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Presented is a novel framework for interactive systems ar-

chitecture definition at early design stages. It incorporates

graph theoretic data structures, entity relationships and al-

gorithms which enable the systems architect to operate in-

teractively and simultaneously in different domains. It ex-

plicitly captures the ‘zigzagging’ of the functional reason-

ing process, including not only allocated, but also the de-

rived functions. A prototype software tool, AirCADia Ar-

chitect, was implemented, which allowed the framework

to be demonstrated to and tried hands-on by practicing air-

craft systems architects. The tool enables architects to ef-

fectively express their ideas when interactively synthesiz-

ing new architectures, while still retaining control over the

process. The proposed approach was especially acknowl-

edged as the way forward for rationale capture.
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1 | INTRODUCTION

The ability to innovate is considered one of the key factors for success in the globally competitive world of today.

This is particularly relevant in the design of complex systems, such as aircraft, where the requisite subsystems, for

example, Environmental Control, Flight Control, etc., account for about one-third of the total empty weight and cost

[1]. Innovation in aircraft subsystems design can bring forth significant competitive advantages, such as improved fuel

consumption, reduced maintenance costs, and higher reliability.
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2 Guenov et al.

The work reported in this paper is related to innovative systems architecting and originates from a topical Euro-

pean research project, “Thermal Overall Integrated Conception of Aircraft” (TOICA) [2] [3]. Specifically, the authors

contributed to one of the research objectives of TOICA: the development of methods and tools enabling systems ar-

chitects to discover, define, assess, and evaluate (systems) architectures. Within this wider context, the scope of the

research described herein has been restricted to the process of conceptual systems architecture definition, within the

requirements (R), functional (F) and logical (L) domains. The term requirements domain refers to the activities involving

requirements engineering and management. The functional domain is concerned with the functional decomposition

and analysis, and the logical domain deals with the specification of solutions and their interfaces. In the systems en-

gineering community, solutions are also referred to as forms, means or artifacts, and include both components and

sub-systems. Also, logical solutions are sometimes referred to as physical solutions. In this paper, we shall distinguish

between logical and physical domains, where the former is assumed to be concernedmainly with the interconnectivity

between components and subsystems, while the latter with spatial layout and geometry. In a recent publication [4],

we presented data structures underpinning basic operations which take place in the F-L domains. Here we extend

that work to include requirements and the notion of a computational (behavioral) domain. The latter is intended to

facilitate the fast (steady state) assessment of a rapidly synthesized architectures, which is important for design space

exploration at precompetitive or early product development stages. The details of the sizing approach are reported in

[5]. Here the computational domain is used specifically as a source of information needed to identify which functions

and solutions are affected if a performance requirement is modified.

The rest of the paper is organized as follows. Basic concepts and terminology are introduced in Section 2 with the

help of a case study. State-of-the-art methods and tools, and associated research challenges are identified in Section

3. The proposed components of the framework, underpinning the functional reasoning and inter-domain traceability

are described in Section 4. The framework, implemented in a prototype software tool, is demonstrated through an

application case study in Section 5. Finally, conclusions, current limitations and recommendations for future work are

outlined in Section 6.

2 | BACKGROUND

Systems architecting is the process of creating and describing complex systems architectures. Crawley et al. define

system architecture as “the embodiment of concept, the allocation of function to elements of form, and definition

of relationships among the elements and with the surrounding context” [6]. Therefore, the main activity performed

during systems architecting is making decisions about the system concept, i.e. which functions are to be achieved,

which solutions are to be employed in order to realize those functions, and what are the relationships between these

elements. These architectural decisions will inevitably influence the performance characteristics of the system.

Architecting and engineering are often seen as two different activities, and the differentiation between the two

is often contentious. According to Maier [7], architecting or “architecture definition” deals largely with unmeasurable

entities using non-quantitative tools and methods such as decomposition of requirements and functions, allocation of

solutions to functions, and specification of interfaces between solutions. By contrast, the term “architecture assess-

ment” refers to engineering, i.e., activities involving measurable quantities, such as component sizing and optimization.

In practice, the two activities are related and are performed iteratively. As mentioned above, the work reported in this

paper focuses on architecture definition (architecting). The rest of this section outlines a case study, which is used to

define some of the terminology used in the paper.

Suppose the top-level requirements related to the environmental control system of a transport aircraft are al-
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Guenov et al. 3

ready specified, as shown for illustration purposes only at the top of Figure 1. (In practice, requirements elicitation

and management tools such as IBM Rational DOORS [8] can be used). During the functional design, the requirements

are mapped to functions, which are then decomposed into sub-functions. For example, a top-level requirement such

as “The system shall provide comfortable environment for passengers” is first mapped to a function "Provide comfort-

able environment for passengers". This, in turn, is decomposed into four sub-functions: "source air", "circulate air",

"cool air" and "evacuate hot air". Next, the systems architect needs to consider how to source air. At this level of

reasoning, he/she identifies two possible solutions, "ram air inlet" and "pneumatic system". Assuming the former, the

atmospheric air needs to be pressurized. Subsequently, if the architect selects a compressor to fulfill this function,

then a derived function "provide rotational energy" needs to be defined. In Figure 1, the derived functions are linked

through dashed lines in the functional decomposition. It can be observed that the sourced air goes through a number

of transformations, implying a (process) flow, which can be inferred in one step, before even specifying equipment

connections, or in a “zig-zagging” fashion, as shown in the bottom-right box of Figure 1. It is important to note that

the functions in the decomposition hierarchy usually depend on the solutions selected at a higher level. Similar rea-

soning can be applied should the architect have chosen a pneumatic system to fulfill (implement) the function source

air. Note that the derived functions (Convert Ozone and Demist Air) are connected through dashed lines in Figure

1. That is, they are derived from the chosen means (solution) for sourcing air. It can be observed, on the whole, that

the architect has to deal with the functional decomposition, the identification of possible functional flows and the

mapping of these functions to solutions (components or subsystems).

