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Modelling and Forecasting the Kurtosis and Returns Distributions 
of Financial Markets: Irrational Fractional Brownian Motion Model 
Approach. 
 
 
Summary 

This paper reports a new methodology and results on the forecast of the numerical 

value of the fat tail(s) in asset returns distributions using the Irrational fractional 

Brownian Motion Model. Optimal model parameter values are obtained from fits to 

consecutive daily two-year period returns of S&P500 index over [1950-2016], 

generating 33-time series estimations. Through an econometric model, the kurtosis of 

returns distributions is modelled as a function of these parameters.  Subsequently an 

auto-regressive analysis on these parameters advances the modelling and forecasting 

of kurtosis and returns distributions, providing the accurate shape of returns 

distributions and measurement of Value at Risk. 
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1. Introduction 

Researchers have put much effort into developing ways of accurately modelling the 

returns distributions for financial market indices. The literature is so enormous that to 

quote a few papers would lead to consider that the present authors are biased, thus, 

it is assumed that the reader is aware that indeed there are many papers available. 

Nevertheless, let us stress that among the stylized facts of returns distributions in 

financial markets, one of the most well-known is the early recognized so-called fat tail 

(Mandelbrot, 1963b).  It is still somewhat unclear why a fat tail exists, with some decay 

exponent values in limited ranges, even in presence of varied volatility occurrences or 

origins, like time lags (Ausloos and Ivanova, 2003; Castellano et al.,2018). An often 

mentioned argument stems from the asymmetry of information, but not easily accepted 

if one sticks to the “efficient market hypothesis” (EMH) (Borges, 2010; Schinckus et 

al., 2016). Nevertheless, we do assume that an asymmetric information flow exists, 

not yet discounting an asymmetric time lag for such flows.  

A classical Bachelier random walk model would suggest a Brownian motion analogy 

for the returns rt at time t, the so called Geometric Brownian Motion (GBM) 

(Mandelbrot, 1963b; Mills and Markellos, 2008; Rachev et al., 2005; Birge & Linetsky, 

2007).   
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where µ is the averaged returns over the time interval [0, t], and  is assumed to be 

normally independently distributed with zero mean and constant variance. The above 

equation can be written as  

𝑃𝑡+𝛿𝑡 = 𝑃𝑡exp(𝜇𝛿𝑡 + 𝜎𝑍𝑡√𝛿𝑡 )                                  (2) 

where   is a random number drawn from the standardised normal distribution, 𝛿𝑡is 

a small-time step and 𝜎 is the standard deviation of the returns over the time interval 

[0, t]. This equation is deployed to run simulations and construct the modelled returns 

distributions based on the GBM. 

Usually, the distribution of returns generated from GBM model does not match the 

distribution of historical returns data which often show leptokurtosis. The usual returns 

fat-tailed distributions show a power law decay in the tail:  if the skewness is greater 

than 1.0 (or less than -1.0),   the skewness is substantial and the distribution is far 

from symmetrical. Moreover, a flat distribution has a negative kurtosis, while a 

distribution which is more peaked than a Gaussian distribution has a positive kurtosis 

(Mills, 1995). 

It is widely recognized that the use of distribution higher moments, such as skewness 

and kurtosis, can be important for improving the performance of various financial 

models (Mills, 1995; Harvey and Siddique, 1999; Peiró, 1999; Bera and Premaratne, 

2001). Responding to this recognition, researchers and practitioners have started to 

incorporate these high moments into models, mostly using conventional measures, 

e.g. the sample skewness and/or the sample kurtosis. Models of conditional 

counterparts of the sample skewness and the sample kurtosis, based on extensions 

of the generalized autoregressive conditional heteroskedasticity (GARCH) model 

t

Z
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(Engle, 1982), have also been developed and used; see, for example, Leon et al. 

(2004). 

