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Abstract: Turboelectric systems can be considered complex systems that may comprise errors and
uncertainty. Uncertainty quantification and error estimation processes can, therefore, be useful in
achieving accurate system parameters. Uncertainty quantification and error estimation processes,
however, entail some stages that provide results that are more positive. Since accurate approximation
and power optimisation are crucial processes, it is essential to focus on higher accuracy levels.
Integrating computational models with reliable algorithms into the computation processes leads to a
higher accuracy level. Some of the current models, like Monte Carlo and Latin hypercube sampling,
are reliable. This paper focuses on uncertainty quantification and error estimation processes in
turboelectric numerical modelling. The current study integrates the current evidence with scholarly
sources to ensure the incorporation of the most reliable evidence into the conclusions. It is evident
that studies on the current subject began a long time ago, and there is sufficient scholarly evidence for
analysis. The case study used to obtain this evidence is NASA N3-X, with three aircraft conditions:
rolling to take off, cruising and taking off. The results show that the electrical elements in turboelectric
systems can have decent outcomes in statistical analysis. Moreover, the risk of having overload
branches is up to 2% of the total aircraft operation lifecycle, and the enhancement of the turboelectric
system through electrical power optimisation management could lead to higher performance.

Keywords: turboelectric power; uncertainty quantification; error estimation; numerical modelling;
turboelectric distributed propulsion; applied modelling

1. Introduction

Uncertainty is a common occurrence in engineering systems. It entails the process of accurately
computing the extent to which a mathematical model can describe the relevant physics. It also concerns
the impact of model uncertainty, which is either parametric or structural, on the outputs of the model.
Error estimation, on the other hand, entails the task of determining the accuracy of a particular
numerical technique in its approximation of a given output. It is also common in engineering systems
due to there being several mechanical factors that are involved in their composition. A turboelectric
aircraft utilises combustible fuel for the storage of energy, but it also uses electric power transmission,
and not mechanical transmission, to drive the propulsors [1,2]. A turboelectric design is just a different
configuration or architecture for hybrid-electric or all-electric models. Turboelectric models are hybrids
that lack batteries [3]. Uncertainty quantification and the error estimation process, however, entail the
use of various techniques for different types of uncertainties.

The need for sampling study in the turboelectric system presented to find the accuracy of the
output approximation of the mathematical model which the study will result in error estimation for
the numerical method used [4,5]. Moreover, the sampling method been used to optimise turboelectric
propulsion system with the two objectives electrical power and efficiency.
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This paper studies the uncertainty in turboelectric distributed propulsion (TeDP) systems and
estimates the error in their utilisation. In addition, it fills in the gap of quantitative risk analysis in
numerical modelling for futuristic propulsion systems.

2. Network Model Method

A high-level set of electrical network architectures are designed to obtain the optimal power
flow within the required post-process results. At the start of the designed network, the input data
are considered first. These data are the values of the electrical parameters generated or intended for
propulsion design. Then, these values are applied to Kirchhoff’s and Ohm’s laws. The three principle
laws are

• Kirchhoff’s current law

G. R. Kirchhoff, a German scientist, proposed a fundamental law, known as Kirchhoff’s current
law (KCL). This law states that the sum of the currents at an electric node needs to be zero, which is
defined formally in [6,7]:

N∑
n=1

in = 0

• Kirchhoff’s voltage law

Voltage is the motion of electric charge between two points and can be defined as the total work
per unit charge. Furthermore, the voltage was defined as a unit of energy per charge by the Italian
physicist Alessandro Volta as part of his contribution with regard to the electric battery:

volt =
joule (energy)

coulomb (electric charge)

After several experimental works on voltage, Kirchhoff proposed his second law called Kirchhoff’s
voltage law (KVL) based on the principle that no loss in energy can occur in an electric circuit.
This implies that the sum of all voltage sources must be equal to the sum of load voltages, which results
in a total of zero for any closed circuit, as in [6,7]:

N∑
n=1

vn = 0

• Ohm’s law

Material properties are the main factors that affect the resistance when electric current flows
through the conductors or circuit elements. This resistance during the current flow in the circuit
elements can be considered as energy loss, which may be converted to the form of heat. According to
Ohm’s law, which deals with an ideal resistor,