3 | STATE OF THE ART

Model-based systems engineering (MBSE) is "the formalized application of modeling to support system requirements,

design, analysis, verification and validation activities beginning in the conceptual design phase and continuing through-

out development and later life cycle phases" [9]. A considerable body of work on formal methods and principles of

systems engineering has been published over the last several decades. Amongst the pioneers, Hall [10] suggested a

description of high-level functions and activities to manage the systems engineering process. Wymore [11] proposed

two types of mathematical models: 1) Systemmodels, based on physics, drawings and specifications, and 2) a theoret-

ical model for management of personnel and resources (hardware/software) throughout the life cycle of the system.

The theoretical model utilizes a system design language based on set theory. Micouin [12] introduced a formal model-

based systems engineering methodology called Property-Model Methodology. It is a sequence of operative rules, de-

fined to build specification and design models of engineered systems and is expressed in a language. More recently,

Luzeaux [13] proposed the application of category theory as a formal foundation of systems engineering, claiming

that it is better adapted to current systems modelling tools and languages. These mathematical models for systems

engineering are limited in that they do not account for the interactive ‘zigzagging’ process involved in performing

functional reasoning. For example, the Systems Coupling Recipe (SCR) concept [11] assumes that the connectivity is

given, that is, the decomposition and connectivity have been worked out in advance. By contrast our work aims to

facilitate the decomposition process which results in functional and logical (connectivity) views of the system. Models

such as the SCR can be extracted from these for formal testing of the system. With this regard, one of the intentions

behind the proposed framework is to extend the existing mathematical models by employing decomposition relations,

including derived functions.

There are many modelling languages for defining architectures of complex systems. Notable examples include

the Systems Modeling Language (SysML) [14], Object Process Methodology (OPM) [15], STRATA [16], Lifecycle Mod-
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F IGURE 1 Top-level requirements, functional decomposition, and functional-logical zigzagging

eling Language (LML) [17], and the United States Department of Defense Architecture Framework (DoDAF) Meta

Model (DM2) [18]. These languages use both graphical and textual means to document aspects of the architecture.

For example, the DoDAF Meta Model (DM2) combines logical constructs with an ontology to capture and define a

vocabulary for the description of DoDAF models and their usage in core processes such as operation planning, bud-

geting, acquisition, and so forth. SysML uses object-oriented design constructs and a limited ontology to capture the

systems description. LML utilizes both simplified constructs and ontology to enable the sharing of cost, schedule and

performance data between all stakeholders in the system lifecycle. The original purpose behind LML was to replace

predecessors, such as SysML which was seen as overcomplicating the systems engineering process.

The aforementioned modelling languages are intended primarily to describe the synthesized architecture, but are

less suited to capturing the actual architecting process. For instance, if the architect wishes to create a number of

new candidate architectures by modifying and/or combining existing ones, it will be very tedious to identify all the

affected elements (requirements, functions, solutions, etc.). Thus, there is a need for a framework that can enable

the architect to interactively define and explore multiple architectures at the early design stages. With this regard,

instead of defining a newmodelling language, the present work was focused on enabling the functional reasoning and

decomposition process. That is, determining the functions that the productmust perform, the interactive co-evolution

of the functional-logical domain and capturing the actual process of architecting a system.

Functional reasoning appears to be a central tenet in modern systems engineering practice. It is believed that this
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approach discourages the designers from immediately elaborating on the first solution that comes into mind, which

may not be the best. The standards for systems engineering processes, such as EIA 632 [19] and ISO/IEC 15288 [20],

also prescribe that (functional) requirements are developed in a solution neutral environment to allow the exploration

of different solutions (physical embodiments).

Several distinct functional reasoning models have been developed and reported in the academic literature. A

few of these, e.g., Functional Decomposition [21] and Functional Basis [22] [23] support functional description in a

solution neutral way and in the form of a verb-object pair, e.g., “source air”. Others, e.g., the Freeman and Newell’s

model [24], Chakrabarti’s functional reasoning model [25] and the Function Behaviour State (FBS) approach [26] allow

functional description with reference to the solution under consideration. A related methodology, which advocates

the “zig-zagging” decomposition described in the previous section is Axiomatic Design (AD) [27] [28].

Functional reasoning as part of the systems architecting process can be thought of as distributed over four no-

tional domains: Requirements, Functional, Logical and Physical – referred to as ‘RFLP’. Specifically, RFLP stands for

Requirements engineering, Functional design, Logical design, and Physical design and describes the process of system-

atic product development, from system analysis to system development [29]. RFLP is based on the German guideline

VDI 2206, “Design methodology for mechatronic systems” [30], quoted also in [31]. RFLP has gained popularity, not

least because of its adoption by leading product lifecycle management (PLM) vendors [32], [33]. It appears that, in

its current application, RFLP is unidirectional. Indeed, as mentioned above, the prevailing opinion in the engineer-

ing design field is still that form-follows-function. That is, the functional decomposition is followed by a logical and

physical product decomposition (mapping) which aligns with systems thinking. However, a review of recent cognitive

and organizational sciences literature related to creativity in design (e.g. Refs. [34] [35] [36]) suggests that, in many

cases, the opposite is true. For example, experiments, as reported in Ref. [36], indicate that solutions provided under

the more structured function-follows-form condition would be judged more original and creative than those provided

under the less structured form-follows-function condition and also that solutions provided by intuitive participants

(in the experiment) would be judged more original and creative than those provided by systematic participants, but

mainly in free (less structured) conditions. This is related to design thinking. Additionally, Vermaas [37] has shown

from a philosophical point of view, that the relation between technical functions and their sub-functions in (abstract)

functional descriptions of technical products cannot be analyzed as a formal relation of parthood. That is, operating

solely with (abstract) functional decompositions may lead to the paradox of a function containing an instance of itself.