Moments of asset returns of order higher than 2 are important because these permit 

recognitions of the multi-dimensional nature of the concept of risk (Das and Sundaram, 

1999). Such higher order moments have been proved useful for asset pricing, portfolio 

construction, and risk assessment. See, for example, Hwang and Satchell (1999) and 

Harvey and Siddique (2000). High order moments that have received particular 

attention are the skewness and kurtosis, which involve moments of order three and 

four, respectively. Indeed, it is widely held as a "stylized fact" that the distributions of 

stock returns exhibits both left skewness and excess kurtosis (fat tails); there is a large 

amount of empirical evidence to this effect.  See for example, Groeneveld and Meeden 

(1984) or Critchley and Jones  (2008).  

Furthermore, distributions containing parameters that control skewness and/or 

kurtosis are attractive since they can accommodate asymmetry and “flexible tail” 

behaviour (Rubio and Steel, 2014). These distributions are typically obtained by 

adding parameters to a known symmetric distribution through a parametric 

transformation. General representations of parametric transformations have been 

proposed in Ferreira and Steel (2006)  as “probability integral transformations”, Ley 

and Paindaveine (2010) as  “transformations of random variables” and Jones 

(2014a) as “transformations of scale”. Transformations that include a parameter that 

controls skewness are usually referred to as “skewing mechanisms” (Ferreira and 

Steel, 2006; Ley and Paindaveine, 2010), while those that add a kurtosis parameter 

have been called “elongations” (Fischer and Klein, 2004), due to the effect produced 

on the shoulders and the tails of the distributions. Some members of this class are 

the Johnson SU family (Johnson, 1949), Tukey-type transformations such as the g-



and-h transformation and the Lambert W transformation (Hoaglin et al., 1985; Goerg, 

2011), and the sinh-arcsinh transformation (Jones and Pewsey, 2009). These sorts 

of transformations are typically, but not exclusively, applied to the normal distribution. 

Alternatively, distributions that can account for skewness and kurtosis can be 

obtained by introducing skewness into a symmetric distribution that already contains 

a shape parameter. Examples of distributions obtained by this method are skew-t 

distributions (Hansen, 1994; Fernandez and Steel, 1998; Azzalini and Capitanio, 

2003; Rosco et al., 2011), and skew-Exponential power distributions (Azzalini, 1986; 

Fernandez et al., 1995). Other distributions containing shape and skewness 

parameters have been proposed in different contexts such as the generalized 

hyperbolic distribution (Barndorff-Nielsen et al., 1982; Aas and Haff, 2006), the 

skew–t proposed in Jones and Faddy,2003; and the α−stable family of distributions. 

With the exception of the so called “two–piece” transformation (Fernandez and Steel, 

1998; Arellano-Valle et al., 2005), the aforementioned transformations produce 

distributions with different shapes and/or different tail behaviour in each direction. 

Surveys on families of “flexible tail” distributions can be found in Jones (2014) and 

Ley (2015). Other approaches used to produce so called flexible models are semi-

parametric models (Quintana et al., 2009) or fully nonparametric models (e.g. kernel 

density estimators and Bayesian nonparametric density estimation).  

 

Understanding what is happening as well as risk control and management is and 

continues to be an urgent challenge for investors and researchers alike. One should 

mention here that numerous problem-solving strategies can be drawn from 

Operations Research to apply in Finance and related sub-categories. Financial 

Engineering takes on the developing and implementation of innovative ideas for 



financial products.  For example exploring the financial risk of temperature index by 

Castellano et al., 2018. In Portfolio Theory minimising risk and maximising returns; 

(classic optimisation scenario) like Value at Risk (VAR) measure for managing risk 

