball(grade 5 Al2O3) produced by Trafalgar Bearings Ltd.

This rotating motion resulted in a circular wear track on the surface of the sample.

Figure 3.4 shows a schematic diagram of the machine used and how the wear track

was generated.

Figure 3.4: Friction and wear POD tribometer

There are many factors that can control friction and wear testing. These variable

factors are:

• Load: The load was applied on the end of the beam opposite to the weight

balancer and was controlled by weights on the shape of small disks. The loads

used in this research are 1N, 2N, 5N and 10N for oxidised samples, and 5N,

10N, 20N and 40N for carburised samples.

• Sliding speed: controlling the sliding speed is very important, which is mea-

sured by revolutions per minute (rpm). The sliding speed in this research is

60rpm.
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• Distance: The sliding distance(d) is an important factor and it can be con-

trolled by using both time(t), frequency(f) and the diameter of wear track(Dwt).

Equation 3.8 is used to find the distance.

d = fDwtπt (3.8)

• Time: The time of sliding started when the load was applied. The time was

measured in seconds and the common time used in this research was 1 hour

(3600s). Time will be changed for some experiments.

• Contact pressure: the contact pressure changes from situation to another

depending on the two contacting materials in terms of the size and type of

material and applied load. In this research the two contacting materials are

grade 2 Zirconium and grade 5 Alumina ball(Al2O3). Under various loads for

this ball-on-flat contact, the contact pressures are calculated as follows, and

the results are summarised in table 3.6.

To calculate the maximum pressure (Pmax), two steps must be done:

• Finding Er by using equation 3.9 [8].

1

Er
=

1− v12

E1

+
1− v22

E2

(3.9)

Therefore, by replacing poissons ratios (v1, v2) and youngs modulus (E1, E2)

for Zr and Al2O3, respectively,

1

Er
=

1− 0.2552

375× 109
+

1− 0.262

138× 109
= 9.25× 10−12

Er =
1

9.25× 10−12
= 108.11GPa

• The next step is replacing the values of Er, load applied(w) and radius of the

ball(R) in equation 3.10 [17].

Pmax = 0.5784× 3

√
wEr

2

R2
(3.10)

Therefore, for 1N.
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Pmax = 0.5784× 3

√
1× 108.11× 1092

(4× 10−3)2
= 520.91MPa

Table 3.6: Initial contact pressure: 8mm diameter Al2O3 ball on Zr flat

Applied load Pmax(MPa)

1N 520.91

2N 656.31

5N 890.75

10N 1122.27

After friction and wear testing, the wear tracks were analysed using several

techniques including:

1. Microscopic experimentation by optical and scanning electron techniques to

examine wear track morphology and measure wear track dimensions.

2. Ball cratering on wear track to reveal the actual wear depth and examine

deformation and cracking behaviour of the sample.

3. Wear track profile measurements by profilometer.

3.6 Wear Analysis

The wear rate can be measured and calculated using a few steps as follows:

• First step is by using a profilometer (model SJ-400 produced by Mitutoyo) to

measure the cross-sectional profile of the wear track. The wear track profile

was taken in four directions for each wear track.

• Second step is using the numerical integration method to calculate the area of

the cross section(A) of each wear track, as shown in figure 3.5. The equation

3.11 numerically calculated the area of a small strip in the wear track profile.

Equation 3.12 adds all areas together by integration to find the total area of

the cross-section.
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Figure 3.5: Finding the cross sectional area for the wear track

A′ = (x2 − x1)× (
(y1 − y3) + (y2 − y4)

2
) (3.11)

A =

∫
A′dx (3.12)

• Third step involves multiplying the cross sectional area (A) by the diameter

of wear track(dwt) as showed in equation 3.13, in order to get the volume of

wear track (V), i.e. the volume of removed material.

V = A× dwt (3.13)

• Finally, the last step is using the wear track volume(V) to find the actual total

material lost rate (TMLR) from the surface, by dividing V by the distance of

sliding (Ds) as shown in equation 3.14.

TMLR =
V

Ds

(3.14)

This provides a measure of material loss(wear rate) in terms of mm3 per meter of

sliding
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Chapter 4

Effect of Oxidation Temperature and Initial

Surface Roughness on Tribological Behaviour of

Thermally Oxidized Pure Zirconium

Thermal oxidation (TO) is an effective surface engineering technique to harden the

surfaces of zirconium (Zr) and its alloys for improvement in friction and wear per-

formance. Unlike TO of titanium where the rutile oxide layer formed tends to be

fragile and flake off easily when it is thicker than about 2 microns, TO of zirconium

can produce a thick and adherent ZrO2 layer without the danger of flaking off. How-

ever, an excessively thick ceramic ZrO2 layer can lead to embrittlement of Zr surface

and deteriorate its tribological properties. In the present investigation, the effect

of TO temperature and surface roughness on the tribological properties of pure Zr

was investigated. TO was carried out at temperatures between 550oC and 700oC to

achieve ZrO2 layer thickness ranging from 2 µm to 9 µm. Surface roughness before

TO was varied between 0.12 µm (Ra) and 0.26 µm (Ra). Tribological tests under

unlubricated sliding conditions demonstrated that TO was effective in reducing fric-

tion and wear rate of Zr and once the ZrO2 layer maintained its integrity with the

substrate, TO temperature had no significant effects on friction and wear. However,

under high contact loads, the ZrO2 layer tended to suffer from cracking in the wear

track. The thinner layer produced at 550oC suffered from cracking at a small load.

Although increasing ZrO2 layer thickness helped to increase load bearing capacity,

cracking was unavoidable at high contact loads. It was also found that roughening

the surface before oxidation helped to reduce the tendency of the oxide layer towards

cracking during sliding.
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4.1 Introduction

As mentioned in Chapter 1, thermal oxidation (TO) is an effective surface engineer-

ing technique to harden the surfaces of zirconium (Zr) and its alloys for improvement

in friction and wear performance. Unlike TO of titanium where the rutile oxide layer

formed tends to be fragile and flake off easily when it is thicker than about 2 µm

[15], TO of zirconium can produce a thick and adherent ZrO2 layer without the

danger of flaking off, provided that the oxidation breakaway regime is avoided [25]

[26].

Although oxidised zirconium (OxZr) has recently been introduced as an alterna-

tive bearing in total joint arthroplasty for artificial hip and knee joints [16][19][31][32],

most of the published reports on clinic use of OxZr is based on the commercial pro-

cess, OXINIUM (Smith and Nephew Inc.), which produces an ZrO2 layer about 5

µm thick and an ODZ of 1.5 to 2 µm thick on Zr-2.5 wt%Nb alloy. The thicknesses

of the oxide layer and ODZ, which can be controlled easily by TO temperature and

time, are expected to have significant effects on the tribological and load bearing

properties of OxZr. However, information in this respect is limited in open literature.

In the present investigation, the effect of TO temperature and initial surface

roughness on the tribological properties of pure Zr was investigated by varying

the initial TO temperature from 550oC to 700oC to produce ZrO2 layer thickness

ranging from 2 µm to 9 µm, and varying the surface roughness before TO from 0.12

µm (Ra) to 0.26 µm (Ra). The obtained results are presented and discussed in this

chapter.

4.2 Material and Methods

The substrate material used is commercially pure zirconium (CP-Zr) grade 2 (99.2%)

with the following composition (wt%): 0.16O, 0.025N, 0.05C, 0.005H, 0.2Fe, 0.2Hf

and Zr (rest). The material (supplied by Goodfellow UK Ltd) was received in a sheet

form of 1 mm thickness and was cut into sample of 20 mm x 15 mm dimensions. In

the first series of experiments, the samples were manually ground using SiC grinding

papers and finished by 1 µm diamond polishing. These samples were then thermally

oxidized (TO) at various temperatures. In the second series of experiments, two

different original surface finishes were prepared by grinding to P600 and P1200

SiC grinding paper, resulting in surface roughness (Ra) of 0.26 µm and 0.2 µm,

respectively. These samples were then subjected to thermal oxidation treatment.
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In the first series of experiments, thermal oxidation (TO) of polished samples was

carried out in an air furnace (CWF 1100 produced by Carbolite) at temperatures of

550, 600, 625, 650 and 700oC, for duration of 6h. After TO, the samples were cooled

down in the furnace to room temperature. In the second series of experiments, the

samples with rougher surface finishes were subjected to thermal oxidation at 650oC

for 6 h.

The masses of the samples were measured before and after TO treatment using

a balance accurate to 0.1 mg. The thickness of the oxide layer was then calculated

theoretically assuming all gained oxygen atoms are consumed in forming a dense

stoichiometric ZrO2 layer, see section 3.4.1. The actual thicknesses of the oxide layer

and oxygen diffusion zone (ODZ) were measured by the ball-cratering technique and

from metallographic cross-sections, discussed in Section 3.4.2, 3.4.6 and 3.4.7.

X-ray diffraction (XRD) was conducted using Cu-Kα1 to identify the phases of

thermal oxidized samples. Surface hardness was conducted using Indentec ZHV

microhardness tester at various loads of 0.025-0.5kg. Optical and scanning electron

microscopes were used to examine the morphological and structural features of the

samples.

Scratch testing was conducted on the oxidised surfaces of the samples using a

Rockwell C diamond stylus under various loads between 5-50N (steps of 5N). Optical

microscope was used to examine the stages of scratch and show the characteristics

of the samples after scratch testing.

Dry sliding friction and wear testing was conducted using a pin-on-disk tribome-

ter (Teer Coatings Ltd). During the test, the sample was rotating against an alumina

ball (Grade 25 Al2O3) with 8 mm diameter (produced by Trafalgar Bearings Ltd).

The tests were conducted at room temperature (22oC) without lubrication, using

different contact loads of 1, 2, 5 and 10N, at a constant rotation speed of 60rpm for

duration of 3600s. During the test, the coefficient of friction (COF) was recorded

continuously using the computer data acquisition system. To measure the wear rate

and wear volume, Stylus profilometer was used to measure the wear track profile

at 4 different locations and the average value was taken. Wear volumes were then

evaluated as detailed in Section 3.4.

After tribological testing, optical microscope and scanning electron microscope

(SEM) was used to view the morphology of the worn surfaces. Efforts have been

made by making a ball crater on the wear track to reveal the actual wear depth and

any deformation and cracking behaviour below the wear surface.
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4.3 Results and Discussion

4.3.1 Morphological characterization of thermally oxidized

specimens

Fig. 4.1a shows a part of a ball crater made on the 650oC-oxidised surface, revealing

clearly the oxide layer on the surface and the substrate beneath. The oxide layer has

a black shinny appearance and adheres well with the substrate. The thickness of the

oxide layer was measured from the ball crater for each oxidised sample. Although

the oxygen diffusion zone (ODZ) can be faintly seen in the ball crater, its thickness

could not be measured confidently. Thus cross-sections of the samples were prepared

metallographically, as shown in Fig. 4.1b. Clearly, each oxidised sample comprises

an oxide layer at the surface and an ODZ beneath. The thickness of the oxide

layer measured in the cross-section is similar to that measured by the ball cratering

technique. The ODZ is relatively thin, even thinner than the oxide layer in all cases.
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Figure 4.1: Microscopic images showing (a) part of a ball crater made on the 650oC
oxidised surface and (b) across sections of the 650oC and 700oC oxidised samples,
revealing the oxide layer (OL) and the oxygen diffusion zone (ODZ) beneath. The
metallographic sample in (b) was etched in 98% H2SO4.

The weight gain of the sample resulting from each TO treatment was measured

by measuring the mass of the sample before and after the treatment. The thickness

of the oxide layer was theoretically calculated from the weight gain based on the

assumption that all the weight gain is due to oxygen uptake by the sample (ignoring

possible uptake of nitrogen from air) and all the oxygen atoms are consumed in

forming the oxide layer (ignoring the ODZ). The calculated results are plotted in

Fig. 4.2 as a function of TO temperature, together with the measured oxide layer

thickness. It can be seen that the measured oxide layer thickness increases smoothly

with increasing temperature, which is expected for processes governed by thermal

diffusion. The calculated oxide layer thickness slightly overestimates the actual
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thickness at low temperatures (below 625oC) and deviates more significantly from

the measured thickness at high temperatures. This is due to the formation of an

ODZ which consumes some of the oxygen atoms gained by the sample. The higher

the TO temperature, the larger the proportion of oxygen is consumed in forming

the diffusion zone, as confirmed by the measured ODZ thickness. Below 625oC, the

thickness of the ODZ is less than 2 microns. Similar values have also been reported

by other investigators [14]. In order to achieve a reasonably thick ODZ, a higher

TO temperature is required: at 700oC, the ODZ thickness is increased to 7 microns.

Figure 4.2: Comparison of calculated and measured oxide layer thickness as a func-
tion of oxidation temperature for 6 h treatment.

X-ray diffraction detects two phases, hexagonal close packed (hcp) α-Zr and

monoclinic dioxide ZrO2, from the oxidised surfaces (Fig. 4.3). The intensity of the

diffraction peaks from α-Zr decreases and that from ZrO2 increases with increasing

TO temperature. This fact suggests that the surface layer is indeed a zirconium

dioxide (ZrO2) layer. As the oxide layer grows thicker at higher TO temperatures,

X-ray becomes more difficult to penetrate to the underlying ODZ to produce high

intensity diffraction peaks from α-Zr.

72 Abdulkarim Alansari



Chapter 4. Effect of Oxidation Temperature and Initial Surface Roughness on
Tribological Behaviour of Thermally Oxidized Pure Zirconium

Figure 4.3: X-ray diffraction patterns generated from the oxidised samples, confirm-
ing the formation of monoclinic ZrO2 layer on the surface. Cu-Kα radiation.

As a result of the formation of an oxide layer and ODZ, the surface hardness of

CP-Zr is increased by several times (Fig. 4.4), from the base level about 200 HV

for untreated CP-Zr to 750 HV-1300 HV for the oxidised samples. The measured

surface hardness decreases with increasing indentation load, which can be accounted

for by the increasing substrate effect as the indentation depth is increased. TO

temperature has a significant effect on the hardening effect: the measured hardness

at each load increases with increasing TO temperature. The enhanced load bearing

capacity at higher TO temperatures is obviously derived from the increased oxide

layer and ODZ thicknesses.
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Figure 4.4: Surface microhardness as a function of indentation load for the oxidised
samples.

In order to further characterise the oxidised samples, scratch tests are conducted

on the oxidised surfaces using a Rockwell C diamond stylus under various loads.

Fig. 4.5 shows typical scratch marks produced. On all oxidised samples, cracks

are observed inside and outside the scratch mark at loads as low as 5 N. Cracking

becomes more severe with increasing load. On the samples with thicker oxide layers,

the chevron-type cracks tend to extend far beyond the scratch mark, indicating the

high propagation rate of cracks in brittle ZrO2. When a critical load is reached,

failure of the oxide layer occurs in two different modes. The thinner oxide layers

produced at 550oC and 600oC are failed first due to the penetration of the stylus

through the oxide layer in the central region of the scratch mark, which then leads

to the fracture of the oxide at the edges of the scratch mark (Fig. 4.5a). On the

other hand, the thicker oxide layers always fail due to fracture at the edges of the

scratch mark in association with the chevron-type cracks extended far beyond the

scratch mark (Fig. 4.5b,c). The critical loads for the scratch failure of the oxide

layers produced at various temperatures are summarised in Table 4.1. The critical

load increases with increasing TO temperature, suggesting that a thicker oxide layer

has better resistance to scratch failure. This agrees with the observations for many

other ceramic coatings on soft substrates [157][160].
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Table 4.1: Critical loads and signs appearance on scratch

TO Temperature (oC) First crack First sign of flaking

550 3N (across) 10N
600 10N (across) 15-20N
625 5N (across) 20N
650 3N (outside track) 20-25N
700 5N (outside track) 25N

Figure 4.5: Microscopic images showing the scratch test scars on the 600oC (a) and
700oC (b and c) oxidised samples.

4.3.2 Effect of TO temperature on tribological behaviour

Fig. 4.6a shows the recorded friction curves at a contact load of 1 N for all test

samples. The untreated sample shows very poor friction behaviour characterised by

high and unstable friction with large frictional noises. TO is effective in improving

the frictional behaviour of CP-Zr in that friction becomes smooth and the coefficient

of friction (COF) is much reduced. The COF recorded varies with TO temperature

and applied contact load. In Fig. 4.6b, the averaged COF values measured in three
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repeated tests under each load are compared for all samples tested. The COF of

the oxidised samples varies between 0.15 and 0.35 as compared to that between 0.5

and 0.6 for the untreated sample. Although no correlation is found between COF

and TO temperature, a general pattern can be observed regarding the effect of load

on COF. For each TO sample, the COF increases as the contact load is increased

from 1 N to 5 N, and then decreases slightly at 10 N load. The increase in COF

with load could be explained by the increased contact area between the slider and

the oxidised surface, while the decrease in COF at 10 N could be related to the

formation of cracks in the wear track, as discussed later. It should be pointed out

that under the present test conditions, even under the highest load of 10 N, no

failure and wearing-through of the oxide layer occurs. The results suggest that as

long as the oxide layer maintains its integrity with the substrate, TO temperature

has no significant effect on friction.

Figure 4.6: Recorded friction curves during dry sliding at 1 N load (a) and com-
parison of averaged coefficient of friction measured at various contact loads for the
oxidised samples.
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Microscopic examination shows that even under the smallest load of 1 N, the

untreated sample suffers from severe metallic wear, characterised by plastic defor-

mation, adhesion and delamination wear (Fig. 4.7). This explains the poor frictional

behaviour experienced by the untreated sample (Fig. 4.6a). On the other hand, un-

der light contact loads of 1 N and 2 N, only a few abrasion marks and asperity

contact areas are observed in the wear tracks on the oxidised samples (Fig. 4.8a and

b). The original fine polishing marks can still be clearly seen in the wear tracks.

When the load is increased to 5 N, the wear track is widened and the contact area

is increased with many abrasion marks (Fig. 4.8c). On the 550oC-oxidised sample,

some fine cracks start to form at the edges of the wear track, but for the other

oxidised samples no cracks were observed yet. However, when the contact load is

increased to 10 N, cracks are observed in the wear tracks on all oxidised samples

(Fig. 4.8d), mostly at the outside edge of the wear track which experiences higher

sliding velocity than the inside edge under the unidirectional sliding condition.

Figure 4.7: SEM image showing the morphology of the wear track produced on the
un-oxidised sample at 1 N load.
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Figure 4.8: Microscopic images showing the wear tracks produced on the 600oC
oxidised sample at various contact loads.

Fig. 4.9 shows the cracks formed in the wear tracks during sliding under 10

N load. The cracks formed on the samples oxidised at temperatures below 650oC

are confined to one side of the wear track. However, cracks formed on the 700oC-

oxidised sample travel across the wear track, taking the shape of an arc. It is

also interesting to note that the inter-crack spacing increases with increasing TO

temperature. Clearly, the thicker the oxide layer, the longer the cracks and the

larger the space between the cracks. The formation of cracks under 10 N load helps

to release the shear strain energy and this may explain the observed reduction in

friction (Fig. 4.6b).
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Figure 4.9: Microscopic images showing the wear tracks produced at a contact load
of 10 N on the various oxidised samples. Note the existence of cracks in the wear
tracks.

A natural question that could be raised is how deep would the cracks be and

would the cracks penetrate to the substrate to cause interfacial failure. Ball craters

are made on selected wear tracks produced under 10 N load, some of which are

made on the cracked region and reveal not only the actual wear depth but also the

penetration depth of the cracks, as shown in Fig. 4.10. All the cracks that are

observed in this way are confined to the very superficial zone of the oxide layer and

no cracks are found to have penetrated to the oxide layer-ODZ interface region. This

suggests that the observed cracks on the wear track are initiated on the surface due

to the large Hertzian stresses and the sliding traction.
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Figure 4.10: Microscopic image showing a ball crater made on the wear track pro-
duced on the 700oC oxidised sample at 10 N load, revealing the penetration depth
of the cracks in the wear track.

The wear volume resulting from the oxidised samples under the small loads of

1 N, 2 N and 5 N could not be measured confidently by measuring the wear track

profiles using stylus profilometer. Only the wear rates resulting form 10 N sliding are

measured and compared for the oxidised samples. On the other hand, the untreated

sample suffers from excessively large amounts of wear even under small loads, thus no

tests under 10 N load are considered necessary. Fig. 4.11a compares typical surface

profiles measured across the wear tacks produced on the untreated sample under 1

N load and on selected oxidised samples under 10 N load. The benefit of thermal

oxidation in improving dry sliding wear resistance of CP-Zr is obvious. In Fig. 4.11b,

the measured wear rates are plotted against TO temperature. The measured wear

rates for the untreated sample are not included in the figure because they are more

than two orders of magnitude larger than those of the oxidised samples and thus do

not fit in the figure. From Fig. 4.11b, it is clear that except for the 550oC-oxidised

sample, all the other oxidised samples exhibit similar wear rates. As long as the

oxide layer maintains its integrity with the substrate, the oxide layers produced at

different temperatures have similar wear resistance. For the sliding time of 60 min

tested in this work, no catastrophic failure of the cracked oxide coating happens.

Longer sliding time is obviously required to further investigate the propagation of

the cracks and their influence on material removal.
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Figure 4.11: Typical surface profiles across the wear tracks (a) and wear rate as a
function of oxidation temperature at the contact load of 10 N (b).

4.3.3 Effect of initial surface roughness on tribological be-

haviour

The observed crack formation during sliding at 10 N load on all oxidised samples and

at a smaller load of 5 N on the 550oC-oxidsed sample imposes a concern regarding

the sustainability of the oxide layer under high contact loads and even under small

contact loads as the thickness of the oxide layer is gradual reduced due to wear.

Further study is conducted on the effect of initial surface roughness on the tribo-

logical behaviour of the oxidised layers. Before TO, the surfaces of the samples are

ground to P1200 and P600 SiC grade finishes to achieve rougher surfaces of 0.20 µm

(Ra) and 0.26 µm (Ra), respectively. After TO at 650oC for 6 h, the original surface

finishes are almost retained and sliding wear tests are conducted on the as-oxidised

surfaces.
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Figure 4.12: Microscopic images showing the wear tracks produced at a contact load
of 1 N on the 650oC oxidised sample with a rougher surface resulting from (a) P600
and (b) P1200 grade SiC paper grinding.