This appears to be an additional argument for the interactive co-evolution of the functional and logical domains in

practice. Last, but not least, there is a view in the field of Psychology that “a clear, unequivocal, and incontestable

answer to the question of how creativity can be enhanced is not to be found in the psychological literature” (Ref. [38],

p. 407, cited in Ref. [39]).

It can be seen from the review of systems architecting models in the academic literature and in practice, that

there is no consensus on the formalisms and the creative process of synthesizing architectures and whether design

and systems thinking are that different at their core [40]. While adopting the RFLP notion and the sequential-iterative

nature of the systems engineering process, as stipulated in existing standards, we concluded that we ought to research

methods and tools, which when combined into an innovative framework would enable the systems architects to work

interactively and simultaneously in all domains. This requires that the computer aided architecting system maintains

background traceability of the architect’s choices in the RFLP domains during the process. In the next section, the

basic components of such a framework are specified.



6 Guenov et al.

4 | FRAMEWORK SPECIFICATION

This section describes the proposed systems architecting framework which supports the RFLP paradigm and in par-

ticular, the interactive (architecting) operations in the requirements, functional, logical and computational domains.

4.1 | Basic Architectural Elements and Object Model

The basic classes of the framework and their relationships are shown in Figure 2. The object model serves as the

foundation of the prototype tool, AirCADia Architect, used for the demonstration (see Section 5) of the proposed

approach. It has to be emphasized that in practice, information related to some of the classes may be part of an

organization’s PLM system, including requirements management.

F IGURE 2 UML class diagram of the proposed framework (attributes and methods are not shown)

The architecture class serves as a container for storing different elements (requirements, functions, solutions)

from all domains. The ‘Database’ class stores knowledge about all the architectural elements (including requirements,

functions, solutions, computational models, etc.) defined by the architect. The ‘Project’ class is a container for both

the database object and the list of architectures. It is a utility class, which is used for storing studies as part of the

software implementation of the framework.

The ‘Requirement’ class represents the technical requirements transformed from the stakeholders’ needs, which

could be of type functional or performance. It has attributes and methods enabling the requirements decomposition

process, and the requirement-to-function mapping relations. Similarly, the ‘Function’ class represents a function and

has attributes and methods enabling the functional decomposition process. A function object, ϕ is the action that a

product or system has to perform in order to meet the stakeholders’ needs. Functions are expressed as a ‘verb-noun’

combination, ϕ (n) , where ‘ϕ’ is the action and ‘n ’ is the object of the action, e.g., dehumidify (air). For convenience,
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the object, ‘n ’, will be omitted from now on, unless explicitly required. A function stores a reference to a component

(and vice-versa) to implement the concept of function-solution mapping and derived functions, respectively.

The ‘Component’ class stands for physical solution(s) satisfying the functions. A component, σ , is the physical

element or elements (e.g. part, component, subsystem, or even the whole system/product) that performs (fulfills) the

required function. A component may also have attributes that represent component’s parameters (e.g. an electrical

transformer has transformation ratio and efficiency coefficient). The interface parameters of the component (e.g. in

case of the transformer, input/output voltage and current) are managed by port, which are described below. Similar

to the function class, the ‘Component’ class has attributes and methods enabling the function-solution mapping and

the decomposition process.

The ‘Port’ class describes the interfaces of a component with other components and the environment, including

the type of the flow passing through the interface (e.g. energy, material, signal, etc.) and the direction, which can

be either ‘input’ or ‘output’. The Port class may also contain a description of flow parameters (e.g. in the case of

an electrical interface, ‘voltage’ and ‘current’). Such parameters provide an additional level of compatibility control

between components or solutions. Another important reason to introduce the port class is that it is intended to

facilitate the export of the synthesized architectures to sizing and analysis tools (e.g. Modelica).

The ‘Parameter’ class represents an engineering quantity that describes some characteristics of a solution or a

port in the logical domain. For instance, compression ratio is an example of a parameter associated to the compressor

solution. Similarly, both the input and output ports of the compressor may have two associated parameters, pressure

and air mass flow rate. Two types of parameters are considered: components’ direct parameters (e.g. compression

ratio of the compressor), and components’ ports parameters (e.g. pressure of fluid at input/output port of the com-

pressor).

The ‘Model’ class represents the computational code (mathematical equations) for predicting the solutions’ behav-

ior or performance characteristics. Each computational model has one or more output parameters and the quantities

of these output parameters are calculated using the given quantities of one or more input parameters. Depending on

context, each solution in the logical domain has two types of behaviors: intended and unintended. For instance, in the

case of an electrical motor, the intended behavior could be to provide torque, while the ‘unintended’ behaviors may be

generation of heat and vibration. It is vital that unintended behaviors are considered during architecting, because these

may impose modifications on the envisaged architecture. For instance, an electric motor based electro-mechanical

actuator (EMA) of a flight control system may necessitate the use of dedicated thermal management solutions, such

as heat pipes, if the natural radiation and convection is not sufficient to keep the EMA at the acceptable operating

temperature.

The ‘Workflow’ class represents the network of computational models used for sizing the system and describes

the execution sequence of the computational models. A computational model is connected to other computational

models through shared parameters (variables). The collection of parameters, models, andworkflow constitute a virtual

domain, which is referred to as the Computational domain. In the context of this work, the computational domain is

especially useful for tracing variable dependencies between different product decomposition levels.

