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Abstract-Many real-world optimization problems appear to
not only have multiple objectives that conflict each other but also
change over time. They are dynamic multi-objective optimization
problems (DMOPs) and the corresponding field is called dynamic
multi-objective optimization (DMO), which has gained growing
attention in recent years. However, one main issue in the field of
DMO is that there is no standard test suite to determine whether
an algorithm is capable of solving them. This paper presents a
new benchmark generator for DMOPs that can generate several
complicated characteristics, including mixed Pareto-optimal front
(convexity-concavity), strong dependencies between variables, and
a mixed type of change, which are rarely tested in the literature.
Experiments are conducted to compare the performance of five
state-of-the-art DMO algorithms on several typical test functions
derived from the proposed generator, which gives a better
understanding of the strengths and weaknesses of these tested
algorithms for DMOPs.

I. INTRODUCTION

Many real-world multi-objective optimization problems
(MOPs) appear to change over time in a dynamic environment,
such as planning [20], scheduling [3], and control [22]. Dy­
namic multi-objective optimization problems (DMOPs) have
gained increasing attention over the past several years. Due to
the dynamics of these problems, the optimization of DMOPs
is much more challenging than that of static MOPs as it has
to deal with not only the conflicting objectives, but also the
changes in objective functions or constraints. In other words,
dynamic multi-objective optimization algorithms (DMOAs)
must be capable of tracking the changing Pareto-optimal front
(POF) to provide a diverse set of solutions that approximates
the new POF over time.

Artificial benchmark problems have played a fundamental
role in determining whether a DMOA has the ability to
solve DMOPs. Furthermore, benchmark problems contribute
to analysing and identifying the strength and weakness of a
DMOA in order to modify it and improve its performance.
However, one of the main problems in the field of dynamic
multi-objective optimization (DMO) is that there are no stan­
dard test functions. Therefore, developing a new set of test
functions to compare the performance of DMOAs becomes
meaningful and essential.

In this paper, we first briefly review the DMOP test
problems that are used in the literature and discuss their
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limitations. Based on the understanding of the limitations of
current DMOP test problems, we present a new benchmark
generator for DMOPs that can generate DMOPs with several
complex characteristics which are rarely tested in the literature,
including POF of mixed types of convexity and concavity,
strong dependencies between variables, and a mixed type of
change. From this generator, a number of DMOP test instances
are derived and experiments are conducted to compare the
performance of five state-of-the-art DMO algorithms on them.
The results give us a better understanding of the strengths and
weaknesses of these tested algorithms for DMOPs.

11. RELATED WORK

There are many dynamic characteristics involved in
DMOPs, and different problems may have different mathe­
matical definitions. This paper focuses on the DMOPs defined
as follows:

m'ln }"T(x, t) = (fl (x, t), ... , fJy[(x, t))T

{

hi (x.' t) = 0, ~: 1, .."nh
s.t. 91. (x, t) 2 0, 'l - 1, ... , ng

x E Ox, t E Ot

where Ox ~ Rn is the decision space and t is the discrete
time instance defined as t = .~ l';'-J' where nt represents the
severity of change, T is the iter~tiC:n counter and Tt represents
the frequency of change and Ot ~ R is the time space. F(a.;, t):
Ox x 0t -t RAJ is the objective function vector that evaluates
the solution J: at time t.

Most artificial DMOPs developed by researchers in the
literature conform to Eq. (1). A distinct characteristic of Eq. (1)
is that the POF and Pareto-optimal set (POS) are susceptible
to change, which challenges the tracking ability of DMOAs.
Farina et at. L5J classified DMOPs into four types according
to the dynamics of POF and POS.

Type I: the POS changes over time while the POF remains
stationary;

Type II: both the POF and POS change over time;
Type III: the PDF changes over time while the POS remains

stationary;
Type IV: both the POF and POS remain stationary, although

the objective function or constraints may change
over time.



The current commonly used DMOPs are the variants of
the FDA test problems. None of them have the following
characteristics:

mentioned earlier, but none of them is a Type-IV problem.
Recently, Huang et al. [12] created several Type-IV problems
by implying that the current found POS may affect the further
pas or POF. Furthermore, they introduced two DMOPs where
the number of decision variables or objective functions changes
over time.

1) Mixed POFs (convexity and concavity) that changes
over time

2) A complicated diversity-resistant scheme that hinders
a set of diverse solutions

3) A problem that can change between different types
during the evolution

4) A strong correlation between variables instead of the
simple dependency between Xi and Xl.

(
....L....L)1 1 /'1 /'2

f 1'h + f 2"i2 = 1 + 2A(t)sin W(t)7r f1 -;2 + 1 (4)

where the values of A(t) and W(t) must enable Eq. (3) to
be a continuous Pareto front. To have a better understanding

....L ....L
of the proposed generator, we denote F l == 11/'1 - 12/2 and

....L ....L
F2 == f 1'"11 + 12/2

• This means that a clockwise rotation with
an angle 7f/4 is made from the current coordinate axis. Then,
Eq. (4) can be rewritten as:

(5). ( PI + 1)F2 == 1 + 2A(t)S'l'n ~V(t)71-2-

III. PROPOSED BENCHMARK GENERATOR AND TEST
INSTANCES

A. The Proposed Benchmark Generator

Considering the following DMOP:

{

Il(X~ t) == H(XII' t)(h(XI) + A(t)sin(W(t)7rh(XI)))1'1
.IY: 12(X~ t) == H(XII' t)(1-h(XI)+A(t)sin(~V(t)7rh(XI)))~f2