(Elliott and Siu 2010). In Financial Instruments pricing and risk management of 

complex financial instruments, the seminal Black-Scholes Model and its numerous 

variations including the one developed by Gueillaume (2018) and Elliott and Siu 

(2010)  is the one of many examples, also application of Monte Carlo simulations 

(applied in this paper simulate returns ) to analyse the behaviour of these financial 

instruments. High-Frequency Trading probably the prime example of OR being put 

into use in Finance. Certain strategies consider optimal order size, optimal trading 

signal, optimal trading times, etc. to calculate tiny statistical discrepancies in the 

market and trade on them as explained in Kurrum  et al,. 2018. Moreover, the 

Brownian Motion and its different variations/extensions have been extensively 

applied to model the various operations research, management science and 

computational problems as highlighted in  Ormici et al., (2008), Harrison et al., 

(1983), Zacharias and Armony, (2016), Lucheroni and Mari, (2018), Miao et al., 

(2016), Zheng et al., (2016)  amongst others. 

Moving theories away from classical Geometric Brownian Motion has  become a 

necessity. Hence asset modelling as in Leon et.al. (2002) and Corcuera et.al. (2003) 

financial asset models has been also addressed by the development of Normal 

Inverse Gaussian Levy Process providing the explanation of the empirical scaling 

power law as in Barndorff-Nielson 1997, 1998a, 1998b; Barndorff-Nielson and 

Prause, 2001. Levy processes combined with jump models have been developed 

and applied for financial asset modelling as in Leon et al., (2002) and Corcuera et 

al., (2005). In fact, Levy walks (Mantegna, 1991) were discovered as potential 



causes ruling the stock market noticing a breaking of the central limit theorem 

(further to be replaced by the Levy-Khinchine one). This discovery meant that the 

world could enter an age of significantly increasing risk of financial market 

investments: not only huge losses but also colossal profits could be possible. The 

Mantegna discovery (Mantegna, 1991) opened the eyes to non-Gaussian processes 

on financial markets focusing on the non classical Brownian or non-Wiener random 

walks. Among these is the identification of empirical regularities and canonical 

stylized facts (Dacorogna et al., 2001) bearing upon new scaling laws (Di Matteo et 

al., 2003; Di Matteo et al., 2005) emphasizing long term memories. Alongside these 

numerous studies have also applied Fractal Brownian Motion, which takes into 

account the dependant increments and possesses long-range dependence and self-

similarity properties, to model the underlying asset. Some of these works include 

Castellano et al., 2018; Kloeden et al., 2011; Funahashi and Higuchi, 2017; 

Siu,2012; Elliott and Siu, 2010; Puu,1992; Tapiero and Vallois, 2018 amongst others. 

 

However, recent papers use a quite innovative approach for doing so (Dhesi et al., 

2011; Dhesi et al., 2016; Dhesi and Ausloos, 2016). This is achieved by adding an 

extra stochastic function, with only two parameters (k and c) to be estimated, to the 

GBM, incorporating a weighting factor (see equation (5) here below).  The introduction 

of such (up to now) parameters can be easily argued, see below in Sect.1. 

Interestingly, this type of modelling is endogenous and part of some coherent 

understanding of the market process, i.e. taking into account some so called 

irrationality of agents. Feedback and success of “irrational investors” are for example 

reported in Hiershleifer et al. (2006). Such a psychological behaviour is sometimes 



accepted as common knowledge that is as a realistic possibility, but hardly included in 

models. 

The Irrational Fractional Brownian Motion (IFBM) modelling captures the fat tails and 

overall leptokurtosis (Dhesi et al., 2016; Dhesi and Ausloos, 2016). Therefore, it can 

be claimed that the model makes a fully pertinent connection between the extra 

function and so called irrational behaviour of financial markets. 

In light of such premises, and in view of predicting/explaining the exponent of the fat 

tails, the paper is organized as follows. Section 2 briefly outlines the Geometric 

Brownian Motion model, for completeness, while Section 3 explains the novel Irrational 

Fractional Brownian Motion model. Section 4 explains the methodology of using the 

irrational fractional Brownian motion for modelling and forecasting the kurtosis of 

returns distributions. The fine results obtained from this method are summarized and 

further discussed in Section 5.   