It is important to note that the architects are not required to interact directly with the computational domain;

they only need to specify the required parameters and computational models (which are developed by simulation

specialists) for behaviors and performance characteristics. Automatic (dynamic) workflow creation methods [41] [5]

can be employed to generate the computational workflows ‘behind the scene’.
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4.2 | Elementary Relations

As stated earlier, the aim of this work is not to prescribe a rigid requirements decomposition process, but to spec-

ify essential R-F-L mappings. The latter are intended to allow the application of formal graph theoretic structures

(described later) that captures the functional reasoning process and the evolving architecture. The basic relations

between architectural elements employed in the proposed framework are presented below:

Requirement-to-Function and Requirement-to-Parameter: This relation specifies the mapping from a functional

requirement to a function, i.e. ρ1 ↦→ ϕ1. Similarly, there is a relation from the performance requirement (constraint)

to a solution’s parameter, ρ1 ↦→ p1. Multiple mapping relations can be specified, e.g. a single functional requirement

may be mapped to multiple functions, and similarly, a single performance requirement may be mapped to multiple

parameters.

Function-to-Solution: This is a mapping from function(s) to solution(s). The following cases can occur:

• A single function, ϕ1, is satisfied by a single solution, σ1, which can be expressed as ϕ1 ↦→ σ1.

• A single function is fulfilled by a number of (equivalent) solutions, ϕ1 ↦→ {σ1.1 ∨ σ1.2 ∨ ... ∨ σ1.n }, which is termed

redundancy.

• A set of components, σ1.1, σ1.2, ..., σ1.n collectively satisfy a single function ϕ1, which can be represented as

ϕ1 ↦→ {σ1.1 ∧ σ1.2 ∧ ... ∧ σ1.n }. That is, function ϕ1 will not be fulfilled if any of these components are missing.

Solution-to-Function: This is a mapping from a solution (component) to a function. It is important to note that

mapping relations are bidirectional, i.e. an allocation relation from function-to-solution automatically implies a relation

from solution-to-function. However, unlike the Function-to-Solution mapping, where only a function satisfaction

relationship is possible, here two types of relations are identified:

• Function derivation – The emergence of a new (derived) requirement/function. For example, choosing a bootstrap

refrigeration system will require the air to be pressurized, which can be stated as σ1 ⇒ ϕ1.1.

• Function satisfaction – Assigning additional function(s) to an existing solution. In some cases, the architect may

wish to allocate an existing solution to another function in order to increase performance. For instance, the

utilization of the solution “jet fuel” to fulfill an extra function “Absorb heat”, in addition to its primary function

“provide propulsive energy”. This mapping relation for multifunctional solutions can be expressed as σi ↦→ {ϕj .1 ∧

ϕj .2 ∧ ... ∧ϕj .k }.

Solution-to-model: This is a mapping relation from solution to computational model, i.e. σ1 ↦→ µ1. It specifies

which behavior and performance models are associated with a particular solution. It is to be noted that in general, a

single solution may be mapped to more than one model, i.e., there may be a computational model for each behaviour

or performance parameter of a solution.

Decomposition: The following four types of decomposition relations may appear.

• Requirement decomposition – this is the breakdown of top-level requirements into sub-system and component

level requirements, i.e. ρ1  {ρ1.1 ∧ ρ1.2 ∧ ρ1.3 } where the symbol represents decomposition.

• Iterative function-solution decomposition – this is akin to the “zig-zagging” process mentioned earlier. It can be

represented as ϕ1 ↦→ {σ1 ⇒ [ϕ1.i ... ↦→ (...σ1.j ) ] ...} and comprises a series of function-to-solution and solution-

to-function mappings.

• (Invariant) functional decomposition – a function ϕ1 can be decomposed into a number of independent sub-

functions, for example, ϕ1.1, ϕ1.2, and ϕ1.3, which are not derived functions [42]. This can be written as ϕ1 

{ϕ1.1 ∧ ϕ1.2 ∧ ϕ1.3 }. Such decomposition may be representative of a ‘functional flow’, i.e. ϕ1.1 → ϕ1.2 → ϕ1.3.

Functional flow implies a clear process sequence, which does not need to be directly derived from the solutions,

for example, source air, clean air, cool air, etc.
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• Leaf function – is a function which is not refined further prior to assigning the solution.

• Logical decomposition – a solution (e.g. sub-system) can be decomposed into a number of solutions (components).

This can be written as σ1  {σ1.1 ∧ σ1.2 ∧ σ1.3 }

Aggregation: Aggregation is needed when (parts of) the functional or logical hierarchical structures are con-

structed from bottom up. It can also be part of a zig-zagging process, or can be done independently in a single domain.

These cases would occur when, either an alternative to a reference architecture is being developed, or when only the

logical/physical description is available. In the latter case the functional description needs to be “reverse engineered”

as part of rationale capture. Decomposition and aggregation are applicable to both the functional and logical domains.

However, during top-down design, decomposition relations are employed predominantly in the functional domain

while aggregation relations are employed predominantly in the logical domain. The following concepts relate to the

idea of aggregation:

• Component aggregation – is the process of combining components to comprise a single higher level component

(e.g., an assembly of these components), i.e. {σ1.1∧σ1.2∧...∧σ1.n }  σ1. This may be the case when an integrated

solution (e.g. motor gear group) replaces previously individually-linked components.

• Functional aggregation – can be the consequence of solutions-aggregation in the logical domain.

All the constructs specified above are seen as essential for enabling the functional-logical domain mapping and

the capturing of the designer’s actions during architecting in these domains. Ultimately, this is intended to aid not

only the documentation of the final architecture, but also the process of its creation, that is, its rationale capture.

4.3 | Graph-Theoretic Support Structures

Presented in this section is a graph-theoretic support for the functional reasoning within and between the RFL(C)

domains. Graph (data) structures are constructed by using the architectural elements and their basic relations. These

data structures serve three purposes. First, they allow changes made in one domain to be recorded and traced in the

other domains. Second, they assist in defining new or variant architectures. Third, these data structures can also be

used as efficient means for storing architectural information (i.e., the functions, the components, and the connections

between them).

