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Mechatronics in Sustainable Mobility
Two Electric Vehicle Applications
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In this paper, we first review the role that mecha tronics and advanced control have 
in modern road vehicles, in particular their present and potential impact on sustain-
able mobility. We then illustrate this with two research examples. Firstly, we show 
how electronic science, control system tech niques and computing manifest them-
selves in the design of an advanced battery management algorithm designed to 
estimate two unmeasurable but vital quantities, State of Charge (SoC) and State of 
Health (SoH): this allows better utilisation of battery capacity, with scope for advanced 
prognostics and diagnostics. Secondly, we show how multi-domain modelling inte-
grating mechanical science and electronic science can be used to express component 
ageing as part of a set of vehicle-level performance objectives and used to explore the 
trade-offs between conflicting requirements, aiding sensible design choices. 
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S tringent legislative and end-user requirements on fuel consump-
tion and emissions have led to a significant inter est in Hybrid Electric 
Vehicles (HEVs), Electric Vehicles (EVs) and their relatives. These 
technologies have had a positive impact on fuel consumption and 

emissions, but this comes at the price of added complexity. The technolo-
gies are also radically different from ‘business as usual’, and new approaches 
to hardware and software development are needed. For Original Equipment 
Manufacturers (OEMs), this added complexity and novelty translates into more 
design, development and production work, therefore increasing costs. To keep 
at the forefront of a competitive market, a successful OEM needs to minimise 
the costs of the new technologies, yet maximise their benefits. To do this, the 
traditionally separate domains of mechanical design, electrical design, con-
trols and software need to be brought together as one: this multi-disciplinary 
approach is called ‘mechatronics’.

This paper starts by introducing the concepts of mecha tronics and control in 
the automotive domain, discussing their evolution, their place in the design proc-
ess, and their role in vehicle electrification. The paper then goes on to describe 
two areas where mechatronics are contribut ing to state-of-the-art technology 
research: we discuss the application of mechatronics thinking to the develop-
ment of advanced battery management technology; and we discuss the use of 
multi-domain modelling and optimisation techniques to understand and miti-
gate component ageing. Concluding remarks are given at the end of the paper.

Mechatronics and its role in the automotive domain

Overview

In the early days of the automobile, electronics applications were limited to 
entertainment systems. Only sixty years ago, the automobile was essentially a 
machine with mechanical controls, with electrical systems limited to a vacuum-
tube AM radio, and a small amount of wiring to provide lighting functions, a 
horn, and a starter motor [1]. With the continuous advancement in integrated 
circuit technology, and hence, microprocessors and microcontrollers on one 
hand and the introduction of digital controls on the other, the possibility of 
manipulating and modifying the dynamic behaviour of mechanical, electrical 
and other physical systems in real-time with control software has become an 
established reality. The benefits of this real-time control—including increases 
in per formance, precision, productivity, quality and reliability, ease of calibra-
tion and cost-efficiency—have drastically impacted our lives. This is particularly 
true of the vehicles we drive. One of the first applications of electronic controls 
on vehicles was the introduction of Antilock Braking System (ABS) in the 
early 1970s. Nowadays, as stated by one of the largest suppliers of automotive 
components [2], 90% of innovations in a modern car are based on new develop-
ments in electronics. Furthermore, these innovations are rarely pure electronic 
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systems such as information processing and navigation systems. Most of them 
are based on mechatronics [3].

The ever increasing interest in utilising electronics in real-time control 
of mechanical systems resulted in a specialised domain of mechatronics. 
Mechatronics is the synergetic integration of physical systems (mechanical, 
hydraulic, and pneumatic), electronic systems and digital control, through a 
design and development process. This process is a key enabler for complex 
decision making. The multidisciplinary domain of the automotive mechatron-
ics is shown in Figure 1.

There is an ever-increasing demand for mechatronics in a car. The major 
areas which are impacted by mechatronics are as follows: the propulsion sys-
tem, the chassis system, the body and interior systems.

This demand in mechatronics is driven by legislative and end user require-
ments. Some of these requirements are fuel consumption, emissions, improve-
ment in driving performance, comfort, and safety. However, simultaneously, 
this demand introduces some major challenges and some opportunities. In 
the automotive domain, the control soft ware development and design process 
is adopted from the aerospace industry, but unlike the aerospace industry, the 
process is not standardised and is in state of flux. In addition, lack of expertise 
and structure makes this a very costly business for automotive OEMs. In the 
automotive business environment where cost competitiveness is the only way 
to survive, this is a very tough challenge. The roles of suppliers and automotive 
OEMs are not as clear cut as before, which results in another challenging aspect 
of bringing these technologies into production.