2.   Geometric Brownian Motion model 

Eq.  (2) can be also written as 

 

     (3) 

Applying Ito’s Lemma (Merton 1975, Gardiner 1985, Heston 1993), the equivalent form 

of Eq. (3) is expressed as 
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The above model, equations. (1) - (4), provides the foundations of classical 

quantitative finance. As mentioned here above, the problem is that the distributions of 

returns generated from this GBM model does not match the distributions of historical 

returns data, - which often show leptokurtosis.  

 

3.     Irrational Fractional Brownian Motion model 

Continuously compounded returns over k periods are given by
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The following additivity equation shows that the continuously compounded return 

over k periods can be written as 

1 2 1

1 2 1

( ) ln ln ...... ln lnt t t k t k
t

t t t k t k

P P P P
r k

P P P P

− − − − −

− − − − −

       
= + + + +       

       
 

Also, this sum also comes in useful when returns may diverge from normal 

distribution. As in this case the central limit theorem shows that the sample average 

of the sum will converge to the normal distribution. 

However, this is only the case over the longest of time periods, such as annual returns 

(Ausloos and Ivanova, 2003). One argument could be as follows. Price-influencing 

events may be normally distributed, but the likelihood of said events being reported in 

the news increases with the magnitude of the impact of the event. For the latter 

distribution, one can factor in the tendency for the media to simplify and exaggerate 

the news implication. When multiplying the normal distribution by the distribution 

according to a function modelling, the likelihood/duration/impact of such news reports 

leads to a much fatter-tailed distribution than a Gaussian (Dhesi et al., 2011). 



After extensive simulations and analyses, Dhesi et al. (2016) proposed the Irrational 

Fractional Brownian Motion (IFBM): in order to manage such aspects; it reads 

𝑃𝑡+𝛿𝑡 = 𝑃𝑡 exp(𝜇𝛿𝑡 + 𝜎𝑍𝑡√𝛿𝑡 + 𝜇𝐾𝑓(𝑍𝑡)𝛿𝑡) 

or 

 𝑃𝑡+𝛿𝑡 = 𝑃𝑡 exp(𝜇𝛿𝑡 + 𝜎𝑍𝑡√𝛿𝑡 − 𝑘𝑓(𝑍𝑡)𝛿𝑡)𝑘 = −𝜇𝐾          (5) 

 

By comparing equations (4) and (5) one can observe that the GBM modifying function 

is 

           (6) 

shown in Fig. 1 

     
 Fig.1: Plot of the response/feedback f(Z) function, Eq. (6) emphasizing the various regions of interest     

          (Source: Dhesi & Ausloos, 2016) 

In understanding how the function f(Z) is achieved one needs to look at the shape of 

the function that is desirable. The shape of the function that is desirable is presented 

2
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in figure 1. An analytic expression of a function that achieves such a shape is 

expressed by equation 6.  

Part of the function f(Z) that is bounded by the roots, the so-called negative feedback 

area, will peak the returns distribution whereas the parts of the function f(Z) beyond 

the roots, the so-called positive feedback area will fatten the tails. Hence overall 

turning a mesokurtic (normal) distribution into a leptokurtic distribution. Full details 

regarding this can be found in Dhesi and Ausloos (2016). 

The function f(Z) contains two parameters namely k and c. Parameter k increases 

the amplitude of the function whereas the parameter c changes the positioning of the 

roots of the function. Optimal k and c are selected by performing extensive 

simulations, such as to find the best possible fit using chi squared goodness of fit 

calculations to the specific data set. Full details regarding this can be found in Dhesi 

et al. (2011). 

There could be many other such non-linear combinations which would generate similar 

shapes. However, it was found (Dhesi et al., 2011) that simulations based on this 

model (equations (5) and (6)) provided the best k and c tail parameterization, by using 

Chi-square test. As an example, Figure 2 illustrates the GBM and IFBM (with optimal 

k and c) best fitted on two-year daily S&P500 data over 2010-2011.   