Decomposition in Requirements, Functional and Logical Domains: Trees are employed to model the decompo-

sition (i.e. hierarchical representation) in the requirements, functional, and logical domains. A tree, T , is a directed

acyclic graph which has no loops and circuits. In addition, there is exactly one root node and every child has maximum

one parent, i.e., there is exactly one link between any two nodes. T is constructed by using only the decomposition

relations, i.e. e i  {e i .1 ∧ e i .2 ∧ e i .3 ∧ ... ∧ e i .n }, where e i represents an element which is decomposed into n sub-

elements. Each link inT represents a parent-child relationship between the two connected nodes. The elements e in

T may be a requirement, function, or solution. However,T contains elements from a single domain only.

Functional Flow, Logical Flow, and Computational Views: Directed graphs are employed to model the functional

flow, logical flow, and computational views. A directed graph (or digraph), represented by DG (V , E ) , is a graph with

a set of vertices V connected by edges E where each edge has a direction. A directed graph DG captures the flow

relations between elements of the same type. A graph, DGF proposed for functional flow modelling, describes the

functions and the flow connections between them (e.g. ϕ1 → ϕ2 → ϕ3). Similarly, a graph, DGL , describes flows

between components and subsystems in terms of energy, material or signal. DGF and DGL can be expressed in a

matrix form, known as adjacency, connection, or design structure matrices. The associated adjacency matrices of

DGF and DGL are denoted by AMF and AML , respectively.

Functional-Logical Zig-Zagging: Functional reasoning employs two types of relations between functional and
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logical domains: 1) function-to-solution mapping and 2) solution-to-function mapping (also called derived functions).

Here, a directed bipartite graph is used to model the functional reasoning (functional-logical zigzagging). A bipartite

graph BG is a graph with two disjoint sets of vertices V1 and V2 and a set of edges E where each edge connects

vertices from opposite sets. The functional reasoning directed bipartite graph, BG , can be expressed by Equation (1).

Here,ϕϕϕ is a set of functions, σσσ is a set of solutions and EEE is a set of edges representing the function-to-solution and

solution-to-function mappings (derived-function).

BG = G (ϕϕϕ,σσσ,EEE ) (1)

Bipartite graphs are proposed tomodel the functional reasoning for both the complete database and the individual

architectures. The BG for the individual architectures (represented by BGA) is the subset of the complete database

BGD . Figure 3 shows the bipartite graph of the complete database (BGD ) on the left, and the two bipartite graphs of

the individual architectures (BGA1
and BGA2

) on the right. It can be observed from BGD that there are two options

to fulfill function ϕ1. The first option is a combination of solutions (σ1 ∧ σ2), whereas, the second option is fulfilled by

a single solution, σ3 but has two derived functions, ϕ2 and ϕ3.

F IGURE 3 Functional reasoning bipartite graphs

The associatedmatrix representations of the graphs are also useful constructs supporting the functional reasoning

process. For example, the matrix representation of the bipartite graph of the complete database BGD , also known as

morphological matrix, contains all the leaf functions and all the available solutions for a particular project. Similarly,

the matrix form of bipartite graph of the individual architectures BGA , referred to as adjacency matrix or design matrix

(DM ) can be used to represent which solutions fulfill which functions (i.e. function-to-solution mappings). A similar

matrix can be employed to model the solution-to-function mapping relations.

Inter-Domain Relations: During the systems architecting process, the architects specify mapping relations (as

discussed in Section 4.2) between elements of different domains. The relations between the elements from two dif-

ferent domains are referred to as inter-domain relations. Requirement-to-function and function-to-solution mappings

are directly specified by the architect and are referred to as direct inter-domain relations. However, these two direct

relations also imply an indirect mapping relation between the requirement and the solution. These indirect relations

need to be identified and managed so that the architect is able to take an informed decision while modifying the
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architecture. For instance, if one or more performance requirements cannot be satisfied by a given architecture, the

architect would like to determine which solutions (components) affect those performance requirements.

In the proposed framework, undirected graphs UG are employed to model the inter-domain relations ℜ. The

UG is constructed by using the direct inter-domain relations (e.g. requirement-to-function mapping, ρ ↦→ ϕ, function-

to-solution mapping, ϕ ↦→ σ , solution-to-function mapping (derived function), σ ⇒ ϕ, requirement-to-parameter

mapping, ρ ↦→ p , etc.) The elements of the R, F, L, and C domains are represented by sets, ρρρ,ϕϕϕ, σσσ , and µµµ, respectively.

The relations between the elements of any two sets, A and B can be represented by Equation (2), where, A and B

represent ρρρ,ϕϕϕ, σσσ , or µµµ.

AℜB = {(a, b) |a ↦→ b ∧ (a ∈ A ∧ b ∈ B) ∧ (A , B) } (2)

There are six types of possible inter-domain relations possible between the elements of the sets, ρρρ, ϕϕϕ, σσσ , and µµµ:

ρℜϕ, ϕℜσ , σℜµ, ρℜσ , ϕℜµ, and ρℜµ. For instance, ρℜϕ is a set of relations between a requirement and a function.

Figure 4 illustrates the possible inter-domain relations, where the architect specified (direct) relations are shown by

solid lines, and the indirect relations are shown by dotted lines. Algorithms for tracing the direct and indirect relations

within and between the RFLC domains are presented in the next section.

F IGURE 4 Relations among elements of RFLC domains

4.4 | Tracing Algorithms

The three algorithms presented in this section are intended to work with the graph structures described in Section

4.3. The first one enables the tracing of functional-logical zigzagging, the second one allows inter-domain tracing, and

the third one supports dependency tracing specifically within the computational domain. For all the algorithms, the

time complexity is O (n2) .