Figure 1 Mechatronics: a multidisciplinary domain
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The development process: from requirements to mod elling and control

The field of mechatronics is not new as the experts in robotics and artificial 
intelligence have been familiar with such concepts for decades. However, in the 
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automotive field, the term ‘mechatronics’ has not yet been fully understood. The 
automotive OEMs are more familiar with system en gineering than automotive 
mechatronics. The two areas are fundamentally different. System engineering 
focuses on man aging multidisciplinary projects with emphasis on tools and 
processes. Mechatronics focuses on developing the actual design by integrating 
multidisciplinary domains.

As automotive OEMs are traditionally mechanically ori ented, they favour 
decoupled structures such as powertrain, electrical, chassis, body and so on. 
Hence, the development processes are set up around these decoupled units 
and the increasing demands for mechatronics and vehicle electrifi cations, such 
as hybrid powertrains, require coupling and integration of these very same 
decoupled units.

The development processes that are utilised in vehicle mechatronics projects 
are still very mechanically focused with control and electronics still viewed as 
afterthought add-ons. We will discuss in more detail the existing develop ment 
process (from requirements to modelling and control) including gaps and 
potential possibilities for integration of mechanical and control development.

Requirements
Requirements are a contract between stakeholders. The main driver behind 
writing requirements is minimising the production time by assuring all failure 
modes are avoided at later stages of the development and production process. 
The Design Failure Mode and Effects Analysis (DFMEA) is the backbone of 
the production development process of major OEMs. The traditional DFMEA 
started with an initial design and then a prototype building. In modern DFMEA, 
another step is included in between: this is called design verification. This mod-
ern approach relies heavily on virtual modelling and design verification to cap-
ture failure modes at the early stages of design using the virtual environment.

The DFMEA process has had a very positive impact in streamlining the 
hardware development process and hence, shortening the production time. 
However, when it comes to mechatronics system development, this process 
has some shortcomings. Models utilised at early stages are normally of low 
fidelity, which makes it difficult to capture failure modes. Furthermore, the 
entire process is set around hardware devel opment and the impact of control 
software is not understood in detail. The control algorithms are very immature 
and simple at the early stages of design and they are not good representatives 
of the final design. Furthermore, the entire DFMEA process is very hardware 
based and this process does not lend itself easily to a more unified mechatron-
ics design approach.

The above are only some of the fundamental issues with the production 
development process currently utilised by major OEMs.

Modelling and control
Based on the previous discussions regarding the use of the virtual environment 
for reducing production time and avoiding failure modes, it should be evident 

JSM1_Longo et al..indd   22 14/05/14   2:19 PM



JSM Volume 1 Issue 1 May 2014 © Greenleaf Publishing 2014 23

mechatronics in sustainable mobility

that mathemat ical modelling plays a very important role in mechatronics sys-
tem development.

Modelling and control are dealt with as two different do mains. Control sys-
tems are designed separately and added on for evaluation of the system charac-
teristics and performance. The approach is normally ‘one model fits all’ rather 
than understanding and utilising different modelling techniques for different 
purposes. The question of ‘what is the purpose of a model’ is never asked.

The intent of an engineering project is to deliver a better product at a lower 
cost. Hence, a proper control design has a significant role in accomplishing 
this goal. It is very difficult, if not impossible, to accomplish this goal when 
the control design and modelling are dealt with as decoupled identities and 
entire systems are not optimised together. As pointed out in [4] and illustrated 
in Figure 2, ‘a real mechatronics approach requires that an optimal choice be 
made with respect to the realisation of the design specifications in the differ-
ent domains’. Thus, control and model evolution has to happen together. More 
precisely, evaluation of any changes in the physical system and controller has 
to be done simultaneously. Physical modelling techniques, which are based on 
multi-domain energetic approaches, such as bond graphs [5], are excellent tools 
for mechatronic system design and development.

