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A new method for the analysis and design of fiber Bragg gratings (FBG) based on the theory of transmission lines 
has been developed and verified both theoretically and experimentally. The method is an extension of the Coupled 
Mode Theory and utilizes the equivalent transmission lines in order to simulate any type of grating, with an easy 
and direct implementation. The method provides the ability to analyze the optical devices without using full wave 
approaches, while also facilitating the incorporation of core materials with a complex or nonlinear refractive index, 
non-uniform distributions of the grating’s refractive index, and tilted and phase shifted gratings. The approach also 
allows the design of the grating for a given reflection spectra. Numerical results of the method’s application on a 
randomly varied inscription of the refractive index of a FBG have also been simulated and discussed. Using this 
method, the characteristics of an Erbium – Doped FBG have been simulated and the predictions verified 
experimentally. 
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1. Introduction Fibre Bragg Gratings (FBG) have been particularly popular in the field of optical communication systems, mainly as optical reflectors, filters, multiplexers / demultiplexers and dispersion compensation devices [1-5]. More important however, is their use as sensors as they exhibit many and important advantages over traditional electrical sensors, offering high precision, stability over time, immunity to electromagnetic interference, support for long range detection, suitability for use in explosive environments, and inherently offering multiplexed sensing via a single fiber-optic channel [6-8]. Because of their advantages they are applied in a wide variety of fields such as industrial automation, energy, automotive, aerospace, security and even medicine [9-10]. The use of FBG allows measurements of physical quantities and parameters such as mechanical stresses, displacement, pressure and temperature change [4].  The numerical analysis and synthesis of an FBG is mainly concentrated on the optical intensity spectral reflectivity and the dominant method of analyzing these devices is the Coupled Mode Theory (CMT) [11-13]. This method is accurate and consistent for all uniform gratings and with appropriate modifications and, in combination with the Transfer Matrix Method (TMM), may be used to analyze uniform and non-uniform gratings with a complex refractive index i.e. with gain or loss [14]. A typical limitation of the method, which may increase its complexity and reduce its accuracy, is its application on non-uniform distributions in both the amplitude and the periodicity of the refractive index inscription in the 

core, as the segmentation of the structure in tandem uniform segments is required. An additional characteristic of the method is the pure mathematical formation of the analysis, which cannot always provide a physical insight to the problem.  Within the framework of this paper we propose the use of a Transmission Line Method (TLM) for the numerical analysis of FBGs. The herein proposed TLM is an extension of the CMT method since it is based on the original theory of coupling between the guided modes [15]. By analyzing the coupling between the propagation modes with and without the variation of the refractive index of the core, differential equations are derived that correspond to differential equations of transmission lines with virtual voltage and current quantities, representing the electric and magnetic fields in the grating, respectively. As a result, it is possible to simulate the whole length of the grating as a chain of transmission lines connected in tandem, where each transmission line has different characteristic impedance, depending on the refractive index in the respective point of the grating. It should be noted that in the above model there is no limitation on the form of the refractive index distribution, so it is possible to analyze an arbitrary distribution of the index in the core without modifying the model. Characteristics of the grating, such as its spectral reflectivity and transmission, as well as the distribution of the field inside the grating, are calculated in a particularly simple way, and it is easy to add losses or amplifications, nonlinearity and tilted or chirped characteristics.  The proposed TLM is characterized as a one-dimensional (1D) model, so it retains the advantages of fast methods of 
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analysis while at the same time addressing accurately issues of inhomogeneity or nonlinearity on the propagation axis. By applying the transmission line method, the non-uniformity of the grating inscription along its length, due to possible imperfections such as the distribution of germanium in the fiber core or the alignment in the inscription technique, can be analyzed. This analysis may estimate the final tolerances expected during the inscription of the grating while a corresponding analysis can be made after introducing a non-linearity of the refractive index, which can also be simulated by the proposed method.  The paper is organized as follows: Section II presents the theoretical framework for single mode fibers, which enables the FBG simulation with the use of transmission line theory. In the same section, the implementation of the TLM calculation scheme is provided for lossless gratings and its application for nonlinear, lossy or gained, chirped, and tilted grating is also described. This discussion is further extended to include the use of TLM for the design of a grating. In section III the method’s accuracy is verified in comparison to the CMT method, while in the same section numerical results are provided for random variations in inscription, as well as for erbium doped gratings. In section IV an experimental verification of the method is conducted for the operation of an Erbium-doped fiber grating, while in the final section conclusions on the TLM are provided. 
2. Modeling of an FBG with a Transmission Line 
Method In this section we deploy the transmission line method in order to analyze the reflection and transmission of homogeneous or inhomogeneous FBGs with losses or gain, e.g. when an Erbium-Doped core material is used. The method may be applied for an arbitrary complex refractive index distribution along the grating. The proposed method may substitute other typical methods, such as the CMT, in order to model an arbitrary complex refractive index perturbation inside a grating, while at the same time retaining its simple, accurate and fast calculation features. Section A analyzes the theory that establishes the fundamentals for the application of the equivalent transmission lines. In Section B we describe the application of the method for the calculation of the spectral reflection for a typical uniform FBG with losses or gain. 
A. Equivalent Transmission Lines in Fiber Bragg Gratings  We consider an FBG which, for the length of the grating along the z axis , is a perturbation (homogeneous or inhomogeneous) of the core refractive index of the single mode fiber (SMF). For multimode fibers (MMF), a similar though more complicated procedure may be followed since the coupling coefficients between the modes have to be determined. Adopting the electromagnetic description approach for the propagation of light along the z-axis of the fiber’s core, we assume that the tangential electric and magnetic field components, Et and Ht, in the grating are of the following form [15]: 