H(XII, t) == 1 + g(XII' t)
(3)

where 0 ::::; h(XI) ::::; 1, and XI and XII are sub-vectors of the
decision vector x. A (t) and lV (t) are two parameters to control
the local shape of the Pareto front, with A(t) adjusting the
curvature and ~V(t) controlling the number of mixed convex
and concave segments on the Pareto front. A large value of
l'V(t) causes the Pareto front to have disconnected regions,
while a small value produces a continuous Pareto front. Here,
lV(t) is recommended to be an integer. /1 and ,2 ("'II > 0,
''12 > 0) are parameters that control the overall shape of the
Pareto front: when 11 > 1 and /2 > 1 or ""(1 < 1 and
""(2 < 1, the overall shape is convex or concave respectively;
when 1'1 == ,2 == 1, the overall shape is linear; otherwise, the
overall shape is mixed. g(XII' t) is a non-negative function,
hindering algorithms from converging towards the true Pareto
front. The minimum of g(XII' t) is zero. Thus, Eq. (3) can pro­
duce various Pareto-front geometries by properly configuring
relevant parameters. Generally, the mathematical description
of the continuous Pareto front for Eq. (3) is as follows:

Farina et al. also created some FDA DMOPs by adapting
the static problems from the ZDT [28] and DTLZ [4] test
suites. One distinct Type-III problem in the FDA test suite is
FDA2, which is defined as follows:

11 (x, t) == Xl

.f2(X, t) == g(XII)h(XIII' fl(X)~g(XII), t)
g(XII' t) == 1 + l:xiExII .7:;

FDA2: h(XIII: 11, g, t) == 1 - (t: )H2 (t)

H(t) == 0.75 + 0.7s'in(0.5ITt), t == '~t L*J
H2 (t) == (H(t) + 2:

X
iEXIII (Xi - H(t))2)-1

XI == (Xl) E [0, 1], XII, XIII E [-1, l]n-l
(2)

where the POF is 12 == 1 - H2<tfll, and the pas is X'i == 0,
VXi E XII and Xi == -1, VXi E XIII.

FDA2 has been widely used and further modified by
researchers to test algorithms' perfonnance. It should be noted
that there is a misunderstanding of this test problem. Helbig
and Engelbrecht [9], [10] studied the performance of several
algorithms on FDA2, finding that all the tested algorithms lose
track of the changing POF. However, the phenomenon of losing
track of the changing POF they observed does not exist in
FDA2 because the approximated POF would never be better
than the true Pareto-optimal front. Actually, their misleading
results may come from the assumption that the POS of FDA2
is Xi == 0, VXi E XII and Xi == H(t), VXi E XIII, which gives
a misleading POF as is illustrated in [9], [10].

Jin and Sendhoff [14] suggested a method for construct­
ing dynamic multi-objective test problems by dynamically
changing the weights that aggregate the different objectives of
static MOPs. But, their method did not provide clear defined
problems. Guan et ale [8) studied DMOPs with objective
replacement, where some objectives may be replaced with new
objectives during the evolution. Mehnen et al. [18] argued that
the DTLZ and ZDT test suites are already challenging in their
static version, and simpler test functions are needed to analyse
the effect of dynamics in DMOPs. Hence, they suggested the
DSW functions for DMOPs. Furthermore, they proposed a new
generic scheme DTF that is a generalized FDA function and
allows a variable scaling of the complexity of the dynamic
properties. They also added scalable and dynamic constraints
to DMOPs by moving circular obstacles in the objective space.

The ZJZ problem defined by Zhou et al. [24] is the first
DMOP with variable linkages, which is a modified version of
FOAl but more challenging. In [23J, the authors further argued
that most DMOPs derived from the FDA test suite are too
simple, and the correlation between decision variables should
be enhanced. Thus, they gave four new DMOP test instances
that have nonlinear correlation betweeen the decision variables.
Helbig and Engelbrecht [11 J made a sound investigation into
the current DMOPs used in the literature, and identified their
shortcomings that none of them had deceptive and isolated
features in PDF. Then, they developed DMOPs with either
an isolated or deceptive POF that follows the concept of the
static WFG [13] test suite. In addition, they proposed some
HE problems that have complicated POSs based on the MOPs
of Li and Zhang [17].

Most existing DMOPs that have been discussed in the
literature are included in the first three types of change
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Fig. 1. POFs of JY with different overall shapes: (a) '"'(I = 1'2 = 1, A(l) = 0.1, \tV(l) = 3; (b) 11 = :2 = 1, A(L) = 0.05, W(t) = 6; (c) convex or
concave overall shapes with A(t) = 0.05, ~V(t) = 6; (d) mixed overall shapes with A(t) = 0.05, lV(t) = 6.

where a sin wave is described if ltV(t) i= 0 and A (t) i= O. Thus,
the proposed generator has a wave-like geometry, containing
both concave and convex regions. Figure 1 illustrates examples
of POFs of JY with linear and non-linear overall shapes.

B. Test Instances

When the overall shape of the POF of flY is non-linear,
DMOAs may have difficulties in achieving desirable results,
such as a set of diverse solutions. For an easier understanding
and analysis of the proposed generator, the POF of JY is set to
have a linear overall shape, namely ""(1 == /"2 == 1. Apart from
this, we concentrate on h(XI) == Xl, although we recognize
that movement across the POF can be achieved by adjusting
a number of variables, i.e., the use of rotation matrices for
h(XI) and the normalization of h(XI)' Below, we provide
some benchmark instances with detailed information for the
first three types of change in the environment. So, a problem
with mixed types is generated.

JY1, as shown in Eq. (6), is a Type-I problem, where the
POS changes over time in a regular pattern, with Xi == G(t),
VXi E XII. It mainly tests the convergence speed and reactivity
of an algorithm.

i1 (x, t) == (1 +g(XII' t) )(X1 + A(t)s'in(ltV(t)1T"X1))
.f2 (x, t) = (1 + g(XII' t) )(l-Xl + A(t)8in(lV(t)1f~Tl))

g(XII' t) == 2:XiEXII (:Z;'i - G(t))2
.lY1: 1G(t) = s-in(O.57rt), t == -l.I...J. nt Tt

A(t) = 0.05~ W(t) = 6
XI == (Xl) E [0,1], XII == (X2' ... ,Xn ) E [-l,l]n-1

(6)
JY2, as shown in Eq. (7), is a Type-II problem with

dynamic POFs and POSs. The change of POSs is simple,
but the change of the POF, as illustrated in Fig. 2, is quite
complicated because the convexity-concavity of any regions
along the POF may swap after a change (refer to Eq. (4)).