Figure 2 A mechatronic system [4]
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When it comes to control, there is a tremendous poten tial for improve-
ment over current strategies. For example, the electronic engine management 
systems utilising engine torque as a common denominator (so-called ‘torque 
man ager’) have emerged as indispensable tools for meeting legal requirements, 
such as emissions and fuel consumption, as well as improving drivability of 
engines, e.g. start, warm-up behaviour and transient response. However, as the 
number of actuators which could influence tractive forces increases (e.g. hybrid 
vehicles), the current engine torque structure has to be modified. Up to now, the 
majority of suppliers and OEMs have pursued an ad hoc (also called ‘pragmatic’) 
approach to cope with these modifications. However, these ad hoc approaches 
do not fully utilise the capabilities of a more complex powertrain to optimise 
fuel efficiency, emissions, and drivability. In addition, the trade-offs between the 
aforementioned measures are not fully understood. This results in tremendous 
opportunities in the controls domain in terms of research and development.

Estimation and optimisation for electric vehicle battery 
management systems

Overview

This section will focus on a particularly important mecha tronic application: 
Battery Management Systems (BMSs). Large batteries for EV are delicate and 
expensive devices. Nevertheless, they have to be pushed to their performance 
limits for EVs to be competitive market options. Responsible for the safe and 
efficient operation of the battery is a computing unit with sensing, actuation 
and communication capabilities called BMS. Developing BMSs is critical for 
manufacturers who would like to increase the market share of their products. 
The ability of BMSs to simultaneously minimise the risk of battery damage 
while efficiently use its energy relies upon:

 t Accurate but tractable mathematical models of the bat tery chemical, electri-
cal and thermodynamic processes

 t Sophisticated but implementable algorithms for the es timation of immeas-
urable or uncertain quantities such as the battery state of charge

 t Reliable and practical algorithms to optimally trade off battery degradation 
and energy efficiency

There are fundamental trade-offs that need to be understood and acted upon. 
One is computational. Although accurate mathematical models and sophisti-
cated algorithm are desired, the computational power of the BMS computing 
unit and the ability of introducing extra sensors and actuators are constrained 
by financial costs and the physical space avail able inside the battery pack. 
Where is the threshold where the benefits of complex algorithms and BMS 
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configurations outweigh the cost of the BMS? Another trade-off comes from 
the vehicle’s energy management. Although respon siveness to drivers’ inputs 
(acceleration and regenerative braking deceleration) is desired, sharp changes 
in the battery energy flow (charges and discharges) deteriorate it more rapidly. 
Where is the optimal point where battery degrada tion is minimised while good 
drivability and high-energy efficiency is maintained? Answers to these ques-
tions require a highly interlaced collaborative effort among chemists, electrical/
electronic engineers and control engineers.

The performance of estimation algorithms is vital for the correct functioning 
of batteries in electric vehicles, as poor estimates will inevitably jeopardise the 
operations that rely on unmeasurable quantities, such as State of Charge (SoC) 
and State of Health (SoH). SoH here is defined as battery capacity fade. BMSs 
are embedded computers that have the ability to execute real-time algorithms 
in order to estimate, control and communicate with other components. Imple-
mented into EVs, BMSs manage the battery by monitoring its state, protect-
ing the battery and controlling its environment [6]. Estimating battery’s state 
provides information that is essential for obtaining critical variables such as 
the SoH and SoC of the battery. The estimated state of the battery determines 
the control actions that will be taken by the BMS and enable a more aggressive 
utilisation of the battery, while ensuring its safe and reliable operation [7].

Over the past decades, different versions of battery models have been applied 
in combination with a number of es timation algorithms. The first category 
includes equivalent circuit models (ECMs), which consider the battery as if it 
was an electrical network. The majority of battery models are based on ECMs 
as they represent complex relationships in a simplified way, aiding the calcula-
tions and the analysis.

The second category consists of the electrochemical mod els, battery models 
that are represented by partial differential equations and provide an explana-
tion of the fundamental physics of the batteries. Electrochemical principles to 
model a lithium-ion (Li-ion) battery with a reduced-order model are used in [8]. 
In [9], the same authors, based on the analytical expressions of a Li-ion battery, 
present a simpler electrochemical model, which is used to design an observer. 
Such a modelling method is complicated, as it is difficult to obtain the model’s 
parameters and it is not computationally suitable for online estimation.