Fig. 4.12 shows the morphology of the wear tracks produced at a small load of 1

N on the as-oxidised samples with two different surface finishes. It can be seen that

the contact between the slider and the oxidised surface is of the asperity level. The

asperities are smoothened through fracture and plastic deformation as evident by

the smearing of the asperity material to cover the surrounding valleys, which results

in enlarged individual real contact areas. Such asperity contacts help to diversify

the contact stress to the asperities, and reduce stresses in the bulk of the surface

layer. When the load is increased, more asperities are brought into contact and the

real contact area is increased. At 10 N load, a definite wear track can be clearly seen

with the wear particles smeared into the valleys (Fig. 4.13a). Some of the original

grinding marks can still be clearly seen in the 10 N wear track. However, the most

striking feature after testing at 10 N load lies in that no cracks are observed in the

wear tracks on the rough as-oxidised surfaces, as can be seen from Fig. 4.13a. It
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thus seems that a roughened oxidised surface helps to reduce the tendency of the

oxide layer towards cracking during sliding. This phenomenon is further confirmed

in chapter 6.

Figure 4.13: Microscopic images showing the wear tracks produced at a contact
load of 10 N, (a) on the 650oC oxidised sample with a rougher surface resulting
from P1200 grade SiC paper grinding, and (b) on the same sample as (a) after the
oxidised surface was polished.

Roughening the sample surface before oxidation could also result in a rougher

interface between the oxide layer and the ODZ. In order to clarify whether the

absence of cracks in Fig. 4.13a is not due to the existence of a rougher interface,

the originally rough oxidised samples were further polished by 1 µm diamond paste

to achieve a mirror-like surface finish, and then wear tests were conducted under

the same conditions. Similar to the observations made in Section 4.3.2 (see Fig.

4.9), cracks are now observed in the wear track produced at 10 N load (Fig. 4.13b).

Clearly, the elimination of crack formation at 10 N load is owing to the roughened

oxidised surface, not due to the roughened interface. The wear track on the rough
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oxide surface is covered with wear particles which are smeared into the valleys. The

contact between the slider and the smeared particles seems to reduce the contact

stresses in the bulk of the oxide layer, and thus reduces the tendency of the oxide

layer towards cracking. The filling of the deep valleys with smeared wear particles

also results in lower wear rates measured for the rough oxidised samples, as shown

in Fig. 4.14. More detailed work on surface finish effect is discussed in Chapter 6.

Figure 4.14: Comparison of wear rates of 650oC-oxidised sample with different sur-
face roughness.

4.4 Conclusion

Based on the experimental results obtained in this work, several conclusions can be

drawn, as follows:

• Thermal oxidation at temperatures between 550oC and 700oC results in the

formation of a monoclinic ZrO2 layer 2-9 µm thick and an oxygen diffusion

zone of 1-7 µm thick on CP-Zr. The oxide layers are adherent and possess a

hardness up to 1300 HV0.025.

• TO was effective in reducing friction and wear rate of CP-Zr and once the

ZrO2 layer maintains its integrity with the substrate, TO temperature had no

significant effects on friction and wear.

• Under high contact loads, the ZrO2 layer tends to suffer from cracking in the

wear track. The thinner layers suffer from cracking at small loads. Although

84 Abdulkarim Alansari



Chapter 4. Effect of Oxidation Temperature and Initial Surface Roughness on
Tribological Behaviour of Thermally Oxidized Pure Zirconium

increasing ZrO2 layer thickness helps to increase load bearing capacity, crack-

ing is unavoidable at high contact loads.

• Roughening the surface before oxidation helps to reduce the tendency of the

oxide layer towards cracking during sliding and to reduce wear rate.
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Chapter 5

The effect of oxidation time on the tribological

behaviour of thermally oxidised commercially

pure zirconium

Thermal oxidation is an effective surface engineering technique to harden the sur-

faces of zirconium (Zr) and its alloys for improvement in friction and wear per-

formance. In the present investigation, commercially pure zirconium (CP-Zr) is

oxidized at 650oC for a wide range of times from 1 h to 72 h with the aim to study

the effect of oxidation time on the tribological performance of CP-Zr. It is found

that a dense, pore-free and adherent zirconium dioxide (ZrO2) layer can be pro-

duced at the surface for oxidation times less than 12 h. Further increasing oxidation

time leads to the gradual development of pores in the inner part of the oxide layer

and oxidation breakaway characterized by accelerated oxidation kinetics and crack

formation. Oxidation time has a significant effect on the tribological behaviour of

thermally oxidized CP-Zr under dry sliding conditions. The 6 µm thick oxide layer

produced by 6 h treatment possesses the lowest friction, best wear resistance and the

highest load bearing capacity. On the other hand, the thicker oxide layers produced

by longer treatment times show deteriorated tribological behaviour. The results are

discussed in terms of the morphology of the oxide layer and crack propagation in

the oxide layer and the underlying diffusion zone.

5.1 Introduction

In Chapter 4, the effect of TO temperature on the oxidised layer structure of CP-Zr

and tribological properties has been investigated for a fixed TO time of 6 h. It was

found that a TO temperature of 625oC and 650oC produced the best oxide layer
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integrity and tribological performance. Thus, 650oC was chosen as the optimal

temperature for a further study of TO time on structural evolution and tribological

properties. In this chapter, commercially pure zirconium (CP-Zr) is oxidized at

650oC for a wide range of times from 1 h to 72 h. The effects of oxidation time on

the morphology and the tribological performance of the resultant oxide layers are

investigated in this work.

5.2 Material and Methods

The substrate material, CP-Zr grade 2 (99.2%), and the test samples were the same

as those described in Section 4.2. The specimens were manually ground using SiC

grinding papers down to the P1200 grade to achieve a surface finish of 0.20 µm

(Ra). After ultrasonically cleaning in methanol for 10 min, the specimens were then

subjected to thermal oxidation treatment.

Thermal oxidation was carried out in an air furnace at a constant temperature

of 650oC, for duration of 1 h, 6 h, 12 h, 24 h and 72 h. The heating rate of the

furnace was 20oC per minute. After thermal oxidation, the specimens were cooled

down to room temperature slowly in the furnace. Furnace cooling took about 8 h

from 650oC to room temperature. The temperature of 650oC was chosen based on

the results reported in Chapter 4 experiments. At lower temperatures, it would take

a significantly longer time to produce a sufficiently thick (e.g. 5 µm) oxide layer.

At higher temperatures, the substrate material would suffer from grain growth with

deteriorated properties.

X-ray diffraction (XRD) was conducted using Cu-Kα1 to identify the phases of

thermally oxidized specimens. Surface hardness was measured using Indentec ZHV

microhardness tester at various loads of 0.025-0.5 kg. Metallographic cross sections

of oxidized specimens were prepared following standard procedures. In order to have

an enlarged view of the oxide layer, a ball crater of about 1 mm diameter was made

on the oxidized surface using a 25.4 mm diameter steel ball. Optical and scanning

electron microscopes were then used to examine the morphological and structural

features of the specimens in the cross section and the ball crater. Thermal oxidation

for different times was expected to affect the surface roughness of the specimens. In

order to eliminate the possible effect of surface roughness on tribological behaviour,

before wear testing the oxidized surfaces were polished using diamond polishing

compounds to achieve a mirror-like surface finish of 0.05 µm (Ra). This polishing

operation removed about 0.5 µm thick material from the surface and thus slightly
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reduced the thickness of each oxide layer.

Dry sliding friction and wear tests were conducted using a pin-on-disk tribometer

(Teer Coatings Ltd). Although oxidized zirconium is currently mainly used in the

bio-implant operating environments, dry sliding tests were conducted in this work

to assess the response of the specimens to mechanical actions without interference

from corrosion. Once the optimum oxidation time has been identified, further tests

will be conducted in saline or bovine serum solution, which will introduce corrosion

and tribocorrosion aspects to the overall degradation process. During the dry sliding

wear process, the specimen was rotating against an alumina ball (Grade 25 Al2O3)

of 8 mm diameter (produced by Trafalgar Bearings Ltd). The tests were conducted

at room temperature (22oC) without lubrication, at a constant rotation speed of

60 rpm for duration of 3600s. For the wear track diameter of 8 mm, these resulted

in a sliding speed of 2.5 cms−1 and a total sliding distance of 90.5 m. During

the test, a computer data acquisition system was used to continuously record the

coefficient of friction (COF). Initially, small contact loads of 1 N to 5 N were used

in the tests. But these could not generate any measurable wear to the oxidized

specimens. Thus, higher contact loads, 10 N and 20 N, were employed in this work.

These generated an initial contact pressure of 1122 MPa and 1414 MPa, respectively,

based on the contact between Al2O3 and untreated CP-Zr. These contact pressures

were sufficiently high to cause plastic deformation of the untreated CP-Zr at the

contact zone.

After sliding wear testing, stylus profilometer was used to measure the wear

track profile at 4 different locations and the wear volume from each wear track

was evaluated. All tests were repeated twice and the means results are presented.

Optical microscope and scanning electron microscope (SEM) were used to examine

the morphology of the worn surfaces. Efforts have been made by making a ball

crater on the wear track to reveal the actual wear depth and any deformation and

cracking behaviour below the wear surface.

5.3 Results and Discussion

5.3.1 Morphological characterization of thermally oxidized

specimens

Fig. 5.1 shows typical cross sectional morphology of thermally oxidized specimens

produced at 650oC for various times. As expected, thermal oxidation produced
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Table 5.1: Summary of oxide layer and oxygen diffusion zone thicknesses and surface
hardness of oxidized specimens.(* OL thickness in thick region)

TO time
(h)

Oxide layer
thickness (µm)

Diffusion layer
thickness (µm)

Surface hardness
HV0.025 HV0.05

Untreated 0 0 271 194
1 2.9 1.6 934 276
6 6.33 2.8 1039 353
12 8.09 4.6 1079 401
24 10.82 7.6 1173 564
72 15.45 (26*) 12.3 1281 665

an oxide layer (OL) at the surface and an oxygen diffusion zone (ODZ) at the

subsurface. The thickness values of OL and ODZ, together with surface hardness

values measured at two indentation loads, are summarized in Table 5.1. The OL

had a dark and shiny appearance and adhered well with the underlying diffusion

zone, in agreement with the observation of other investigators [4][14][18][19].

Figure 5.1: Microscopic images of the cross sections of selected oxidized specimens,
showing the oxide layer (OL) and the oxygen diffusion zone (ODZ).

XRD analysis confirmed that the OL comprised monoclinic zirconium dioxide,

ZrO2. Fig. 5.2 is a typical XRD pattern generated from the oxidized surface, show-

ing that only two phases were detected, i.e. α-Zr from the substrate and monoclinic

ZrO2 from the surface OL. The thickness of the OL ranged from 3 µm to 15.5 µm

and increased with oxidation time, as expected for processes governed by thermal
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diffusion. The thickness of the ODZ ranged from 1.5 µm to 12 µm and also in-

creased with oxidation time. It was noted that as compared to the OL, the ODZ

was relatively thin, which can be explained by the slow transport of oxygen from

the gas phase through the dense OL to the subsurface [14].

Figure 5.2: X-ray diffraction pattern generated from the thermally oxidized surface
(650oC/ 6 h). Cu-Kα1 radiation. The diffraction peaks were indexed according to
the ICDD data files 99-101-0116 (for α-Zr) and 99–100-6688 (for monoclinic ZrO2).

As a result of the formation of the OL and the ODZ, the surface hardness of CP-

Zr was significantly increased. At a small indentation load of 0.025 kg, the surface

hardness was increased from the based level about 270 HV0.025 to about 900 - 1300

HV0.025 depending on oxidation time: the longer the oxidation time, the higher the

surface hardness. At a higher indentation load of 0.5 kg, the surface hardness of

the oxidized specimens decreased due to the substrate effect, but it was still much

higher than that of the untreated specimen, demonstrating enhanced load bearing

capacity by thermal oxidation treatment. The hardening effect induced by thermal

oxidation was further confirmed by micro hardness profile measurements, shown in

Fig. 5.3.
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Figure 5.3: Microhardness profiles across the oxidized layers of the specimens treated
for various times. The inset shows typical hardness indents made in the subsurface
region for hardness profile acquisition.

Increasing oxidation time increased the hardening depth and the hardness across

the OL and ODZ. It is interesting to note that the hardness of the 72 h treated

specimen experienced a drop at a depth about 10 µm, which is in the inner part of

the OL. This is due to the existence of pores in this region of the OL, shown in Fig.

4d. From Fig. 5.1, it can be seen that the OLs produced by relatively short time

oxidation (1 h and 6 h) were dense, pore-free and uniform in thickness, while the

OLs produced by long time oxidation (e.g. 72 h) were none uniform in thickness and

contained pores in the inner part and cracks open to the surface. In order to have

an enlarged view of the OLs, a ball crater was made on each oxidized surface and

examined under microscope, as shown in Fig. 5.4. Clearly, the OL produced by 6 h

oxidation was very dense and free from any pore formation (Fig. 5.4a). Increasing

the oxidation time to 12 h led to the development of a small amount of pores in the

inner part of the OL at the OL-ODZ interfacial region (Fig. 5.4b). Pore formation

became more significant when the oxidation time was further increased to 24 h, as

shown in Fig. 5.4c, where pores can be seen both in the inner part of the OL and in

the ODZ. Finally, after 72 h oxidation, the inner part of the resultant OL became
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extremely porous, with the porous zone extending towards the surface and the ODZ

(Fig. 5.4d). Cracks can be seen in the OL of the 72 h oxidized specimen arising

from the linkage of the pores.

Figure 5.4: Microscopic images of ball craters made on the oxidized surfaces, showing
the dense oxide layer produced by 6 h oxidation (a) and the development of pores
in the inner part of the oxide layers produced by 12 h (b), 24 h (c) and 72 h (d)
oxidation.

Oxidation of Zr and its alloys is governed by two distinctly different kinetics laws

associated with the well-known phenomenon of oxidation breakaway [25][26][161].

Below a certain critical oxidation time, the OL grows following the parabolic or

cubic rate law [161]. Above the critical oxidation time, oxidation breakaway occurs,

where the oxide layer growth is accelerated, entering a nearly linear growth regime

[25][161]. The resulting OL after breakaway becomes less protective because of the

formation of cracks and pores. Under the present thermal oxidation condition at

650oC, breakaway occurred after 72 h treatment, resulting in a porous OL with

cracks and none-uniform growth: some regions in the OL was as thick as 26 µm, as

compared to 15.5 µm measured for the majority of the OL (Table 5.1). The present

work also showed that oxidation breakaway was preceded by the gradual develop-

ment of pores in the inner part of the OL (Fig. 5.4b and 5.4c). In order to have a

better understanding of the oxidation kinetics under the present experimental con-

ditions, the OL thickness data in Table 5.1 was plotted in Fig. 5.5 in the logarithm

scale. Clearly, the growth of the OL followed a quasi-parabolic rate law with an

exponent term of 0.41, just below 0.5 expected for solid diffusion, a phenomenon

commonly observed for oxidation of Zr [161]. After 72 h oxidation, the thick regions

of the OL suffered from breakaway and followed a linear growth law, as shown by

the dotted line in Fig. 5.5.
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Figure 5.5: Oxide layer (OL) thickness as a function of thermal oxidation time at
650oC, plotted in the logarithm scale. Two data points are used for the 72 h oxidized
specimen, one for the thick region and another for the overall of the OL.

5.3.2 Tribological behaviour

Fig. 5.6 shows typical friction curves recorded during dry sliding for selected spec-

imens. After an initial running-in stage, the untreated specimen exhibited steady

state friction with a coefficient of friction (COF) about 0.5 under both 10 N and 20

N loads. No large difference in friction was found at the two contact loads. On the

other hand, contact load had a significant effect on the frictional behaviour of the

oxidized specimens. At 10 N, the 1 h, 6 h and 12 h oxidized specimens exhibited

similar friction behaviour, where after the running-in stage, the COF became stable

around the value of 0.4. However, higher friction was found for the 24 h and 72 h

oxidized specimens under the contact load of 10 N.

93 Abdulkarim Alansari



Chapter 5. The effect of oxidation time on the tribological behaviour of thermally
oxidised commercially pure zirconium

Figure 5.6: Recorded coefficient of friction (COF) curves for the untreated and
thermally oxidized (TO) specimens.

In Fig. 5.7, the mean COF measured at 10 N was plotted against oxidation

time. Clearly, COF showed a general trend of increasing with oxidation time and

prolonged oxidation had a detrimental effect on friction. It thus seems that the

development of pores in the OL had a negative effect on friction reduction.
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Figure 5.7: Mean coefficient of friction (COF) measured at 10 N load.

When the contact load was increased to 20 N, the oxidized specimens showed

different frictional behaviour. Only the 6 h oxidized specimen exhibited a relatively

smooth frictional behaviour with higher COF values than those at 10 N load (Fig.

5.6). The other oxidized specimens exhibited a clear transition in frictional be-

haviour after a certain period of sliding, characterized by the sudden increase in

friction to result in a friction spike and then a sharp decrease in friction to reach

COF values characteristic of the untreated specimen (see Fig. 5.6). This transition

marked the sudden breakdown of the OL as confirmed by further tests ended before

and after the transition point. Fig. 5.8 shows typical wear track cross sectional

profiles measured by profilometer. The wear tracks produced on the 1 h and 12 h

oxidized specimens at 10 N were narrow and shallow, without any sign of OL break-

down and removal (Fig. 5.8a). However, the wear tracks produced on the same

specimens at 20 N load were wide, rough and as deep as 35 µm, with the OL and

ODZ being completely removed (Fig. 5.8a). A similar behaviour was also observed

for the 24 h and 72 h oxidized specimens. On the other hand, the 6 h oxidized

specimen had the ability to resist the 20 N contact load without OL breakdown,

as shown in Fig. 5.8b where the wear track profiles were narrow and shallow with

wear depths confined within the OL. Clearly, the dense and pore-free OL on the

6 h oxidized specimen had the best load bearing capacity as compared to the OLs

on other oxidized specimens. The OL on the 1 h oxidized specimen was obviously

95 Abdulkarim Alansari



Chapter 5. The effect of oxidation time on the tribological behaviour of thermally
oxidised commercially pure zirconium

too thin to resist high contact loads. Although the OLs on the 12 h, 24 h and 72

h oxidized specimens were much thicker than that on the 6 h oxidized specimen,

the pores developed in these OLs obviously had a detrimental effect on the loading

bearing capacity during the dry sliding wear process.

Figure 5.8: Typical wear track profiles measured for (a) 1 h and 12 h and (b) 6 h
oxidized specimens, tested under 10 N and 20 N loads.

The total material loss (TML) from each wear track was measured from the

wear track profiles. Fig. 5.9 compares the obtained results for different specimens

at the two contact loads. At 10 N, except for the 72 h oxidized specimen, all other

oxidized specimens were very effective in reducing TML of CP-Zr by two orders of

magnitude. No breakdown of the OL was observed on these specimens at 10 N and

wear occurred within the OL (Fig. 5.8). 6 h oxidation was the most effective in

improving wear resistance of CP-Zr at 10 N load. Such an effectiveness of the 6 h

oxidized specimen was maintained at the higher contact load of 20 N because the

OL was not worn through (Fig. 5.9). However, for the other oxidized specimens,

their effectiveness in reducing TML of CP-Zr at 20 N was much reduced because the

OLs were worn through (Fig. 5.9). The breakdown of the OL at 20 N led to much

accelerated TML by two orders of magnitude. Clearly, the 6 h oxidized specimen

exhibited the best wear resistance under both contact loads.
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Figure 5.9: Wear volume measured for various specimens at 10 N and 20 N loads.

Typical surface morphology of the wear tracks produced on the oxidized speci-

mens at the 10 N load is shown in Fig. 5.10. Many semi-circular shaped cracks were

observed on the wear track surface. It is believed that these cracks were formed

due to the tensile stress at the contact surface resulting from the sliding traction

[162]. The tensile stress at the contact surface was sufficient to induce cracks in

the brittle ceramic, ZrO2. It is interesting to note that despite the formation of

numerous cracks at the contact surface, the OL maintained its integrity with the

substrate without flaking and delamination (Fig. 5.10a-c). However, for the 72 h

oxidized specimen, local failure of the OL was observed, which was associated with

the pre-existing cracks formed during the prolonged oxidation (see Fig. 5.10d). This

seems to correlate with the measured high friction (Fig. 5.7) and large TML (Fig.

5.9) for this specimen. Obviously, the OL produced by 72 h oxidation was no longer

protective under tribological conditions. As a result of the sliding motion, wear not

only occurred to the test specimen but also to the alumina ball counterface. A flat

wear scar was produced on the alumina ball. The size of the scar increased with

sliding time. Fig. 5.11a shows the wear scar on the alumina ball after testing the

6 h oxidized specimen at 10 N for 3600 s. The mean diameter of the scar is about

140 µm. This means that the actual contact area increased as sliding proceeded, re-

sulting in lowered contact pressure. Although the calculated initial maximum Hertz

contact pressure (1122 MPa) was sufficient to cause plastic deformation in the un-

treated material, as sliding proceeded, the degree of plastic deformation should be
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reduced due to the increased contact area and the reduced contact pressure.

Figure 5.10: Microscopic images showing the wear tracks on the oxidized specimens
tested under 10 N load.

Figure 5.11: Microscopic images showing the wear scar on the alumina ball after
sliding with the 6 h oxidized specimen under (a) 10 N and (b) 20 N load. The
arrow indicates the sliding direction and the dotted line indicates the boundary of
the contact area.
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Fig. 5.12 shows the morphology of the wear tracks produced at the higher contact

load of 20 N. Except for the 6 h oxidized specimen, the OL on all other specimens

was worn through in the wear track, resulting a wide and deep wear track with

a rough surface and many parallel scratch marks, a typical morphological feature

of the worn surface of untreated CP-Zr. For the 6 h oxidized specimen, although

the OL still maintained its integrity with the substrate, numerous closely-spaced

semi-circular cracks formed in the wear track. It is anticipated that with further

sliding for a longer time, this OL would be removed from the wear track, resulting a

transition in friction and much accelerated TML. The wear scar on the alumina ball

after testing the 6 h oxidized specimen at 20 N is shown in Fig. 5.11b. As compared

to that produced at 10 N, the scar produced at 20 N was larger. It is also interesting

to note that cracks were observed at the edge of the wear track (Fig. 5.12d), leading

to chipping of the OL. These types of cracks were induced by bending of the ceramic

layer due to substrate deformation in the wear track [163].

Figure 5.12: Microscopic images showing the wear tracks on the oxidized specimens
tested under 20 N load.