11 (x, t) == (1 +g(XII' t)) (Xl + A(t)siin(ltll (t)7fl:1))
12 (x, t) == (1 + g(XII' t) )(l-XI + A(t )s'in(W(t)1rXI))
g(XII' t) == 2:XiE XII (X'i - G(t))2

JY2:
G(t) == 8-in(O.57rt), t == ;t ItJ
A(t) == 0.05, ltV (l) == L6sin(O.51T( t - l))J
XI == (Xl) E [0,1], XII == (X2' ... , X n ) E [-1, l]n-1

(7)
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Fig. 2. POF of JY2 with 21 time windows varying from 0 to 2. FOr a
bettervisualization~ /1 + 2tand 12 + 2t are shown on the x and y axes.
respectively.

Fig. 3. An example ofPOS of JY3 for the first two variables with 6 time
windows varying from 000 O.S. For a better visualizatioD" xl and x2 +t are
shown on the x and 11 axes, respectively•

JY4:

•lY3., as shown in Eq. (8), introduces different dependen­
cies between any two decision variables, which is closer to
real~worldproblems.Therefore,the POF of JY3 is similar to
that of JY2, and the POS is Yl ,= IXlsin((2a + O.5}7fXl)l,
a=. LIOOsin2 (O.57rt)J'Yi= v'Yi-l, i =2, ... ,n. The
POS for variables Xl and X2 is shown in Fig. 3, Where
the dependency between these two variables is increasingly
complicated as the time increases. Furthermore, the increasing
time leads to tbechange of the density of solutions. Thetefor~,

JY3 not only assesses the effect of variable-linkage but also
tests the diversity performance of an algorithm ina dynamic
environment

11 (x,t) ==(l+g(XII, t))(Yl + A(t)sin(W(t)1rYl»)
!2(X, t) = (1+ g(XII, t))(l-Yl +A(t)sin(W(t)1tYl))

g(XII, t) =L:£iEXII (y; - Yi_l)2
JY3: ACt) ==O.05,W(t) .=: l6sin(O.51r(t ~ l})J

a: ,= llOOsin2(O.51tt)J, t =;t l -itJ
Yl= IX lsin((2a + O.5)1l"Xl)I, Yi = Xi, i = 2·, ..•, n
XI = (Xl) E [0,1], XII = ($2, •.• ,Xn) E [-1,1]n-1

(8)

JY4, as shown in Eq. (9), is const:rl.l.cted to have a Dumber
of disconnected POF segments. The number of disconnected
POF segntents and the 'spread of each segment change over
time. As illustrated in Fig. 4, the POF ofJY4 is subjected
to the definitiQn of Eq. (4), but has a number of disconnected
segments. ThePOS is Xi· = G(t), 'r/Xf;,'E XII.

II (x,t) == (1+9(XII, t))(Xl + A(t)sin(W(t)1rXl))
f2(X,t) = (1+ g(XII, t))(l-$l +A(t).,in(W(t}7rXj))
g(XII, t) =L;J;iEXII. ($i -G(t))2
G(t) == sin(O.51rt), t = ~ l*J
ACt) = 0.05, W(t) = lOl+IG(t)I

XI = (Xl) E [0,1], XII = (X2, ..•1Xn) E [---l,lpl-'l
(9)

Contrary to the above problems, JY5 (as shown in
Eq. (10») does not have a mixed'PDF and is a Type-mproblem.
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fl+ t

Ftg. 4. POF of JY4 with 11 time windows varying from 0 to 2. For a better
visualiutioo, 11 +t and /2+t·are shown on.tbe zartd 1J axes, respectively.

Its POF is very simple, and changes from convex to concave.
The PO.F is defined in Eq. (4) and illustrated in Fig. 5.

Jl (x, t) = (l+g(XII, t))(Xl + A(t)sin(W(t)1TXl))
f2(X,t) =(1+ g(XII, t))(l~~l+A(t)sin{W(t)7.rX l))

.'Y5: 9(X]:x, t) = Lxtexn X; t = ~. Lf;J
ACt) = O.3sin(O.51r(t- 1»), Wet) = 1
XI = (Xl) E [0, 1], XII = (X2, .•. , X n ) E [~1, l]n.-l

(10)

In practice, morecompncated 1Ype~I to Type-ill bench­
mark problems can be generated by further varying parametets
Aft),W(t), 11, or ,2 over time.

The first three types of change can. be easily realized
when constructing test functions,and they have been com­
monlyreponed in the· literature. However, many re~world

optinrlzationproblems with dynamiccharacteristics~ i.e., the
launch of contingency plan for dealing with bad weather in
air traffic scheduling, may jump betWeen types" To the best
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Fig. 5. POF of JY5 with 21 time windows varying from 0 to 2.

of our knowledge, none of this kind of test function has
been introduced into the family of DMOPs. In this paper, we
propose such a problem that cyclically switches from Type 1 to
Type 11, then to Type Ill. Technically, this kind of problem is
macroscopically a Type-II problem from the perspective of the
whole period of changes. Despite that, we would refer to this
kind of change as the Mixed Type from a microscopic angle,
which can help us to analyse the performance of algorithms
on a problem with changing types. This type of problem can
be formulated as follows:

fl (x, t) = (1 +g(XII' t)) (.Ll + A(t)sin(vV (t)7r;];l))
f2(X, t) = (1+ g(XII' t))(l-Xl +A(t)sin(VIl(t)7rX l))
g(XII' t) = EXiEXII (Xi + (J"- G(t))2