In this paper we consider Li-ion batteries, which are recognised as the most 
promising technology [9]. As well as being among the batteries with the best 
energy- to-weight ratios, they have the privilege of lacking memory effect and 
when they are not in use their self-discharge rate is low. Additionally, their 
decreasing cost enlists them as a leading candidate for the next automotive 
generation [8]. The battery model that is chosen to represent the Li-ion battery 
belongs to the ECMs category and is known as Thevenin model. The estimation 
algorithms that have been compared here to estimate the states of the Li-ion 
battery are the Extended Kalman Filter (EKF), the Unscented Kalman Filter 
(UKF) and Particle Filter (PF). The algorithm’s accuracy is tightly coupled with 
its computational complexity.
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We will analyse the complexity of the EKF, UKF and PF based on their 
number of operations and the execution time (i.e. their computational effort). 
The trade-off between estimators’ performance and computational complexity 
is shown. This could be used for the selection of the most appropriate estima-
tion technique for a particular application.

Estimation algorithms

Estimation algorithms are mathematical techniques used to compute the opti-
mal estimates of states and parameters of a dynamical system. Here, we use 
them to estimate the states of a Li-ion battery cell, which cannot be directly 
measured.

In the EKF, the nonlinear dynamical system is linearised at every time step 
by a first-order Taylor-series expansion ap proximation. The linearised system 
is then used to compute the estimation of the states and the error covariance 
matrices. The EKF is easy to implement in terms of complexity, especially 
when the linearised system matrices (Jacobians) can be computed analyti-
cally. Its simplicity makes it a tempting choice among the variety of nonlinear 
estimation algorithms. However, the EKF’s performance deteriorates when 
models are highly nonlinear. The UKF, on the other hand, can better deal with 
nonlinearities.

The UKF attempts to propagate the mean and the co variance values of a sys-
tem using the methods of time update and measurements update. According 
to this, when systems under consideration are highly nonlinear, the method 
of linearisation based on the EKF does not seem to be the ideal solution. The 
UKF determines a set of points (called sigma points) and transforms them 
nonlinearly to a new set of points. Due to this, the mean and covariance value 
of the sigma points matches the mean and covariance value of the estimated 
value. The states of the system and the covariance matrices are computed based 
on those sigma points.

Both the EKF and UKF work under the assumption of a Gaussian noise 
distribution, limiting the range of their applications and characterising them 
as inappropriate for non-Gaussian dynamical systems [10]. The PF algorithm 
works on a different philosophy. Being part of the sequential Monte Carlo meth-
ods, the PF estimates states and parameters of a nonlinear dynamical system 
using a number of sample points based on Bayesian estimators.

Performance comparison

It should be noticed that the cell model used to simulate the ‘real’ battery cell 
is also used within the estimation algorithms to compute the estimated values. 
This provides an advantage in the entire estimation procedure, as the esti mators 
operate under ideal modelling conditions. However, in the model for the ‘real’ 
battery, a Gaussian noise with variance equal to 4 is injected to the input and 
output signals.
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Figure 3 Estimation algorithm performance comparison [11]

The analysis of the algorithms’ performance focuses on the estimated values 
of SoH, SoC, temperature and terminal voltage (see Fig. 3). The sampling time 
was selected to be 1 s, which is appropriate given the relatively slow dynamic 
response of the battery. Each graph contains the estimated values from the three 
filters (the PF is implemented for 100 particles).

As can be seen in the plots, the SoC and voltage estimations seem to have a 
faster convergence rate than SoH and temperature, which also converge but at 
a slower rate. The reason may be that slowly changing states (as the SoH) and 
parameters (as the temperature in this case) are generally more difficult to track. 
Overall, the EKF appears to have a better performance and be more accurate 
when compared to the other filters. However, at steady state, the EKF and the 
UKF converge to the same estimate. The superiority of the EKF to UKF has to 
do with the types of nonlinearity that characterise the cell model and the fact that 
the noise affecting the system is precisely known (see [11] for the details). The 
model for the Li-ion cell is only moderately nonlinear. The UKF approximates 
the Gaussian noise distribution rather than the model. With a mildly nonlinear 
model and known noise distribution it is not surprising that the EKF, which 
approximates the model instead of the noise distribution, performs better than 
the UKF. The PF seems to have higher accuracy, as far as SoC and voltage are 
concerned. The reduced performance in SoH and temperature estimation may 
be due again to the noise distribution. PFs perform better for non-Gaussian 
systems but the noise added to this particular model is Gaussian. Further work 
will include experiments with models corrupted by non-Gaussian noise.

Estimate accuracy is an important criterion on which the choice of the algo-
rithm is based. However, accuracy and computational complexity are correlated 
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and both of them have to be taken into account when evaluating the algo-
rithms’ performance. Computational complexity will be analysed in terms of 
the number of operations performed in the algorithm and the corresponding 
execution time. In order to determine the number of operations executed in 
the algorithms, the number of FLoating-point OPerations (FLOPs) will be 
introduced. The FLOPs are indicative of the complexity of each algorithm and 
constitute a measure of comparison.