Fig. 5.13 shows selected SEM images of the wear tracks produced at 10 N and

20 N loads. The semi-circular cracks can be clearly seen on the 10 N wear tracks,

which show evidence of local fracture of the OL associated with the cracks (Fig.
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5.13a), mild abrasion (Fig. 5.13a) and polishing (Fig. 5.13b). In the 20 N wear

track on the 6 h oxidized specimen, the densely populated semi-circular cracks and

local breakdown of the OL at the track edges can be clearly seen (Fig. 5.13c). It is

also evident that the cracks were filled with wear debris from the tribo-system (Fig.

5.13d).

Figure 5.13: SEM images showing the morphology of the wear track on the 12 h
oxidized specimen tested under 10 N load (a and b) and on the 6 h oxidized specimen
tested under 20 N load (c and d).

From the results presented above, it is clear that the effect of thermal oxidation

time on the tribological behaviour of CP-Zr was closely associated with the structural

feature of the resultant oxide layer. The dense, pore-free and sufficiently thick (6

µm) OL on the 6 h oxidized specimen exhibited better wear resistance than the

dense but thinner OL by 1 h oxidation and the thicker but porous OLs by 12h,

24 h and 72 h oxidation. From the results obtained, several interesting questions

can also be raised here, regarding the sudden breakdown of the OL during sliding

wear at 20 N load (Fig. 5.6), the integrity of the OL with the substrate despite

the formation of numerous cracks in the wear track (Fig. 5.10), and the depth of

penetration of the cracks. In order to have a visual view of the actual wear depth

and the penetration of the surface cracks, a ball crater was made on the wear track
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and then examined under a microscope. Fig. 5.14 shows two representative images.

The cracks seen on the 10 N wear track surfaces (Fig. 5.10) were confined to the

superficial zone of the OL and no cracks were found to have penetrated to the oxide

layer-ODZ interface region (Fig. 5.14a). At 20 N, only the wear track on the 6 h

oxidized specimen was available for such examination (Fig. 5.14b). In this case, the

cracks have penetrated through the OL and across the OL-ODZ interface into the

ODZ (Fig. 5.14b). Deformation of the OL towards the substrate at 20 N load was

also evident from Fig. 5.14b, which could be responsible for the bending type cracks

seen at the edge of the wear tracks (Fig. 5.12d and Fig. 5.14b). The fact that the

OL on the 6 h oxidized specimen still maintained its integrity with the substrate

after sliding at 20 N load suggests that penetration of the surface cracks through

the OL to the ODZ was not sufficient to cause the sudden breakdown of the OL.

It is anticipated that once the cracks propagate further into the substrate, the OL

would be broken down, leading to the observed transition in friction (Fig. 5.6) and

the accelerated TML (Fig. 5.9). This also suggests that a thick ODZ would help

to delay the breakdown of the OL and enhance the load bearing capacity of the

oxidized specimen. Thus, an ideal thermally oxidized system for Zr should comprise

a dense, pore-free and sufficiently thick OL at the surface and a thick ODZ at the

subsurface [14].

Figure 5.14: Microscopic images showing the wear track and a ball crater made on
the wear track on the (a) 24 h oxidized specimen after testing under10 N load and
(b) 6 h oxidized specimen after testing under 20 N load.
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5.4 Conclusion

From the results obtained in this work, it can be concluded that thermal oxidation

at 650oC for duration less than 12 h produces a relatively thick, dense, pore free and

adherent oxide layer at the surface and a thin oxygen diffusion zone at the subsurface.

Such a combination of the oxide layer and the oxygen diffusion zone possesses the

lowest friction, best wear resistance and highest load bearing capacity. Although

prolonged oxidation can increase the thicknesses of the oxide layer and the oxygen

diffusion zone, it leads to the gradual development of pores in the inner part of the

oxide layer and finally the breakaway of oxidation characterized by accelerated oxide

growth and crack formation in the oxide layer. The formation of pores in the oxide

layer has detrimental effects on friction reduction, wear resistance and load bearing

capacity. The oxide layer surface tends to suffer from cracking under the present dry

sliding process, and the oxide layer suffers from sudden breakdown after a certain

period of sliding contact motion. This can be associated with the propagation of the

surface cracks through the oxide layer and then the oxygen diffusion zone to reach

the oxygen diffusion zone-substrate interface.
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Chapter 6

Surface finish effect on dry sliding wear behaviour

of thermally oxidized commercially pure

zirconium

The aim of this chapter was to further investigate the effect of surface polishing

on the wear behaviour of thermally oxidized commercial pure zirconium (CP-Zr)

under dry sliding conditions. Surface ground CP-Zr with a roughness of 0.21 µm

(Ra) was thermally oxidized (TO) at 650oC for 6 h. After TO, some samples were

polished to smoothen the surface with a finish of 0.04 µm (Ra). The response of

the polished and unpolished TO samples to dry sliding wear was investigated under

unidirectional sliding conditions. The results show that surface polishing after TO

affects the dry sliding wear behaviour of TO CP-Zr in several aspects, including

coefficient of friction, wear rate, crack formation and oxide layer breakdown. In

particular, it is found that smoothening the TO surface favors the formation of

semi-circular cracks in the wear track and accelerates oxide layer breakdown during

dry sliding. A slightly rough TO surface helps to reduce the tendency of the oxide

layer towards cracking and to increase the wear resistance at high contact loads. The

mechanisms involved are discussed in terms of asperity contacts, crack formation,

propagation and final fracture.

6.1 Introduction

Thermally oxidized zirconium (TO-Zr), as an alternative to the most commonly

used Co-Cr alloys, has been used in artificial hip and knee joints [31][32][33]. One of

the benefits of oxidized Zr in arthroplasty is its extremely good resistance to surface

scratching which may be caused by trapped hard particles [33][35][36][37], which is
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crucial for reducing wear of the counter articulating part made of polyethylene (PE).

In such an application, a very smooth and polished TO surface is necessary. How-

ever, TO-Zr also has potential uses in other fields involving sliding contact motions

[4], where a polished surface may not be necessary. In manufacturing engineering

components, smoothening by polishing is quite time consuming and costly. There-

fore, polishing operations should be avoided whenever possible [164].

Surface finish is known to affect the tribological performance of engineering com-

ponents and the counter bodies [165][166]. The friction and wear properties could

be affected by surface roughness by altering the contact conditions, the stress dis-

tribution, the ploughing actions and the adhesion behaviour [167][168][169]. The

majority of published investigations have found that a rougher surface results in a

higher wear rate from both the component and the counter body [170][171]. When

frictional behaviour is concerned, the effect of surface roughness is more compli-

cated, because friction is affected by many factors, such as the adhesion junctions

formed at the real contact areas, the ploughing actions of the asperities, the trapped

wear particles and the mechanical interlocking of asperities. Depending on sliding

contact conditions and contacting materials involved, rougher surfaces may result

in higher friction [164][168][172][173] or lower friction [167][171], or have no effect

on friction [169]. Most of the investigations concerning surface roughness effect on

tribology have been focused on friction and wear rate, very few work have been

reported on the effect of surface finish on the formation of cracks and their propaga-

tion in coating systems during dry sliding wear. In Chapter 4, the effect of original

surface finish on the tribological behaviour of TO CP-Zr was investigated. It was

found that a slightly roughened original surface before TO is beneficial in enhancing

the load bearing capacity of the TO sample. However, an interesting question still

remains, i.e. how does surface finish after TO affect the tribological properties?

Thus, in this Chapter, surface ground commercially pure zirconium (CP-Zr)

with a surface finish of 0.21 µm (Ra) was thermally oxidized (TO) at 650oC for 6

h. After TO, some samples were polished to generate a smooth surface finish of

0.04 µm (Ra). Some were unpolished in the as-oxidized state. The effect of these

two different surface finishes on the dry sliding wear behaviour was investigated.

Particular attention was paid to the effect of surface finish on the formation and

propagation of surface cracks and the integrity of the oxide layer during dry sliding.
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6.2 Material and Methods

Commercially pure (CP) zirconium, grade 2, was used as the substrate material.

The CP-Zr was supplied by Goofellow UK Ltd in the form of 1 mm thick sheets

with the following nominal composition: 0.16 wt% O, 0.025 wt% N, 0.05 wt% C,

0.005 wt% H, 0.2 wt% Fe, 0.2 wt% Hf and Zr (rest). Before TO, the samples

(20 mm x 15 mm) were ground using P1200 grade metallographic grinding paper,

which produced a surface finish of 0.21 µm (Ra). The samples were then cleaned in

methanol and dried in a stream of hot air.

Thermal oxidation (TO) of the samples was implemented in an air furnace at

650oC for 6 h, which is the optimum condition determined previously [174]. The

TO process conditions and the structural features of the resultant oxidized layers

have been reported elsewhere [174]. The cross-sectional view of the TO sample and

the microhardness profile measured in the cross section are shown in Fig. 6.1. TO

produced a dark and uniform oxide layer (OL) of 6.3 µm thick at the surface and a

2.8 µm thick oxygen diffusion zone (ODZ) in the subsurface. Although increasing

TO time could increase OL and ODZ thicknesses, this could lead to pore formation

in the oxide layer due to oxidation breakaway of zirconium [26][174]. The hardness

of the oxide layer was about 1300 HV0.025, a typical value reported for bulk ZrO2

[4]. The hardness decreased gradually across the ODZ to reach the substrate base

level of about 200 HV0.025.

Figure 6.1: Microhardness profile measured across the oxide layer (OL) and the
oxygen diffusion zone (ODZ) in the cross section and microscopic image showing
the cross-sectional morphology (inset) of the oxidized sample.
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After TO for 6 h, the surface roughness (Ra) value was slightly increased from

0.21 µm to 0.23 µm. Some of the TO samples were polished to achieve a smoothened

surface with a finish of 0.04 µm (Ra). These polished samples are designated as “TO-

polished”, and the TO samples in the as-oxidized state without further polishing are

designated as “TO-unpolished” in this paper. Fig. 6.2 compares the surface rough-

ness profiles measured from the untreated, the TO-unpolished and TO-polished

samples. It can be seen that polishing considerably smoothened the TO surface and

this polishing operation removed some material (0.3 - 0.4 µm thick) from the TO

surface. This resulted in a slightly reduced oxide layer thickness.

Figure 6.2: Surface roughness profiles measured before TO, after TO and after
polishing.

Oxidized Zr is used as bearing components in artificial implants which are sub-

jected to tribocorrosion involving combined mechanical wear and corrosion actions

[33], but it also has potential uses in other fields involving dry sliding wear [4][18].

The main focus of this work was on the dry sliding wear behaviour of the TO sam-

ples with two different surface finishes. For this purpose, tribological tests were

done using the pin-on-disk configuration under dry unlubricated conditions. A 7.9

mm diameter alumina ball (Grade 25 Al2O3) served as the counterface slider which

was kept stationary during the test. The test sample was rotating against the slider
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at 60 rpm for 3600 s, producing a circular wear track of 8 mm diameter. During

the test, the coefficient of friction (COF) was measured continuously by the use of

an integrated strain gauge and a computer data acquisition system. Two normal

contact loads, 10 N and 20 N, were employed, which corresponded to initial contact

pressures of about 1100 MPa and 1400 MPa, respectively, according to Hertz contact

analysis based on the alumina ball contacting the untreated CP-Zr.

The wear volume was evaluated by using a stylus profilometer to measure the

wear track profiles. From each profile, the cross-sectional area of the wear track

was calculated and the wear volume was obtained by multiplying the cross-sectional

area by the wear track circumference length. All tests were repeated twice and

the average results are presented. After wear testing, an optical microscope and

a scanning electron microscope (SEM) (equipped with EDX facilities for elemental

composition analysis) were used to examine the worn surfaces in order to derive

the wear mechanisms involved. To provide an inclined and enlarged view of the

actual wear depth and the subsurface beneath the wear track, a ball crater was

made on the wear track using a rotating bearing steel ball of 25.4 mm diameter.

Such a ball-cratering technique has been widely used for measuring the thickness of

thin coatings. It has recently been employed to aid in the examination of coating

deformation beneath a wear track [175].

6.3 Results

Fig. 6.3a shows the COF curves recorded for the samples at 10 N load. Due to

the dominance of plastic deformation in the untreated sample, the polished and

unpolished untreated samples showed similar frictional behaviour. Thus only the

COF curve for the unpolished sample is included for clarity purpose. From Fig.

6.3a, it can be seen that in the steady state after about 1000 s sliding, the TO-

unpolished sample showed higher friction than the TO-polished sample. However,

at the beginning up to 800 s, the TO-unpolished sample experienced lower friction

than the TO-polished sample, which could be explained by the smaller contact

area in the unpolished sample due to the initial asperity contact. It is also noted

that in the steady state, the TO-unpolished sample showed higher friction than the

untreated sample, while polishing after TO treatment was beneficial in lowering

friction. As discussed later, under small contact loads (10 N), the OL did not suffer

from any serious damage and was not worn through. Thus, the COF curves shown

in Fig. 6.3a are characteristic of the OLs and the respective surface finish conditions.
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Under high contact loads (20 N), the beneficial effect of polishing on reducing

friction of the TO samples diminished, instead the TO-polished sample showed

higher COF than the TO-unpolished sample during the entire sliding process (Fig.

6.3b). The COF of the TO-unpolished sample increased continuously during sliding,

which could be related to the fact that the contact area also increased with time.

The TO-polished sample initially followed the same trend, but after about 2000 s

sliding, its COF started to decline, which may suggest a change in wear mechanism.

Figure 6.3: Coefficient of friction (COF) curves for the tested samples recorded
during dry sliding under (a) 10 N and (b) 20 N contact loads.

The measured wear volumes from the wear tracks are summarized in Fig. 6.4.

Surface finish did not have a significant effect on wear behaviour of the untreated

sample, most likely due to the dominance of plastic deformation. At the smaller

load of 10 N, the wear volume of CP-Zr was reduced by up to 100 times by the

thermal oxidation treatment. Polishing after TO further reduced the wear volume

of the TO sample. Polishing reduced the wear volume by 137%, as compared to the

corresponding TO-unpolished sample. However, as the contact load was increased

to 20 N, polishing after TO had an opposite effect on wear volume of the TO sample:

polishing resulted in an increase in wear volume by 41%.
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Figure 6.4: Measured wear volume for the tested samples after dry sliding for 3600
s under 10 N and 20 N contact loads.

Clearly, the effect of surface finish was load dependent. At low contact loads

(10 N), smoothening the TO surface was beneficial in further reducing friction and

wear, while at high contact loads (20 N), a slightly rough TO surface seemed more

beneficial. To have a better understanding of the wear mechanisms and material

deformation behaviour involved during sliding, the worn surfaces and subsurfaces

were examined microscopically, as presented in the following paragraphs.

Fig. 6.5 presents SEM micrographs taken from the wear tracks on the TO

samples produced under 10 N contact load. After 3600 s sliding, the TO-unpolished

sample suffered from mild abrasive wear as some abrasion marks, together with

some original grinding marks can be seen in the wear track (Fig. 6.5a). No cracks

were observed in the wear track on the TO-unpolished sample. Interestingly, for the

TO-polished sample, in addition to the parallel abrasion marks, many cracks, which

ran across the sliding track and had a nearly semi-circular shape, were observed

in the wear track (Fig. 6.5c and 6.5d). Clearly, a polished TO surface favoured

the formation of cracks during dry sliding. Further examination revealed that the

contact between the TO-unpolished surface and the alumina ball was at the asperity

level, i.e. the sliding contact was made at the surface roughness peaks such that

the roughness peaks were fragmented and fractured to generate wear debris, some

of which filled the surrounding roughness valleys (Fig. 6.5a). Fig. 6.5b is a high

magnification view of the real contact areas in Fig. 6.5a, revealing that many micro

cracks were formed at the real contact areas and wear debris were generated. EDX

elemental analysis revealed that the real contact areas contained a significant amount

of aluminium, while in the non-contact areas, no aluminium was found (Fig. 6.6).
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This suggests that material transfer occurred from the alumina ball to the TO-

unpolished surface during sliding contact. On the contrary, the contact between

the TO-polished surface and the alumina ball was more uniform with the majority

of the wear track area making contact with the slider (Fig. 6.5c). Under higher

magnifications, it was found that the real contact areas on the TO-polished surface

were covered with a tribofilm (Fig. 6.5d). EDX analysis confirmed that the real

contact areas were rich in aluminium, similar to the situation shown in Fig. 6.6.

Thus material transfer also occurred from the alumina ball to the TO-polished

surface.

Figure 6.5: SEM images showing the morphology of the wear tracks produced under
10 N contact load on the TO-unpolished sample ((a) and (b)) and on the TO-
polished sample ((c) and (d)). Note the formation of cracks on the TO polished
sample in (c) and (d).

Fig. 6.7a shows a ball crater created by rotating a 25.4 mm steel ball on the wear

track produced on the TO-polished sample at 10 N load. This made the subsurface

region beneath the wear track visible in an inclined view. The enlarged view of the

highlighted area in Fig. 6.7a is given in Fig. 6.7b. The wear depth was just a small

fraction of the OL thickness. The semi-circular cracks at the wear track surface were

found to have penetrated through the OL into the ODZ and the substrate, to a depth

of more than 10 microns (arrowed, Fig. 6.7b). No obvious plastic deformation of
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the oxide layer into the substrate can be observed at 10 N load, as evidenced by the

maintenance of the circular contour of the interface between the OL and the ODZ

in Fig. 6.7a. Thus it is safe to state that under the contact load of 10 N, the 6 µm

thick OL, together with the underlying 3 µm thick ODZ, was effective in preventing

the subsurface from plastic deformation. This may also explain why the OL could

maintain its integrity with the substrate without breakdown despite the formation

of many cracks which penetrated to the substrate.

Figure 6.6: SEM image and EDX elemental spot analysis in area 1 and 2 of the wear
track produced under 10 N contact load on the TO-unpolished sample.
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Figure 6.7: (a) Microscopic image showing the ball crater made on the wear track
on the TO-polished sample after dry sliding under 10 N contact load, and (b) an
enlarge view of the highlighted rectangle to show crack propagation beneath the
wear track. Note the circular contour of the interface between the OL and ODZ in
(a) and the penetration of cracks to the substrate (arrowed) in (b).

However, at a higher contact load (20 N), the situation became quite different.

Fig. 6.8 shows the wear tracks produced at 20 N on the TO-unpolished and TO-

polished samples. The original grinding marks, together with some cracks, can be

visible in the wear track on the TO-unpolished sample (Fig. 6.8a). Cracking and

failure of the OL were much more severe on the TO-polished sample (Fig. 6.8b).

The OL on the TO-polished sample suffered from local breakdown and severe crack-

ing with densely populated semi-circular cracks in the wear track (Fig. 6.8b). A

comparison with the corresponding unpolished sample confirmed again that polish-

ing after TO indeed favoured crack formation during dry sliding. The ball crater

created on the wear track on the TO-polished sample (Fig. 6.9a) revealed that the

OL was deformed or pushed into the substrate under the 20 N load. The surface

cracks also penetrated through the OL into the ODZ and the substrate (Fig. 6.9b).

Local failure of the OL can be seen in the wear track on the TO-polished sample.
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Figure 6.8: SEM images showing the wear tracks produced on the (a) unpolished
and (b) polished TO sample under 20 N contact load.

Figure 6.9: (a) Microscopic image showing the ball crater made on the wear track
on the TO-polished sample after dry sliding under 20 N contact load, and (b) an
enlarge view of the highlighted rectangle to show crack propagation beneath the
wear track. Note the deformation of the OL into the substrate in (a) (arrowed) and
propagation of cracks to the substrate (arrowed) in (b).
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SEM examination (Fig. 6.10) showed that the cracks on the TO-polished speci-

men were filled with wear debris. EDX analysis, shown in Fig. 6.10, revealed that

there was much more aluminium in the cracks filled with wear particles than in the

real contact areas outside the cracks. This demonstrates that wear of the alumina

ball contributed to wear debris formation in the tribosystem.

To gain a further insight into the contact behaviour and the development of

cracks with sliding time, a series of experiments were conducted involving sliding for

various times, followed by microscopic examination of the wear track and the wear

scar on the counterface. Fig. 6.11 compares the wear tracks on the TO-polished

sample after sliding at 10 N and 20 N for various times. At 10 N, the contact between

the TO-polished surface and the alumina ball was confined to a narrow width during

the first 300 s sliding. No cracks were observed at this stage (Fig. 6.11a). As sliding

proceeded, the wear track width and the wear scar size on the counterface (Al2O3

ball) were increased. After sliding for 1800 s at 10 N, semi-circular cracks started

to appear (Fig. 6.11b). With continuous sliding to 3600 s, semi-circular cracks were

fully developed on the polished sample (Fig. 6.5c). The development of cracks on the

polished sample was load dependent. Under the higher load of 20 N, semi-circular

cracks were developed after sliding for just 300 s (Fig. 6.11c). With continuous

sliding to 900 s, the cracks were further developed with new cracks formation within

the widened wear track (Fig. 6.11d). After sliding for 3600 s, densely populated

cracks were developed, leading to the onset of OL breakdown (Fig. 6.9b).
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Figure 6.10: SEM image and EDX elemental spot analysis of area 1 and 2 of the
wear track produced under 20 N contact load on the TO-polished sample.
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Figure 6.11: Microscopic images showing the morphology of the wear tracks after
dry sliding testing the TO-polished sample at 10 N for (a) 300 s and (b) 1800 s, and
at 20 N for (c) 300 s and (d) 900 s. Note the formation of semi-circular cracks after
sliding for 1800 s in (b) (arrowed).

In Fig. 6.12, the measured mean diameter of the wear scar on the counterface is

plotted against sliding time at 10 N. The wear scar was larger when sliding against

the TO-unpolished surface. Thus, as compared to the TO-polished surface, the

TO-unpolished surface caused more wear of the counterface alumina ball, which is

expected from the general principle of tribology of rough surfaces [166][170].
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Figure 6.12: Mean diameter of the wear scar on the alumina ball counterface as a
function of sliding time on the TO-polished and unpolished samples.

6.4 Discussion

The experimental results demonstrated that surface finish affected the tribological

behaviour of thermally oxidized CP-Zr in several aspects, including COF, wear vol-

ume, crack formation and breakdown of the OL. At relatively small contact loads

(e.g. 10 N), smoothening the TO surface by polishing was beneficial in reducing

friction (Fig. 6.3a) and wear volume (Fig. 6.4). This agrees with general observa-

tions made by other investigators for both bulk and coating materials that a rougher

surface results in higher friction and higher wear rates of both the test specimen and

the counterface. The higher friction and wear rates resulting from rough surfaces

have several origins, including the ploughing action of the surface peaks, the defor-

mation and fracture of the asperities, the change in real contact areas, the filling

of the surface roughness valleys with wear debris and the mechanical interlocking

provided by the asperities. It is also generally observed that after a certain period

of sliding, the surface asperities become gradually flattened and the original surface

finish is destroyed, thus the initial surface finish effect on friction and wear will

diminish [169][170][171][173].