Algorithm 1: In order to trace the dependency between functions and solutions of a given function reasoning

model, a traversal algorithm based on Depth First Search (DFS) [43] has been employed. It enables the architects to

identify the affected functions and solutions by exploring the functional-logical (zigzagging) structure. If the architect

wishes to modify the architecture by adding, removing or substituting a function or solution, the framework should

assist by highlighting the impact of the desired change. This is illustrated in Figure 5 where the bipartite graph for

the complete database is shown in the middle, and the logical and functional flow views are on the left and right,

respectively. If the architect wishes to see the implication of removing solution σ4 from the logical flow view, the
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corresponding dependency (traversal) can be obtained by employing Algorithm 1, as highlighted by the red arrows.

This allows to identify the affected functions, which are highlighted in grey. Function 2 (ϕ2) has direct allocation

relation with solution 4 (σ4), whereas function 1 (ϕ1) has indirect relation through solution 3 (σ3).

F IGURE 5 Dependency tracing between functional and logical domains using bipartite graph

Algorithm .1: Tracing dependency between functional (F ) and logical (L) domains

Input :A directed bipartite graph (BGA) and architectural element (e ) for which dependency has to be

traced.

Output :A list L of affected functions and solutions.

Local :Variables, u and w represent architectural elements that could be either function or solution.

1 Create two empty lists L and S

2 Create an empty dictionaryV to store the status (visited or not) of elements

3 Initialize status of all elements ofV as false (i.e., not visited)

4 Add e in S

5 while S is not empty do

6 Remove last element u in S

7 if status of u is false inV then

8 Change status of u as true inV

9 end

10 Add u in L

11 foreach unvisited adjacent nodew of u in graph BGA (by traversing in opposite direction) do

12 Add w in S

13 end

14 end

15 Return list L

Algorithm2: The transitive closure algorithm is employed to identify all the indirect relations between elements of

different domains of the systems architecture. Consider an initial graph, G i
= (V , E ) , where,V is the vertex set and E

is the edge set. The transitive closure graph ofG i is a graph,GT C
= (V , E+) , such that for all vertices pairs (vi ,vj ) inV ,

there is an edge (vi ,vj ) inE
+ , if and only if there is a path fromvi tovj inG . In the proposed framework, the initial graph

G i is constructed with the existing direct relations only. In practice G i will be automatically generated ‘behind the

scene’. After applying the transitive closure onG i , the resulting graph GT C contains both direct and indirect relations.

Algorithm 2 takes architecture (A), and the architecture element (e ) whose dependency is to be traced, and produces



Guenov et al. 13

a list of dependent elements in the other domains. Here, e could be either requirement, function, solution, model

or parameter. The algorithm is divided into three steps: 1) creation of an initial graph G i which stores the architect-

defined (direct) relations, 2) creation of a transitive closure graph GT C which is based on Warshall’s algorithm [44],

and 3) tracing dependency of an element from a particular domain on the elements from the other domains.

Algorithm .2: Tracing dependency across the domains

Input :System Architecture, A, i.e. elements (ρ, ϕ, σ , and µ) of R , F , L, and C domains, and an element, e

whose relations with elements of other domains are to be traced.

Output :List L of elements having (direct or indirect) relations with element e

Local :Variables x and e represent elements that could be either requirement, function, solution, model or

parameter. Variable c (i , j ) represents a cell at the i t h row and the j t h column of a matrix.

1 Create a list E containing all elements of ρ, ϕ, σ , and µ

2 Set m equal to |E |

3 Create an empty matrix G i
m×m storing direct relations

4 Assign diagonal elements of matrix G i
m×m to 1

5 foreach i t h element x in list E do

6 if x is associated to any other j t h element x ′ in list E then

7 Set the cell at i t h row and j t h column of matrix G i
m×m equal to 1

8 end

9 end

10 Create a new matrix GT C and assign G i
m×m to it

11 foreach cell c (i , j ) in matrix GT C do

12 if value at cell c is equal to 1 then

13 Perform element-wise ‘OR’ operation on i t h row of GT C and j t h row of GT C

14 Assign the resulting vectorV1m to the i t h row of GT C

15 end

16 end

17 Create an empty list L

18 foreach i t h element x in list E do

19 if x is equal to e then

20 foreach j t h column in matrix GT C do

21 if cell c (i , j ) of matrix GT C is equal to 1 and i is not equal to j then

22 Add the j t h element of list E in list L

23 end

24 end

25 end

26 end

27 Return list L

Algorithm 3: This algorithm supports the tracing of parameters within the computational domain. It obtains the

dependency of a given parameter on other parameters, using the corresponding computational workflow. Two types

of parameters are utilised from the computational domain: components’ direct parameters, and components’ ports

parameters. The output of Algorithm 3 is an ordered list of components’ direct parameters as per the sensitivity to

the required parameter. An efficient method for sensitivity analysis [45] is employed to identify the most influential
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direct parameters.

Algorithm .3: Tracing dependency within computational domain.

Input :Directed bipartite graphW (with two types of nodes, i.e. models and parameters) representing the

computational workflow; parameter p whose relations with other parameters is to be traced.

Output :List L of parameters having dependency on parameter p .

Local :Variables, u and w represent architectural elements that could be either model or parameter,

whereas variable p represents the parameter.

1 Create empty lists L, S , and K

2 Create an empty dictionaryV to store the status (visited or not) of parameters

3 Initialize all elements ofV as false (i.e. not visited)

4 Add p in list S

5 while S is not empty do

6 Remove last element u from list S

7 if status of u is false inV then

8 Change status of u as true inV

9 end

10 Add u in list L

11 foreach unvisited adjacent nodew of u in graphW (by traversing in opposite direction) do

12 Add w in S

13 end

14 end

15 foreach parameter x in L do

16 if x is not a component parameter then

17 Add x to K

18 end

19 end

20 foreach parameter x in K do

21 Remove x from L

22 end

23 Order the parameters of L as per their sensitivity to parameter p

24 Return ordered list L

5 | ILLUSTRATIVE EXAMPLE

The proposed framework was demonstrated via the prototype tool "AirCADia Architect" to practicing systems archi-

tects and designers from the industrial partners in the TOICA project. These experienced engineers were acting as

the “internal customers” for systems engineering from the outset. The aim of the demonstration was to obtain general

feedback rather than to follow a strict evaluation and validation methodology.