V = I R

As R is the value of resistance with the unit Ohm (Ω), it can be defined as the voltage across an
element divided by the current flow through it:

Ω =
V
A

To optimise the power flow in this stage, three methods were included within the module, as
described below:
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• Levenberg–Marquardt

In the early 1960s, the Levenberg–Marquardt algorithm (LMA) was introduced to solve the
nonlinear least-squares problem. It minimises the sum of squares errors using a sequence of updates to
the parameter values between the measured data points and the fit parameterised function. Moreover,
the nonlinear problem implies that the parameters of the fit function are not linear. The algorithm by itself
consists of two methods, combination and calculation, depending on the optimal value: the gradient
descent method, which updates the parameters in the steepest-descent direction, and the Gauss–Newton
method, which assumes that the least-squares function is locally quadratic by determining its minimum.
Thus, when the optimal values for the parameters are distant, then the LMA adopts the gradient
descent method, whereas, when the optimal values for the parameters are close to each other, then the
LMA adopts the Gauss–Newton method [8,9].

• Newton Raphson

This method was proposed in 1685 by John Wallis as a root-finding approximation using a straight
tangent [10,11]. Figure 1 illustrate Newton-Raphson method.
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deterministic analysis. In brief, the HELM mechanism comprises the following steps [13,14]: 

1. Find a suitable complex holomorphic embedding with the help of a complex parameter. 
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3. Determine the solution of the complex parameter as the analytical continuation of the power 
series via Pad’e Approximants. 

Figure 2 depicts these methods and illustrates the modelled electric network architecture for the 
numerical simulation software to solve hybrid and turboelectric implementation. 
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• Holomorphic embedding

In 2012, Antonio Trias proposed the holomorphic embedding load flow method (HELM) as a
novel non-iterative and non-initial value algorithm. It uses the techniques of complex and deterministic
analysis. In brief, the HELM mechanism comprises the following steps [13,14]:

1. Find a suitable complex holomorphic embedding with the help of a complex parameter.
2. Calculate the power series using a sequence of linear systems that yield the

coefficients progressively.
3. Determine the solution of the complex parameter as the analytical continuation of the power

series via Pad’e Approximants.

Figure 2 depicts these methods and illustrates the modelled electric network architecture for the
numerical simulation software to solve hybrid and turboelectric implementation.
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Figure 2. Electrical network architecture. 

2.1. Generator 

The generator is modelled as a function in a specific buss. For generator 𝑥, the function is 𝐺(𝑥) = 𝑃(𝑥) + 𝑗𝑞(𝑥)  
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As per the basic generator concept, magnetic power is the hidden power that converts 
mechanical power into electrical power. Through the rotation of the components, a magnetic field is 
generated, and the conductor or the coil absorbs these effects to generate electricity. Therefore, 
depending on the conductor type (material specifications), in the event of high-temperature 
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2.1. Generator

The generator is modelled as a function in a specific buss. For generator x, the function is

G(x) = P(x) + jq(x)

which combines the active and the reactive powers for the generator in the specific buss as follows:

Generator power (buss) = Active power (buss) + Reactive power (buss)

Then, the connection between the generators using a matrix and the buss is expressed as follows:

Generator buss(x) = Matrix(x) ×Generator(x)

As per the basic generator concept, magnetic power is the hidden power that converts mechanical
power into electrical power. Through the rotation of the components, a magnetic field is generated,
and the conductor or the coil absorbs these effects to generate electricity. Therefore, depending on
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the conductor type (material specifications), in the event of high-temperature superconductivity, the
efficiency of the conductance varies with temperature limitations. The generator can be of two types:
two rotating rings or a rotating split ring, depending on the type of generated current. In the case of
the rotating split ring, the output is a direct current, whereas, in the case of two rotating rings, the
output is alternating current. Figure 3 depicts the relation between the generator-modelled prototypes,
the inverse of which is the motor prototype.
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The following are the Equations (1)–(14) developed to determine the generator model steps and
calculation for the range of voltage, resistance and load [15–17]:

Rotation rate =
Power sha f t

Torque
(1)

Revolutions per minute =
Rotation rate

π
30

(2)

Speed constant (Radian) =
Speed constant (Revolutions per minute)