JY6: G(t) = Isin(0.57rt) I, t = '~t ItJ
A(t) == 0.05, ~ll(t) == l6sina (0.51T"(t - l))J
(J" == l~J (mod 3)

TfJ)t [ ] 1
XI == (Xl) E [0,1], XII == (X2' ..• , X n.) E -1,111.-

(11)
where Pt represents the frequency of type change, and is
suggested as Pt == 5, meaning that the current type lasts 5
time windows. If (T = 0, JY6 is a Type-I problem, and the
pas is Xi, = G(t), V:ri E XII, the POF is referred to Eq. (4)
and similar to Fig. 1(b). If a == 1, JY6 belongs to Type II,
where the pas is Xi = G(t) - 1, VXi E XII, and the POF is
referred to Eq. (4) and illustrated in Fig. 6(a). If u == 2, .JY6
is a Type-III problem with the pas being ;1;i = -1, VXi E XII,
and the POF being not Eq. (4) since g(XII' l) =1= O. In this case,
the minimum of g(XII, t) is g*(t) = 1 + 2::::2 (1 - G(t))2.
Thus, the POF is:

h+h = (1+9*(t))(1+2A(t)Sin(W(t)1r(2({~~!(t)) +~)))
(12)

where the PDF is illustrated in Fig. 6(b).

IV. EXPERIMENTAL STUDY

A. Compared Algorithms and Paralneter Settings

Four different kinds of algorithms: SPEA2 [27], dNSGA­
11 (including dNSGA-II-A and dNSGA-II-B) f21, DMOPSO
l16J and RM-MEDA+PPS L23J, were evaluated on the test
instances JY1-JY6. The parameter settings for all the tested
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Fig. 6. PDF of JY6 with 12 time windows varying from: (a) 0.5 to 1; (b)
1 to 1.5. For a better visualization, fl + 2t and f2 + 2t are shown on the x
and y axes, respectively.

algorithms were inherited from the referenced papers. All
the chosen algorithms have strategies to deal with a change
except SPEA2. In this paper, SPEA2 was set as follows: 100/0
randomly selected population members was reevaluated for
change detection, and the restart scheme was employed for
change responses. For each problem, each tested algorithm,
with a population size of 100, was executed 30 runs, and
the average results were recorded. The change severity was
.,-l,t == 10 for each problem.

To study the effect of the frequency of change (Tt) on each
problem, Tt was set to Tt == 5, 10, 20, 30, 50, respectively.
To guarantee the fairness for all the tested algorithms, the
total number of changes was set to 40 during the evolution,
which is adequate to cover all potential changes in problems
JYl- JY6. Besides, 100 more generations were given to each
algorithm before the first change to minimize the potential
effect of static optimization. Thus, the total generations for
running an algorithm were 100 + 40Tt.

B. Performance Metrics

To compare the performance of algorithms on dynamic
benchmark problems, three performance metrics: mean in-



TABLE 1. PERFORMANCE OF THE FIVE ALGORITHMS FOR JYl

Metric Tt DMOPSO df\SGA-ll-A df\SGA-ll-B RM-MEDA+PPS SPEA2
5 1.7505e-02(2.1832e-03) 3.0635e-02(4.3578e-03) 2.9667e-02(4.0957e-03) 1.18876c-02(6.4518e-03) 2.8827e-02(1.610ge-03)
10 9.8322c-03(2.0619c-03) 1.3609c-002( 1.9756c-03) 1.3112c-02( 1.2369c-03) 3.4334e-03(2.1168c-03) 1.0612c-003(5.819c-04)

1nIGD 20 4. I58ge-03(4.0025e-04) 6.0708e-003( 1.1323e-03) 5.7493e-03(9.7568e-04) 1.4207e-03(1.2211e-03) 2.5223e-003( I .4854e-04)
30 2.5544c-03( I.R068c-04) 4.1 342c-003( I.R694c-03) 3.797Rc-03(1.6643c-03) 3.9195e-04(3.0416c-04) 1.131 Rc-003(7.9679c-05)
50 1.5415e-03(7.5273e-05) 2.2128e-003(2.0444e-03) 1.8951e-03(1.0595e-03) 2.4643e-04(2.5436e-06) 3.5671e-004(1.3338e-05)
5 2.6556e-01(3.0333e-02) 3.3587e-Ol(6.5558e-02) 3.1612e-01(5.8218e-02) 1.6402e-Ol(5.6937e-02) 5.1872e-Ol(5.8583e-02)
10 1.6482e-0 I(2.7lJ31 e-(2) 1.4006e-01 (3.171 Xe-(2) 1.362lJe-01 (2.9348e-02) 5.1175e-02(2.6364e-02) 1.6277e-01(1.800Ie-02)

S 20 7.5798e-02(5.870ge-03) 5.0508e-02(1.8038e-02) 4.3022e-02(8.1048e-03) 1.5625e-02(1.0586e-02) 3.7293e-02(3.9097e-03)
30 4.9653e-02(3.469I e-03) 2.6325e-02(8.6496e-03) 2.5487e-02(6.9684e-03) 5.1341e-03(2.0435e-03) 1.6962e-02(1.0997e-03)
50 3.0114e-02(1.4108e-03) 2.305ge-02(4.5275e-03) 1.3802e-02(3.5865e-03) 3.41Sge-03(6.8685e-05) 5.6034e-03(2.4551e-04)
5 8.2926e-Ol(I.5507e-OI) 2,3394(3.8127e-Ol ) 2.2555(3.8564e-Ol ) 8.4673e-O1(6.61 02e-01) 2.1 043(l.1853e-Ol)
10 4.03 I7e-Ol(1.1826e-Ol) 7.7276e-Ol(1.2143e-01) 7.4433e-O1(8.3087e-02) 1.7091e-Ol( 1.5467e-OI) 5.OO56e-O1(3.37 12e-02)