 



     
       Fig. 2: GBM and IFBM, with optimal k and c, best fitted two-year daily S&P500 data  over 2010-2011.  

                                 (Source: Dhesi et al., 2016) 

It can be seen that the (red) IFBM curve is very close to the historical histogram leading 

to a much better fit than the (green) GBM curve. This was verified by running a chi-

square goodness of fit test on the historical data (observed frequency) with respect to 

simulations from the GBM and the IFBM (corresponding expected frequencies). 

One possible explanation as of why GBM is transformed into IFBM can be deduced 

by looking into the shape of 𝑓(𝑍), on Fig. 1.For simplicity, we may notate that the 

values bounded by the Z-roots are “small” values of Z and “large” values to be away 

from roots in either direction. Therefore, the returns generated by “small” Z-values 

cause the peak of the distribution as the magnitude of returns is diminished; this can 

be linked to the negative feedback region of f(Z); on the other hand, the returns 

generated by “large” Z-values shape the fat tails of the  distribution. 

 

4.  Forecasting Kurtosis and Returns Distribution  



As IFBM seems to capture the leptokurtosis or fat tails of returns distributions, a 

question arises about the link between the distribution kurtosis and the parameters k 

and/or c.  

In order to determine such a link, we present analysis on daily S&P500 index data 

from 1950 to 2015 as follows. The sample consists of 33 “2-year daily data” non-

overlapping windows, from the time interval [1950-2015]. In the notation below “t [1, 

33]” refers to the tth data window. 

 

                              ln(𝐾𝑢𝑟𝑡𝑡) = 1.66 + 0.078ln(𝑘𝑡) − 0.079ln(𝑐𝑡) 

                 standard errors:(0.10)(0.02)(0.03) 

                 t-statistics:             16.474.972.74 

     

The data set is reduced to 32 points1 (up to 2013) in view of forecasting the kurtosis 

of 2014-15 and comparing with the actually realized value (refer to Table 1). A 

significant statistical econometric relationship is found between the logarithmic 

kurtosis and the logarithmic 𝑘and 𝑐 values as given by: 

 

 

 
1 Equation (7) is different from Equation (6), as in Equation (7) only 32 data points rather than 33 data 

points. The 33rd data point is treated as ex-post such that we can compare the 33rd point data from 

Table 1 with forecast as shown in Table 2. 



 

ln(𝐾𝑢𝑟𝑡𝑡) = 1.66 + 0.078 ln(𝑘𝑡) − 0.081 ln(𝑐𝑡)                      (7) 

standard errors:(0.10)(0.03)(0.02) 

t-statistics:          16.054.892.73 

In order to complete the model and verify its robustness, we explore whether there is 

an autoregressive process on k and c, i.e. whether future k and c values can be 

forecasted from the past values. 

It is found that a basic time series analysis for values of k does not produce an AR 

process on k due to a small t-statistics on lagged value of k; one finds 

 

                                                𝑘𝑡 = 0.002 + 0.259𝑘𝑡−1 

                    Standard errors: (0.0006)(0.174) 

                    t-statistics       :    3.021.49 

 

However, it is found that there is an AR process on c with a significant t-statistics test 

on one period lagged c:  

                                              𝑐𝑡 = 0.180 + 0.422𝑐𝑡−1                                 (8) 

                    Standard errors: (0.06)(0.17) 

                    t-statistics       :    3.042.53 



The non-significance of the AR processes on k proves a stumbling block in using the 

forecast model equation (7), which leads to request some further investigation. One 

possibility is to check the AR process on the ratio k/c, - since c is AR and k is not. This 

is also inspired by a further analysis of Eq. (7). This is also confirmed by modelling the 

logarithmic kurtosis by the logarithmic ratio (k/c), which produces the following results: 

ln(𝐾𝑢𝑟𝑡𝑡) = 1.66 + 0.08𝑙𝑛 (
𝑘𝑡

𝑐𝑡
)      (9) 

The ratio (k/c) when interestingly plotted over time for the sample (see Fig.3) produces 

a picture indicating a smooth pattern with occasional outliers. 