π
30

(3)

Torque constant (Radian) = Speed constant (Radian) (4)

Generator voltage =
Rotation rate

Speed constant (Radian)
(5)

Current = Torque× Torque constant (Radian) (6)

Voltage = Generator voltage + Resistance×Current (7)
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High temperature superconductor e f f iciency =
Total current temperature − Temperature limit

Temperature limit
(8)

Electric power = Voltage×Current (9)

If high-temperature superconductor > 0,

generator e f f iciency =
Electric power
Power sha f t

− High temperature superconductor e f f iciency × 100.
(10)

Else,

Generator e f f iciency =
Electric power
Power sha f t

(11)

Loss determination:

Loss power = Sha f t power− Electric power (12)

Loss power = Windage f raction + Materials resistance (13)

If high-temperature superconductor ≤ 0, materials resistance = 0

Loss power = Windage f raction (14)

2.2. Motor

The motor is modelled as a constant power load with a specified quantity of active and reactive
power consumed at a buss. For buss x, the load is

M(x) = P(x) + jq(x)

which combines the active and reactive powers for the motor in the specific buss as follows:

Motor power (buss) = Active power (buss) + Reactive power (buss)

Moreover, as mentioned in Figure 3, the motor model prototype is the inverse of the
generator prototype.

The following are the equations (15-28) developed to determine the motor model steps and
calculation for the range of voltage, resistance and load [15–17]:

Motor voltage = Voltage−Resistance×Current (15)

Speed constant (Radian) = Torque constant (Radian) (16)

Tourque =
Current

Torque constant (Radian)
(17)

Rotation rate = Motor voltage× Speed constant (Radian) (18)

Speed constant (Revolutions per minute) = Speed constant (Radian) ×π30 (19)

Rotation rate = Revolutions per minute ×
π
30

(20)

Power sha f t = Rotation rate× Torque (21)

Electric power = Voltage×Current (22)

High temperature superconductor e f f iciency =
Total current temperature − Temperature limit

Temperature limit
(23)

If high-temperature superconductor > 0,
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Motor e f f iciency =
Power sha f t

Electric power
− High temperature superconductor e f f iciency × 100

(24)

Else,

Motor e f f iciency =
Power Sha f t

Electric power
(25)

Loss determination:

Loss power = Electric power− Sha f t power (26)

Loss Power = Windage Fraction + Materials Resistance (27)

If high-temperature superconductor ≤ 0, materials resistance = 0

Loss Power = Windage Fraction (28)

2.3. Circuit

The electric circuit is modelled as a standard electric principle to represent nodes and branches.
To illustrate the electric circuit structure, Figure 4 depicts an electric branch, node, loop and mesh.
This circuit can be used in multi-circuits as the scale of the data examined by means of object
ordinated capability.
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Node:

The node model helps to analyse and calculate the electrical circuit parameters by applying KCL
in each node to obtain the simultaneous equations, whereas the mesh model needs to apply KVL to
solve the electrical parameters [18].

Buss:

The buss is a part of the node configuration, which represents the wiring connection between the
power sources, loads and electrical converters. It carries the reactive power, voltage and the resistance
of the link depending on the material or the length of the bus.

Branch:

The branch model is a median between different nodes and has the ability to transfer the power
type and size.

3. Impact of Model Uncertainty

Apparently, during the development of numerical models, uncertainty quantification tasks can
lead to a suitable framework for the allocation of computational resources. They most often lead
to an efficient investigation in activity role model standardisation and a robust design [19]. During
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turboelectric numerical modelling, several uncertainties can emerge due to assumptions associated with
unavoidable circumstances. It is crucial to account for those uncertainties. Uncertainty quantification
can enable the prediction of the effects of the sources of uncertainties on numerical models and the
effects of the inherent assumptions they make about the models. Uncertainty quantification strategies
affect modelling processes because they can enhance the optimisation processes and sound design.
The process of uncertainty quantification entails processes, such as effect screening, forward uncertainty
propagation, parametric studies and sensitivity analysis.