 
( ) ( ) ( )yxΕzazyxE tt ,,, 11=                        (1.1)       
( ) ( ) ( )yxHzbzyxH tt ,,, 11=                       (1.2) 

with E1t and H1t being the tangential field components inside the unperturbed fiber, where the index 1 denotes that we have only one propagation mode. Additionally, a1 and b1 are the amplitude coefficients that modify the field components with respect to the unperturbed fiber, which are interconnected through the following equations [15]: 
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 where K11, k11 are coupling factors (calculated in the Appendix), 
01 kn=β  is the propagation constant for the unperturbed SMF with n  the effective index and 0k  the wavenumber. By integrating (1) over the x-y fiber core’s cross section and substituting it into (2), the following equations can be derived: 
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 Next, the auxiliary quantities of magnetic voltage and current along the propagation z axis are defined as follows:  

( ) ( )= dxdyzyxHzV tM ,,                (4.1) 

( ) ( )= dxdyzyxEzI tM ,,                 (4.2) 

As a result, the transmission line magnetic impedance for the corresponding unperturbed SMF is defined as follows:  
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 By introducing (4) and (5) into (3) we arrive at the following equations: 
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12 β−=         (6.2) Equations (6) represent a magnetic transmission line along the z direction, with characteristic impedance ZM and transmission constant γM as follows:   
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 As a result, the fiber grating may be modeled as a chain of N transmission lines connected in tandem with length ΔL, characteristic impedance ZMi and transmission constant γMi, respectively.    
B. Application of the TLM for the simulation of an FBG  We assume a uniform sinusoidal FBG of length L with variable refractive index along the grating in the core n(z) according to the following form: 
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where n0 is the refractive index in the core of the fiber, Δn represents the amplitude of the refractive index variation in the grating and Λ is the grating period. Next, in order to apply the TLM, we consider that the length L of the grating consists of N thin layers each of length ΔL. As will be discussed in Section II, ΔL is a fraction of Λ but the actual value depends on the convergence of numerical results with respect to the targeted numerical accuracy. Their equivalent model is depicted in Figure 1 with N transmission lines connected in tandem. The characteristic impedance ZMi and transmission constant γMi for the ith layer depends on n(z), since the factors K11, k11 also depend on the variation of the refractive index along the z-axis according to (A.6-A.12).  
 