The most striking observation made in this work is that smoothening the surface

by polishing after TO favoured the formation of cracks running across the wear

tracks (Fig. 6.5 and Fig. 6.8). Although at 10 N contact load, the hardened surface

was effective in preventing plastic deformation in the substrate (Fig. 6.7a), many

semi-circular cracks were developed in the wear track on the TO-polished sample,
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but no such cracks were found on the corresponding unpolished sample (Fig. 6.5).

There seemed an incubation time for the formation of semi-circular cracks on the

TO-polished sample, as shown in Fig. 6.11. Such an incubation time was load

dependent: it took about 1800 s for the cracks to form at 10 N, while at 20 N, cracks

formed at the very early stage of sliding (300 s). These cracks on the TO-polished

sample propagated through the surface layers down to the substrate (Fig. 6.7 and

Fig. 6.9). The fact that the OL did not detach or flake from the substrate indicates

that the crack length was not sufficient to cause final fracture of the OL under 10 N

load. According to the principle of fracture mechanics, a material fractures when a

critical crack length is reached. Such a critical crack length decreases with increasing

stress level. Under the present contact condition at 10 N load, the contact stress

level and the crack prorogation depth were not sufficient to cause OL breakdown.

Increasing the contact load to 20 N was sufficient to cause the fracture and even the

local breakdown of the OL (Fig. 6.8b and Fig. 6.9b). The existence of an incubation

time for the formation of cracks (Fig. 6.11) suggests that the fracture of the OL

was a fatigue process. Thus, it can be predicted that with prolonged sliding, the OL

would breakdown at 10 N load once the cracks propagate to reach critical lengths.

In the wear tracks on the TO-unpolished sample, semi-circular cracks were not

observed at 10 N and were only observed at 20 N, but to a lesser extent than those

on the TO-polished sample. The beneficial effect of surface roughness in delaying

semi-circular crack formation and propagation can be explained as follows. Under

the present testing conditions, the contact between the TO-unpolished surface and

the smooth alumina ball was at the asperity level (Fig. 6.5). The hard ZrO2 asperi-

ties not only had a ploughing action on the alumina ball to result in a large wear scar

on the ball (Fig. 6.12), but also suffered from extremely high contact pressures, as

predicted by the contact models developed for rough surfaces [169][176][177]. Thus

the contact stresses were concentrated at the highest asperities and the stresses in

the non-contacting areas and in the bulk of the OL must be much reduced. The

high stresses at the asperities resulted in the flattening of the contacting asperities

through fragmentation and fracture. Although semi-circular cracks were not ob-

served at 10 N load, many micro cracks were found at the real contact areas, which

led to wear debris formation through fracture (Fig. 6.5b). Thus the micro cracks at

the contacting asperities did not have the opportunity to develop into larger cracks

in the bulk of the OL at 10 N load. With increasing sliding time, more asperities

were brought into contact and the ball wear scar size increased (Fig. 6.12). The

increased apparent and real contact areas helped to reduce contact stresses at the
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asperities. Semi-circular cracks were only able to form in the smoothened areas at

20 N (Fig. 6.8a), where asperity deformation and fracture became less dominant.

6.5 Conclusion

The dry sliding wear behaviour of TO-unpolished and TO-polished CP-Zr samples

were investigated. The main findings are summarized as follows:

• Smoothening the oxidized surface by polishing is beneficial in reducing friction

and wear volume of the TO sample if the contact load is relatively small (10

N).

• Under high contact loads (20 N), smoothening the oxidized surface deteriorates

the wear resistance of the TO sample and accelerates the breakdown of the

oxide layer.

• Smoothening the oxidized surface by polishing favours the formation of large

semi-circular cracks in the wear tracks during dry sliding under both contact

loads.

• The semi-circular cracks developed at the TO-polished surface propagate through

the surface layers to reach the substrate. This leads to the local breakdown

of the oxide layer after sliding for a certain period of time under sufficiently

large contact loads (e.g. 20 N), because at higher loads there is more contact

between the alumina ball and surface of the sample.

• A slightly rough TO surface (unpolished) is beneficial in reducing the tendency

of the oxide layer towards cracking during dry sliding, owing to the dominance

of asperity contacts which lead to micro crack formation at the real contact

areas and fracture of the contacting asperities.

119 Abdulkarim Alansari



Chapter 7

A comparative study of the mechanical behaviour

of thermally oxidized commercially pure titanium

and zirconium

The objective of this study is to compare the mechanical behaviour of thermally ox-

idised commercially pure titanium (CP-Ti) and commercially pure zirconium (CP-

Zr). For this purpose, these two bio-metals were thermally oxidised under the same

condition (650oC for 6 h) and the oxidised specimens were characterised using vari-

ous analytical and experimental techniques, including oxygen uptake analysis, layer

thickness and hardness measurements, scratch tests, dry sliding friction and wear

tests and tribocorrosion tests in Ringer’s solution. The results show that under

the present thermal oxidation condition, 4 times more oxygen is introduced into

CP-Zr than into CP-Ti and the oxide layer produced on CP-Zr is nearly 6 times

thicker than that on CP-Ti. Thermally oxidised CP-Zr possesses a higher hardness,

a deeper hardening depth and better scratch resistance than thermally oxidised CP-

Ti. Under dry sliding and tribocorrosion conditions, thermally oxidised CP-Zr also

possesses much better resistance to material removal and a higher load bearing ca-

pacity than thermally oxidised CP-Ti. Thus, thermally oxidised Zr possesses much

better mechanical behaviour than thermally oxidised Ti.

7.1 Introduction

Titanium (Ti) and zirconium (Zr) are bio-metals that are used in the biomedical

sector to make medical devices and implants [3][178][179]. They possess a good com-

bination of strength, corrosion resistance and biocompatibility, which are desirable

as biomaterials [180]. Both metals have a hexagonal close packed (HCP) crystal
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structure at room temperature and derive their corrosion resistance and passivity

by the naturally occurring oxide film at the surface. Both Ti and Zr are also known

to possess poor tribological properties. When in contact motion with themselves

or other materials, they suffer from severe metallic wear with the tendency towards

galling and seizure [4][178][181]. Thus, the uses of Ti and Zr have been restricted to

mostly non-tribological applications. However, with proper surface modification to

alter the surface chemical, physical and mechanical properties, Ti and Zr and their

alloys can be used to make bearing components such as in artificial hip and knee

joints [19][182].

Thermal oxidation offers a simple and cost-effective way to modify the surfaces of

Ti and Zr and their alloys to achieve much enhanced tribological and bio-tribological

properties [4][14][18][181][183][184]. Indeed, thermally oxidised Ti alloys have been

reported to have the potential use in artificial hip joints [185][186][187], and ther-

mally oxidized Zr has recently been introduced as an alternative bearing in total

joint arthroplasty for artificial knee and hip joints [31][32][33][37]. Thermally oxi-

dised Ti and Zr possess the desirable combination of a ceramic bearing surface to

resist wear and a tough metallic core to resist fracture [182][14][174].

Both Ti and Zr are reactive metals with a high affinity with oxygen to form

an oxide film easily. They can also dissolve a large amount of oxygen in the HCP

lattice to form a solid solution with a significant hardening effect. Thermal oxida-

tion is normally carried out at temperatures between 500oC and 700oC in ambient

atmosphere or in controlled atmospheres. During thermal oxidation, oxygen diffuses

into the CP materials to form an oxygen diffusion zone (ODZ) with interstitial solid

solution hardening, and once the surface is saturated with oxygen, an oxide layer

(OL) develops at the surface. Thus thermally oxidised CP-Ti and CP-Zr comprise

an OL at the surface and a hardened ODZ in the subsurface [15][18][174][188]. The

OL can improve frictional characteristics and offer wear resistance, while the ODZ

can offer load bearing capacity. However, the quality of the OL depends on thermal

oxidation conditions, such as temperature and time. High temperature and/or long

time oxidation would produce a none-adherent, fragile and crumbly OL on Ti, which

has a tendency to delaminate from the substrate [15][189][190]. Similarly, oxidation

breakaway would occur to Zr during high temperature or long time oxidation, char-

acterised by the formation of pore and cracks in the OL [25][26][161]. It has been

observed that an oxidation temperature between 600oC and 700oC offers the best

compromise between generating a sufficiently thick oxide layer and maintaining good

adhesion between the OL and the substrate for both Ti and Zr [14][191][192].
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Despite the extensive research in recent years on thermal oxidation of Ti and

Zr for enhanced tribological properties and biomedical applications, no studies have

been reported to directly compare their oxidation behaviour and their mechanical

performances after thermal oxidation. Due to the importance of these two bio-metals

and their ability to be hardened by oxidation, it is necessary to compare the ther-

mal oxidation behaviour of these two bio-metals and their response to mechanical

and combined mechanical and chemical actions. In this investigation, commercially

pure Ti and Zr were thermally oxidised under the same condition. Using the same

oxidation condition provides a direct comparison of the oxidation behaviour and the

resultant mechanical properties of the two biometals. The oxidised specimens were

compared in terms of layer thickness, hardness, scratch resistance, and tribological

behaviour under dry unlubricated conditions and tribocorrosion behaviour under

simulated physiological conditions.

7.2 Material and Methods

7.2.1 Materials and thermal oxidation

Commercially pure titanium (CP-Ti) grade 2 (99.4% purity) and commercially pure

zirconium (CP-Zr) grade 2 (99.2% purity) were used in this work. The original

metallurgical structure of these CP materials comprised HCP α-phase. Specimens

of 20 mm x 15 mm x 1 mm were prepared by machining the as-received plates. The

specimens were wet ground using metallographic SiC grinding papers down to the

P1200 grade, then polished in 6 micron diamond suspensions for 5 min, and finally

finished by polishing in silica suspensions for 40 min to achieve a mirror-like surface

finish of 0.03 µm (Ra).

Before thermal oxidation (TO), the specimens were ultrasonically cleaned in

methanol for 10 min, thoroughly dried in a stream of hot air, and weighed using an

analytical balance accurate to 0.1 mg. After TO, the specimens were weighed again

to obtain the total mass gain by each type of specimens. The total mass gain was

divided by the total surface area of the specimens to obtain the mass gain per unit

surface area (mgcm−2). This provides information regarding oxygen uptake by the

CP-Ti and CP-Zr specimens during the TO process.

Thermal oxidation was conducted in an air furnace at a constant temperature of

650oC for a constant time of 6 h. After 6 h at 650oC, the specimens were allowed to

cool slowly in the furnace down to room temperature. This TO condition was chosen
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based on many preliminary experiments and previous work, which can produce an

adherent oxide layer at the surface and an oxygen diffusion zone in the subsurface

of CP-Ti and Ti alloys [15][190][193] and in CP-Zr and Zr alloys [14][174]. This

condition also ensured that no phase transformation took place in the core of the

CP materials because the oxidation temperature was below the α-β transformation

temperatures.

7.2.2 Characterisation of TO specimens

After TO, the specimens were characterised by (1) surface roughness measurements

using a contact mode profilometer (Mitutoyo SJ-400); (2) surface hardness mea-

surements using a micro Vickers hardness tester (Indentc ZHV) at various loads

from 0.025 to 1.0 kg; (3) X-ray diffraction (XRD) analysis using Cu-Kα radiation to

identify the phases of thermally oxidised specimens; (4) microscopic examination of

the cross sectional morphology and measurement of the thicknesses of the oxidised

layers; (5) micro Vickers hardness profile measurements across the oxidised layers in

the cross section using an indentation load of 0.025 kg; and (6) scratch testing of the

oxidised surface using a Rockwell diamond tip with a radius of 200 µm under various

constant loads from 1 N to 30 N. After scratch testing, the width of each resultant

scratch mark was measured and the morphology of the scratch was examined micro-

scopically to assess the failure modes and the critical failure load of the oxide layer.

A ball crater of about 1 mm diameter was also made on the scratch by rotating a

bearing steel ball of 25.4 mm diameter at the same spot at a speed of 60 revolutions

per minute to provide an inclined and enlarged view of the deformation behavior

beneath the scratch. Fig. 7.1 shows a typical scratch on the TO-Zr surface and a

ball crater made on the scratch which provides a clear view of the scratch depth and

the deformation of the OL towards the substrate. By zooming in the highlighted

rectangular zone, the deformation and crack penetration behaviour could be more

clearly observed.
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Figure 7.1: A typical scratch on the TO-Zr surface and a ball crater made on the
scratch to provide an enlarged view of the OL and the material deformation behavior
beneath the scratch (arrowed).

7.2.3 Dry sliding wear and tribocorrosion tests

Dry sliding friction and wear tests were conducted using a laboratory-scale recipro-

cating wear tester. During the test, the specimen reciprocated linearly at a frequency

of 1 Hz and amplitude of 8 mm. The contacting counterface was an 8 mm diameter

alumina ball (Grade 25 Al2O3 supplied by Trafalgar Bearings Ltd) due to its inert-

ness and high hardness. The tests were carried out at room temperature (22oC),

in ambient environment for duration of 3600 s. During the test, the coefficient of

friction (COF) was recorded by a computer data acquisition system. The contact

loads ranged from 1 N to 20 N. Hertzian contact stress calculation showed that

these contact loads resulted in initial maximum contact pressures ranging from 468

MPa to 1272 MPa for the Ti specimens and from 412 MPa to 1119 MPa for the Zr

specimens. All tests were duplicated and the mean results are presented.

Tribocorrosion tests were conducted using the same reciprocating wear tester at

a reciprocating frequency of 1 Hz and amplitude of 8 mm. The tests were carried

out by immersing the test specimen in 1 M Ringer’s solution maintained at 37oC,

contained in a tribo-electrochemical cell made of an insulating material, nylon. An

alumina ball of 8 mm diameter was used as the slider and the applied contact loads
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ranged from 1 N to 20 N. All tests were conducted at open circuit without externally

applied potential. Before each test, the specimen was stabilised at open circuit for

300 s without contact with the slider. After sliding for 3600 s, the specimen was left

in the solution for further 300 s without contact with the slider. The open circuit

potential (OCP) was recorded continuously before, during and after sliding. An

ACM Gill AC potentiostat was used to measure the OCP of the specimen using a

saturated calomel electrode (SEC) as the reference electrode.

Every dry sliding wear and tribocorrosion test was duplicated and the results

from two tests were consistent. After the tests, the wear and corrosion-wear tracks

were examined under optical and scanning electron microscopes. The cross-sectional

profiles of the wear tracks were measured by a stylus profilometer (Mitutoyo SJ-

400) to assess the actual depth and width of the tracks and the amount of material

removal. The measured total material removal (TMR) in volume was then divided

by the total sliding distance and the applied contact load to obtain the specific total

material removal rate in mm3N−1m−1. A ball crater about 1 mm diameter was

then made on the wear track by rotating a 25.4 mm diameter bearing steel ball to

reveal the actual wear depth and the deformation and cracking behaviour beneath

the wear surface, as highlighted in Fig. 7.1 for the scratch on the oxidised surface.

7.3 Results and Discussion

7.3.1 Structural characteristics

Fig. 7.2 shows the cross-sections of the thermally oxidised (TO) Ti and Zr specimens

and Table 7.1 summarises the characteristics of the untreated and TO specimens.

In consistency with the observations of other investigators [193][194], TO produced

a dark oxide layer (OL) at the surface and an oxygen diffusion zone (ODZ) at the

subsurface of both materials (Fig. 7.2). After the TO treatment, the originally

polished surface was slightly roughened, with the Ra value increased from about

0.03 µm to about 0.05 µm for both TO specimens (Table 7.1). This could be due

to the anisotropic growth of the oxide layer in different grain orientations. Another

observation lies in that the mass gain during TO by Zr was 4 times larger than

that by Ti, see Table 7.1. This suggests that under the present TO conditions,

4 times more oxygen was incorporated into the surface region of Zr than into Ti.

The greater oxygen uptake by Zr was confirmed by microscopic examination of the

cross-sections of the TO specimens, shown in Fig. 7.2. A much thicker OL was
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Table 7.1: Surface and layer characteristics of raw and TO Ti and Zr. Note: Each
value in the table is the average of 6 measurements. The deviations are rounded to
respective decimal places.

Specimen
Surface finish
Ra (µm)

Mass gain after TO
(mgcm−2)

Surface hardness
HV0.025

OL thickness
(µm)

ODZ thickness
(µm)

Raw Ti 0.032±0.005 - 186±9 - -
TO Ti 0.055±0.005 0.26±0.02 1115±56 1.1±0.2 4.5±0.3
Raw Zr 0.032±0.005 - 198±9 - -
TO Zr 0.048±0.005 1.04±0.02 1383±57 6.3±0.2 2.9±0.3

formed on Zr than on Ti under the same TO condition. The OL formed on Zr

was 6.3 µm thick, while that on Ti was only 1.1 µm thick. However, the oxygen

diffusion (ODZ) measured from Fig. 7.2 was thicker in Ti (4.5 µm, see Table 7.1)

than in Zr (2.9 µm). XRD analysis (Fig. 7.3) confirmed that the thin OL formed

on Ti was rutile titanium dioxide (R-TiO2), while the thick OL formed on Zr was

monoclinic zirconium dioxide (m-ZrO2). The diffraction peaks from the substrate

(α-Ti and α-Zr) were shifted to lower angles as compared to standard peaks due

to the dissolution of oxygen in the diffusion zone, which caused expansion of the

hexagonal close packed (hcp) lattices. For example, the α-Ti (101) and (012) peaks

were shifted from 40.20o and 53.03o to 40.03o and 52.51o, respectively. The α-Zr

(101) and (012) peaks were shifted from 36.54o and 48.03o to 36.32o and 47.74o,

respectively.

Based on the atomic weight of the involved elements (Ti, Zr and O), the molar

mass of ZrO2 (123.22 gmol−1) and TiO2 (79.87 gmol−1), and the theoretical density

of m-ZrO2 (5.68 gcm−3) and R-TiO2 (4.23 gcm−3), using equation (3.4), it can be

estimated that it would require 0.93 mgcm−2 oxygen uptake to form a dense m-ZrO2

layer of 6.3 µm thick on Zr and 0.19 mgcm−2 oxygen uptake to form a dense R-

TiO2 layer of 1.1 µm thick on Ti. Subtracting these values from the measured mass

gain in Table 7.1 led to that in the TO-Ti specimen, 0.07 mgcm−2 oxygen uptake

during TO diffused into the subsurface to form the diffusion zone, as compared to

0.11 mgcm−2 in the TO-Zr specimen. Thus more oxygen diffused to the subsurface

of TO-Zr than to that of TO-Ti. The above analysis was based on the assumption

that the weight gain was caused by oxygen only. Nitrogen uptake was not considered

because nitrogen is more inert than oxygen and XRD could not detect any nitride

formation in the oxidised specimens.
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Figure 7.2: Microscopic images showing the cross-sectional morphology of the (a)
TO-Ti and (b) TO-Zr specimens produced at 650oC for 6 h.

Figure 7.3: X-ray diffraction patterns generated from the TO-Ti and TO-Zr speci-
mens.

7.3.2 Surface hardness and hardness profiles

As the result of oxygen incorporation in the surface and subsurface regions to form

an OL and an ODZ, the surface and subsurface hardness of CP-Ti and CP-Zr were

significantly increased. Fig. 7.4(a) shows the surface hardness as a function of

indentation load and Fig. 7.4(b) shows the hardness profiles measured across the
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OL and ODZ in the cross section. The measured surface hardness decreased with

increasing indentation load (Fig. 7.4a) due to the increased substrate effect. At

the small indentation load of 0.025 kg, the TO-Zr surface exhibited a hardness

close to 1400 HV0.025, which was higher than the surface hardness of TO-Ti (about

1100 HV0.025). Under all indentation loads, the TO-Zr specimen possessed higher

surface hardness and thus better load bearing capacity than the TO-Ti specimen.

From the insets in Fig. 7.4(a), it can also be seen that indentation under high

loads (higher than 0.02 kg) led to the formation of cracks surrounding the indent,

without flaking of the OL. This suggests that both OLs were relatively brittle but

had good adhesion with the underlying ODZ. Hardness profile measurements in the

cross sections revealed that the TO-Zr specimen possessed higher hardness than the

TO-Ti specimen at all measurement depths, see Fig. 7.4(b). The better hardening

effect in TO-Zr can be explained by the greater oxygen uptake and the resultant

thicker OL.
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Figure 7.4: Surface hardness of the TO-Ti and TO-Zr specimens as a function of
indentation load (a) and microhardness profiles measured across the oxidised layers
(b). The insets show the hardness indents made on the surface (a) and in the
subsurface (b). The hardness indents shown in (b) are for illustration only. In
actual measurements, the distance between two indents was more than three times
of the indent size.

7.3.3 Scratch resistance

Fig. 7.5 shows the variation of scratch width with applied scratch load for TO-Ti

and TO-Zr. At all scratch loads, the scratch width on TO-Zr was smaller than that

on TO-Ti. Thus TO-Zr had better scratch resistance than TO-Ti.
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Figure 7.5: Scratch width as a function of scratch load for the TO-Ti and TO-Zr
specimens.

Typical microscopic images of the scratches on TO-Ti are given in Fig. 7.6,

from which it can be seen that cracks started to form both inside and outside the

scratch at a scratch load as low as 4 N. The cracks inside the scratch were nearly

perpendicular to the scratch direction and were the result of the tensile stresses

caused by the tangential traction of the stylus [162], while the cracks outside the

scratch had a chevron shape and were most likely caused by the bending of the

OL due to plastic deformation inside the scratch [163]. When the scratch load was

increased to 7 N, cracking of the OL inside the scratch became more serious and

spallation or flaking of the OL occurred at the edges of the scratch. Cracking and

edge spallation of the OL became more severe when the scratch load was further

increased to 10 N and above. Thus, the critical load for the TiO2 layer failure was

7 N.
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Figure 7.6: Microscopic images showing the scratches made on the TO-Ti surface
at various scratch loads. Arrow indicates the scratch direction.