In modelling and simulation, however, the uncertainty quantification process typically entails the
utilisation of parametric studies. In that regard, the uncertainty sources refer to the sources delineated
by the model parameters. In turboelectric numerical modelling, aspects like the crashworthiness of an
aircraft constitute a possible area of beneficial research, but there is a high level of uncertainty [19].
The uncertainty associated with the airworthiness of an aircraft increases the risk of an accident because
of the inability to obtain reliable results. Uncertainty also affects the predictability of the possible
outcomes. In this regard, it can amount to a negative impact due to cause inaccuracies in selecting the
best action to take to enhance the safety in the utilisation of an aircraft. For example, the aerospace
industry tends to replace liquid fuel with batteries because liquid fuel tends to worsen the situation
when a crash occurs.

Model uncertainty cannot help in predicting the possible outcomes of the numerical modelling
process of a turboelectric system. However, it prevents accurate determination of the sensitivity of
input power. In particular, with increased model uncertainty, it becomes difficult to predict the input
power of the cryogenic system in an aircraft [20]. Due to the inability to predict the input power,
owing to the model uncertainty, it also becomes difficult to determine the mass of the single-stage and
two-stage reverse-Brayton cycle cryocoolers (RBCCs) for distributed electrical aerospace propulsion
(DEAP). The challenges can also extend to the parameters necessary for the operation of the RBCCs.
Inaccurate estimation of the input power and probable effects on the power transmission fluctuations
throughout the system make it challenging to predict the correct temperature required for cryocooling
power [20].

The effect of model uncertainty is that several crucial parameters become unpredictable and the
system can only be operated on the basis of estimates which, in turn, exacerbates the effect of the
error. For example, the current-carrying capacity of a superconducting material depends on essential
parameters, such as the temperature, current density and magnetic field density. The effect of model
uncertainty can, therefore, affect significant measures of aircraft systems. Power optimisation becomes
almost unachievable, and this leads to difficulties in producing accurate approximations. Addressing
model uncertainty is vital to enabling accurate uncertainty quantification and error estimation in
turboelectric numerical modelling. Considering all the parameters is key to an accurate estimation of
aircraft operating conditions in turboelectric systems.

4. Accurate Approximation

Computational efforts develop with the increase in the number of random variables used in making
accurate approximations of the input. An upsurge of random variables can slightly reduce the accuracy
levels due to the associated approximations [21]. The problem tends to increase in the stochastic
collocation version. The increase in computational efforts is necessary for enhancing the accuracy of
the interpretation of high-dimensional space. In some case studies, the improvement of uncertainty
quantification and error estimation processes using computational models is essential. Computational
models, similarly to the Bayesian model, which is a statistical model that uses probability for the
uncertainty model, can enhance and utilise the approximation optimality and improve the general
accuracy level if incorporated with the Monte Carlo algorithm. This can enhance the accuracy, which
enables the values to be spread correctly and the sample to be selected correctly, and this is also
representative of the intervals across the entire iteration [21,22].
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Approximation accuracy is crucial because of the error that the approximations can introduce into
the uncertainty quantification process and the turboelectric numerical modelling process. Uncertainty
quantification and error estimation processes should be accurate when developing relevant solutions to
and representatives of the parameters involved in the turboelectric numerical modelling of an aircraft.
During error estimation procedures, it is necessary to ensure those accurate approximations serve as
the source of the conclusions that are eventually made.

It is crucial to consider integrating the most representative sample values to achieve an accurate
data interpretation. These data determine the effectiveness of the turboelectric numerical modelling
process and the way it can address any issues arising in aircraft systems that affect the safety of the
aircraft. The uncertainty quantification and error estimation processes should not only indicate the
safety or efficiency of the system, but also the cost minimisation process to ensure that a reliable
alternative is always available in technical, environmental, or economical terms. The outputs of
several approximations simultaneously enable the enhancement of the accuracy and computational
efficiency of the model. The simultaneous application of the computational models resembles a
mixture of the expert models used in statistical applications. Every approximate solver provides some
incomplete data concerning the high-fidelity model. The model undergoes aggregation to achieve the
best possible estimate. The more the approximation models are incorporated, the higher the achievable
accuracy level. The accuracy of approximation is therefore crucial to the success of the uncertainty
quantification process because it determines the accuracy of the turboelectric numerical modelling
process. Computational modelling strategies aid in the enhancement of the accuracy of the output
results. The more the computational models are used, the greater the chances of achieving higher
accuracy levels. Accurate approximation also entails the use of models with reliable algorithms, such as
Monte Carlo.