Ace_all 20 1.400le-Ol(1.6677e-02) 2.923Re-Ol (6.2256e-02) 2.7648e-Ol(6.1546e-02) 6.2348e-02(7.1365e-02) 7.7304e-02(6.9241 e-03)
30 7.5731c-02(6.9719c-03) 1.8906c-Ol (l.2255c-Ol) 1.703&-01 (1.0135c-Ol) 9.4076e-03(1.4717c-03) 2.7575c-02(2.R931 c-03)
50 3.9579c-02(2.7225c-03) R.386Oc-02(8.2915c-02) 7.278Rc-02(5.6941 c-02) 3.6218e-03(7.909c-05) 6.4359c-03(3.0431 c-04)

TABLE II. PERFORMANCE OF THE FIVE ALGORITHMS FOR JY2

Metric Tt DMOPSO dNSGA-II-A dNSGA-II-B RM-MEDA+PPS SPEA2
5 1.7023e-02(2.61 04e-03) 3.1053e-02(3.6117e-03) 3.0857e-02(5.0833e-03) 1.0S74e-02(4.9453e-03) 2.9061e-02( 1.700ge-03)
10 9.6873e-03(1.358ge-03) 1.3604e-02(1.3956e-03) 1.343ge-02(1.2181e-03) 4.1S00e-03(2.2232e-03) 1.0962e-02(5.7798e-04)

mIGD 20 4.3342e-03(3.799ge-04) 6.4412e-03( 1.6320e-03) 5.5738e-03(7.8922e-04) 2.1881e-03(5.5361 e-04) 2.3901 e-03(1.3463e-04)
30 2.6505e-03(1.6112e-03) 3.7606e-03(1.2307e-03) 3.64 I3e-03(1.414ge-03) I .9705e-03(6.360ge-04) 1.0012e-03(4.1347e-05)
50 1.5136e-03(9.9003e-05) 2. 1255e-03(1.1132e-03) 2.0777e-03(9.7886e-04) 1.786Ie-03(2.3348e-06) 2.994Se-04(9.4734e-06)
5 2.6163e-Ol(4.0358e-02) 3.2274e-01(7.2115e-02) 2.9664e-O1(6.585ge-02) 1.5227c-Ol(4.5242e-02) 4.9946e-01 (5.092ge-02)
10 1.5257e-O1(1.9416e-02) 1.342ge-Ol(3.0646e-02) 1.3054e-Ol (3.3843e-02) 4.4123e-02(2.5313e-02) 1.6225e-01(1.4215e-02)

S 20 7.3297e-02(6.9027e-03) 5.2618e-02(2.2927e-02) 4.8377e-02( 1.1785e-02) 9.9628e-03(7.2578e-03) 3.1382e-02(2.0637e-03)
30 4.7107e-02(2.8012e-03) 2.6585e-02(7.7333e-03) 2.6537e-02(7.6141e-03) 5.4329c-03(3.6475e-03) 2.0552e-02(2.2704e-03)
50 2.6597e-02(1.8521e-03) 1.4426e-02(5.2395e-03) 1.4761e-02(4.4598e-03) 3.3358e-03(8.974ge-05) 4.4667e-03(1.442ge-04)
5 8.1 131e-Ol(1.8373e-OI) 2.3648(3.0883e.-01) 2.3641 (4.6456e-01) 6.627ge-Ol(4.9213e-OI) 2.0952(1.647ge-01)
10 4.0087e-Ol (7.0847e-02) 7.91 I3e-Ol (8.9873e-02) 7.8707e-Ol (8.7395e-02) 1.7276e-Ol(1.728ge-01) 5.1393e-Ol (3.5427e-02)

Acc_alt 20 1.5882e-0 I(1 .6297e-02) 3.4223e-0 I(1.6277e-O 1) 2.7795e-Ol (5.3495e-02) 4.3763e-02(3.2323e-02) 8.6175e-02(5.9986e-03)
30 9.0053c-02(6.1636c-03) I.7225c-O1(7.4565c-02) 1.6743c-Ol (R.7188c-02) 3.2918c-02(4.5534c-02) 3.1506e-02( 1.7452c-03)
50 4.8103e-02(3.5654e-03) 9.1 056e-02(6.0851 e-02) 8.5083e-02(5.281ge-02) 2.1217e-02(1.2671e-04) 8.3443e-03(3.8368e-04)

TABLE III. PERFORMANCE OF THE FIVE ALGORITHMS FOR JY3

Metric Tt DMOPSO dNSGA-II-A dNSGA-II-B RM-MEDA+PPS SPEA2

5 2.359ge-02(6.2932e-03) 9.7288e-03(7.8936e-04) 9.2812e-03(1.6771 c-03) 1.4777e-02(1.0017e-03) 1.9657e-02(4.0775e-04)
10 1.604Rc-02(5.67R4c-03) 9.137ge-03(1.5465c-03) 9.3032c-03(4.376Rc-04) 1.03R3c-02(2.4557c-03) 1.296Ic-02(1.5R97c-04)

"'tICD 20 1.1015e-02(6.8761e-03) 9. 1724e-03(9.3572e-05) 9. 1776e-03(6.4867e-05) 6.961Sc-03(3.005ge-03) 1.0056e-02(6.5843e-05)
30 8.6411e-03(5.4505e-03) 7.7523e-03(2.8595e-03) 8.3376e-03(2.4002e-03) 6.7161c-03(3.434ge-03) 9.4788e-03(4.9057e-05)
50 7.8713c-03(5.6219c-03) R.6505c-03(1.6988c-(B) 8.3908c-03(2.0593c-03) 5.1046e-03(3.6133c-03) 9. 1983c-03(4.5233c-05)
5 3.7776e-01(7.5253e-02) 4.0884e-02( 1.5454e-02) 5. 1484e-02(2.8655e-02) 2.3346e-Ol(2.3182e-02) 2.429ge-01(2.6076e-02)
10 2.5831e-Ol(7.1518e-02) 2.7418e-02(1.2895e-02) 2.6633e-02(1.004ge-02) 1.2005e-O1(4.4034e-02) 9.2738e-02(7.9343e-03)