     
              Figure 3: Scatter plot of (k/c) values with corresponding 2-year time periods, between t = 1 (for Jan 

01, 1950 – Dec 31, 1951) till t= 33 (for Jan 01, 2014- Dec. 31, 2015) 

These outliers occur at market crash years, that is the Cuban missile crisis (1962), the 

financial crisis (1987) and the subprime mortgage crisis (2008), i.e., extreme events 



indicating an a priori unexpected high ratio. This means that extreme events are well 

modelled by an IFBM with large (
𝑘

𝑐
) value. The results are summarised in Table 1. 

    Historical  GBM IFBM 

Time 
Window c k k/c Kurtosis Kurtosis Kurtosis 

1950-1951 0.1 0.002 0.0215 3.572159 2.99851 3.63634 

1952-1953 0.1 0.001 0.0125 3.728461 3.03216 3.58129 

1954-1955 0.1 0.002 0.0239 5.930774 2.98839 5.87982 

1956-1957 0.3 0.002 0.0073 3.437844 2.98328 3.60893 

1958-1959 0.1 8E-05 0.0008 3.307019 2.91947 3.12327 

1960-1961 0.2 0.001 0.0071 3.581607 3.09118 3.59623 

1962-1963 0.1 0.003 0.0344 4.267800 2.88745 3.98187 

1964-1965 0.1 8E-04 0.0081 3.535882 2.90662 3.37264 

1966-1967 0.4 0.001 0.0034 3.426431 2.84707 3.26054 

1968-1969 0.1 3E-04 0.0027 2.995724 2.76098 2.83976 

1970-1971 0.4 0.003 0.0069 3.440020 2.76787 3.47213 

1972-1973 0.2 0.001 0.0074 3.315984 2.87283 3.27081 

1974-1975 0.1 9E-04 0.0095 3.020921 2.88448 3.04110 

1976-1977 0.1 9E-06 9E-05 2.908024 2.86528 2.84191 

1978-1979 0.3 0.001 0.0037 3.216504 2.93092 3.23772 

1980-1981 0.3 6E-04 0.0019 2.967555 2.80431 2.91500 

1982-1983 0.2 0.001 0.0059 3.139087 2.86101 3.09164 

1984-1985 0.3 0.001 0.0033 3.411969 2.84173 3.12957 

1986-1987 0.1 0.009 0.0945 4.824096 2.59039 4.54390 

1988-1989 0.2 0.003 0.0160 3.953239 2.93867 3.77569 

1990-1991 0.3 0.002 0.0059 3.235887 2.91430 3.30811 

1992-1993 0.7 0.001 0.0019 3.343758 2.83918 3.24248 

1994-1995 0.4 0.002 0.0042 3.564686 2.98539 3.62970 

1996-1997 0.2 0.003 0.0132 3.570610 2.96275 3.60373 

1998-1999 0.3 0.002 0.0082 3.480683 3.01699 3.45123 

2000-2001 0.2 0.002 0.0119 3.319048 2.95830 3.33218 

2002-2003 0.6 0.003 0.0043 3.398068 2.90596 3.24078 

2004-2005 1.1 9E-04 0.0009 3.159916 2.97078 3.16851 

2006-2007 0.5 0.003 0.0064 4.071763 2.99778 3.80458 

2008-2009 0.3 0.010 0.0328 4.320958 2.96258 4.11278 

2010-2011 0.4 0.006 0.0145 3.937480 2.84927 3.87489 

2012-2013 0.6 0.001 0.0025 3.488274 2.86441 3.25203 

2014-2015 0.5 0.002 0.0048 3.639081 2.98048 3.57924 

              
Table 1: comparison of Kurtosis from historical returns data, with GBM and IFBM; outliers are emphasised and 

underlined; the corresponding historical kurtosis is  clearly much better estimated from the IFBM. 