5. Quantitative Risk Analysis

There are several types of quantitative risk analysis methods for error estimation. This research
focuses on two types: Monte Carlo and Latin hypercube. These two were chosen because of the
advantages that each has in the study of uncertainty. The Latin hypercube algorithm, also known as the
memory analysis method, allows for less sampling, which will provide better performance. However,
it decreases the computational complexity in the numerical modelling process. On the other hand,
Monte Carlo, also known as the memoryless method, enhances the simplicity in numerical modelling,
allowing for the processing of more samples, which increases the performance.

5.1. Monte Carlo

The Monte Carlo technique is a standard method used in uncertainty quantification because it is
simple and generates the desired or accurate statistical results. This technique, however, has a low
computational cost, which tends to be reasonable in most cases [23]. Since the Monte Carlo algorithm
is parallelisable, this can allow the Monte Carlo method to be utilised in simulations in which the
computation of one realisation is inexpensive. The idea of the Monte Carlo method is to produce
several samples of the random factors based on their distributions. All samples outline a deterministic
problem, resolved using a deterministic method, and produce a particular measure of data.

In uncertainty quantification, the Monte Carlo system uses mixed model statistics to obtain the
results of a random system. The Monte Carlo strategy entails a GridMatch tool comprising three
stages. The three phases, which include the stochastic model, random sampling and deterministic
model, are the components of the optimisation approach used in the analogous implementation of
the TeDP of the Monte Carlo method. To obtain samples of random parameters, an individual can
use a pseudorandom number generator. The generator tends to construct a sequence of numbers
in a deterministic fashion, in which it indexes the numbers based on the value of a seed. The seed
emulates a cluster of random numbers. If any two categories of responsibilities have common varieties
of seeds, they can generate a conventional system of random numbers. To avoid the production
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of conventional seeds, it is imperative to employ a vital seed scattering tactic for all the electrical
components. The appropriate approach can create a seed for each electric bus, without replication.
The tactic must also warrant exclusive categorisation of the numbers from each electric bus. Figure 5 in
section (a) represents an overview of the Monte Carlo algorithm while part (b) and (c) demonstrate the
random sampling filtration process using a stochastic model as Latin hypercube that is explained in
Section 5.2.
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Figure 5. (a) exemplification of the Monte Carlo algorithm; (b) and (c) transformation from the ordinary
random grid to a Latin hypercube.

5.1.1. NASA N3-X Case Study

The case study used for TeDP uncertainty and error estimation is NASA N3-X. The aircraft is
modelled with 16 motors and four generators with different data inputs, depending on the system
situation. Three types of aircraft condition assist in the uncertainty and error estimation to test the
reliability of each state. The three examined conditions are rolling to take off (RTO), taking off (TO),
and cruising. Quantitative risk analysis was conducted using Cranfield University’s in-house software
extension for “TurboMatch,” called “GridMatch.” The assumptions were used in Monte Carlo 3
precision for a maximum of 1000 iterations. Figure 6 represents the system model on GridMatch for
NASA N3-X to measure the electrical grid performance.
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In this state of NASA N3-X, the modelled power for each motor is calculated to be 3.588 MVA, and
that of each generator is 14.352 MVA [24]. There is a connection between generators 1 and 3, as a risk
redundancy plane, which is the same for generators 2 and 4. Moreover, the 16 motors are connected in
a mixed prime generator, and every fourth motor is aggregately connected to one generator. Figure 7
illustrates that NASA N3-X model used.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 29 
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5.1.2. Rolling to Take Off (RTO)

Figure 8 illustrates the risk analysis result of NASA N3-X for the branch loading average.
The results show how confident the probabilistic power flow of the modelled system is. It indicates
from the x-axis that the first 20 samples have a higher probability of overload, and then there is
a stabilisation in confidence. While all samples ran in the same numerical simulation, the results
divertive in the first samples as the sampling method build upon initial results. This means that the
error in the first result is reducing until the saturating outcomes. The average confidence probability
results for the primary and secondly generators are 70% and 50%, respectively, where the motors
are from 15–17%. This means that the system is reliable for the RTO condition in terms of the load,
as the calculated determined load need for motors is 68%, and this is covered by 70% of the Monte
Carlo consequence.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 29 
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Figure 8. NASA N3-X RTO Monte Carlo branch loading average.