 
 
 
 
 Fig. 1. Transmission lines connected in tandem for the modeling of an FBG of length L. The reflection coefficient ρ at the input of the transmission line circuit of Fig. 1 represents the incident light intensity reflection coefficient and can be calculated as follows:  
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For the calculation of Zin, a recursive procedure should be followed. As depicted in Fig. 2, the ith transmission line of Fig. 1 may be approximated by its ‘T’ impedance equivalent circuit, where the series and parallel impedances are given by the following expressions: 
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 Fig. 2. Equivalent circuit of the ith transmission line of Fig.1.  If we take into account the losses or gain of the fiber core material, then the imaginary part of the refractive index may be negative (losses) or positive (gain). Assuming the imaginary part of the refractive index as isjn±  the input impedance of the 

ith transmission line will be modified as follows: 
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ρ               (12)  where, k0 is the wavenumber for the wavelength of operation and ρi-1 is given by (11). For the calculation of the optical power transmission coefficient of the grating, the current through the ‘T’ circuit chain should be calculated, considering the end current as unity. Taking into account the boundary condition for current and voltage in the front interface of the grating the transmission coefficient is calculated as follows:  
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Iin  is calculated recursively using a current division calculation scheme along the ‘T’ circuit chain.   Furthermore, the circuit model of Fig.2 may be used for the calculation of the field distribution across the grating using a 
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recursive method for the calculation of the magnetic voltage and current along the transmission line. A profound application of the TLM capability to estimate the field distribution across the layers is the simulation of a nonlinear grating. Particularly, the refractive index within a layer may be power dependent. Consequently, the circuit elements of Fig.2 may be calculated from the magnetic current or voltage across the layer. Following a similar procedure described in [16] for planar structure reflectors, according to which the current distribution determines the refractive index of each thin layer, the power-depended reflectivity of the fiber grating may be simulated. Another class of grating is the non-uniform FBG, which includes chirped FBGs (CFBG), phase shifted FBGs and tilted FBGs. For CFBGs, which are utilized for the fabrication of asymmetric optical filters, the analysis with TLM is based on (8) considering Λ(z), whereas analysis with the CMT-TMM requires uniform segmentation. Phase shifted FBGs may also be analyzed using the TLM, as will be presented in the next section, while for tilted gratings and for SMF, the closed form of the refractive index variation in fiber axis, as it is described in [11], is directly applicable for TLM analysis.  The proposed model may also be applied to the synthesis of non-uniform gratings using the discrete layer-peeling (DLP) technique [17-19]. The implementation of the DLP technique for the synthesis of non-uniform gratings, which are characterized by a specified spectral reflectivity, requires its inverse Fourier transformation and its application on each of the layers that have been defined for the TLM. Thus, the refractive index of each layer may be calculated through the circuit of Fig.2, assuming that it is terminated in Z0M, and using (9), given that the reflection coefficient ρ for each layer may be calculated using the algorithm described in [4]. Overall, the TLM may offer an alternative to the CMT -TMM method of analysis and synthesis of any kind of FBGs, including non-uniform and nonlinear, by avoiding adaptations that may require mathematical manipulations with respect to the basic couple-mode theory. 
3. Numerical Results  We consider a uniform FBG of length 4mm with Bragg  wavelength 1530.23nm and Δn in the order of 0.04% of the core’s refractive index n0=1.56. By applying the CMT method we may calculate the spectral reflectivity that is illustrated in Fig. 3 (solid red line) for an optical fiber with effective refractive index = 1.55. Using the TLM we may analyze this FBG by slicing its length in layers of thickness ΔL=Λ/5 and Λ/10 in order to demonstrate the convergence properties of the method. The spectral power reflectivity is depicted in Fig. 3 (dashed and dotted lines respectively). It can be seen that for ΔL=Λ/10 an almost perfect coincidence with the CMT is obtained (dotted line). It is evident that layer thickness is a critical parameter for the application of the TLM and increases the complexity due to the increased number of layers for a specific grating length. For the examined case, the layer’s thickness should be less than Λ/10 in order to esnure the numerical accuracy of the method and, as a result, the computational complexity increases in comparison with the CMT for a uniform lossless grating. It is worth noting that the 
ΔL values depend on the FBG bandwidth and eventually ΔL will 

decrease as long as the bandwidth decreases. Nevertheless, for non-uniform, lossy or nonlinear FBG, the complexity of both CMT-TMM and TLM are of the same order, while the TLM approach is advantageous over the CMT-TMM due to the direct application of the method. A more complex application of the proposed method concerns the analysis of an erbium-doped FBG. This device is characterized by the core’s complex refractive index, where the real part follows the uniform sinusoidal form, while the imaginary part is power-depended. Particularly, the imaginary part of the refractive index may be either negative or positive and its value depends on the pump power provided by an external laser diode (LD) source.  The spectral reflectivity of the aforementioned device has been analyzed using the CMT [20] for a grating of length 4mm with Δn in the order of 0.0043% of the core’s refractive index and with an erbium ion concentration of 6.6×1025 ions per m3. The power-depended imaginary part of the complex refractive index has been calculated according to [20] and [21] for the unpumped and for the saturated case, where the imaginary part approaches the null value. 