During the hands-on sessions, the architects utilized both decomposition and aggregation reasoning approaches

for architecture synthesis. A snapshot of the hierarchical view of the top-level requirements is shown in Figure 6.

The top-level invariant function "provide conditioned fresh air to passengers" (ϕ1) was decomposed into four

invariant sub-functions, i.e. "source air" (ϕ1.1), "force airflow" (ϕ1.2), "cool air" (ϕ1.3) and "evacuate air" (ϕ1.4), as shown
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F IGURE 6 Requirements hierarchical decomposition

in Equation (3):

ϕ1  {ϕ1.1 ∧ϕ1.2 ∧ϕ1.3 ∧ϕ1.4 } (3)

Next, solutions σ1.i were allocated to all four sub-functions ϕ1.i , i = 1, 2, 3, 4. Two solutions were identified for

the first function (ϕ1.1): pneumatic system (σ1.1.1), and ram air inlet (σ1.1.2), as stated in Equation (4). It is important to

note that the symbol ∨ (logical OR) is used in Equation (4) because only a single solution, either σ1.1.1 or σ1.1.2 will be

allocated to ϕ1.1.

ϕ1.1 ↦→ {σ1.1.1 ∨ σ1.1.2 } (4)

The second function “force air” (ϕ1.2) was mapped to “electric fan” (σ1.2), i.e. ϕ1.2 ↦→ σ1.2. Next, two solutions

were identified for ϕ1.3: bootstrap air cycle machine (σ1.3.1), and vapour cycle machine (σ1.3.2), as stated in Equation

(5).

ϕ1.3 ↦→ {σ1.3.1 ∨ σ1.3.2 } (5)

Finally, the fourth function “evacuate air” (ϕ1.4) was mapped to σ1.4 (outboard flow valve), i.e. ϕ1.4 ↦→ σ1.4. Note

that the equations presented in this section are listed only for illustration of the basic architecture description language

presented in Section 4. The actual architectural synthesis in AirCADia Architect involves only clicking, dragging, and

dropping actions performed by the user. After mapping solutions, σ1.i , to functions, ϕ1.i , the architects identified

and created the derived functions emerging from the chosen solutions σ1.i . That is, if solution “pneumatic system”

(σ1.1.1) is utilized for function “source air” (ϕ1.1), then two new derived functions, “convert ozone” (ϕ1.5) and “demist

air” (ϕ1.6) are required. Alternatively, if solution “ram air inlet” (σ1.1.2) is utilized, then (in addition to ϕ1.5 and ϕ1.6)

an extra function “pressurize air” (ϕ1.7) is required, since unlike the air from the pneumatic system, which is already
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compressed, the ram air is not. The derived functions for solutions, σ1.1.1 and σ1.1.2 are expressed in Equation (6).

σ1.1.1 ⇒ {ϕ1.5,ϕ1.6 },σ1.1.2 ⇒ {ϕ1.5,ϕ1.6,ϕ1.7 } (6)

After identifying the derived functions, the architects allocated solutions to these functions. Solutions “ozone

converter” (σ1.5), “water separator” (σ1.6) and “compressor” (σ1.7) were allocated to functions, ϕ1.5, ϕ1.6, and ϕ1.7,

respectively. Solution “compressor” (σ1.7) leads to another derived function “provide rotational energy” (ϕ1.8), i.e.

σ1.7 ⇒ ϕ1.8, which was mapped to the solution “electric motor” (σ1.8), i.e. ϕ1.8 ↦→ σ1.8. It should be noted that in this

case the compressor is a leaf node, because the electric motor does not ‘deal’ directly with the air. Since functions

“pressurize air” (ϕ1.7) and “provide rotational energy” (ϕ1.8) were derived from solution “ram air inlet” (σ1.1.2), therefore

solutions, “compressor” (σ1.7) and “motor” (σ1.8), are relevant, as long as solution σ1.1.2 is present. That is, if the

architect decides to delete σ1.1.2, then the derived functions ϕ1.7 and ϕ1.8 (and their mapped solutions σ1.7 and σ1.8)

will automatically be deleted with the help of the elementary relations and data structures maintained in the object

model. The completed functional hierarchical decomposition of the ECS is shown in Figure 7.

F IGURE 7 Functional hierarchical decomposition view

The functional-logical zig-zagging is shown in Figure 8, where solutions “pneumatic system” (σ1.1.1) and “bootstrap

air cycle machine” (σ1.3.1) are used to fulfill functions “source air” (ϕ1.1) and “cool air” (ϕ1.3), respectively. Here, green

lines show the derived functions of the selected solution.

After the functional hierarchical decomposition and functional-logical zig-zagging views were constructed, the

next step was to construct the functional and logical flow views. As shown in Figure 8, the functional reasoning

model has two functions, i.e. “source air” (ϕ1.1) and cool air (ϕ1.3), which have more than one option to fulfill. In this

case, the architects selected “pneumatic system” (σ1.1.1) to fulfill “source air” (ϕ1.1), and “bootstrap air cycle machine”

(σ1.3.1) for “cool air” (ϕ1.3). Once all the relevant functions and solutions are identified, the second step is to create

the connections by linking functions and solutions through their ports. AirCADia Architect enables the designers to

work either in the “functional flow view” or in the “logical flow view” and, while working in one of these, the other

is updated automatically to maintain consistency of information across both domains. The resulting functional and

logical flow views of the conventional (bleed air) ECS architecture are shown in Figure 9.