S 20 1.4092e-O1(4.2812e-02) 2.1187e-02( 1.0407e-02) 1.9624e-02(7.8504e-03) 5.6613e-02(4.5213e-02) 4.0906e-02(2.8493e-03)
30 1.0815e-Ol(4.2515e-02) 1.5595e-02(5.4233e-03) 1.6945e-02(it0503e-03) 2.4563e-02(3.2373e-02) 2.7527e-02(2.2372e-03)
50 8. I833e-02(3.5264e-02) 1.3713e-02( 1.9704e-03) 1.4625e-02(3.9032e-03) 8.70 I6e-03(3.470ge-03) 1.8547e-02(1.9695e-03)
5 1.2071(4.7153e-Ol) 4.4001e-Ol(7.3597e-02) 4.4006e-Ol (1.281ge-O1) 8.9858e-Ol (7.4953e-02) I. 1656(2.6675e-02)
10 7.5635e-Ol(3.6404e-Ol) 3.7994e-Ol(6.8552e-02) 3.8691e-Ol(2.2704e-02) 5.166ge-Ol(1.4451e-OI) 6.550ge-01(9.042ge-03)

Acc_alt 20 5. 1237e-O1(4.0428e-01) 3.6867e-Ol(9.8961e-Q3) 3.6971e-Ol(6.3597e-03) 2.7865e-O1(1.502ge-O 1.> 4.4761e-Ol(4.2332e-03)
30 3.8971e-01(3.046ge-Ol) 3.0592e-Ol(1.1904e-01) 3.3188e-Ol(1.OO32e-02) 2.5598e-Ol( 1.6424e-O1) 4.0132e-01(2.6642e-03)
50 3.502ge-Ol (2.9485e-01) 3.4264e-Ol (6.9677e-02) 3.3013e-Ol (8.7437e-02) 1.751ge-Ol(1.6926e-01) 3.762ge-01(1.9096e-03)

verted generational distance (mIGD) [23], Schott's spacing
metric (8) [19], and alternative accuracy metric (Acc_alt) [1],
found in the literature, were used to measure the performance
of these algorithms. Tn/CD and 8 can evaluate the conver­
gence and diversity performance of algorithms, respectively;
while Acc_alt can measure the approximation quality in
convergence and diversity. All the metrics were calculated just
before a change occurs.

c. Experimental Results

The experimental results reported in Tables I to VI are the
average values and standard errors of 30 independent runs,
where the best results are highlighted in bold.

For the JYl problem, RM-MEAD+PPS performs better
than the other compared algorithms regarding the three metrics
for the tested change frequencies except for Tt = 5. In the case

of Tt = 5, RM-MEAD+PPS achieves the best results on the
convergence and diversity performance, but is slightly worse
than DMOPSO for Acc_alt. dNSGA-II-A and dNSGA-II-B
have similar performance on the three metrics. SPEA2 appears
to be better than the dNSGA-II variants on those metrics.

Table II shows that, for JY2, RM-MEAD+PPS and SPEA2
achieve better performance on the metrics than DMOPSO
and dNSGA-II. While RM-MEAD+PPS performs the best on
the spacing metric, SPEA2 outperforms the others on mIGD
and Acc_ali for a slow frequency change. Besides, DMOPSO
provides better results than dNSGA-II on mICD and Acc_ali,
but worse results than dNSGA-II on the spacing metric. RM­
MEAD+PPS gives the best results on mIGD and Acc_ali
when the frequency of change is quite low.

The results presented in Table III show that, the dNSGA­
II variants work well on the metrics compared for JY3, and



TABLE IV. PERFORMA~CE OF THE FIVE ALGORITHMS FOR lY4

Metric Tt DMOPSO dNSGA-ll-A dNSGA-ll-B RM-MEDA+PPS SPEA2
5 1. 1531e-Ol(1.4708e-02) 1.1235e-O1(1.3122e-02) 1.0864e-O1(1.475ge-02) 3.5004c-02(1.5155e-02) 1.0815e-O1(5.0667e-03)
10 1.0915c-O I(1.8752c-02) 5.4806c-02(4.493I c-03) 5.4508c-02(4.6836c-03) 1.8793e-02(8.0378c-03) 8.375Ic-02(6.5767c-03)

mICD 20 9.4708e-02(1.3054e-02) 3.0211e-02(2.9775e-03) 2.9543e-02(3.3004e-03) 8.5521e-03(1.3386e-03) 6.548ge-02(3.8453e-03)
30 9.2561c-02(1.1793c-02) 2.3554c-02(3.5654c-03) 2.2571 c-02(3.353Rc-03) 6.4392e-03( I.()062e-03) 5.3773c-02(3.0794e-03)
50 1.3863e-01(8.6714e-03) 1.9102e-02(3.6081e-03) 1.8206e-02(3.138Ie-03) 5.407ge-03(6.1524e-04) 4.2854e-02(2.9763e-03)
5 1.3346(2.5285e-Ol) 2.893ge-Ol(7.4421e-02) 2.5686e-Ol (8.9607e-02) 1.5886e-Ol(5.0897e-02) 3.4684e-01(2.7206e-02)
10 1.474H(2.2473e-Ol ) 1.1 H73e-OI (2.30H3e-02) 1.2274e-01 (3.5226e-02) 1.0384e-Ol(3.02I 4e-(2) I .902He-O1(1. IXI He-(2)