 Fig. 3. Convergence of the TLM to CMT method (solid red line) for a typical homogeneous FBG segment. The dashed and dotted line represent the TLM’s spectral power reflectivity with ΔL =Λ/5 and ΔL =Λ/10, respectively.  In Fig. 4 the solid lines represent the spectral reflectivity estimated by CMT for the unpumped and pumped cases. It is evident that for the unpumped case, the complex refractive index depicts losses due to negative imaginary part and, as a result, the reflectivity is reduced.   Next, we may approach the same system by applying the TLM. In Fig.4 the dashed lines represent the spectral reflectivity of the ED-FBG with ΔL=Λ/10. The small deviation at the peak reflectivity between the two methods (less than 4%) may be further decreased if we reduce the layer thickness ΔL to Λ/20 (see dotted lines in Fig.4). Evidently, the application of the TLM requires at least one order higher number of layers than would be used in the CMT method for the simulation of a uniform FBG, and therefore it is more time consuming. Nevertheless, the application of CMT on gratings with non-uniform sinusoidal refractive index requires an increased number of layers and in such cases the CMT computational time is similar to the one experienced with TLM. Furthermore, the TLM may simulate a non-uniform non-



sinusoidal grating, where the CMT is not directly applicable. In particular, the inscription of a grating may be subject to deviations from the ideal uniform sinusoidal form on both the inscription depth and the periodicity. Similar deviations may be caused by several factors, such as the accuracy of the phase mask and the uniformity of the UV sensitivity of the fiber’s core along the inscription axis.   

 Fig. 4. Convergence of the TLM to CMT method (red solid line) for an Erbium-Doped FBG. The dashed and dotted lines represent the TLM’s spectral power reflectivity with ΔL =Λ/10 and Λ/20, respectively. The higher (lower) reflectivity represents the pumped (unpumped) FBG.  In order to simulate such deviation scenarios we have introduced a random error to the inscription depth and periodicity by using a numerical random generator that may vary the refractive index accordingly. In Fig.5a, the refractive index variation of a 10μm-long section of a grating of length 4mm is depicted. The random generator provides a variation of 0 to -3% on the inscription depth and of 0 to +0.0013% on the inscription periodicity. 

 Fig. 5a. The refractive index variation for a length of 10μm from a 4mm grating; the ideal sinusoidal inscription (black solid line) and its version with a random variation of 0 to -3% on the inscription depth and of 0 to +0.0013% on the inscription periodicity (red solid line). The application of the TLM for a refractive index distribution 

along the inscription axis, such as the one depicted in Fig.5a, is straight forward without any modification of the model that is described in section 2.B. Simply, by introducing random changes in Δn and Λ values as they appear in (8) the deviations from the ideal uniform sinusoidal form are simulated.  The corresponding spectral reflectivities for both the ideal uniform sinusoidal grating and that with the random error are illustrated in Fig.5b. The introduction of the aforementioned random error in the refractive index form may reduce the maximum reflectance by 11.5% and shift the corresponding wavelength by 0.002%. As a result, the application of the TLM may predict the potential random error encountered during the inscription of the grating. 

 Fig. 5b. The spectral reflectivity of an FBG with ideal inscription (black solid line) versus the spectral reflectivity of the FBG with random variation of the amplitude and periodicity (red solid line).    Although the sensor is the most popular application of the uniform gratings, their use as optical filters has attracted great interest in the field of fiber lasers and optical communications. Particularly, the phase shifted FBGs (PS-FBG) have been utilized as optical filters not only in their typical form of the simple π-phase FBG, but also in their multiple π-phase shift version [22]. The analysis of a PS-FBG with the TLM may reveal the straight forward procedure of its application. Considering a PS-FBG, the phase difference )(zφ of (8) should be activated at the point of the phase shift as depicted in Fig. 6. For a π-phase shift point in the middle of the grating and for the FBG of Fig.3, the distribution of the series and parallel circuit components are illustrated in Fig. 7. 
 