Figure 9 shows the NASA N3-X bus voltage average from the Monte Carlo analysis. Appositive
outcomes are given from the analysis, with a fixed voltage, through the electric bus from the power
supply generators to the motors. The confidence percentage of the motor bus is from 98.4% to 99%,
based on the bus condition. From these analyses, the bus loss was found to be within 0.6%–1% of the
total electric grid resonance of the inductance of the magnetic field and produced heat.
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5.1.3. Taking Off (TO)

This assessment scenario represents a supreme load of energy and, as in taking off (TO), the full
thrust is needed to drag the aircraft. The same assessment and tools in RTO are used in TO, except
the input power calculated for the motors, which is 4.282 MVA and 17.129 MVA for each generator.
In Figure 10, the results confirm that the load for both generators average 70%–78%, while those
for the motors remain the same as for TO. Additionally, in Figure 11, the confidence of the voltage
average through the bus is reduced from 98.7 to 98.1 in terms of the fixed power voltage from the
generator source. This means that the inductance and heat resistance increased under this risk
assessment condition.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 29 
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Figure 10. Monte Carlo TO NASA N3-X branch loading average.
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5.1.4. Cruising

This situation was considered as the lowest in terms of power consumption and confidence in
precision. In the cruising condition, the generators were calculated to be 5.237 MVA, and the motors
were calculated to be 1.309 MVA, with the same assumptions for RTO and TO. The average confidence
possibility for the branch reliability of the power is 68% for primary generators and 81% for the
secondary generators. However, the reliability of the motor remains the same for the motors, as in
RTO and TO, as shown in Figure 12. For the voltage bus risk assessment, the outcomes, as presented in
Figure 13, illustrate projected certainty levels of 98.1%–98.7%.
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5.2. Latin Hypercube

The Latin hypercube algorithm involves a stratified sampling methodology that applies to several
variables. It mainly serves as a technique through which users can reduce the number of runs
necessary for a Monte Carlo simulation to enhance the accuracy of the random distribution [25]. It is
possible to integrate a Latin hypercube sampling technique into a Monte Carlo model and operate it
with the variables involved based on any analytical probability distribution. As for the uncertainty
quantification and error estimation, risk optimisers can distribute the cumulative curve into equivalent
intervals, based on the cumulative probability scale [26,27]. The subdivision can enable the risk
optimiser to pick a random value from every interval of the input distribution. It is evident that,
with Latin hypercube sampling, risk optimisers can work with a predetermined number of values
because the number of intervals achieved must be equivalent or correspond to the number of available
iterations. It is essential to understand that there are no longer pure random samples. As a result, the
central limit theorem of statistics is not applicable [28]. Latin hypercube sampling, however, entails
stratified random samples. In uncertainty, consistent monitoring of the process can be achieved from
the beginning to the end regarding the quantification and error estimation processes in turboelectric
numerical risk modelling optimisation. Ideally, it can constrain the information for every simulation to
ensure that it can correspond very closely to the input distribution. The uniformity of all iterations
becomes achievable across the simulation. It is crucial to understand, however, that, although it is
possible to constrain the data for the iterations of a simulation to correspond to the input distribution
as a cluster, it is impossible to achieve that for any particular subsequent iteration.

The benefit of the Latin hypercube technique is that, even for the modest amounts of iterations,
the Latin hypercube technique can converge all the sample means, allowing them to fall into a small
segment of the standard error. It should be recalled that the objective of Latin hypercube sampling is to
spread the sample points uniformly across all the possible values. As a result, during the uncertainty
quantification and error estimation processes, the Latin hypercube sampling method can enable a
wide range of parameters involved in the turboelectric numerical modelling process to be considered.
Therefore, it can incorporate these parameters into the uncertainty quantification and error estimation
procedures. As a result, it can generate common and reliable mean values, from which relevant and
accurate predictions can be made. Latin hypercube sampling is flexible because, although it generates
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a sample from each interval in an iteration and ensures that there is no correlation between different
inputs, it can also enable determination of the correlation [29]. In other words, the Latin hypercube
algorithm is a method mechanism for sorted random iterations of multidimensional distribution values.
The algorithm of this method starts with median Latin hypercube sampling, integrating the median
value of every equiprobable interval, and then random Latin hypercube sampling picks a random
point within an interval. The following Table 1 shows the comparison between Monte Carlo and
Latin Hypercube.