S 20 1.2989( I.9391e-01) 5.2033e-02(1.0515e-Q2) 5.1543e-02(1.1842e-02) 8.2754e-02(3.3868e-02) 1.4351e-Ol(1.0248e-02)
30 1.0563(1.5122e-01) 3.473ge-02(8.4508e-03) 3.3261e-02(6.8050e-03) 9. 1682e-02(3.583ge-02) 1.2026e-01(9.7428e-03)
50 8.557ge-Ol(4.9143e-02) 3.3013e-02(5.5601e-03) 2.9316e-02(5.2914e-03) 1.1716e-Ol(2.5033e-02) 1.002ge-Ol(6.9197e-03)
5 3.2494(6.4043e-01) 2.9156(5.2251e-Ol ) 2.728(4.523ge-Ol ) 6.6395e-Ol(4.8712e-01) 1.3589(1.7063e-Ol )
10 3.1391 (8.4615e-Ol) 1.0506( 1.163ge-01) 1.0456( I354e-0 I) 2.6967e-Ol(2.0685e-0 I) 2.3564(2.9584e-Ol)

Acc_a.lt 20 2.R937(5.5202e-0 I) 6.4533e-O1(9.7037e-02) 6.2032e-O I(1314ge-O I) 1.5148e-Ol( 1.2806e-O I) 4.9593(3.5368e-Ol)
30 3.3R66(R.5625c-01 ) 6.3378c-O1(1.321 Rc-O 1) 6.0391 c-Ol (12209c-Ol) 2.9695e-Ol(1.R66Rc-01) 7.1978(4.2115c-0l)
50 1O.4612(4R491c-Ol) 7.9RI4c-Ol (1.9514c-Ol) 7.3339c-Ol (17R lle-Ol) 6.118ge-Ol(2.66R2e-Ol ) 9.R753(4.2644c-Ol )

TABLE V. PERFORMANCE OF THE FIVE ALGORITHMS FOR JY5

Metric Tt DMOPSO dNSGA-II-A dNSGA-II-B RM-MEDA+PPS SPEA2
5 5.6935e-03(1.1383e-03) 4.2372e-04( 1.4213e-05) 4.268ge-04( 1.2964e-05) 1.1192e-02(7.7954e-04) 1.536ge-02(4.4615e-04)
10 3.1828e-03(6.X09ge-04) 7.9445e-03(4.0095e-06) 7.9442e-03(5.6882e-06) 3.4588e-03(1.6137e-(3) 6.6841 e-03(2.6297e-04)

mICD 20 1.7495e-03(2.2214e-04) 3.3667e-04(2.9926e-06) 3.379ge-04(2.517Xe-06) 1.3457e-03(1.5505e-04) 1.7564e-03(8.152e-05)
30 1.2123e-03(1.2334e-04) 3.3336e-04(2.406ge-06) 3.3422e-04(3.4417e-06) 1.3125e-03(2.3341 e-05) 7.0424e-04(4.360ge-05)
50 8.2692e-04(4.906ge-05) 3.314ge-04(2.107ge-06) 3.320ge-04(2.1056e-06) 1.3234e-03(2.1125e-06) 2.9344e-04(9.4517e-06)
5 1.4267e-Ol(2.7347e-02) 5.6398e-02(1.0967e-02) 1.5931c-02(8.4356e-03) 1.8564e-0l(1.7383e-02) 2.1955e-01(2.0356e-02)
10 7.3482e-02(1.8245e-02) 1.1493e-02(2.6193e-03) 1. 1558e-02(3.9014e-03) 5.3415e-02(3.0468e-02) 9.7312e-02(1.0995e-02)

S 20 3.61 58e-02(6.307 Ie-03) l.0423e-02( 1.1672e-03) 1.I077e-02(2.7653e-03) 5.5762e-03(4.887Ie-03) 2.6076e-02(2.0936e-03)
30 2.2031e-02(2.9194e-03) 1.0802e-02( 1.7855e-03) 1.0155e-02(3.0517e-04) 3.3434c-03(3.6308e-04) 1.0246e-02(7.3913e-04)
50 1.2774e-02(1.3045e-03) 1.0382e-02(1.1476e-03) 1.0097e-02(8.9283e-05) 3.2048e-03(3.9494e-05) 4.4926e-03(1.841ge-04)
5 1.6824e-Ol(3.888ge-02) l.0347e-02(2.1637e-03) 1.0456e-02(1.8487e-03) 5.8922e-Ol(5.3415e-02) 7.8318e-01(2.8725e-02)
10 8.9992e-02(2.299ge-02) 2A557e-Ol (3.2555e-04) 2.4556e-Ol (2.X224e-04) 1.3747e-0l (X.0553e-02) 2.5758e-Ol (1.3093e-02)

Acc_alt 20 4.9232e-02(6A676e-03) 7.0435e-03(l.389ge-04) 7.0903e-03( 1.917ge-04) 3.9703e-02(7.X54ge-03) 5.6S95e-02(3.03X2e-03)
30 3.3R 17c-02(4.3162e-03) 6.8422e-03( 1.06R3e-04) 6.R974c-03( 1.1344c-04) 3.7733c-02(9AR0ge-04) 2.1641 c-02( 1.440ge-03)
50 2.3115e-02(1.711ge-03) 6.7283e-03(7.1826e-05) 6.7458e-03(8.3493e-05) 3.81 04e-02(7.61 03e-05) 7.9656e-03(3.0688e-04)

TABLE VI. PERFORMANCE OF THE FIVE ALGORITHMS FOR JY6

Metric Tt DMOPSO dNSGA-II-A dNSGA-II-B RM-MEDA+PPS SPEA2

5 6.9106e-02(6.0525e-03) 2.31 05e-O1(1.5253e-02) 2.3143e-Ol (1.4686e-02) 7.213ge-02(4.3618e-03) 2.31 85e-Ol (5.4408e-03)
10 5.99R9c-02(R.5235e-03) 2.0RR8c-O1(1.1397e-02) 2.0874c-Ol (9.7265e-03) 5.7314e-02(3.3356c-03) 2.1644e-Ol (2.8528e-03)