Taking into account that every embedded computer has a different range of 
capabilities and that for a typical processor more than one step is needed to 
execute one operation, it is assumed that all the operations have the same weight 
and each operation (addition, subtraction, multiplication, division and square 
root) corresponds to one FLOP. Keeping as a constant the number of inputs m = 
1 and the number of outputs p = 1 and varying the number of states (for example 
by adding more capacitors in the battery model for higher accuracy) the graph 
in Figure 4 is produced. It can be seen that as the number of states increases, 
the number of FLOPs increases rapidly, especially for the PF. For n  = 4, which 
is the number of states of the proposed cell model, the total number of FLOPs 
for the EKF is 10,217, for the UKF is 10,414 and for the PF is 964,603 (N = 100) 
and 1,929,203 (N = 200). It should be noted that the complexity of the PF, even 
for N = 100, is approximately two orders of magnitudes higher than that of the 
EKF, making it challenging to use the PF for real-time estimation.

Figure 4 Number of FLOPs for the EKF, UKF and PF [11]

This analysis (FLOP counting) is theoretical and only gives an indication of 
the algorithms’ complexity. In practice, the actual execution time is needed, 
and this can often only be obtained experimentally. Hence, the actual execution 
time of the three filters was measured experimentally. The computation was 
performed on a desktop PC with a 2.1 GHz CPU, 4 GB of RAM and running 
MATLAB 2011a. The execution time for the UKF and the execution time for 
the PF are 2.4 and 35.2 times longer than the one for the EKF, respectively. The 
time difference between the PF and the other two algorithms is very large, con-
sidering that these estimations should be executed online and within a typical 
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sampling interval of 1 s. This result confirms the high complexity of the PFs that 
was predicted, theoretically, by counting the number of FLOPs.

Understanding and mitigating component ageing in hybrid and 
electric vehicles

Estimation is one example of the way in which mechatron ics can aid the devel-
opment of lower-emission road vehicles.

A second example application is in the understanding of component age-
ing and in the optimisation of vehicles to achieve appropriate compromises 
between cost, efficiency and longevity.

Vehicle longevity

Readers will be well aware that passenger cars are nei ther expected nor designed 
to last forever. In a traditional internal combustion engine vehicle (ICEV), the 
maximum possible lifespan is typically determined by the longevity of the 
engine; in a hybrid or electric vehicle, the lifespan is expected to be determined 
by the longevity of the vehi cle’s traction batteries. These batteries cost several 
thousand pounds—comparable to an ICEV’s engine—so they represent a 
significant part of the vehicle’s cost and manufacturing CO2 footprint. It has 
been shown that the CO2 emissions associated with the production of an electric 
vehicle account for a significant part of its lifecycle cost [12]. It has also been 
shown that with the present European electricity mix, the net reduction in CO2 
emissions depends heavily on the vehicles’ lifespans: a lifespan of 200,000 km, 
say, represents a significant CO2 reduction compared with a modern ICEV, but 
if this lifespan is halved to 100,000 km, the reductions are modest compared 
to gasoline ICEVs and non-extant compared to diesels [13]. To ensure that the 
theoretical environmental benefits of EVs are realised, it is necessary to ensure 
that they last at least as long as—if not longer than—our current petrol and gaso-
line vehicles. It is also important to ensure that an EV is a ‘good buy’ compared 
to an ICEV, otherwise it will not represent good value for the consumer. Earlier 
in this paper we discussed battery ‘State of Health’ in the context of estimation. 
Here, we will discuss it again, but this time the focus is on understanding what 
causes the SoH to fall. If we can understand degradation and mitigate it, we have 
the potential to do something to address it. Similarly, the HEV/EV motor and 
Fuel Cell EV fuel cells are important in determining a vehicle’s lifespan. This 
is a classic mechatronics problem: to understand it, we need to understand the 
interactions of various electrical and mechanical systems, and their behaviour 
in the presence of real-world driving behaviour. Having done this, we then need 
to ensure our components are correctly sized and that we have the best possible 
combination. We also need to design appropriate control laws. It is possible to 
approach the problem in an ad hoc way. However, by considering all aspects at 
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once, we can guarantee the best possible solution. A workflow achieving this 
is illustrated in Figure 5.