Fig. 7.7 shows the scratches on the TO-Zr specimen, together with zoom-in

view of the ball craters made on the scratches to reveal the OL and the substrate

beneath each scratch. It can be clearly seen that at 10 N scratch load (Fig. 7.7a),

the OL in the scratch was plastically deformed into the substrate. Despite such a

significant plastic deformation, no adhesive failure such as debonding and flaking of

the OL was observed. The plastic deformation of the OL inside the scratch caused

the bending of the OL at the edges of the scratch and thus the formation of the

chevron type cracks. When the scratch load was increased to 15 N and 20 N (Fig.

7.7b), the OL inside the scratch was deformed further into the substrate without

layer detachment. However, at the edges of the scratch, in association with the

chevron type cracks, chipping of the OL layer was observed. The depth of such

chippings was approximately at the OL-ODZ interfacial region, thus demonstrating

the adhesive failure nature. At further higher scratch loads, 25 N and 30 N (Fig.

7.7c), chipping at the edges became more significant, and at the same time the OL

inside the scratch was removed completely. Thus, the critical load for adhesive failure

of the ZrO2 layer was 15 N, which was much larger than 7 N measured for the TiO2

layer. More importantly, the results shown in Fig. 7.7 demonstrate that the ZrO2

layer had the ability to accommodate severe plastic deformation without adhesive

failure (Fig. 7.7a). The good integrity of the ZrO2 layer with the underlying ODZ

can be explained by the variation of stoichiometry and oxygen vacancies with depth

from the surface in the ZrO2 layer. It has been found that in the OL produced on

Zr-2.5%Nb alloy by the commercial OxiniumTM process, there existed an interfacial
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region about 1 µm thick between the OL and ODZ where a peculiar stoichiometric

balance was achieved with a diffuse-type oxygen concentration [194]. This would

help to relieve the residual stresses arising from the thermal expansion mismatch

between the surface ceramic OL and the metallic ODZ, and thus would contribute

to enhanced integrity of the OL.

Figure 7.7: Microscopic images showing the zoom-in view of ball craters on scratches
made on the TO-Zr surface at various scratch loads.

7.3.4 Dry sliding wear behaviour

During dry sliding, a transition in friction and wear behaviour was observed above

certain critical loads for the TO-Ti and TO-Zr specimens. Fig. 7.8 shows the

recorded coefficient of friction (COF) curves for the two specimens at various con-

tact loads. At a small contact load of 1 N, both specimens behaved similarly and

exhibited a smooth frictional behaviour. The COF value gradually increased with

sliding time and then reached a stable value between 0.5 and 0.6. Increasing the

contact load to 2 N led to an increase in COF values but did not change the generally

smooth frictional behaviour of both specimens. Such a smooth frictional behaviour

was maintained in the TO-Zr specimen up to the contact load of 10 N (Fig. 7.8b).

However, for the TO-Ti specimen, when the contact load was increased to 4 N (Fig.

7.8a), the frictional behaviour was changed significantly, characterised by the initial

smooth regime for the first 600 s sliding and the sudden change to a fluctuating

regime characteristic of the untreated CP-Ti specimen (not shown for clarity pur-

pose). Such a sudden change in friction marked the breakdown of the OL and led

to much accelerated wear of the TO-Ti specimen.
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Figure 7.8: COF curves recorded during dry sliding of the TO-Ti (a) and TO-Zr (b)
specimens under various contact loads.

Fig. 7.9 shows the morphology and the surface profiles measured across the wear

tracks produced on the TO-Ti specimen at 2 N and 4 N loads. It can be seen that

after dry sliding at 2 N for 3600 s, the wear depth in the wear track was mostly

within the OL thickness and only in some local areas was the OL worn through (Fig.

7.9a). However, after sliding at the higher contact load of 4 N, the OL and the ODZ

were removed completely from the wear track (Fig. 7.9b). Thus under the present

dry sliding conditions, the TO-Ti specimen can only resist up to a contact load of 2

N without serious OL and ODZ breakdown.

Figure 7.9: Three dimensional view of the wear tracks and the measured surface
profiles across the tracks produced by dry sliding of the TO-Ti at (a) 2N and (b) 4
N.

On the other hand, the TO-Zr specimen can resist a much higher contact load

without OL and ODZ breakdown, as shown in Fig. 7.8(b) and Fig. 7.10(a). For the
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TO-Zr specimen, a sudden change in frictional behaviour occurred during sliding

at 15 N load, as compared to 4 N for the TO-Ti specimen (Fig. 7.8). As shown

in Fig. 7.10(b), such a sudden change in frictional behaviour was also related to

the breakdown of the OL and ODZ, leading to much accelerated wear of the TO-Zr

specimen. Clearly, under the present dry sliding conditions, the TO-Zr specimen

possessed a load bearing capacity that was at least 5 times larger than that of the

TO-Ti specimen.

Figure 7.10: Three dimensional view of the wear tracks and the measured surface
profiles across the tracks produced by dry sliding of the TO-Zr at (a) 10N and (b)
15 N.

The measured total material removal (TMR) rate from the wear track as a

function of contact load is given in Fig. 7.11(a). Since a nearly circular wear scar

was produced on the counterface alumina ball, the mean diameter of the wear scar

was measured and presented in Fig. 7.11(b) as a function of contact load. For

comparison purpose, untreated raw Ti and Zr specimens were also tested at low

contact loads and the results are also shown in Fig. 7.11. It can be seen that wear

from the specimen and from the alumina ball followed the same trend as contact load

was increased. A larger TMR rate from the wear track corresponded to a larger wear

scar on the ball due to the increased contact area. As compared to the untreated

specimens, TO effectively reduced the TMR rate at the small contact load of 1 N by

more than two orders of magnitude (Fig. 7.11a). As long as the OL maintained its

integrity with the substrate, TO-Ti and TO-Zr behaved similarly in terms of wear

resistance. However, with increasing load from 1 N to 4 N, the TMR rate from the

TO-Ti specimen increased steeply due to the wearing through and breakdown of

the OL and the ODZ. At further higher contact loads, the substrate dominated the
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wear process because the OL and ODZ were worn through during the early stage

of sliding. On the other hand, the TO-Zr specimen maintained a very small TMR

rate up to the contact load 10 N, above which the TMR rate increased abruptly due

to the breakdown of the OL and ODZ. Thus, TO-Zr possessed much better wear

resistance at high contact loads than TO-Ti.

Figure 7.11: Measured total material removal (TMR) rate from the wear track (a)
and ball wear scar diameter (b) for the TO-Ti and TO-Zr specimens under various
contact loads.

Fig. 7.12 shows typical SEM images taken from the wear tracks on TO-Ti ((a)

and (b)) and TO-Zr ((c) and (d)). Fig. 7.12(a) shows that at 2 N, the OL on the

TO-Ti specimen was worn smoothly and the ODZ was exposed at the centre of the

wear track, in agreement with the observation and measurement in Fig. 7.9. At

4 N, the OL on TO-Ti suffered from severe flaking at the edges of the wear track

and wear mainly occurred in the substrate (Fig. 7.12b). Flaking of the OL led to

the observed sudden change in friction shown in Fig. 7.8(a). As mentioned earlier,

no OL breakdown occurred in the TO-Zr specimen at contact loads below 15 N.

Fig. 7.12(c) and (d) show that at contact loads below this critical load, wear of

the OL was caused by micro abrasion, microcracking and delamination within the

thick OL. The wear track surface was populated with microcracks (Fig. 7.12d).

The linkage of these microcracks led to the formation of wear debris, leaving behind

some shallow craters on the worn surface. The depths of these craters, shown in

Fig 7.12(c) and (d), were very small, within the OL. Fig. 7.13 shows a wear crater

caused by the cohesive failure of the OL and the results of EDS spot elemental

analysis inside and outside the crater. The results showed that inside the crater, the

chemical composition was near stoichiometric ZrO2, thus confirming that the crater
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depth was shallower than the OL thickness and the failure was cohesive. Outside the

crater, some Al and C were detected, indicating material transfer from the alumina

ball and contamination of the real contact areas from the environment.

Figure 7.12: SEM images showing the morphology of the wear tracks produced on
the TO-Ti (a and b) and TO-Zr (c and d) specimens during dry sliding under various
contact loads.
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Figure 7.13: SEM image and EDS elemental spot analysis in area 1 and 2 of the
wear track produced on the TO-Zr specimen during dry sliding under 4 N load.

7.3.5 Tribocorrosion behaviour

During tribocorrosion testing in Ringer’s solution at 37oC at open circuit without

externally applied potential, attempts were made to measure and record the evolu-

tion of open circuit potential (OCP) continuously. Fig. 7.14(a) shows the recorded

OCP curves for the untreated (raw) Ti and TO-Ti specimens. Since R-TiO2 is a

semiconductor and the OL on TO-Ti was thin, OCP could be measured before, dur-

ing and after sliding. However, difficulties were encountered in measuring the OCP

of the TO-Zr specimen due to the poor conductivity of the dense and thick m-ZrO2

layer which is a barrier layer. The measured OCP of the TO-Zr specimen varied

largely between 0 mV(SCE) and 2000 mV(SCE) without a stable value, as can be

seen from the large spike in Fig. 7.14(b) for the first 300 s measurement without

sliding.
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Figure 7.14: Open circuit potential (OCP) recorded before, during and after sliding
of the untreated Ti and TO-Ti (a) and TO-Zr (b) specimens, in Ringer’s solution
at 37oC.

From Fig. 7.14(a), it can be seen that for the untreated Ti specimen, sliding led

to a significant drop in OCP due to the destruction or removal of the passive film by

the mechanical sliding action. This is a common phenomenon observed for passive

metals by many investigators [140][195][196][197]. The drop in OCP during sliding

increased with increasing contact load, presumably due to the increased mechanical

damage and the increased wear track area [133][143]. Sliding of the TO-Ti specimen

at a small contact load 1N did not lead a significant change in OCP, Fig. 7.14(a).

Thus the wear track was in a passive state during sliding at 1 N load. This is because

the OL maintained its integrity with the substrate, as confirmed by wear track profile
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measurements and microscopic examination. It is interesting to note that during

sliding of TO-Ti at 2 N load, the OCP initially followed a similar trend to that at 1N

load, but experienced a significant drop after about 3000 s to gradually reach OCP

values characteristic of the untreated Ti in the activated state. Such a significant

drop in OCP was also observed at higher contact loads of 4 N and 10 N, Fig. 7.14(a).

The time at which OCP started to drop decreased with increasing contact load. Fig.

7.15(a) shows the cross-sectional profiles of the wear tracks on TO-Ti. The OL in

the 2 N wear track was just worn through in the central region, leading to the

exposure of the ODZ. Microscopic examination showed that in the central region of

the 2 N wear track, only patches of the OL remained and in many areas the ODZ

was exposed. Sliding at the higher contact load of 4 N led to the complete removal

of the OL, but the wear depth was confined within the ODZ (Fig. 7.15(a)). At

the further higher contact load of 10 N, the OL and ODZ were removed completely

from the wear track, leading to the exposure of the substrate (Fig. 7.15(a)). It is

thus clear that the significant drop in OCP of the TO-Ti specimen during sliding at

contact loads 2 N and above (Fig. 7.14(a)) was caused by the wearing through of

the OL (at 2 N and 4 N) and then wearing through of the ODZ (at 10 N).

Figure 7.15: Typical cross-sectional profiles of the wear tracks produced on the
TO-Ti (a) and TO-Zr (b) specimens during tribocorrosion under various contact
loads.

Fig. 7.14(b) shows OCP curves recorded during tribocorrosion of the TO-Zr

specimen. For clarity purpose, the OCP curves of the untreated Zr specimen are

not included, which are similar to those of the untreated Ti specimen shown in Fig.

7.14(a). As mentioned earlier, due to the poor conductivity of the thick ZrO2 layer,

it was unrealistic to measure the OCP of the TO-Zr specimen. Indeed, at contact
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loads of 10 N and below, the recorded OCP values before, during and after sliding

were unstable with large potential spikes. However, when the contact load was

increased to 15 N, OCP became measurable after about 600 s sliding. This suggests

that the specimen became conductive after a certain period of sliding. At the further

higher contact load of 20 N, the OCP became measurable after a short period of

sliding. Fig. 7.15(b) shows the cross-sectional profiles of the wear tracks on the

TO-Zr specimen. The wear tracks were narrow and shallow. At the highest contact

load of 20 N applied, the wear depth was about 1.3 µm, which was much smaller

than the OL thickness. Clearly, the improved conductivity of the TO-Zr specimen

at 15 N and 20 N loads was not due to the wearing-through or removal of the non-

conducting OL in the wear track. In fact, the OL maintained its integrity with the

substrate, as shown in Fig. 7.16. The wear track produced at 10 N comprised of

many abrasion marks and corrosion products. No cracks were evident in the 10 N

wear track (Fig. 7.16a). However, in the wear track produced at 15 N, many cracks

were observed on the worn surface. Some of these cracks can be seen penetrating

through the OL and propagating to the substrate (Fig. 7.16b). Cracking of the

OL and propagation of the cracks to the substrate were more obvious at the higher

contact load of 20 N (Fig. 7.16c). Fig. 7.16(d) is an SEM image showing more

clearly the propagation of cracks from the OL to the substrate. It is thus clear that

the improved conductivity of the TO-Zr specimen at high contact loads was due to

crack formation in the wear track and the propagation of the cracks to reach the

conductive substrate.
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Figure 7.16: Microscopic images of the zoom-in view of ball craters made on the wear
tracks produced on the TO-Zr specimen during tribocorrosion in Ringer’s solution
at 37oC under (a) 10 N, (b) 15 N, (c) and (d) 20 N contact loads, showing the wear
tracks, the OL and substrate beneath each wear track. Arrows show the penetration
of cracks in the substrate.

Fig. 7.17 shows the average COF measured during tribocorrosion for the test

specimens. Sliding in the Ringer’s solution resulted in lower COF than dry sliding

due to the lubricating effect of the solution. At low contact loads, TO-Ti exhibited

much lower COF than the untreated Ti, demonstrating the friction-reducing effect

of the OL. At high contact loads, the breakdown of the OL lead to much increased

friction. On the other hand, the TO-Zr specimen maintained relatively low COF

at all contact loads because the OL was not removed during sliding. The increase

in COF at high contact loads could be related to the formation of cracks in the

corrosion-wear track, which can change the real contact area and stress distribution

in the contact zone.
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Figure 7.17: Measured average coefficient of friction for the test specimens under
tribocorrosion conditions.

The measured TMR rate from the corrosion-wear track and the mean diameter

of the wear scar on the alumina ball are given in Fig. 7.18. As compared to the

untreated specimens, TO effectively reduced the TMR rate by 2 to 3 orders of

magnitude at small contact loads of 1 N and 2 N (Fig. 7.18(a)). Wear of the

counterface alumina ball was also reduced by TO treatment of the specimens (Fig.

7.18(b)). At higher contact loads, the effectiveness of TO-Ti in reducing TMR rate

of Ti was reduced due to the breakdown of the OL and the ODZ. On the other hand,

TO-Zr possessed very good resistance to TMR at high contact loads because the OL

maintained its integrity with the substrate despite the formation and propagation

of cracks. At contact loads above 2 N, the resistance of TO-Zr to TMR caused by

tribocorrosion in the Ringer’s solution was two orders of magnitude better than that

of TO-Ti (Fig. 7.18(a)).
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Figure 7.18: Measured total material removal (TMR) rate from the corrosion wear
track (a) and ball wear scar diameter (b) for the TO-Ti and TO-Zr specimens under
tribocorrosion conditions.

7.4 Conclusion

The comparative study in this work has unveiled the difference in mechanical be-

haviour between thermally oxidised Ti and Zr. The conclusions are as follows:

• Under the present thermal oxidation condition, 4 times more oxygen is intro-

duced into CP-Zr than into CP-Ti. As a result, the oxide layer produced on

CP-Zr is nearly 6 times thicker than that on CP-Ti.

• The TO-Zr possesses higher hardness, a deeper hardening depth (about 10µm)

and a greater load bearing capacity than the TO-Ti.

• The TO-Zr exhibits better scratch resistance than the TO-Ti. During the

scratch test, the oxide layer on TO-Ti suffers from edge spallation at a load as

small as 7 N, while the oxide layer on TO-Zr can resist a scratch load up to

15 N without adhesive failure. The oxide layer on TO-Zr can accommodate

severe plastic deformation and maintains good integrity with the substrate at

high scratch loads.

• Under the present dry sliding conditions, as long as the oxide layer maintains

integrity with the substrate, such as at small contact loads, both TO-Ti and

TO-Zr specimens show similar wear resistance. However, at high contact loads,

the oxide layer on TO-Ti is removed easily, leading to accelerated wear of the

TO specimen. On the other hand, the oxide layer on TO-Zr can resist much
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higher contact loads without breakdown and thus possesses a much higher load

bearing capacity and better wear resistance than TO-Ti.

• Under tribocorrosion conditions in Ringer’s solution, the oxide layer on TO-Ti

is removed from the corrosion-wear track at contact load as small as 2 N and

thus loses its barrier nature in the corrosive environment. On the other hand,

the oxide layer on TO-Zr maintains its integrity and barrier nature up to a

contact load of 10 N without crack formation and layer breakdown. Although

at higher contact loads of 15 N and above, the oxide layer on TO-Zr still

maintains its integrity with the substrate during tribocorrosion, cracks form

in the oxide layer and penetrate through the oxide layer to reach the substrate,

thus losing the barrier nature of the oxide layer against corrosion.
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Pack Carburising

8.1 Pack Carburisatioin of CP-Zr with oxygen dif-

fusion for improved tribological performance

Zirconium Carbide (ZrC) is a very good and important non-oxide ceramic and it is

widely used due to its low density, high hardness (2600-3200HV), high melting point

and wear resistance. Carburising has been used to produce TiC on titanium and

its alloys in order to improve the tribological properties [39]. Carburisation has a

lot of benefits when it comes to improving the tribological properties. However one

of the main issues linked with zirconium carburisation is the high affinity between

Zirconium and oxygen. This will result in the formation of zirconium dioxide (ZrO2)

at certain temperatures (around 825oC). Therefore pack carburising ideally should

be undertaken in a vacuum or oxygen isolated environment in order to allow carbon

absorption instead of oxygen. This way carburising process will be done instead of

oxidation.

After the investigation of the behaviour of thermal oxidation on zirconium in

Chapters 4-7, another technique, i.e. pack carburising, was investigated in this

chapter. The goal of this method is to produce a carbide layer on top of a car-

bon and/or oxygen diffusion zone (α-Zr(O)). In this work, three main effects were

investigated:

• The effect of carburising temperature.

• The effect of carburising time.

• The effect of Pack composition.
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In the current study the concentration of both oxygen and carbon on the car-

burised was studied, and more focus was placed on tribological behaviour and wear

resistance. The used carburising pack composition was chosen because it was the

optimal composition using for titanium carburising [17][39]. Zirconium and titanium

have a similar crystal structure and similar mechanical and tribological properties;

therefore this composition was used to create ZrC samples. However, some tests

were done using different compositions to study the effect of pack composition on

carburising.

Figure 8.1: Schematic diagram of experimental setup.

Figure 8.1 presents a schematic diagram to show the used experiment setup.

Samples are placed in the mixture of pack compounds inside the container. It is

very important to seal the steel container using heat resistant sealants after placing

the samples in the container. The container is then placed in the heating furnace

and treatment is initiated under controlled temperature and time conditions. The

composition of carburising powders is a very important factor to get a good carbide

film. The composition of the powders can affect the size and strength of the carbide

film. Four agents or powders were used to make the mixture and they have different

roles during carburising:

• Charcoal: It is used as the source of carbon during carburising reactions.

• Barium carbonate (BaCO3): It is widely used in ceramic industry as glazing

ingredient; it plays the role of energiser to activate the carbon.
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• Sodium carbonate (Na2CO3): Common compound in ceramic industry, it

is used as bonding agent and an activator as it allows active carbon to form

and then adhere into the sample.

• Calcium carbonate (CaCO3): This compound is used as the main energiser

and activator to generate active carbon species inside the container.

8.2 The effect of temperature on carburisation

process

8.2.1 Process

The initial pack composition used in the mixture was the same composition used

for typical titanium carburisation. Therefore the composition used for the pack was

70% carbon and 30% energiser. The energiser was created using Barium carbonate

(BaCO3), sodium carbonate (Na2CO3) and calcium carbonate (CaCO3) in ratio

of 3:2:1. This pack of carbon and energiser was used to determine the optimal

temperature for Zirconium carburisation. Carburisation treatment took place at

various temperatures (825oC, 880oC, 925oC and 980oC) for duration of 20h and then

cooled down using furnace cooling (FC). After carburisation the samples were then

tested tribologically to determine the effect of temperature and also to determine

the best temperature to produce a very good wear resistance structure.

8.2.2 Layer Morphology

Because of the existence of oxygen in the steel container during pack carburising,

it is predicted that oxygen will diffuse into the zirconium samples for certain tem-

peratures. The reason behind this is that there is a very high attraction between

zirconium and oxygen [17][198]. To prove this idea, every sample was cut into half

to provide cross-sectional images. The samples were then nickel plated and mounted

in green resin followed by polishing. The reason nickel plate was used is that it’s

very hard to see the edges of the films and this method helps to show the dark

surface films against the resin mount. After polishing all samples, samples were

then cleaned using ethanol. Microscopic images were taken to show the structure

produced by carburising treatment (Figure 8.2). From Fig.8.2, it can be seen that

a thin dark grey film was formed on the surface, followed by a thick diffusion zone
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beneath. The surface film is presumably a ZrC film or an oxide film.

Figure 8.2: Cross-sectional images showing structure after pack carburising for 20h
at temperatures of: (a) 825oC, (b) 880oC, (c) 925oC and (d) 980oC

Figure 8.3 shows SEM images that was taken for the cross section of all samples.

As it can be seen 825oC and 880oC sample are similar in the appearance. As

shown in all samples there is a thick pack residue at the surface and some cracks at

the surface followed by ununiformed subsurface as shown clearly in 880oC sample

(Figure 8.3a).
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Figure 8.3: SEM images showing cross-sectional structure after pack carburising for
20h at temperatures of: (a) 825oC, (b) 880oC, (c) 925oC and (d) 980oC

When the sample is carburised at 925oC (Figure 8.3c), it can be seen that it

shows a better and uniformed pack residue layer compared to all other samples. The

925oC sample shows no delamination on the structure suggesting good adhesion to

the substrate. However when the sample is carburised at 980oC, there is a new

structural feature. This feature is named as the shadow curve so it can be labelled

as shown in (Figure 8.3d) which explains that there is another darker layer below

the pack residue. This feature is only about 1-2µm thick below the residue pack

and it created a curvy shape. This can be explained by treating the sample with

high temperature (980oC) that created an extra layer due to the acceleration of

carburising treatment.