Table 1. Monte Carlo and Latin hypercube comparison.

Monte Carlo Latin Hypercube

More samples for better performance Fewer samples for better performance
Memoryless Memory

Increases computational complexity Decreases computational complexity

5.2.1. NASA N3-X Case Study

The Latin hypercube method, used for NASA N3-X in 100 sampling points, results in realistic
outcomes. The same three scenarios—RTO, TO, and cruising—are subject to quantitative risk analysis
using a similar tool. The purpose of this assessment of pure randomness is to associate the Monte
Carlo outcomes.

5.2.2. Rolling to Take Off (RTO)

With similar inputs as those in RTO in Monte Carlo, the Latin hypercube simulation provides more
accurate results after 38 sampling points, and the system shows a 60% average load power for primary
generators and 63% for secondary generators. The equivalent accuracy for the motors at the same
sampling points is 15%–16% of the confidence percentage, as shown in Figure 14. The voltage stability
in this method of analysis in RTO shows 98.6% to 99% for the motor buses, with the assumption of
a fixed power source. Figure 15 illustrates the outcome of the Latin hypercube for each bus in the
electrical model grid for NASA N3-X under the RTO condition.
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5.2.3. Taking Off (TO)

The result in this stage, with the same inputs used in TO in Monte Carlo, shows that the stability
load of the generators has a lower number of sampling points than RTO in the 18 samples, and the
primary and secondary generators fluctuate between 70% and 73% of the power load. However,
the motors are 1% higher than those in TO using the same analysis method, and the load percentage is
within 16%–17%, as presented in Figure 16. In the bus analysis, the confidence reliability is 0.3 to 0.7,
in 98% of the motors, as shown in Figure 17.
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Figure 17. Latin hypercube TO bus voltage average for NASA N3-X.

5.2.4. Cruising

The last station to test with the Latin hypercube is the cruising state. The inputs, as in Monte
Carlo, show that the confidence reliability for both the primary and secondary generators range
from 71% to 76%. In addition, the motors are considered to be within 14%–17% of the branch load,
as shown in Figure 18. Figure 19 shows the bus voltage average to be between 98.3% and 99.3% of the
probability confidence.
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Figure 18. NASA N3-X branch loading average, calculated by Latin hypercube, in the cruising condition.
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6. Standard Deviation

As a significant number of sampling points are used in the Monte Carlo (MC) and Latin hypercube
(LH) methods, error limitation is performed using the standard deviation for branch loading as a
variable. The error estimation defines the maximum level of specific output accuracy from the applied
numerical model. It was applied in all flying conditions and for both analysis methods. The following
results can be observed:

• RTO: This stage shows an error estimation for MC analysis of less than 0.01% for the motor
branches and 0.17% and 0.16% for the primary and secondary generators, respectively, as shown
in Figure 20. On the other hand, the error eviction of LH was less than that of MC with the same
inputs and case studies, as shown in Figure 23.

• TO: This stage shows an error limitation of less than 0.01% for the motor branches and 0.14%–0.16%
for the generators as an outcome of the MC method. Figures 21 and 24 illustrate the MC and LH
standard deviations for the TO case study.

• Cruising: In this stage, MC and LH have practically matching results in terms of the error margins,
and Figures 22 and 25 show these data.
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Figure 23. Latin hypercube standard deviation for the RTO case study.
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7. Cumulative Distribution Function

This probability density function, called the cumulative distribution function (CDF), is the
probability that the function of a variable will take less than or equal to r, and all variable submissions
are equal to 1. It can be expressed as follows:

f (x) = P(X ≤ r)

where X = added variables; r = random variables.
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CDF is a statistical method used to eliminate the probability limits between 0 and 1 to study the
branch load level on the electrical grid [30]. This analysis includes MC and LH results with the three
scenarios, RTO, TO and cruising. The following Table 2 shows the comparison between Standard
deviation and cumulative distribution function.