Defining performance requirements

The first step in the production of any optimal vehicle design is the definition 
of a set of performance requirements: this is implied in the term ‘optimal’. 
Typically, performance requirements will include:

 t Energy consumption—for a pure electric vehicle, this is usually stated in SI 
units of power or kWh; for an ICEV or non-plugin HEV, it is usually given 
in litres per 100 km

 t Range (between charges)

 t Driveability—often specified as the time taken to ac celerate from rest to 
100 km/h

 t Vehicle price—usually in absolute terms

Figure 5  Workflow for vehicle optimisation; the designer is able to balance 
conflicting performance requirements in order to achieve chosen design 
objectives

If we are interested in factoring ageing into this, we need to introduce another 
aspect, ‘lifespan’. Equipment lifespan can be measured as an absolute—in mul-
tiples of 1000 km, say— or in terms of providing ‘good value’ when the vehicle 
price and running costs are ‘amortised’ over the absolute lifespan. We suspect 
that both of these measures are important: consumers want cheap cars, but they 
also want them to last well. In the UK, at least, there seems to be an expectation 
that gasoline ICEVs should last at least 150,000 km. It would not be surprising 
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to find similar demands from the EV consumer. The way energy consumption 
and range are measured is often constrained by legislative requirements—at 
least for official purposes. In Europe, it is currently a legal require ment that 
manufacturers use the ‘New European Driving Cycle’ (NEDC) [14]. While 
this does ensure that all vehicles are tested using a common framework, the 
NEDC is not perhaps ideal: its time-velocity profiles are stylised, and perhaps 
not representative of modern driving; other cycles—such as the Artemis cycles 
[15]—are perhaps better. The difference between the urban sections of the two 
is illustrated in Figure 6. In order to be confident that a vehicle will last for an 
advertised lifetime, it is sensible to choose a driving cycle that is representa-
tive of real-world usage. There are many cycles to choose from, but there are 
good reference sources that will help guide the interested reader to the most 
appropriate ones [16]. Each given performance requirement can be treated as 
either an absolute constraint (which must be satisfied, or else the solution is not 
considered viable) or as part of an objective function which must be optimised. 
If there is more than one requirement expressed as objectives, then the trade-off 
between them can be explored. An example set of constraints for a C-segment 
EV might, for example, include the following:

 t Range: at least 150 km between charges

 t Driveability: rest to 100 km/h in no more than 11.5 s

One could then explore the trade-offs between energy con sumption, vehicle 
price and vehicle lifespan. This is, of course, just one possibility, and there is 
plenty of scope for adding further detail, e.g. different minimum ranges for 
different types of driving.

Figure 6  Driving cycles for performance requirements; the urban section of the 
New European Driving Cycle (NEDC), top, is often invoked by statutory 
requirements, but other cycles such as the Artemis Urban cycle [15], 
bottom, provide a greater degree of realism
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Developing vehicle models

Techniques for the estimation of a vehicle’s fuel and/or energy consumption 
are well-established and at least one excellent book has been written on the 
subject [17]. The basic approach is to construct a ‘backwards’ model of a vehicle 
that computes power demands as a function of pre-determined ‘driving cycles’ 
(time-velocity profiles). The models are called ‘backwards’ models because 
they differ from the most common type of model: a ‘forwards’ model applies 
forces and observes the resulting motion; a ‘back wards’ model does the oppo-
site. Backwards models typically use simplified representations of component 
dynamics: this makes them run quickly, which is very useful if the models are 
to be run many times as part of an optimisation exercise. Although there is a 
loss in fidelity compared to a detailed ‘forward model’, this does not seem to be 
a serious limitation in practice. There are workflows in existence which combine 
forwards and backwards modelling to good effect [18], and at least one source 
[19] suggests that the extra fidelity present in a ‘forward’ model is not needed, 
at least in the initial component-sizing optimisation stages. A schematic for a 
model of a typical EV powertrain is illustrated in Figure 7. Details are available 
in many sources, e.g. [17].

For the assessment of vehicle lifespan, it is critical to have a good model of 
component degradation. Some battery models are available, e.g. [20], [21]. Simi-
lar models are needed for other components such as electric machines and fuel 
cells. By placing such a component ageing model in the context of a full vehicle 
simulation, the relationship between ageing and the chosen driving cycle can 
be explored. The current demands placed on the battery will be realistic, and—if 
the driving cycle is chosen to be relevant—reflective of those encountered in 
real-world driving patterns.