 
 
 
 
 
 
 Fig. 6. Equivalent circuit at the phase shift point.  
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In Fig.7, it is evident that the sinusoidal variation and the phase shift of the inscribed refractive index directly affect the components of the TLM’s equivalent circuit.   

 Fig.7. Variation of parallel and series equivalent circuit elements Zp (solid lines) and Zs (dashed lines) at the phase shift point of  a simple π-phase shift FBG. The spectral reflection and transmission of the aforementioned simple π-PS-FBG are illustrated in Fig.8. We have to mention here that the results coincide with the corresponding CMT analysis. Furthermore, should we use π/2 phase shift, the transmission wavelength is shifted at a lower value (1530nm) as depicted in Fig. 8.    

 Fig.8. Reflection (solid lines) and transmission (dashed lines) of a simple π-phase shift FBG (red lines) and a simple π/2-phase shift FBG (black lines). TLM and CMT simulations coincide. Both gratings are homogeneous with a length of 4mm and inscription depth of 0.04% while the phase shift point is in the middle of the grating.  Next, we apply the method for the simulation of a double π-PS-FBG. Its spectral reflection is depicted in Fig.9 whereas the grating is symmetric and the distance between the phase shift points is 1.6 mm (solid line). It is evident that there are two wavelengths that may pass through the grating and the grating’s length between the two phase shift points determines the distance between the two wavelengths. Furthermore, experience from electronic bandpass filters may be applied here in order to move the transmitting wavelengths closer to each other. Considering that the grating’s length between the 

two phase-shift points acts as a coupling network, we may increase its length in order to create a transmitting wavelength with a specified bandwidth and reduced ripple (dashed line).  

 Fig.9. Reflection of symmetric double π-phase shift FBGs. Both gratings are homogeneous with a length of 4mm and inscription depth of 0.04% whereas the distance between the phase shift points is 1.6 (solid line) and 3.8mm (dashed line) respectively.  Continuing with the narrow band, double π-PS-FBG of Fig.9, we analyze its Erbium-doped version. In Fig. 10 the spectral transmission of this grating is depicted, whereas the solid line represents its un-doped version and the dashed line the Erbium-doped version without pumping. From Fig. 10 it is evident that the doped version may increase the loss of the transmission wavelength passband as also presented elsewhere [14]. The switching properties of the ED-PS-FBG may be provided using an external pumping source and increasing the length of the grating. 

 Fig.10. Transmission of a symmetric double π-phase shift FBG without Erbium doping (solid line) and with doping (dashed line). The gratings are 4mm in length with inscription depth of 0.04% and the distance between the phase shift points is 3.8mm.  The application of the TLM is also straight forward for the latter ED-PS-FBG configuration, whereas the use of the CMT-TMM requires an extended mathematical analysis [20]. Overall, although the proposed TLM method is more time-consuming, it is easy to implement and to our opinion provides a better physical insight into the problem under simulation. 



4. InseprErErinseinre2mdeBr

FigOS
sesoreth

Figsa(rco
fopareto

. Experimentan this section anerves as a verifresented. The rbium doped srbium-ion concscribe the gratiensitized by thscription proceesulted in an EDmm long EDF epth is about 0.ragg wavelength

g. 11. ExperimeSA is the opticaFor the experietup of Fig. 11 ource covers eflectivity with he pumping sou

g.12. Erbium-Daturating pumped line) resporresponding TLIn Fig. 12 the rr both the unarticular, withoefractive index  energy absorp

BBS 

circ

O

al Validation n experimental cfication proceduED-FBG elemsingle mode fientration of 6.6ing in the EDF, the hydrogen less of the gratinD-FBG element, and one 2mm0043% of the ch is 1530.23nm

ental setup: BBSl spectrum analimental charachas been impthe wavelengalmost flat outrce at 980nm is

Doped FBG sping at 980nm (pectively. The LM results. reflectivity of tnpumped and out pumping thof the core hasption. Therefore

Pu
So
98

culator 

OSA 

case study for aure of the propment was fabriber (Er110, n6×1025 ions pethe core of the Eoading techniqng with the usewhich consists m long ED-FBG.core’s refractivem.  