Table 2. Standard deviation and cumulative distribution function comparison.

Standard Deviation Cumulative Distribution Function

Error sizing Represents the sampling from 0 to 1
Data convergent margining Examines the data distribution

The outcomes of this analysis are shown in Figures 26–31. The x-axis represents the probability
values, and the y-axis represents the per unit (p.u.) system:

per unit =
Actual load
Base load
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The description of these figures is as follows:

# Every two generators were connecting to share the power demand.
# The combination of two generators consists of the main and secondary generator.
# The two main generators in the propulsion system have a connection to stabilise the power.
# As there are 16 motors, the power disrupted into an optimised way depending on the flight

condition by using Monte Carlo and Latin Hypercube.
# From the optimised results, a standard deviation and cumulative distribution function was

applied to estimate the probability of outcomes.
# The cumulative distribution function should give a step-changing based on the 100 samples

generated randomly with the probability between zero and one.

The explanation and discussion for the figures’ outcomes are as follows:

# The two methods of quantitative analysis Monte Carlo and Latin Hypercube show almost the
same trending in the same flight condition, which verify the given outcomes.

# A generators trend shows a lower density for power overload.
# Random sampling gives diversity in motor trending, which emulates the real life as they are

distributed along the aircraft body.

As the MC and LH outcomes are almost identical, the motor results for the simulations with
different case studies can be presented in the following Table 3:

Table 3. Motor CDF results.

Motor Probabilities (RTO, TO, Cruising)

Load (%) 0 5 10 15 20 25

CDF 0 ≤0.2 ≤0.4 ≤0.6 ≤0.8 ≤1

The MC and LH generator results also have similarities, but change, depending on the aircraft
condition. The results presented in the following Table 4 are based on this condition.
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Table 4. Generator probabilities.

RTO

Load (%) 0 5 10 15 20 25

CDF 0 ≤0.43 ≤0.64 ≤0.75 ≤0.83 ≤0.98

TO

Load (%) 0 5 10 15 20 25

CDF 0 ≤0.26 ≤0.5 ≤0.77 ≤0.92 ≤0.98

Cruise

Load (%) 0 5 10 15 20 25

CDF 0 ≤0.1 ≤0.15 ≤0.97 - -

In Figures 26 and 27, generators and motors’ probability risk analysis gives the indication of
stabile system during rolling to take off with the optimised results. The probability of distribution of
generators load within the electrified propulsion grid is about 27 to 32% at max for probability function
less than one from branch lauding. This is because of the flight condition of power demand. However,
motors share the same power percentage in deferent probability ranges that makes the step shape.

Figures 28 and 29 give the same explanation of previous figures with different flight condition.
This is because of the relation between take-off and rolling to take off in terms of power density.

Cursing condition represents in Figures 30 and 31 for cumulative distribution function branch
load probability. The two results show the saturated probability level of generators’ power distribution.
Moreover, motors were optimised to perform with half of them with normal power similar to previous
conditions while the other half with minimum operation density to reduce waste in energy.

8. Conclusions

The uncertainty quantification and error estimation in the turboelectric numerical modelling
processes are crucial and complex. These processes entail many crucial factors that also affect the
efficiency of the system used. A turboelectric system entails sets of technical systems that must be
considered when developing uncertainty quantification strategies. Different computational models can
aid in the achievement of the desired outcomes because they can minimise errors. They can facilitate an
active subdivision of the data and available intervals to achieve small workable intervals across a long
iteration and random number systems. The subdivision of the intervals and picking of a representative
interval randomly make it easy to achieve an accurate estimate. The Monte Carlo and Latin hypercube
sampling techniques were demonstrated to be effective in aiding the uncertainty quantification and
error estimation processes.

Moreover, the standard deviation and cumulative distribution function provide critical data
convergence for error assessment and validation. By applying the uncertainty methods, the results
show a desirable turboelectric system with high scalability capacity. Thus, this article demonstrates the
advent of a turboelectric system that can become an essential enabler for the adoption of the MC and
LH methods in the computation of the propagation of uncertainty in complex stochastic models.
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