 

However, there does not seem to be an AR process on (k/c) with insignificant t-stat. 

In fact, a graph of (k/c) with one period lagged values (see Fig.4) presents a fanning 

out process, hinting the presence of heteroscedasticity like effect. Therefore, we 

perform the variable transformation to eradicate this heteroscedasticity like effect. 

 

                                             Fig. 4: Scatter Plot of k/c versus one period lagged k/c. 

 

 In so doing, the transformed version of (k/c) does have an AR process on ratio (k/c) 

with a significant t-stat of 5.18; the result reads: 

[𝑘/𝑐]𝑡+1

√[𝑘/𝑐]𝑡
= 0.004√[𝑘/𝑐]𝑡

−1
+ 0.465√[𝑘/𝑐]𝑡                               (10) 

 



Applying the  1-step forecast for the kurtosis of 2014-15 using  equations (8),(9) and 

(10). a 3.53 kurtosis value is predicted; this is in very good agreement with  the kurtosis 

equal to 3.58  generated by the IFBM model (see last row of Table 1) for the same 

time period.  

Also since there are AR processes on c and (k/c), thereby meaning that one can 

forecast c and (k/c) using the 1-step forecast method, one can use these values to 

forecast k. In other words, we prove that one can forecast the signature of the returns 

distribution by forecasting the values of k and c. Table 2 presents a comparison of 

forecast and IFBM simulated values and forecast values of k, c, (k/c) for Jan 01, 2014 

- Dec 31, 2015. IFBM simulated values can be seen in the last row of Table 1 and 

forecast values are obtained from equations (8) and (10). 

  IFBM Simulated Values Forecasted Values from eqs.(8) and (10) 

(k/c) 0.00478 0.0051 

c 0.5 0.4332 

k 0.002394 0.002209 

Table 2: Comparison: Between simulated values from IFBM(column 2) and forecasted values from eq.(8) and 

eq.(10) (column 3). (Jan 01, 2014 - Dec 31, 2015). 

 

Based on these forecast values, the returns distribution for 2014-15 generates the 

theoretical distribution displayed in Fig. 5. Precisely, the grey bars are the historical 

returns, while the green distribution represents the GBM values; the red distribution 

represents the simulated distribution from IFBM (using c and k of the last row of Table 

1). It is easily observed that, the blue curve, the forecasted distribution using the 



forecast values of c and k (second column of Table 2) finely overlaps the simulated 

distribution. 

 

Fig. 5: Distribution of S&P500 returns for 2014-15 with GBM, IFBM simulation and IFBM forecast. 

For a normally distributed data set, the 5% probability in left tail will yield a Z-value (Z 

measures the number of standard deviations away from the mean value) of -1.64, 

whereas the historical distribution of S&P500 index for 2014-15 data set has 5% 

probability to left of -1.86; however by applying IFBM on same data accurately 

forecasts a 5% Z-value of -1.85 in agreement with historical data. 

 

5. Conclusion 

In the present paper, we provide a theoretical analysis and a numerical investigation 

of financial data in order to demonstrate that the response function so introduced in 

the IFBM model in order to render the GBM model “more flexible” is of great validity 

and forecasting power. In particular, the best proof stems in Fig. 5 which shows that 



our methodology, justified in Section 1 and analytically introduced in Section 3, 

allows to finely forecast returns distributions. 

It can be concurred that this process as modelled in equations (8),(9) and (10) 

significantly adds to the forecasting of financial time series and provides further and 

novel directions to academics working in this field. Frequency distribution of returns 

taken ad hoc from the normal distribution or leptokurtic distribution from previous 

period will inaccurately measure risk signature for the period under forecast 

investigation. However, this accurate forecasting of the fat tailed frequency distribution 

for returns provides a major benefit for practitioners, for example, in Value at Risk 

(VaR) management.  

Risk managers will be able to apply the accurate forecasted returns distribution to 

accurately calculate the p% VaR loss of the desired untraded asset/index. 
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