In order to increase the reliability of the ECS, the architects decided to opt for two redundant solutions “air cycle

machine packs” (σ1.3.1) for function “cool air” (ϕ1.3). The mapping of the function ϕ1.3 with two redundant solutions is

represented by Equation (7).

ϕ1.3 ↦→ {σ1.3.1 ∧ σ1.3.1 } (7)
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F IGURE 8 Functional-logical zigzagging view

F IGURE 9 Functional and logical flow views of the baseline ECS architecture

A hypothetical scenario was used to demonstrate the capabilities of the proposed framework regarding architec-

ture modification. Suppose the designer wished to reduce the block fuel of the baseline architecture. Then the first
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task would be to identify which of the existing components should be modified or replaced. Algorithm 3, together

with the computational workflow is used to that purpose. Figure 10(a) shows the computational view, i.e. the graph

of parameters (represented by ovals) and computational models (represented by rectangles). The result of the appli-

cation of Algorithm 3 on this computational view is shown in Figure 10(b). It was identified that (in addition to major

component options such as improving engine’s specific fuel consumption and/or wing’s lift-to-drag ratio) the power

offtake (bleed air) of the ECS should be reduced if possible. The solid arrows in Figure 10(b) represent the dependent

parameters related to the ECS.

F IGURE 10 Application of Algorithm 3: dependencies between subsystem-level and system-level parameters

Once the influential parameters are identified by Algorithm 3, the next step is to identify the affected functions

and solutions by using the Algorithm 1. Suppose the designer decided to replace solution “pneumatic system” (σ1.1.1)

with “ram air” (σ1.1.2) for function “source air” (ϕ1.1). The rationale is that the pneumatic power is inefficient because a

heat exchanger (pre-cooler) is used to cool the over compressed and overheated bleed air, discharging excess energy

back into the atmosphere as waste heat. (The amount of wasted energy can reach up to 30% depending on the

operating flight conditions [30]). It was identified that functions, “pressurize air” (ϕ1.7) and “provide rotational energy”

(ϕ1.8), are the derived functions of solution, “ram air inlet” (σ1.1.2), therefore they togetherwith their allocated solutions,

“compressor” (σ1.7) and “motor” (σ1.8) need to be added into the functional and logical flow views.

The modification of the logical flow view of the conventional (bleed) ECS to electric (bleed-less) ECS architecture

is shown in Figure 11. The green dashed lines in the logical flow view enclose the added components to the baseline

ECS architecture, whereas the hatched (in red) components represent the deletions.

The architects’ feedback indicated that, on the whole, the approach enables the architects to effectively express

their creative ideas when synthesizing architectures, and was especially acknowledged as the way forward for ratio-

nale capture [4].
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F IGURE 11 Modification of logical flow view of the Environmental Control Systems (ECS)

6 | SUMMARY AND CONCLUSIONS

It was found from interviews with (airframe) systems architects that practicing engineers still prefer to work within

the logical view of the architecture, rather than start with (abstract) functional decomposition as prescribed by exist-

ing systems engineering standards. Academic experiments reported in the literature also seem to support the idea

that more innovative solutions could be achieved under the function-follows-forms approach. Thus while adopting

the RFLP notion and the standards endorsed sequential-iterative systems engineering process, we concluded that we

ought to research methods and tools, which when integrated into an innovative framework would enable the systems

architects to work interactively and simultaneously in all domains without enforcing a sequence. This, however, re-

quires that the underlying computer aided architecting system maintains traceability of the architect’s choices in the

RFLP domains during the process.

To this purpose, a framework specification of the mapping between the R-F-L domains was proposed which can

capture their co-evolution as follows:

• The essential architecting operations within a domain and between domains (e.g., assigning/reassigning a solution

to a function, derivation, decomposition, aggregation, etc.), are stated explicitly,

• The basic entities (e.g., function, requirement, port, etc.) and their relationships deemed necessary for the generic

specification of the framework are defined in an object-oriented model,

• The evolving functional and logical hierarchies (trees) were modelled with the employment of existing graph-

theoretic concepts such as bipartite graphs, trees, etc., and where appropriate, with (corresponding) matrix rep-

resentations, referred to as design structure matrices. A number of graph-theoretic algorithms were adapted,

which operate on these graph constructs and underpin the basic function reasoning operations, for example,

tracing dependencies across the RFL domains, following a change (action) in one of these domains.

While adapting and incorporating some existing methods, the integration of all of the above results in a novel
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framework, which enables the rapid and interactive synthesis of multiple complex systems architectures. The frame-

work explicitly captures the ‘zigzagging’ pattern of the functional reasoning process, including not only allocated func-

tions, but also the derived functions. Distinguishing between invariant and derived functions enables the architect to

rapidly synthesize new architectures in the (prevalent) cases where an existing baseline is modified to this purpose.

Furthermore, if the architect intends to modify a particular solution, he/she would be able to identify which of the

new (derived) functions must be included, and which of the existing elements and relations of the architecture will

be modified/deleted, accordingly. The traceability algorithms presented in this paper enable to identify such indirect

relations through transitive closure.

A prototype tool, AirCADia Architect, was developed within the TOICA project [2] [3] for the evaluation of the

framework by practicing architects. The feedback from demonstration and hands-on sessions confirmed that, on the

whole, the framework enables the architects to create and manipulate architectures, and to effectively express their

ideas. The proposed approach was especially acknowledged as the way forward for rationale capture.

Future work will aim to extend the systems architecting framework to the (3D) physical domain, including the

development of fast methods for geometry representation and spatial layout synthesis. Work is already underway to

incorporate conditional (time-dependent) views of the evolving design and to enable the synthesized architectures to

be exported to widely-used computational analysis and product definition tools.
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