Figure 7  Schematic for a vehicle powertrain model; this can include math ematical 
representations of system behaviour and non-linear performance maps
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Multi-objective optimisation

Having defined a set of performance requirements and derived a scalable vehi-
cle model, it is possible to use a multi-objective optimisation technique to find 
a set of optimal solutions: the solutions are effectively ‘Pareto optimal’, each 
representing a point on a curve, surface or hyper-surface describing the trade-
offs between the different objectives. By deriving such surfaces, the designer 
is able to understand the interactions between the objectives and select one or 
more appropriate design points. When doing so, it is important to consider the 
sensitivity of the results—if a small change to the model results in a big change 
to its behaviour, the design is unlikely to be robust. There are formal mathemati-
cal techniques for sensitivity analyses, and these may be used to identify aspects 
of a model that will have the biggest impact.

An example of a multi-objective optimisation exploring the trade-offs between 
the sizing of a battery pack in terms of vehicle price, energy consumption and 
vehicle lifespan using an assumed (but sensible) battery degradation model is 
presented in [21]—an example of the trade-offs produced is shown in Figure 8. 
Further work is being conducted in these areas, notably in the extension of the 
optimisation to the sizing of other vehicle components (not just the battery!) 
and in the use of parallel supercapacitors. (Some work on supercapacitors is 
presented in [21], and present work is extending this to create a single, integrated 
optimisation with optimised control trajectories.)

Conclusions

Automotive mechatronics applications have been made practical through the 
continuous improvement of semiconductor and microcontroller technologies. 
As the advancement of semiconductor and microcontroller technologies con-
tinue so will the increase and complexity of automotive mechatron ics. This 
complexity results in many challenges for both automotive OEMs and sup-
pliers. Among these challenges, a better definition of roles of suppliers and 
automotive OEMs, more efficient development processes, more expertise in 
the mechatronics area especially on the OEM side, use of advanced control 
techniques, and more refined integration approaches are worth mentioning. 
These challenges open up the door to many opportunities for experts in the 
domain from academics to small businesses to meet these challenges in a timely 
fashion. The key competitive differentiators of tomorrow’s vehicles will be in 
the control software.
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Figure 8  Variation of the vehicle performance measures with battery array size; 
these plots show how the CO2 emissions, lifespan, and powertrain cost 
per unit lifespan vary as functions of the battery size [21]
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Two mechatronics research problems were presented: bat tery estimation, 
and understanding and mitigating component ageing in HEVs and Battery EVs. 
For the estimation problem, results showed that the EKF algorithm, although 

JSM1_Longo et al..indd   34 14/05/14   2:20 PM



JSM Volume 1 Issue 1 May 2014 © Greenleaf Publishing 2014 35

mechatronics in sustainable mobility

based on an approximation of the nonlinear dynamics, was generally more accu-
rate than the UKF and PF algorithm. This was probably due to the fact that the 
UKF, which is based on an approximation of the noise distribution rather than 
process dynamics, performs better for highly nonlinear systems and the cell 
model considered was only mildly nonlinear. The computational complexity of 
the PF is up to two orders of magnitudes higher than the other two methods and 
its practical applicability would be difficult to justify for the model used here.

For the component ageing part, we have outlined a method of describing 
component ageing through models and their associated performance require-
ments. We have briefly de scribed the techniques used to represent driving cycles 
and create vehicle models. We have then shown how these models are used to 
perform multi-objective optimisation, allowing us to explore and understand 
the Pareto-optimal trade-offs between component ageing and other perform-
ance characteristics (e.g. energy efficiency). Finally, we have de scribed existing 
work considering battery degradation, and we have indicated future directions.

References

 [1]  M. Barron and W. Powers, ‘The role of electronic controls for future automotive 
mechatronic systems,’ IEEE/ASME Transactions on Mechatronics, vol. 1, no. 1, 1996.

 [2]  J. Froberg, S. K. Akerholm, M., and C. Norstrom, ‘Key factors for achieving project 
success in integration of automotive mechatronics,’ Innovations System Software Engi-
neering, vol. 1, pp. 141–155, 2007.

 [3]  H. Schoner, ‘Automotive mechatronics,’ Journal of Control Engineer ing Practice, vol. 12, 
no. 11, pp. 1343–1351, 2004.

 [4]  K. Craig, ‘Automotive mechatronics,’ in Primer Congreso Interna cional de Ingenieria en 
Mecatronica, Sinergia ’08, 2008.