After carburising the sample at 825oC, the surface layer was about 5.8µm thick

(Figure 8.3a), which was increased to about 6.5 and 7.1 µm after increasing the tem-

perature of the treatment to 880oC and 925oC (Figure 8.3b and c). After increasing

the treatment temperature to 980oC, the thickness of carburised layer produced was
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Table 8.1: Layer thickness developed after pack carburising

Temperature of carburising
(oC)

Carbide layer Thickness
(µm)

Oxygen diffusion depth
(µm)

825 5.8 153
880 6.5 162
925 7.1 175
980 9.6 206

about 9.6 µm (Figure 8.3c). It can be seen that carburising needs a high temperature

to produce a good layer or in other words undamaged layer.

Table 8.1 lists the thicknesses of the surface layer and the oxygen diffusion depth

for all treated samples. It can be seen that as the temperature of carburising in-

creases both carbide layer thickness and oxygen diffusion depth are increased. This is

due to the increased diffusion at high temperatures of carburising treatment, which

helps in providing thicker layer. Figure 8.4 shows the film thicknesses of the ZrC

and ODZ with regard to the temperature of carburising.

Figure 8.4: Film thickness of CL and ODZ with regard to temperature of carburising,
for samples carburised for 20h at temperatures of 825oC, 880oC, 925oC and 980oC

It can be seen that as the temperature of carburising increases, the thickness of

carbide layer increases and the depth of oxygen diffusion zone increases too. Figure

8.4 states that temperature of carburising has a huge effect on the formation of

carbide layer and oxygen diffusion zone.
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8.2.3 Glow discharge optical spectroscopy GDOS

The combination of both carbon and oxygen into the surface of treated zirconium

was investigated using GDOS in order to find the composition profile along the

depth below the surface. Figure 8.5a shows both carbon and oxygen profiles. It can

be clearly seen that the diffusion of carbon was effective at temperatures 925oC and

980oC. However, when the temperature is lower than 925oC the carbon diffusion

is limited and carbon content decreases. The penetration of carbon is just around

1-4µm at temperature of 825oC compared with about 15-20µm for 980oC sample.

When investigating the oxygen diffusion within the treated samples (figure 8.5b),

the amount of oxygen is constant throughout the depths for 925oC and 980oC. But

for 825oC and 880oC it can be seen that the amount of oxygen is increasing and

penetrating about 2-4µm. This indicates that when the content of carbon is low, the

content of oxygen is high for all treated samples. When carburising is undertaken at

980oC, the oxygen concentration start to drop sooner than any of the other treated

samples and the oxygen concentration is settling at about 2%. The drop of the

oxygen concentration is decreased whenever the temperature is lower and at 825oC

the oxygen concentration is settling at about 30%.

From the GDOS results, it can be concluded that carburising is effective only at

temperatures higher than 900oC. While at lower temperatures, oxidation becomes

dominant. This is because the dissociation of the carburising compounds in the steel

container is a thermally activated process, requiring sufficiently high temperatures

to produce active carbon species [17][39][199]. Thus pack carburising should be con-

ducted at 925oC and above. This is confirmed by XRD phase composition analysis,

discussed in Section 8.2.5.
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Figure 8.5: Carbon (a) and oxygen (b) concentration profiles measured by GDOS
produced by carburisation at temperatures of: (a) 825oC, (b) 880oC, (c) 925oC and
(d) 980oC

8.2.4 Micro-Hardness profile

Micro-hardness testing was conducted on cross-sections on all samples (825oC, 880oC,

925oC and 980oC) and it was compared with untreated samples as shown in figure

8.6. Carburised samples have a very harder surface compared to thermal oxidised

samples, with hardness of about 1200HV which is expected for zirconium carbide

[200].
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Figure 8.6: Cross-sectional hardness curves for the carburised samples treated for
20h at temperatures of 825oC ,880oC ,925oC and 980oC.

As shown in figure 8.6, surface hardness depends on the thickness of the car-

burised layer built on the surface. There is definite correlation between carburisation

temperature and layer thickness. This means when the temperature is higher, the

hardness will be higher too until it reaches a certain depth (600µm). When hardness

is measured between 400 and 600µm which is the centre of the cross-section of all

samples, this will be the meeting point of the surface substrate and it is similar to

the hardness of the untreated sample.

The 825oC sample is the only sample that went out of the 400-600 µm ranges

more than one time, exceeding the range to 600µm. This can be explained by the

low temperature of the carburising treatment which leads to oxidation rather than

carburisation. The low temperature prevents carburising effect, encouraging the

oxygen to form an oxide layer.

This oxide layer is then covered by a carbide layer during the carburising treat-

ment (20h). From figure 8.6 it can be seen that the hardness remains high until

it reaches a depth of about 25-35µm. There is a sharp reduction in hardness from

1100Hv to 900HV across the carbide layer; this can be explained by the reduced

amount of ZrC phase with depth. The sharp reduction is followed by gradual de-

cline in hardness across the oxygen diffusion zone (ODZ) from 900HV to that of

untreated zirconium 200HV.
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Increasing the carburisation temperature helps the oxygen to diffuse deeper into

the zirconium substrate creating larger ODZ. When the ODZ is larger, this will help

in increased load bearing capacity. This also states that the structure of all samples

is a multi-layered structure consisting of ZrC (carbide layer) or a ZrO2 layer and

α-Zr(O) (oxygen diffusion zone). In general it can be stated that increasing the

temperature of carburising increases both oxygen diffusion zone and the carbide

layer thickness.

8.2.5 X-Ray Diffraction XRD

X-Ray diffraction results were analysed (figure 8.7). It can be seen that the samples

treated with high temperatures such as 925oC and 980oC show that ZrC was formed

on the surface. ZrC was the main content on the surface. At 980oC the content of

ZrC is higher than 925oC, confirming that higher temperatures favour the formation

of carbide film. It also states that the carbon diffusion happens faster at higher

temperatures. XRD also helps in demonstrating the presence of oxygen within

zirconium subsurface. The α-Zr peaks of the untreated sample are shifted to a

smaller 2θ angle, meaning that the lattice expansion happened as a result of oxygen

dissolution. This was also investigated and observed by other authors [17].
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Figure 8.7: X-Ray diffraction patterns generated from samples carburised at tem-
peratures of 825oC and 925oC for 20h against untreated zirconium

Table 8.2 summarises the phase composition for each treated and untreated

samples, resulted from XRD analysis in Fig.8.7. It can be seen that at higher

temperatures (980oC and 925oC) ZrC phase is very strong. However, when the

temperature is lower than 925oC α-Zr and m-ZrO2 are more dominant.

As mentioned previously at 825oC the sample was oxidised rather than car-
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Table 8.2: Summary of XRD results

Temperature (oC) Phase composition
Untreated α-Zr

825oC C − ZrO2(mediate),m-ZrO2 (strong), α-Zr (mediate)
880oC C − ZrO2(mediate),m-ZrO2 (mediate), α-Zr (mediate)
925oC ZrC (strong), C − ZrO2(weak),m-ZrO2,(strong), α-Zr (weak)
980oC ZrC (strong), C − ZrO2(weak),m-ZrO2 (strong), α-Zr (weak)

burised. From table 8.2 it can be seen that the m-ZrO2 phase is strong at 825oC.

This can confirm that at low temperature of about 825oC, the oxide layer is formed

at the beginning of carburising treatment. When the temperature is increased to

880oC, the only difference is that the m-ZrO2 phase is weaker due to the fact that

there was no formation of oxide layer compared with 825oC sample. However at

high temperatures (925oC and 980oC) it can be seen that ZrC phase is stronger,

this states that at higher temperatures the formation of carbide layer is generated

with more carbon concentration. It is also noted that at 925oC and 980oC, a high

temperature oxide phase, i.e. cubin c-ZrO2, is also formed, together with mono-

clinic ZrO2 and ZrC. Thus, the carbide layer contains a mixture of carbide, and

oxides. This is expected because the carburising container comprised both carbon

and oxygen.

8.2.6 Tribological response

One of the most important aims of this research is to improve the tribological re-

sponse of zirconium. Therefore, it is very important to characterise the treated

samples in order to evaluate their tribological performance. All carburised samples

were used for tribological testing (friction and wear testing). Testing was operated

until film failure under load of 10N. The coefficient of friction (COF) was recorded

and wear rates were measured. Figure 8.8 shows the response of friction for different

temperatures (825,880,925 and 980oC).
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Figure 8.8: Coefficient of friction (COF) curves recorded for samples pack carburised
at 825oC, 880oC, 925oC and 980oCfor 20h under load of 10N

Figure 8.8 shows that under dry sliding conditions, the COF of all samples always

start with low values. This is due to the fact that the wear track takes about 720s to

be generated. This means that the removal of carbide layer does not always occur at

the start of friction and wear testing, depending on many factors such as the applied

load and speed of rotation. Figure 8.8 also shows that zirconium treated at 825oC

was able to stand a load of 10N for about 4h (14354s), longer than any other samples.

The COF observed is higher than 0.6. The reason that 825oC sample survived for

that long time is that the sample is rich in ZrO2 and more in-line with that of

oxygen rich zirconium and less carbon [17][201]. Further details will be explained

in the diffusion section. Zirconium sample treated at 880oC as able to withstand

a load of 10N for about 1000s with lower COF (µ ≈0.5). After breaking through

the film the COF is then increased until it reached about 0.8, so another hour was

added to the test to see the reaction of COF. Again similar to the previous sample

the COF is consistent with that of oxygen rich zirconium. When the temperature

was increased to 925oC the sample was able to withstand load of 10N for duration

of 7120s with low COF of about 0.5, but then the film started to breakdown and
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this lead in increasing the COF until about 0.8. Zirconium treated at 980oC was

able to withstand a load of 10N for about 2700s with COF of about 0.7. After the

film removal the sample suffered from high friction and like every sample another

hour was added to the test after breakdown of the film, the COF after film removal

was about 0.75.

However the samples treated at low temperature (825oC and 880oC) had ex-

pected COF, but that they perform better. The reason behind this is that at 825oC

there is a mixture of oxidised and carburised features and this explains the longer

survival. The 880oC sample did show low COF in the beginning but only survived

for 1000s and after the breakdown the COF increased up to 0.8. Both 880oC and

925oC samples have similar starting COF, but the 925oC sample has a longer low

friction region. It is clear that the 925oC sample is better than the 980oC sam-

ple; thus, increasing the temperature does not always give lower COF. When the

temperature is increased to 980oC the diffusion of carbon into the deeper substrate

leading to a thinner carbide layer on the surface. This explains the sudden rise in

friction. Oxygen diffusion within the zirconium substrate also plays a role here. In

theoretical sense there is limited amount of oxygen inside the carburising container.

Therefore the rate of oxygen diffusion will increase with increasing the carburising

temperature, leading in the distribution of oxygen in the substrate with reduced

oxygen content in the surface region.

The low COF observed can be linked with the amount of carbon within zirconium

as shown in figure 8.8. It can be clearly seen that the samples with more carbon

diffusion will last longer period in tribological testing. It has been noticed that

sample carburised at 925oC has a favourable structure leading to low COF which

lasts longer period of sliding time (see figure 8.3).

8.2.7 Wear rates

Wear rate was compared between all treated samples every hour till failure as shown

in table 8.3. It can be seen that when the test is initiated for the first hour, the

wear rate is always low until certain time. The 825oC sample was carburised at

low temperature, but it shows a very low wear rate (0.000229mm3/m) in the first

hour. This can confirm the idea of having mixture of oxide and carbide layers.

The 880oC sample suffered from high friction which lead to having high wear rate

(0.004493mm3/m) in the first hour. Both 925oC and 980oC samples have low wear

rates (0.000148mm3/m and 0.000401mm3/m) in the first hour.
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Table 8.3: Wear rate of carburised zirconium till failure in steps of 1h under load of
10N

Carburising Temperature
Hour of testing

1st hour 2nd hour 3rd hour 4th hour 5th hour 6th hour
825 0.000046 0.000229 0.000275 0.000323 0.000398 0.000585
880 0.004993 0.019789 - - - -
925 0.000148 0.000697 0.003405 - - -
980 0.000401 0.008011 0.016922 - - -

Figure 8.9: Wear rate of carburised zirconium till failure in steps of 1h under load
of 10N

During the second hour of testing, again the 825oC sample showed the low-

est wear rate (0.000229mm3/m). The 880oC showed no improvement and wear

rate increased to (0.0019789mm3/m) and film broke through. The 925oC sample

showed lower wear rate (0.000697mm3/m) during the second hour compared with

880oC sample. While the 980oC sample shows a high wear rate (0.008010mm3/m)

during the second hour and this is the second highest wear rate compared with

other samples. In the third hour, the 825oC sample shows the lowest wear rate

(0.000275mm3/m). The 925oC sample showed the second lowest wear rate (0.0003405

mm3/m) during the third hour and then film broke through. The film broke through

for the 980oC sample and it showed a very high wear rate (0.016922mm3/m) com-
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pared with both 825oC and 925oC. It was noticed that the 825oC sample was

the only sample to last 6h before failure in friction and wear testing. In the

fourth and fifth hours, the 825oC sample managed to survive with low wear rate

(0.000323mm3/m and 0.000398mm3/m). In the sixth hour the 825oC sample man-

aged to survive, this confirms that the sample has mixture of oxide and carbide

layers performs the best.

8.2.8 wear track morphology

Wear track morphology was investigated after every hour of friction and wear testing

as shown in figures 8.10,8.11,8.12 and 8.13. Figure 8.10 shows the first stage of wear

tracks for all samples in the first hour of the wear and friction testing. It can be

seen that the wear tracks demonstrate the effect of carburising temperature during

the process.

Figure 8.10: Optical microscopic images showing wear track morphology of zirco-
nium carburised for 20h at temperatures of (a) 825oC, (b) 880oC, (c) 925oC and
(d) 880oC tested under load of 10N for 3600s after initiating the wear and friction
testing

After the first hour the 825oC sample shows light material removal on the wear

track (figure8.10a). In fact the 825oC sample shows the best wear resistance after
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1h of friction and wear testing. This can be linked to the fact that there is a mixture

of carbide and oxide layer. The 880oC sample shows severe wear compared to the

other samples with dominating mechanisms of adhesion, abrasion and delamination.

However as stated in Section 8.2.7, the 880oC sample (figure8.10b) shows more

material removal compared to the other samples (figure8.10a,c and d). For the

880oC sample the breakdown of the ZrC structure within the wear track allows the

exposure of the oxygen diffusion zone (ODZ) to become the dominating factor in

defining both coefficient of friction and wear rate. It can be seen that delamination

exists after removing the ZrC layer as well as abrasive wear on the exposed oxygen

diffusion zone (ODZ). It is noticeable that the 825oC sample shows micro-polishing

of the surface layer. On the other hand the 925oC sample shows a very good wear

resistance and light material removal. The 925oC and 980oC samples are carburised

at high temperatures, but it can be seen that the 980oC sample shows a wider wear

track during the first hour (figure8.10d). Both 925oC and 980oC samples show some

abrasion marks in the inner side of wear track (figure8.10c and d).

Figure 8.11: Optical microscopic images showing wear track morphology of zirco-
nium carburised for 20h at temperatures of (a) 825oC, (b) 880oC, (c) 925oC and (d)
980oC tested under load of 10N for 3600s after second hour of the wear and friction
testing.
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Figure 8.12: Optical microscopic images showing wear track morphology of zirco-
nium carburised for 20h at temperatures of (a) 825oC, (b) 925oC and (c) 980oC
tested under load of 10N for 3600s after third hour of the wear and friction testing.

Figure 8.11 shows the wear track morphology after the second hour of testing. It

is clearly shown that all samples survived friction and wear testing after the second

hour apart from the 880oC sample. The 825oC sample suffered from higher material

removal (figure 8.11a) compared to the first hour (figure 8.10a), but the principal

wear mechanism is still micro abrasion and polishing. For the 880oC it can be seen

that the film was removed completely (figure 8.11b), resulting in severe wear.

The 925oC sample showed better wear resistance (figure 8.11c), but the sample

suffered from more material removal especially in the center of wear track. However,

the inner side of the wear track suffered from less material removal. After the second

hour, the 925oC sample started to have abrasion marks on outer side of wear track.

The 980oC sample (figure 8.11d) shows a very wide wear track and many abrasion

marks throughout the wear track (figure 8.11d).

Figure 8.12 shows the wear track morphology after the third hour of testing. It

is clearly shown that 925oC and 980oC samples did not survived friction and wear

testing after the third hour (figure 8.12b and c). On the other hand the 825oC was

the only sample to survive after third hour of friction and wear testing (figure 8.12a).
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The 825oC sample did survive, but there is a lot of large cracking everywhere on the

wear track. Similar to the second hour of testing (figure 8.11a), the 880oC sample

shows delamination of the surface layer with abrasion in the center of wear track.

The 925oC sample showed poor wear resistance (figure 8.12b) when compared

to the second hour of friction and wear testing (figure 8.11c). Again it can be seen

that the sample suffered from more material removal especially in the center and

inner sides of wear track. After the third hour, the 925oC sample showed more

abrasion marks everywhere on the wear track followed by delamination. The 980oC

sample (figure 8.12c) also showed very poor wear resistance. This is because the

sample suffered from high friction during the third hour of testing. After third hour

of friction and wear testing the 980oC sample showed more abrasion marks mostly

in the center and inner side of wear track (figure 8.12c).

Figure 8.13: Optical microscopic images showing wear track morphology of zirco-
nium carburised for 20h at temperature of 825oC tested under load of 10N for 3600s
after (a) 4h, (b) 5h and (c) 6h of wear and friction testing.

Since all testing were done until failure, the 825oC sample was the only sample

to survive after 3h of friction and wear testing. Figure 8.13 shows the wear track of

the 825oC sample after the fourth, fifth and sixth hours of friction and wear testing.

After the fourth hour of testing it can be seen that the sample suffered from high

friction and cracks started to form on the wear track. These cracks were mainly
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formed on the inner side of wear track (figure 8.13a). However, after the fifth hour

of testing the cracks increased in number and size (figure 8.13b). After the sixth

hour it can be seen that the 825oC sample has a lot of cracks, mostly in the inner

side of wear track (figure 8.13c), and abrasion marks are spreading mainly in the

center and inner side of wear track.

825oC is the lowest temperature used during the investigation of effect of tem-

perature on carburizing process. The survival of the 825oC sample longer than any

other sample could be explained by the strong combination of oxide and carbide

layers. This happens because 825oC is not sufficient high to generate active carbon

species in the container, thus oxidation becomes more dominant.

Figure 8.14: Microscopic images of the wear scar on the alumina ball after sliding
with zirconium carburised for 20h at temperature of 825oC under 10N load after (a)
1h, (b) 2h, (c) 3h, (d) 4h, (e) 5h and (f) 6h of friction and wear testing.

Figure 8.14 shows the wear scar on alumina ball used during friction and wear

testing on the 825oC sample. It can be seen that in the first and second hour (8.14a

and b), the scar is small and the diameters are 399µm and then 474µm. But after

the third and fourth hours of testing (8.14c and d), due to the high friction there is

a lot of removed material sticking on the alumina ball and the diameters of the scar

has increased to 735µm and then 929µm. This transfer of material is occurring due

to the high stress on the sample, forcing the softer surface to stick on the harder

surface. Finally after the fifth and sixth hours of testing (8.14e and f), the size of

the scars have increased further. The scar increased to 1004µm after the fifth hour
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and then to 1152µm after the final hour.

Figure 8.15: Microscopic images showing the wear scar on the alumina ball after
sliding with zirconium carburised for 20h at temperature of 880oC under 10N load
after (a) 1h and (b) 2h of friction and wear testing.

Figure 8.15 shows the scar on the alumina ball used during friction and wear

testing on the 880oC sample. It can be seen that after the first hour (8.15a), a lot

of material from the sample is sticking on the alumina ball. The diameter of wear

scar after the first hour of friction and wear testing is 629µm. After the second hour

of testing (8.15b) the diameter size increased to 961µm, and it can be seen that the

ball suffered from massive material loss. This can be linked to figure (8.11b), which

shows that the carbide layer was removed completely.

Figure 8.16: Microscopic images showing the wear scar on the alumina ball after
sliding with zirconium carburised for 20h at temperature of 925oC under 10N load
after (a) 1h, (b) 2h and (c) 3h of friction and wear testing.
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Figure 8.17: Microscopic images showing the wear scar on the alumina ball after
sliding with zirconium carburised for 20h at temperature of 980oC under 10N load
after (a) 1h, (b) 2h and (c) 3h of friction and wear testing.

Figure 8.16 shows the scar on the alumina ball used during friction and wear

testing on the 925oC sample. It can be seen that after the first hour (8.16a), the

scar is small and there is no material sticking on the ball. The diameter of wear scar

after the first hour of friction and wear testing is 470µm. After the second hour of

testing (8.16b) the diameter size increased to 733µm, and it can be seen that the

ball suffered from high material loss compared with after the first hour. However,

after the third hour of testing, the scar has increased in size to about 1183µm.

On the other hand, Figure 8.17 shows the wear scar on alumina ball used during

friction and wear testing on the 980oC sample. It can be seen that after the first

hour (8.17a), a lot of material from the sample is sticking on the ball, and the wear

scar is quite large, about 613µm in diameter. After the second hour of testing the

scar increased in size and there is some material transferred from the sample (8.17b).

The scar diameter has increased to 1552µm after the second hour of testing. But

when the sample was tested for the third hour (8.17c), the scar has changed in

shape and size. The diameter of the scar increased to 1719µm after the carbide

layer failure. Figure 8.18 shows a clear comparison between all the scars.

166 Abdulkarim Alansari



Chapter 8. Pack Carburising

Figure 8.18: Scar diameter comparison between 825, 880, 925 and 980oC

8.3 The effect of time on carburisation process

From Section 8.2, it has been demonstrated that carburising at 925oC was more

effective than any other temperatures. This temperature was chosen because it was

effective at generating the diffusion of both oxygen and carbon. All the tests that

were conducted until this point were done using the duration of 20h. In this section

the effect of carburising time is investigated at a fixed temperature of 925oC.

8.3.1 Process

The initial composition used in the pack compound mixture was the same com-

position used in Section 8.2. Therefore the composition used for the pack was

70% carbon and 30% energiser. The energiser was created using Barium carbonate

(BaCO3), sodium carbonate (Na2CO3) and calcium carbonate (CaCO3) in ratio of

3:2:1. This pack of carbon and energiser was then used to determine the optimal

time for Zirconium carburisation. Carburisation treatment took place at temper-

ature of 925oC for various durations of 3h, 10h, 20h and 40h. Then cooled down

using furnace cooling (FC). After carburisation the samples were then tested tribo-

logically to determine the effect of treatment time and also to determine the best
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carburising time to produce a very good wear resistance structure.