"'tICD 20 4.5686c-02(2.3581 e-03) 1.5452e-Ol(2.2481e-03) 1.5507e-01(2.447ge-03) 4.726ge-02(2.2734e-03) 1.6797e-O1(1.3366e-03)
30 2.8953c-02(2.443ge-03) 1.5047e-Ol(1.509ge-03) 1.501e5-01(1.1122e-03) 3.9275e-02(1.2415e-03) 1.4921e-O1(7.1232e-04)
50 2.0264e-02(1.7566c-03) 1.4442c-0l (6.609Re-G4) 1.4409c-0l (R.290Rc-04) 2.7779c-02(5.2546c-04) 1.4399c-O1(3.3372c-04)
5 3.0612-01(3. 1451e-Ol) 5.5178e-Ol(9.4507e-Q2) 5.5683e-01(9.0453e-02) 4.7742e-Ol(4.9865e-02) 1.0746( 1.4076e-01)
10 3.5514e-Ol(2.0841e-Ol) 4. 1926e-01(1.0313e-0 1) 4. 1641e-Ol(8.2472e-02) 3.1512e-Ol(4.0486e-02) 4.7768e-01 (4.2067e-02)

S 20 2.8144e-Ol(4.1248e-02) 2.9431 e-O1(7.2912e-02) 2.8448e-Ol(6.3551e-02) 1.4857e-Ol(1.7165e-02) 1.5735e-Ol(1.1527e-02)
30 1.8302e-Ol (2.7034e-02) 2.0476e-01 (6.97Hge-02) 2.133He-01 (7.1462e-(2) 7.X 132e-02(9.367Ie-03) 7.7071e-02(5.7147e-03)
50 1.0997e-Ol(2.1603e-02) 1.1227e-Ol (5.1807e-02) 9.838ge-02(3.904ge-02) 2.6506e-02(4.7213e-03) 3.0797e-02(1.4013e-03)
5 5.5753(1.3689) 156.2234(16.7679) 155.4011(14.0357) 10.7839(0.80255) 171.9286(5.4616)
10 4.9454(5 .6518e-01) 97.4117(H.4376) 97.6732(7.2611) 6.752X(O.53477) 119.6014(2.9582)

Acc_alt 20 4.3684(2.0666e-01) 74.3456(2.9994e-Ol) 74.1743(3.2581e-Ol) 5.3015(2.8883e-O1) 88.3464(1.4432)
30 2.2289( 1.6516e-01) 72.7139(1.963ge-Ol) 72.7308(1.3627e-OI) 3.9388(1.1924e-Ol) 78.7827(7.5836e-01)
50 1.5567(9.7405e-02) 72.0976(8.3328e-02) 72.0691 (6.6741 e-02) 2.8378(4.3354e-02) 74.0895(4.0174e-OI)

dNSGA-II-A is much better than dNSGA-II-B to obtain well­
diversified solutions. The results of DMOPSO are similar to
those of SPEA2 except on the spacing Inetric where SPEA2
offers better results than DMOPSO.

For JY4, RM-MEAD+PPS, again, works better than the
other algorithms on mIGD and Acc_alt. However, when the
frequencies of change are 20 and over, RM-MEAD+PPS fails
to achieve a set of diverse solutions; on the contrary, dNSGA­
II-B offers the best results on this metric. It is also clear
from Table IV that the perfonnance of each tested algorithm
on Ace_all becomes worse when the frequency of change is
higher. A possible reason for this is that a slow frequency of
change enables the algorithms to achieve better convergence
and diversity performance on each disconnected Pareto front of
JY4, but meanwhile it may lead to the distance between two
consecutive disconnected Pareto fronts approximated moving

away from each other. For this reason, DMOPSO and SPEA2
fail to give good results for JY4.

For .lY5, the results are somehow divergent. In the cases
of Tt == 5, 20, and 30, dNSGA-II-A successfully provides the
best results on the compared metrics. For a higher frequency
of change, RM-MEAD+PPS achieves a set of well-distributed
solutions. DMOPSO gives the best m,IGD and Acc_alt results
when the frequency of change is 10. SPEA2 converges very
well towards the Pareto front for a very slow change frequency.

The Mixed Type of change imposes some challenges to
these algorithms. For JY6, DMOPSO has no difficulties in
achieving well-converged solutions, while RM-MEAD+PPS
gives the best results regarding the distribution of the approx­
imated solutions for Tt == 10, 20, and 50. It is also clear from
Table VI that, DMOPSO provides the best results for Acc_alt.
The dNSGA-II variants and SPEA2 give poor performance



for Acc_alt. This is because the 'TnIGD results imply that
they cannot track the landscape change when the type of the
problem changes over time.

v. CONCLUSIONS AND FUTURE WORK

An extensive study of the current DMOPs used to assess
the performance of algorithms showed that there is lack of test
functions that can occur in real-world life for dynamic multi­
objective optimization. The commonly used DMOPs are so
simple that some characteristics are excluded, such as a mixed
(convexity and concavity) POF, a more powerful diversity­
resistant structure in the problem, a stronger correlation be­
tween variables and a mixed type of problem that can jump
between different types.

To address the above shortcomings, this paper presents a
generic scheme to generate desired benchmark functions that
can compare the performance of different DMOAs. Further­
more, experiments were carried out on some test instances
generated by the benchmark generator. The results show that
these test instances are effective and can be used for comparing
the general performance of algorithms.

Despite that our proposed benchmark generator can pro­
duce a series of features that are rarely tested in the literature,
further research is needed regarding how to extend the genera­
tor to many-objective problems where the number of objectives
is easy to scale up. Besides, a standard test suite for DMOPs
is urgently required to promote the research on dynamic multi­
objective optimization.
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