 [5]  R. R. Karnopp, D.C. and D. Margolis, System Dynamics: Modeling and Simulation of 
Mechatronic Systems. Wiley, 2000.

 [6]  X. Yinjiao, M. Kwok, W. Eden, and M. Pecht, ‘Battery management systems in electric 
and hybrid vehicles,’ Energies, vol. 4, no. 11, pp. 1840–1857, 2011.

 [7]  F. Sun, X. Hu, Y. Zou, and S. Li, ‘Adaptive unscented kalman filtering for state of 
charge estimation of a lithium-ion battery for electric vehicles,’ Energy, vol. 36, no. 5, 
pp. 3531–3540, 2011.

 [8]  N. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic, ‘Al gorithms for 
advanced battery-management systems,’ IEEE Control systems magazine, vol. 30, no. 3, 
pp. 49–68, 2010.

 [9]  R. Klein, N. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic, ‘Electro-
chemical model based observer design for a lithium-ion battery,’ IEEE Transactions on 
Control Systems Technology, vol. 21, no. 2, pp. 289–301, 2012.

[10]  S. Schwunk, N. Armbruster, S. Straub, J. Kehl, and M. Vetter, ‘Particle filter for state of 
charge and state of health estimation for lithium-iron phosphate batteries,’ Journal of 
Power Sources, vol. 239, no. 1, pp. 705–710, 2012.

[11]  A. Papazoglou, S. Longo, D. Auger, and F. Assadian, ‘Computational aspects of estima-
tion algorithms for battery-management systems,’ in 8th Conference on Sustainable 
Development of Energy, Water and Environment Systems, 2013.

JSM1_Longo et al..indd   35 14/05/14   2:20 PM



stefano longo, daniel j. auger, francis assadian

36 JSM Volume 1 Issue 1 May 2014 © Greenleaf Publishing 2014

[12]  A. Bandivadekar, K. Bodek, L. Cheah, C. Evans, T. Groode, J. Hey-wood, E. Kasseris, 
M. Kromer, and M. Weiss, ‘On the road in 2035: reducing transportation’s petroleum 
consumption and GHG emis sions,’ Laboratory for Energy and the Environment, Mas-
sachusetts Institute of Technology, Tech. Rep. July, 2008.

[13]  T. R. Hawkins, B. Singh, G. Majeau-Bettez, and A. H. Strømman, ‘Comparative 
environmental life cycle assessment of conventional and electric vehicles,’ Journal of 
Industrial Ecology, vol. 17, no. 1, pp. 53–64, February 2012.

[14]  United Nations, ‘E/ECE/TRANS/505 Rev.2/Add. 100/Rev.2,’ 2005.
[15]  M. André, ‘The ARTEMIS European driving cycles for measuring car pollutant emis-

sions.’ Science of the Total Environment, vol. 334–335, pp. 73–84, December 2004.
[16]  T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, ‘A reference book of driving 

cycles for use in the measurement of road vehicle emissions,’ TRL, Tech. Rep., 2009.
[17]  L. Guzzella and A. Sciarretta, Vehicle Propulsion Systems: Introduc tion to Modeling and 

Optimization. Berlin: Springer, 2005.
[18]  K. B. Wipke, M. R. Cuddy, and S. D. Burch, ‘ADVISOR 2.1: a user-friendly advanced 

powertrain simulation using a combined back ward/forward approach,’ IEEE Transac-
tions on Vehicle Technology, vol. 48, no. 6, pp. 1751–1761, 1999.

[19]  G. Mohan, F. Assadian, and S. Longo, ‘Comparative analysis of forward-facing models 
vs. backward-facing models in powertrain component sizing,’ in Proceedings of the 4th 
Hybrid and Electric Vehicles Conference (HEVC 2013), London, November 2013.

[20]  S. Moura, J. Stein, and H. Fathy, ‘Battery-health conscious power management in plug-
in hybrid electric vehicles via electrochemical modeling and stochastic control,’ IEEE 
Transactions on Control Systems Technology, vol. 21, no. 3, pp. 679–694, 2013.

[21]  D. J. Auger, M. F. Groff, G. Mohan, S. Longo, and F. Assadian, ‘The impact of battery 
ageing on an ev powertrain optimization,’ in 8th Conference on Sustainable Development 
of Energy, Water and Environment Systems, 2013.

q

JSM1_Longo et al..indd   36 14/05/14   2:20 PM