8.3.2 Layer Morphology

Ball Crater

The surface features have been observed in this work. Typical ball craters made on

the carburised surfaces are shown in Fig. 8.19. The ball craters has a grey colour

appearance. The carbide layer thicknesses were measured from the ball crater.

However it’s very hard to distinguish the diffusion zone for carburised samples.

Therefore diffusion zone thicknesses were measured using the cross section technique.

Figure 8.19: Ball crater made on the surface of carburised sample at 925oC for
duration of: a) 3h, b) 20h and c) 40h. Showing carburised layer on the surface.

Cross-section

Similar to what was done previously in Section 8.2, cross-sections were also produced

as shown in figure 8.20 for 3h (a), 20h (c) and 40h (e) samples. Also SEM images

of the cross-sections were also taken for 3h (b), 20h (d) and 40h (f) samples. From

ball crater (Figure 8.19) and cross-sectional results (figure 8.20), it can be seen that

the duration of carburising has a large effect on the thickness of carbide layer.
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Figure 8.20: Optical and SEM micrographs showing cross-sectional morphology of
pack carburised zirconium carburised at 925oC for durations of 3h (a and b), 20h (c
and d) and 40h (e and f). Optical images were taking using magnification of 200X
and SEM images were taking using magnification of 1000X

After carburising the sample for 3h, the carbide layer was about 3.5µm thick

(Figure 8.19a), which was increased to about 5.7 and 7.1µm after increasing the

duration of the treatment to 10 and 20h (Figure 8.19b). After increasing the treat-

ment duration to 40h, the thickness of carburised layer produced was about 9.9µm

(Figure 8.19c). It can be seen that carburising needs a high temperature and long

time to produce a thick carbide layer. This can be proved by seeing the poor ad-

hesion, spalling and cracks on the ball crater of the 3h sample (Figure 8.19a). On

the other hand both 20h and 40h samples (Figure 8.19b and c) show uniformed ball
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Table 8.4: Layer thickness developed after pack carburising

Duration of carburising
(h)

Carbide layer Thickness
(µm)

Oxygen diffusion depth
(µm)

3 3.5 130
10 5.7 155
20 7.1 175
40 9.6 215

crater with hardly seen cracks.

Table 8.4 lists the thicknesses of the carbide layer and oxygen diffusion depth for

all treated samples. It can be seen that as the time of carburising increases both

carbide layer thickness and oxygen diffusion depth are increased. This is due to

the longer duration of carburising treatment, which helps in providing thicker layer.

Figure 8.21 shows the film thicknesses of the ZrC and ODZ regard to the duration of

carburising, plotted in the logarithm scale for thickness. A nearly linear relationship

is found for both the carbide layer and the diffusion zone. This is expected from the

solid diffusion law.

Figure 8.21: Film thickness of CL and ODZ with regard to time of carburising, for
samples carburised at 925oC for durations of 3h, 10h, 20h and 40h

It can be seen that as the time of carburising increases, the thickness of the

carbide layer increases and the depth of oxygen diffusion zone increases too. Figure

8.21 states that duration of carburising has a huge effect on the formation of carbide

layer and oxygen diffusion zone. According to the law of diffusion, under a constant
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surface concentration and temperature, the diffusion depth is governed by:

d = Ct1/2, i.e.log(d) = C + 1/2t (8.1)

Thus a linear relationship between log(d) and t is expected, as shown in Fig.

8.21.

8.3.3 Glow discharge optical spectroscopy GDOS

The combination of both carbon and oxygen into the surface of treated zirconium

was also investigated using GDOS to see if the duration of carburisation can affect

the results and also in order to find the composition profile measurements. Figure

8.22 shows both carbon and oxygen profiles. It can be clearly seen that the diffusion

of carbon was more effective for duration of 20h and 40h. However, when the

duration is lower than 20h the carbon diffusion decreases. From GDOS profile it

can be seen clearly that carbon is penetrating about 4µm for the 3h sample and

compared with 14µm for the 40h sample. On the other hand, the oxygen diffusion

was also investigated for all treated samples as shown in figure 8.22b. The amount

of oxygen is not constant through the depths of 10h, 20h and 40h samples. But for

the 3h sample it can be seen that the oxygen concentration is high and goes up to

40% and the amount of oxygen penetrating is about 14µm. This indicates that the

carbon content is low when the oxygen content is high for all carburised samples.

Figure 8.22b shows that when carburising is undertaken for duration of 40h, the

oxygen concentration starts to drop faster than any of the other carburised samples.

In fact the oxygen concentration for the 40h sample is settled less than 1%. However

the dropping of oxygen concentration is decreased for the 3h sample and the oxygen

concentration settled about 2-4%.
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Figure 8.22: Carbon (a) and oxygen (b) concentration profiles measured by GDOS
produced by carburisation at temperature of 925oC for 3h, 10h, 20h and 40h.

8.3.4 Micro-Hardness profile

Micro-hardness testing was conducted on cross-sectional samples (3h, 10h 20h and

40h) and it was compared with untreated samples as shown in figure 8.23. Car-

burised samples have a very harder surface compared to thermal oxidised samples,

with hardness up to 1200HV which is similar to that of carburised titanium [200].

Figure 8.23: Cross-sectional hardness curves for the carburised samples treated at
925oC for 3h, 10h, 20h and 40h
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As shown in figure 8.23, surface hardness depends on the thickness of the car-

burised layer built on the surface. It can be seen clearly that there is definite cor-

relation between the duration of the carburisation and layer thickness. This means

when the duration is longer, the hardness will be higher too until it reaches a certain

depth (400-600µm). When hardness is measured between 400 and 600µm which is

the centre of the cross-section of all samples, this will be the meeting point of the

substrate and it is similar to the hardness of the untreated sample. The 3h sample

is the only sample that went out of the 400-600µm ranges, but only by few microns.

This can be explained by the smaller diffusion depth for the short duration

From figure 8.23 it can be seen that the hardness remains high until it reaches

a depth of about 20-30µm. There is a sharp reduction in hardness from 1200Hv to

800HV across the carbide layer, this can be explained by the reduced amount of ZrC

phase with depth. The sharp reduction is followed by gradual decline in hardness

across the oxygen diffusion zone (ODZ) from 800HV to that of untreated zirconium

200HV.

Increasing the carburisation duration helped the oxygen to diffuse deeper into

the zirconium substrate creating larger ODZ. When the ODZ is larger, this will help

in increased load bearing capacity. This also states that the structure of all samples

is a multi-layered structure consisting of ZrC (carbide layer) and α-Zr(O) (oxygen

diffusion zone).In general it can be stated that increasing the duration of carburising

increases the thicknesses of both oxygen diffusion zone and the carbide layer.

8.3.5 X-Ray Diffraction XRD

Similar to the previous section, x-ray diffraction (XRD) was undertaken using Cu-K

radiation. This helps in finding the existing phases that are present in the carburised

sample. Figure 8.24 shows the X-ray diffraction results for untreated sample as well

as the samples carburised for different durations (3h, 20h and 40h). The diffraction

pattern shows that the surface layer consists zirconium carbide (ZrC). Theoretically

it is expected to see the peaks of α-Zr shifting down with increasing the duration

of carburising. The XRD graph is also showing clearly that with increasing the

duration of the carburisation, the thickness of the carbide layer increases. The X-

ray radiation couldn’t penetrate the 3h sample to an appropriate depth to detect

the ODZ. This could also explain why the α-Zr peaks are reduced from 10h sample

to the 20h sample and even lower in the 40h sample.

From the XRD results, it can be deduced that during the early stage of car-
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burising, oxidation of the CP-Zr surface is dominant, leading to the formation of an

oxide layer on the surface. With increasing curburising time, carbirisation becomes

more dominant and a ZrC layer is formed. Clearly, carburisation is preceded by

oxidation. A sufficiently long time is required (more than 20 h) for the carburising

effect to happen to form a ZrC layer.

Figure 8.24: X-Ray diffraction patterns generated from samples carburised at tem-
perature 925oC for durations of 3h, 20h and 40h against untreated zirconium

Table 8.5 shows the phase composition for each treated and untreated samples.

It can be seen that for longer duration (20h and 40h) ZrC phase is very strong.

However, when the carburizing time is lower than 20h α-Zr and m-ZrO2 are more

dominant.

From table 8.5 it can be seen that the α-Zr and m-ZrO2 phases are strong in

the 3h sample. This indicates that short carburizing time would only form a thin

carbide layer on surface of the sample. It can be stated that the strong m-ZrO2
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Table 8.5: Summary of XRD results

Time (h) Phase composition
Untreated α-Zr

3 ZrC (weak),C − ZrO2(mediate),m-ZrO2 (strong), α-Zr (strong)
10 ZrC (weak),C − ZrO2(weak),m-ZrO2 (mediate), α-Zr (mediate)
20 ZrC (strong), C − ZrO2(weak),m-ZrO2,(mediate), α-Zr (weak)
40 ZrC (strong), C − ZrO2(mediate),m-ZrO2 (strong), α-Zr (weak)

phase exist because oxidation initiated before carburizing. For carbide layer to be

formed perfectly, the duration of carburizing should be longer. When the duration

is increased to 10h, the only difference is that the m-ZrO2 phase is weaker due to

the fact that there are less chances for the formation of oxide layer compared with

3h sample. However at longer durations (20h and 40h), the ZrC phase is stronger,

this states that at longer durations the formation of carbide layer is generated with

more carbon concentration.

8.3.6 Tribological response

The samples were tested tribologically under dry conditions against an alumina ball

(Al2O3). 20h and 40h samples lasted at least for three hours under load of 10N, but

both 3h and 10h samples were unable to last up to three hour as shown in figure

8.25.

175 Abdulkarim Alansari



Chapter 8. Pack Carburising

Figure 8.25: Coefficient of friction (COF) curves recorded for samples pack car-
burised at 925oC for duration of 3h, 10h, 20h and 40h under load of 10N

Figure 8.25 shows the coefficient of friction (COF) curves recorded under load of

10N. The results show that carburising treatment creates a low friction and stable

COF. The duration of carburisation has a noticeable effect on the initial frictional

response of all treated samples. The 3h sample lasted nearly about 7200s with

COF of about 0.5. However when the carburising duration was increased to 10h the

COF increased to about 0.6 and the ZrC layer couldn’t last for two hours. This is

interesting and unexpected because the 3h sample lasted longer. The reason behind

this could be because of the mixture of both oxide and carbide layers that gave

the 3h sample better friction resistance. On the other hand, the 20h sample lasted

much longer, about 10800s, because there is no obvious breakdown of the ZrC layer.

Finally the 40h sample is an interesting sample, because there was a lot of cracks

on the ZrC layer but which did not breakdown fully compared with other samples.

The 40h sample lasted more than 14400s with no cracks, but the ZrC layer started

having cracks and removal signs after 15120s. When comparing both tribological

response and the characterisation of all treated samples, then it can be clearly seen

that there is a strong correlation between the thickness of ZrC layer and the low

friction regime gained from friction and wear testing.
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8.3.7 Wear rates

Wear rate was compared in two stages (first hour and last hour) as shown in figure

8.26. It can be seen that when the test is initiated for the first hour, the wear rate is

always low. The 3h sample shows lowest wear rate (0.00009mm3/m) in the first hour

confirming the idea of having mixture of oxide and carbide layers. The 10h sample

suffered from high friction which lead to having high wear rate (0.00069mm3/m)

in the first hour. Both 20h and 40h samples have low wear rates (0.00015mm3/m)

demonstrating that samples carburised for longer durations have better and thicker

ZrC layers. However in the last hour, the 3h sample lost the advantage of having the

lowest wear rate and it went high to 0.01099mm3/m and the film broke through. The

10h sample showed no improvement and wear rate increased to (0.0.01769mm3/m)

and film broke through.

Figure 8.26: Wear rate comparison for carburised samples produced at 925oC for
durations of 3h, 10h, 20h and 40h under load of 10N in stages of first hour and last
hour.

The 20h sample showed lower wear rate (0.00340mm3/m) compared to both 3h

and 10h samples and film broke through in most parts of the wear track. While the
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40h sample shows the lowest wear rate (0.00102mm3/m) in the last hour, confirming

that carburising for longer duration has a large effect on wear behaviour.

8.3.8 wear track morphology

Wear track morphology was investigated every hour till failure as shown in figures

8.27, 8.28, 8.29 and 8.30. Figure 8.27 shows the wear tracks after the first hour

of wear and friction testing. It can be seen that all samples managed to survive

without film failure. All samples were worn mildly by micro-abrasion and polishing

and show low wear rates.

Figure 8.27: Optical microscopic images showing wear track morphology of zirco-
nium carburised at 925oC for durations of (a) 3h, (b) 10h, (c) 20h and (d) 40h tested
under load of 10N for 3600s after first hour of friction and wear testing.
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Figure 8.28: Optical microscopic images showing wear track morphology of zirco-
nium carburised at 925oC for durations of (a) 3h, (b) 10h, (c) 20h and (d) 40h tested
under load of 10N for 3600s after second hour of friction and wear testing.

After the second hour of friction and wear testing, all samples managed to survive

without film failure apart from the 10h sample (figure 8.28). The 3h sample still

show good wear resistance after the second hour of testing, dominating by micro-

abrasion and polishing. However, figure 8.28b shows that the 10h sample suffered

from breakdown of the carbide layer after the second hour of testing, resulting in

a wide and deep wear track. The carbide film is removed completely followed by

cracks everywhere on the wear track and around it.

The 20h sample showed better wear resistance (figure 8.28c), but the sample

suffered from more material removal especially in the center of wear track. However,

the inner side of the wear track suffered from less material removal. After the second

hour, the 20h sample started to have abrasion marks on the outer side of the wear

track. The 40h sample (figure 8.28d) showed better wear resistance compared with

other samples, this is due to the long duration of carburisation which built a thick

ZrC layer. But the 40h sample started to show abrasion marks across the wear

track.
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Figure 8.29: Optical microscopic images showing wear track morphology of zirco-
nium carburised at 925oC for durations of (a) 3h, (b) 20h and (c) 40h tested under
load of 10N for 3600s after third hour of friction and wear testing.

Figure 8.29 shows the breakdown of ZrC layer of 3h and 20h samples, but the

40h sample managed to survive. It can be seen that for durations of 3h and 20h

(8.29a and b) the film was removed completely. Both samples suffered from severe

wear and high friction followed by abrasion across the wear track. The 40h sample

(figure 8.29c) showed better wear resistance without ZrC layer breakdown. However,

there are a lot of abrasion marks and small cracks started to form after the third

hour of testing.

Figure 8.30: Optical microscopic images showing wear track morphology of zirco-
nium carburised at 925oC for duration of 40h tested under load of 10N for 3600s
after (a) 4h, (b) 5h and (c) 6h of friction and wear testing.
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The 40h sample was the only sample to survive for more than 3h of friction and

wear testing. Figure 8.30 shows the wear tracks of the 40h sample after fourth, fifth

and sixth hours of testing. It can be seen that after the fourth hour (8.30a), the 40h

sample suffered from more material loss compared to the wear track after the third

hour of friction and wear testing (8.29c). It is clearly seen that cracks started to

increase in size and number and abrasion marks are spreading everywhere on wear

track. After the fifth hour, it can be seen that abrasion is taking over the center of

wear track. There is also more delamination around the wear track (8.30b). Finally

after the six hour of friction and wear testing (8.30c), the 40h sample managed to

survive. However, the sample suffered form a lot of material loss due to abrasive

wear and delamination.

Overall, it is confirmed that increasing carburising time produces a thicker ZrC

layer and diffusion zone. The thicker the layer, the longer the film lasts on the

surface of zirconium sample during sliding wear. Figures 8.27,8.28, 8.29 and 8.30also

confirms what was showed in figure 8.25, that the longer the film remains with

contact zone the lower is the friction observed from the tests. It is also noticed

that increasing the carburising duration will allow more carbon diffusion into the

zirconium subsurface as demonstrated by GDOS (figure 8.22). Increasing carbon

diffusion into zirconium surface creates a thicker layer of ZrC to form. This was

confirmed by the cross-sectional images (figure 8.20). In conclusion the ZrC layer

formed because of increasing the duration of carburising is responsible in observing

lower friction during friction and wear testing.

Figure 8.31: Microscopic images showing the wear scar on the alumina ball after
sliding with zirconium carburised for 3h at temperature of 925oC under 10N load
after (a) 1h, (b) 2h and (c) 3h of friction and wear testing.

Figure 8.31 shows the wear scar on the alumina ball used during friction and wear

testing on the 3h sample. It can be seen that as the in the first and second hour

(8.31a and b), the scar is small and the diameters are 455µm and then 617µm. But
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after the third hour of wear and friction testing (8.14c), there is a lot of removed

material sticking on the alumina ball and the diameters of scar has increased to

1653µm. This is due to the failure of carbide layer of the 3h sample.

Figure 8.32: Microscopic images showing the wear scar on the alumina ball after
sliding with zirconium carburised for 10h at temperature of 925oC under 10N load
after (a) 1h and (b) 2h of friction and wear testing.

Figure 8.32 shows the wear scar on alumina ball used during friction and wear

testing on the 10h sample. It can be seen that after the first hour (8.32a), a lot

of material from the sample is sticking on the alumina ball. The diameter of the

alumina ball scar after the first hour of friction and wear testing is 649µm. After

the second hour of testing (8.32b) the diameter increased to 1892µm, and it can

be seen that the ball suffered from massive material loss. This can be linked to

figure (8.28b), which shows that the carbide layer was removed completely from the

sample.

Figure 8.33: Microscopic images showing the wear scar on the alumina ball after
sliding with zirconium carburised for 20h at temperature of 925oC under 10N load
after (a) 1h, (b) 2h and (c) 3h of friction and wear testing.
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Figure 8.34: Microscopic images showing the wear scar on the alumina ball after
sliding with zirconium carburised for 40h at temperature of 925oC under 10N load
after (a) 1h, (b) 2h, (c) 3h, (d) 4h, (e) 5h and (f) 6h of friction and wear testing.

Figure 8.33 shows the wear scar on the alumina ball used during friction and

wear testing on the 20h sample. It can be seen that after the first hour (8.33a), the

scar is small and there is no material sticking on the alumina ball. The diameter

of the ball scar after the first hour of friction and wear testing is 470µm. After

the second hour of testing (8.33b) the diameter size increased to 733µm, and the

ball suffered from high material loss compared with after the first hour. However,

after the third hour of testing, the wear scar has increased in size to about 1183µm

(8.33c). This is because the ZrC layer broke down during the sliding process.

On the other hand, Figure 8.34 shows the wear scar on the alumina ball used

during friction and wear testing on the 40h sample. It can be seen that after the first

hour the scar diameter was about 498µm (8.34a), and there is no material sticking

on the alumina ball. After the second hour of testing the scar increased in size

and there is some material removed from the ball (8.34b). The scar diameter has

increased to 508µm after the second hour of testing. But when the sample was tested

for the third hour (8.34c), the scar has not changed in shape, but the diameter of

the scar increased to 572µm. After the fourth and fifth hours of testing (8.14d and

e), there is a lot of removed material sticking on the ball and the diameters of the

scar has increased to 601µm and then 627µm. After sixth hour of testing (8.34f),

the size of the scar has increased considerably compared with first hour. The scar
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Table 8.6: Carbon and energiser percentage used within the pack

Carbon (wt%) Energiser (wt%) Ratio (C:BaCO3:Na2CO3:CaCO3)
80 20 24:3:2:1
70 30 14:3:2:1
50 50 6:3:2:1

increased to 655µm after the final hour, but the shape of the scar hasn’t changed

and this is because the 40h sample managed to survive friction and wear testing

without ZrC layer breakdown.

8.4 The effect of pack composition on carburisa-

tion process

8.4.1 Process

The initial composition used in the pack mixture was the same composition used

for typical titanium carburization [17]. The energiser was created using Barium

carbonate (BaCO3), sodium carbonate (Na2CO3) and calcium carbonate (CaCO3)

in ratio of 3:2:1 (70% carbon concentration). This pack of carbon and energiser

was used at the start to determine the optimal temperature and time for Zirconium

carburisation (Section 8.2 and 8.3). The mixtures used in this section have different

energizer concentration (20%, 30% and 50%) as listed in table 8.6. Carburisation

treatment took place at the temperature of 925oC with duration of 20h and then

cooled down using furnace cooling (FC). After carburisation the samples were then

tested tribologically to determine the effect of pack composition and also to see the

best composition to produce a very good wear resistance structure.

8.4.2 Layer Morphology

Ball Crater

The surface features have been observed to see the effect of composition on carbide

layer. Figure 8.35 shows a typical ball craters made on the carburised surface.

Unlike the ball crater on oxidised surface, which has a grey colour appearance, the

ball crater on carburised surface shows a dark yellowish appearance. However it is

very hard to distinguish the diffusion zone for carburised samples.
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Figure 8.35: Ball crater made on the surface of carburised samples at 925oC for
duration of 20h using various composition: a) 20%, b) 30% and c) 50%.

The 20% (energiser) sample shows a lot of carcks and pittings, this is due to the

lower content of energizer, resulting in insufficient active carbon in the container

and thus less carbide formation. On the other hand the 30% (energiser) sample

shows the best carbide layer appearance. Clearly, pack carburising composition has

affected the formation of carbide layer. But increasing the energiser composition in

the pack does not always produce a good carbide layer. As shown in figure 8.35b,

the 30% sample showed better carbide layer compared with the 50% sample (8.35c).

This is due to the reduction of carbon content in the 50% sample as shown in table

8.6. The carbide layer of the 50% sample is thick, but the surface is not uniformed

and there are small cracks in some areas. This indicates that the carbide layer is no

longer protective.

Cross-section

Similar to what was done previously in both temperature and time effect on car-

burising, cross-sections were also produced as shown in figure 8.36 for 20% (a), 30%

(c) and 50% (e) samples. Also SEM images of the cross-sections were also taken for

20% , 30% and 50% samples (figure 8.36b, d and f). From ball crater (Figure 8.35)

and cross-sectional results (figure 8.36), it can be seen that pack composition has a
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significant effect on the thickness of carbide layer and the diffusion zone.

Figure 8.36: Optical and SEM micrographs showing cross-sectional morphology of
pack carburised zirconium carburised at 925oC for durations of 20h using composi-
tion of 20% (a and b), 30% (c and d) and 50% (e and f).