S is the broad lyzer. cterization of tlemented. The th spectrum tput power, whs adjustable up 

pectral power blue line) and wdashed lines
the ED-FBG elepumped case he erbium insis a negative imae the first 2mm

umping 
ource at 
80nm 

coupler 
980 – 1530n

an ED-FBG, whiposed method,icated using anLIGHT) with ar m3. In order EDF was first Uque. Finally, the of a phase maof two parts, on. The inscriptioe index while th

band source an
this element, thbroadband ligof the ED-FBhile the power to 330 mW.   

reflectivity fwithout pumpins represent th
ment is depicte(solid lines). ide the core, thaginary part, dum EDF operates 

ED-FBG

nm 

ch is an an to V-he sk ne on he 

 nd 
he ght BG of 

 for ng he 
ed In he ue as 

a simpgratingreflectsNext througinside refractIn thsolid lithe signTLM anfor combetweeprofoupumpetake ainsignicharact
5. ConAn extetheory methodimplemsimulatVerificanumeriin two work.   
Appen By intrconsideequatio

 




 The sca
 

dz
db1



Equiva
 

1

dz
db



 By exp
 

ple absorber fog operates as s back the light we applied pgh the WDM cothe element tive index, the phis case the reine), since thernal wavelengthnd the results amparison withen simulation nd for the unped case the imaa small positivficant gain. Moteristic of optic
nclusions ension of the CMis developed fod provides mentation in ate random vation of the ically and expermode coupling   
ndix roducing the eering single ons [15]: 

aj
dz
db

11
1





 + β

(zbj
dz
da

11
1


+ β 

alar product of 
(t zEaj *

111 
+ β 

alently, (A.3) ma
( 111

1 Hzaj 
+ β 

ressing tH1  wi

or the incomina combined abbut with reducpumping poweoupler. In ordeand nullify thpumping powereflectivity of thre is no absorpths. These two stare also depicth the experimeand experimumped case. Thaginary part ove imaginary oreover, the twocal switching of 
MT method basor the analysis physical insany type of grvariations of method hasrimentally. Theg for long perio
expansion in tmode fiber, 
( )t jHz 1 =×

 ω

)t j
bEz

0

1
1 =×

ωε


(A.1) with *
1tE  

)t jH 01 =× ωε

ay be rewritten
) 0

*
11 tt jE =× ωε

ith tE1  , (A.4) is

ng signal, whilbsorber and reced reflectivity. r from the LDer to saturate he imaginary r was properly ahe element incrtion by the erbtates were simuted in Fig.12 (dental data. Themental results his is evident, sf the refractivepart that repo states reveal the ED-FBG ele
sed on the transand synthesis osight, ease ratings and ththe index s been conde method could od gratings as p
terms of ideal we adopt th

( ) Eann 1
2

0
2

0 −ωε

[ tnn
nn

2
0

2

2
0

2
×∇−

gives: 
( ) tEann *

11
2

0
2 −

 as follows: 
( ) 1

2
0

2
0 Eann −

s simplified as f

le the 2mm eflector that  D at 980nm the erbium part of the adjusted.   reases (blue bium ions on ulated by the dashed lines) e agreement are more since for the e index may presents an the intrinsic ement. 
smission line of FBGs. The and direct he ability to inscription. ducted both be extended part of future 

modes and e following 
tE1        (A.1) 

( )]tt H1×∇×  

(A.2) 

tt E1
*       (A.3) 

 

2
1tE       (A.4) 

follows: 



( ) 1111
1 ajK
dz
db β−=                         (A.5) where, 

            
( )
n
nnkjK

2
0

2
0

11
−−=                       (A.6) 
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 Deploying the right-hand of (A.7) we have: 
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 Substituting (A.8) into (A.7) we have: 
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 By integrating (A.10) over the infinite cross section (A.10) is modified as follows: 
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 The electric and magnetic field intensity across the fiber’s cross section in (A.12) as well as the propagation constant β1 may be calculated either analytically or numerically, by also using a transmission line resonance technique [21]. 
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