After carburising the sample using composition of 20% energiser, the carbide

layer was about 5.5µm thick (Figure 8.36a), which was increased to about 7.1 and

10.1 µm after increasing the energiser composition to 30% and 50% (Figure 8.36b

and c). Clearly, carburising needs a sufficient amount of energiser in the pack to

produce sufficient active carbon for the formation of a thick carbide layer.

Table 8.7 lists the thicknesses of the carbide layer and the oxygen diffusion zone

for all treated samples. It can be seen that as the energiser content increases both

carbide layer thickness and oxygen diffusion depth are increased.
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Table 8.7: Layer thickness developed after pack carburising

Composition of carburising
(%)

Carbide layer Thickness
(µm)

Oxygen diffusion depth
(µm)

20 5.5 164
30 7.1 175
50 10.1 220

8.4.3 Micro-Hardness profile

Micro-hardness testing was conducted on cross-sections on all samples (20%, 30%

and 50%) and it was compared with untreated samples as shown in figure 8.37. Car-

burised samples have a very harder surface compared to thermal oxidised samples,

with hardness up to 1200HV which is similar to that of carburised titanium [17].

Figure 8.37: Cross-sectional hardness curves for the carburised samples treated at
925oC for 20h using composition of 20%, 30% and 50%.

As shown in figure 8.37, surface hardness depends on the thickness of the car-

burised layer built on the surface. It can be seen clearly that there is definite

correlation between the pack composition of the carburisation and layer thickness.

This means when the energiser composition percentage is high, the hardness will be

higher too until it reaches a certain depth (500-600µm). When hardness is measured

between 400 and 600µm which is the centre of the cross-section of all samples, this

will be the meeting point of the substrate and it is similar to the hardness of the
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untreated sample. The 20% sample is the only sample that went out of the 400-

600µm ranges. This can be explained by the low content of energiser in the mixture

which leads to building a thin carbide layer on the surface of zirconium.

From figure 8.37 it can be seen that the hardness remains high until it reaches

a depth of about 30-40µm. There is a sharp reduction in hardness from 1180Hv to

850HV across the carbide layer; this can be explained by the reduced amount of ZrC

phase with depth. The sharp reduction is followed by gradual decline in hardness

across the oxygen diffusion zone (ODZ) from 850HV to that of untreated zirconium

200HV.

Increasing the energiser content in the mixture of carburisation helped the oxygen

to diffuse deeper into the zirconium substrate creating larger ODZ. However, it can

be seen that the 30% sample is actually harder in the first 100µm distance compared

with other samples (figure 8.37). After the depth of 100µm, the 50% sample show

higher hardness all the way to substrate (200HV).

8.4.4 X-Ray Diffraction XRD

X-ray diffraction (XRD) was undertaken using Cu-K radiation. This helps in finding

the excising phases that are present in the carburised sample. Figure 8.38 shows

the X-ray diffraction results for untreated sample as well as the samples carburised

using different pack compositions (20%, 30% and 50%). The diffraction pattern

shows the existence of zirconium carbide (ZrC) and monoclinic (ZrO2). The XRD

graphs show clearly that with increasing the energiser content in the carburising

pack, the thickness of the carbide layer increases, because the X-ray radiation could

not penetrate the sample to an appropriate depth to detect the ODZ. This could

also explain why the α-Zr peaks are reduced as the concentration of energiser is

increased.
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Table 8.8: My caption

Composition (%) Phase composition
Untreated α-Zr

20 ZrC (weak),C − ZrO2(weak),m-ZrO2 (mediate), α-Zr (mediate)
30 ZrC (strong), C − ZrO2(weak),m-ZrO2,(mediate), α-Zr (weak)
50 ZrC (strong), C − ZrO2(mediate),m-ZrO2 (strong), α-Zr (weak)

Figure 8.38: X-Ray diffraction patterns generated from samples carburised at tem-
perature 925oC for duration of 20h using composition of 20%, 30% and 50% against
untreated sample

Table 8.8 shows the phase composition for each treated and untreated samples.

It can be seen that using more energizer concentration (30% and 50%) ZrC phase

is very strong. However, when the energizer concentration is lower than 50% α-Zr

and m-ZrO2 are more dominant.

From table 8.8 it can be seen that the α-Zr and m-ZrO2 phases are strong in

the 20% sample. This indicates that carburizing using less energizer concentration

would only form a thin carbide layer on surface of the sample. It can be stated

that the strong m-ZrO2 phase exist because oxidation initiated before carburizing.

For carbide layer to be formed perfectly, the concentration of energiser should be

increased. When the concentration is increased to 30%, the only difference is that the

m-ZrO2 phase is weaker due to the fact that there are less chances for the formation
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of oxide layer compared with 20% sample. However, by using more concentration

of energizer(30% and 50%), ZrC phase is stronger, which states that choosing the

mixture of charcoal and energizer is an important factor for the formation of carbide

layer.

8.4.5 Tribological response

The samples were tested tribologically under dry conditions against an alumina ball

(Al2O3). The 20% sample lasted at least for six hours under load of 10N, but both

30% and 50% samples were able to last up to three hour as shown in figure 8.39.

Figure 8.39: Coefficient of friction (COF) curves recorded for samples pack car-
burised at 925oC for duration of 20h using composition of 20%, 30% and 50% under
load of 10N

Figure 8.39 shows the coefficient of friction (COF) curves recorded under load of

10N. The results show that energiser composition of carburisation has a noticeable

effect on the initial frictional response of all treated samples. The samples show lower

COF, this can be linked to the thick ZrC layer that helped in friction reduction.

It can be seen that the 20% sample survived for 21600s with COF of about 0.6.

However when the energiser composition was increased to 30% the COF settled on

0.55. But the ZrC layer couldn’t last more than 10800s, and COF increased to 0.65

after the carbide layer was removed. When the energiser composition was increased

to 50%, the COF increased to about 0.7. Similar to the 30% sample, the 50%sample
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couldn’t last more than 10800s. However at the end of friction and wear testing, the

carbide layer was removed and the COF increased to about 0.8.

Clearly, there is a strong correlation between the thickness of or ZrC layer and

the low friction results gained from friction and wear testing. This can state that

the composition of both energizer and carbon have a significant effect as shown from

(8.39).

8.4.6 Wear rates

Wear rate was compared between all treated samples every hour till failure as shown

in figure 8.40. It can be seen that when the test is initiated for the first hour, the

wear rate is always low. The 20% sample was carburised with very high carbon

concentration and it shows a very low wear rate (0.000044mm3/m) in the first hour.

The 30% sample suffered from slightly higher wear compared with the 20% sample

(0.000148mm3/m) in the first hour. It can be seen that the 50% sample showed

similar wear rate to the 30% sample after the first hour of testing (0.000117mm3/m).

Figure 8.40: Wear rate comparison for carburised samples produced at 925oC for
durations of 20h using compositions of 20%, 30% and 50% under load of 10N in
stages of 1h till failure

During the second hour of testing, again the 20% sample showed the lowest wear

rate (0.000241mm3/m). The 30% sample suffered from high wear during the second

hour of friction and wear testing and wear rate increased to (0.000697 mm3/m).
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The 50% sample showed lower wear rate (0.000246 mm3/m) during the second hour

compared with 30% sample.

In the third hour, the 20% sample shows the lowest wear rate (0.000325 mm3/m)

compared to the 30% and 50% sample (0.003404 and 0.000615mm3/m). It can be

seen that the 30% sample suffered from high severe wear during the third hour. Wear

track morphology will be investigated to confirm the removal of the carbide layer.

The 50% sample showed the second lowest wear rate (0.000615mm3/m) during the

third hour and then film broke through.

It was noticed that the 20% sample was the only sample to last 6h before failure

in friction and wear testing. In the fourth and fifth hours, the 20% sample managed

to survive with low wear rate (0.000325 and 0.000471 mm3/m). In the sixth hour the

20% sample managed to survive, this can be linked to the rich carbon concentration

in the mixture.

8.4.7 wear track morphology

Wear track morphology was investigated every hour till failure as shown in figures

8.41, 8.42, 8.43 and 8.44. Figure 8.41 shows the wear tracks after the first hour of

wear and friction testing . It can be seen that the wear tracks demonstrate the effect

of carburising composition on wear.
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Figure 8.41: Optical microscopic images showing wear track morphology of zirco-
nium carburised at 925oC for durations of 20h tested under load of 10N for 3600s
after first hour of friction and wear testing using composition of (a) 20%, (b) 30%
and (c) 50%.

After the first hour of friction and wear testing (Figure 8.41), all samples man-

aged to survive without film failure. The 20% and 30% samples show heavier wear

compared with the 50% sample with dominating mechanism due to the fine polish-

ing abrasion. But it is also clearly seen that the 30% sample suffered from higher

wear compared with other samples although the carbide layer has not been removed.

193 Abdulkarim Alansari



Chapter 8. Pack Carburising

Figure 8.42: Optical microscopic images showing wear track morphology of zirco-
nium carburised at 925oC for durations of 20h tested under load of 10N for 3600s
after second hour of friction and wear testing using composition of (a) 20%, (b) 30%
and (c) 50%.

After the second hour of friction and wear testing, all samples managed to survive

without film failure (figure 8.42). Its clearly seen that the 20% sample show good

wear resistance after the second hour of testing compared with both 30% and 50%

samples (figure 8.42b and c). However, the 20% sample (figure 8.42a) suffered from

slightly more material removal compared to wear track after the first hour (figure

8.41a). Figure 8.42b shows that the 30% sample is about to fail to resist friction

and wear testing after the second hour. The carbide film is nearly removed from the

center and outer side of wear track. There are a lot of small cracks and abrasion

marks on the outer side of wear track; this indicates that the sample is suffering

from severe wear.

The 50% sample suffered from more material removal especially in the center of

wear track. After the second hour, the 50% sample started to have abrasion marks

on the center of wear track without carbide layer breakdown.
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Figure 8.43: Optical microscopic images showing wear track morphology of zirco-
nium carburised at 925oC for durations of 20h tested under load of 10N for 3600s
after third hour of friction and wear testing using composition of (a) 20%, (b) 30%
and (c) 50%.

Figure 8.43 shows the breakdown of ZrC layer of 30% and 50% samples, but the

20% sample managed to survive. Although the 20% sample survived, there is more

material removal followed by minor delamination after the third hour of testing.

There are also abrasion marks in the center of wear track (8.43a).

It can be seen that for energiser composition of 30% (8.43b) the carbide layer

was removed. Some parts managed to survive, but the carbide layer is no longer

protecting the surface of zirconium after the third hour. Similar to the 30%, the

50% sample failed to resist friction and wear testing after the third hour.

The 30% and 50% samples suffered from severe wear and high friction followed

by abrasion across the wear track. Although the 50% sample failed to survive

(figure 8.43c) and the film was removed, but still some parts of the film survived.

The breakdown of the ZrC structure within the wear track allows the exposure of

the oxygen diffusion zone (ODZ) to become the dominating factor in defining both

coefficient of friction and wear rate. Delamination exists after removing the ZrC

layer as well as abrasive wear on the exposed oxygen diffusion zone (ODZ).
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Figure 8.44: Optical microscopic images showing wear track morphology of zirco-
nium carburised at 925oC for 20h using composition of 20% tested under load of
10N for 3600s after (a) 4h, (b) 5h and (c) 6h of friction and wear testing.

The 20% sample was the only sample to survive for more than 3h of friction and

wear testing. Figure 8.44 shows the wear tracks of the 20% sample after fourth, fifth

and sixth hours of testing. It can be seen that after 4 to 6 hours (8.44), the 20%

sample suffered from more material loss compared to the wears track after the first

three hours of friction and wear testing (8.41c, 8.42c and 8.43c). It is clearly seen

that cracks started to get larger and abrasion marks are spreading everywhere on

wear track.

Figure 8.45: Microscopic images showing the wear scar on the alumina ball after
sliding with zirconium carburised for 20h at temperature of 925oC under 10N load
using composition of (a) 20%, (b) 30% and (c) 50%.

Figure 8.45 shows the wear scars on alumina ball used during friction and wear

testing on the carburised samples with different energiser compositions (20%, 30%

and 50%). It can be seen that for the 20% sample (8.45a), the scar is very rounded

and smooth with diameter of 869µm. This can be explained by the low wear rate of

the 20% sample as shown in figure 8.40. After increasing the energiser composition

to 30% (8.45b), the wear scar on the ball is larger and the diameters of the scar is

1183µm. This is due to the break through of the carbide layer of the 30% sample,

which leads the removed material to stick on the ball. For the 50% sample (8.45c),
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it can be seen that the scar is smaller compared with 30% sample (8.45b). The scar

on the ball sliding against 50% sample has a diameter of 857µm, and the scar is

covered with material removed from the sample.

8.5 Conclusion

Due to time constraints, the pack carburisation work reported in this chapter is

rather preliminary, focusing on three processing parameters, i.e. temperature, time

and pack composition. The conclusions that can be drawn are as follows:

• Pack carburising is only effective at sufficient high temperatures above 900oC,

for sufficiently long treatment duration more than 10 h and in carburising

packs with sufficient energiser concentration.

• Successfully carburised CP-Zr comprises a thin ZrC carbide layer of a few

microns thick at the surface and an oxygen and carbon diffusion zone up

to 400 microns thick in the subsurface. The residual oxygen in the sealed

container facilitates oxygen diffusion to the substrate during high temperature

cauburising.

• The combination of the carbide layer and the diffusion zone offers improved

frictional characteristics and wear resistance to CP-Zr under dry sliding con-

ditions.

• The optimum carburising conditions to achieve the best tribological properties

are as follows: 925oC, 20 h, 50% energiser in the carburising pack.

• At temperatures below 900oC and treatment duration shorter than 20 h, oxi-

dation becomes more dominant. At the surface an oxide layer is formed with

traces of carbides inside. Such a mixed surface layer is found to possess better

friction and wear resistant characteristics than the carburised layers produced

at high temperatures and for long duration.

• Further optimisation of the pack carburising process should involve fine-tune

the process parameters and pack compositions to achieve a relatively thick

surface layer comprising a good mixture of carbides and oxides.
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Conclusions and Future Work

9.1 Conclusion

This work focuses on two surface engineering techniques for CP-Zr, i.e. thermal

oxidation and pack carburising. The conclusions that can be drawn from this work

are summaried in each chapter from chapter 4 to chapter 8. For clarity purpose,

these conclusions are list below.

9.1.1 Effect of TO temperature and initial surface finish

• Thermal oxidation at temperatures between 550oC and 700oC results in the

formation of a monoclinic ZrO2 layer 2-9 µm thick and an oxygen diffusion

zone of 1-7 µm thick on CP-Zr. The oxide layers are adherent and possess a

hardness up to 1300 HV0.025.

• TO was effective in reducing friction and wear rate of CP-Zr and once the

ZrO2 layer maintains its integrity with the substrate, TO temperature had no

significant effects on friction and wear.

• Under high contact loads, the ZrO2 layer tends to suffer from cracking in the

wear track. The thinner layers suffer from cracking at small loads. Although

increasing ZrO2 layer thickness helps to increase load bearing capacity, crack-

ing is unavoidable at high contact loads.

• Roughening the surface before oxidation helps to reduce the tendency of the

oxide layer towards cracking during sliding and to reduce wear rate.
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9.1.2 Effect of TO time

• Thermal oxidation at 650oC for duration less than 12 h produces a relatively

thick, dense, pore free and adherent oxide layer at the surface and a thin

oxygen diffusion zone at the subsurface.

• Such a combination of the oxide layer and the oxygen diffusion zone possesses

the lowest friction, best wear resistance and highest load bearing capacity.

• Although prolonged oxidation can increase the thicknesses of the oxide layer

and the oxygen diffusion zone, it leads to the gradual development of pores

in the inner part of the oxide layer and finally the breakaway of oxidation

characterized by accelerated oxide growth and crack formation in the oxide

layer.

• The formation of pores in the oxide layer has detrimental effects on friction

reduction, wear resistance and load bearing capacity.

• The oxide layer surface tends to suffer from cracking under the present dry

sliding process, and the oxide layer suffers from sudden breakdown after a

certain period of sliding contact motion. This can be associated with the

propagation of the surface cracks through the oxide layer and then the oxygen

diffusion zone to reach the oxygen diffusion zone substrate interface.

9.1.3 Effect of surface finish

• Smoothening the oxidized surface by polishing is beneficial in reducing friction

and wear volume of the TO sample if the contact load is relatively small (10

N).

• Under high contact loads (20 N), smoothening the oxidized surface deteriorates

the wear resistance of the TO sample and accelerates the breakdown of the

oxide layer.

• Smoothening the oxidized surface by polishing favours the formation of large

semi-circular cracks in the wear tracks during dry sliding under both contact

loads.

• The semi-circular cracks developed at the TO-polished surface propagate through

the surface layers to reach the substrate. This leads to the local breakdown
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of the oxide layer after sliding for a certain period of time under sufficiently

large contact loads (e.g. 20 N).

• A slightly rough TO surface (unpolished) is beneficial in reducing the tendency

of the oxide layer towards cracking during dry sliding, owing to the dominance

of asperity contacts which lead to micro crack formation at the real contact

areas and fracture of the contacting asperities.

9.1.4 Comparison between TO Zr and TO Ti

• Under the present thermal oxidation condition, 4 times more oxygen is intro-

duced into CP-Zr than into CP-Ti. As a result, the oxide layer produced on

CP-Zr is nearly 6 times thicker than that on CP-Ti.

• The TO-Zr possesses higher hardness, a deeper hardening depth and a greater

load bearing capacity than the TO-Ti.

• The TO-Zr exhibits better scratch resistance than the TO-Ti. During the

scratch test, the oxide layer on TO-Ti suffers from edge spallation at a load as

small as 7 N, while the oxide layer on TO-Zr can resist a scratch load up to

15 N without adhesive failure. The oxide layer on TO-Zr can accommodate

severe plastic deformation and maintains good integrity with the substrate at

high scratch loads.

• Under the present dry sliding conditions, as long as the oxide layer maintains

integrity with the substrate, such as at small contact loads, both TO-Ti and

TO-Zr specimens show similar wear resistance. However, at high contact loads,

the oxide layer on TO-Ti is removed easily, leading to accelerated wear of the

TO specimen. On the other hand, the oxide layer on TO-Zr can resist much.

• Under tribocorrosion conditions in Ringer’s solution, the oxide layer on TO-Ti

is removed from the corrosion-wear track at contact load as small as 2 N and

thus loses its barrier nature in the corrosive environment. On the other hand,

the oxide layer on TO-Zr maintains its integrity and barrier nature up to a

contact load of 10 N without crack formation and layer breakdown. Although

at higher contact loads of 15 N and above, the oxide layer on TO-Zr still

maintains its integrity with the substrate during tribocorrosion, cracks form

in the oxide layer and penetrate through the oxide layer to reach the substrate,

thus losing the barrier nature of the oxide layer against corrosion.
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9.1.5 Pack carburising of CP-Zr

• Pack carburising is only effective at sufficient high temperatures above 900oC,

for sufficiently long treatment duration more than 10 h and in carburising

packs with sufficient energiser concentration.

• Successfully carburised CP-Zr comprises a thin ZrC carbide layer of a few

microns thick at the surface and an oxygen and carbon diffusion zone up

to 400 microns thick in the subsurface. The residual oxygen in the sealed

container facilitates oxygen diffusion to the substrate during high temperature

cauburising.

• The combination of the carbide layer and the diffusion zone offers improved

frictional characteristics and wear resistance to CP-Zr under dry sliding con-

ditions.

• The optimum carburising conditions to achieve the best tribological properties

are as follows: 925oC, 20 h, 50% energiser in the carburising pack.

• At temperatures below 900oC and treatment duration shorter than 20 h, oxi-

dation becomes more dominant. At the surface an oxide layer is formed with

traces of carbides inside. Such a mixed surface layer is found to possess better

friction and wear resistant characteristics than the carburised layers produced

at high temperatures and for long duration.

• Further optimisation of the pack carburising process should involve fine-tune

the process parameters and pack compositions to achieve a relatively thick

surface layer comprising a good mixture of carbides and oxides.

9.2 Future Work

• Characterisation of oxide layer can be deeply investigated using photoelectron

spectroscopy (XPS), surface ion mass spectroscopy (SIMS) and atomic force

microscope (AFM). This will help to focus more on the response of thermally

oxidised zirconium.

• Modelling of the growing thermal oxide layer on Zirconium needs to be inves-

tigated. This will help to identify the related mechanical parameters; which

leads in gaining accurate mechanical characteristics parameters. A method
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using CFD (computational fluid dynamics) software Flow-3D, Oxide Film En-

trainment Model (OFEM), needs to be investigated to allow the assessment

of entraining events and the marking and tracking of entrained oxidised films.

• In the current research, thermal oxidation method was applied to improve the

tribological properties of CP-Zr. It was noticed that the cooling of oxidised

samples is not controlled. Future work should focus investigating the effect

of cooling down after oxidation. This can help to improve the formation of

thicker zirconium oxide (ZrO2) layers with increased adhesion. Slow cooling

would help to reduce the thermal contractions between the oxide layer and

substrate.

• Future work should focus on investigating the tribocorrosive response of both

oxidised (ZrO2) and carburised zirconium (ZrC) when charged cathodically.

This will help to detect zirconium hydride formation. The results can be

achieved using photoelectron spectroscopy (XPS), surface ion mass spectroscopy

(SIMS).

• For practical and industrial applications it would be benifecial to investigate

the fatigue properties of PC-Zr. Therefore, fatigue testing should be done on

carburised zirconium with oxygen diffusion.

• In this research only one carburising method was used (pack carburising),

this is because this was the available method during research period. Further

investigation should be done to develop more carburising techniques such as

gas carburising, plasma carburising and vacuum furnace carburising. This will

help to control the stages of carburising treatment. The outcome of this study

can help to create a strong film containing a mixture of both ZrO2 and ZrC.

• Characterisation using transmission electron microscope (TEM) would be very

helpful to identify the ZrC networks crystal structure of the film.

• It is very important to investigate the relationship between oxygen and carbon

in depth. This can help to understand the process of carburising treatment.

This can also help in controlling the content of carbon and oxygen in the film

rather than predicting it.

• In this research CP-Zr and CP-Ti were compared, but it would be interesting

to create a Zr film on the surface of titanium followed by thermal oxidation.
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The outcome of this method can help the samples to gain good tribological

and tribo-corrosion properties. It can also proved better characterisation in

terms of hardness and oxide layer thicknesses.
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