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A new method for the analysis and design of fiber Bragg gratings (FBG) based on the theory of transmission lines
has been developed and verified both theoretically and experimentally. The method is an extension of the Coupled
Mode Theory and utilizes the equivalent transmission lines in order to simulate any type of grating, with an easy
and direct implementation. The method provides the ability to analyze the optical devices without using full wave
approaches, while also facilitating the incorporation of core materials with a complex or nonlinear refractive index,
non-uniform distributions of the grating’s refractive index, and tilted and phase shifted gratings. The approach also
allows the design of the grating for a given reflection spectra. Numerical results of the method’s application on a
randomly varied inscription of the refractive index of a FBG have also been simulated and discussed. Using this
method, the characteristics of an Erbium - Doped FBG have been simulated and the predictions verified
experimentally.
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1. Introduction

Fibre Bragg Gratings (FBG) have been particularly popular in
the field of optical communication systems, mainly as optical
reflectors, filters, multiplexers / demultiplexers and dispersion
compensation devices [1-5]. More important however, is their
use as sensors as they exhibit many and important advantages
over traditional electrical sensors, offering high precision,
stability over time, immunity to electromagnetic interference,
support for long range detection, suitability for use in explosive
environments, and inherently offering multiplexed sensing via
a single fiber-optic channel [6-8]. Because of their advantages
they are applied in a wide variety of fields such as industrial
automation, energy, automotive, aerospace, security and even
medicine [9-10]. The use of FBG allows measurements of
physical quantities and parameters such as mechanical
stresses, displacement, pressure and temperature change [4].

The numerical analysis and synthesis of an FBG is mainly
concentrated on the optical intensity spectral reflectivity and
the dominant method of analyzing these devices is the Coupled
Mode Theory (CMT) [11-13]. This method is accurate and
consistent for all uniform gratings and with appropriate
modifications and, in combination with the Transfer Matrix
Method (TMM), may be used to analyze uniform and non-
uniform gratings with a complex refractive index i.e. with gain
or loss [14]. A typical limitation of the method, which may
increase its complexity and reduce its accuracy, is its
application on non-uniform distributions in both the amplitude
and the periodicity of the refractive index inscription in the

core, as the segmentation of the structure in tandem uniform
segments is required. An additional characteristic of the
method is the pure mathematical formation of the analysis,
which cannot always provide a physical insight to the problem.

Within the framework of this paper we propose the use of a
Transmission Line Method (TLM) for the numerical analysis of
FBGs. The herein proposed TLM is an extension of the CMT
method since it is based on the original theory of coupling
between the guided modes [15]. By analyzing the coupling
between the propagation modes with and without the variation
of the refractive index of the core, differential equations are
derived that correspond to differential equations of
transmission lines with virtual voltage and current quantities,
representing the electric and magnetic fields in the grating,
respectively. As a result, it is possible to simulate the whole
length of the grating as a chain of transmission lines connected
in tandem, where each transmission line has different
characteristic impedance, depending on the refractive index in
the respective point of the grating. It should be noted that in the
above model there is no limitation on the form of the refractive
index distribution, so it is possible to analyze an arbitrary
distribution of the index in the core without modifying the
model. Characteristics of the grating, such as its spectral
reflectivity and transmission, as well as the distribution of the
field inside the grating, are calculated in a particularly simple
way, and it is easy to add losses or amplifications, nonlinearity
and tilted or chirped characteristics.

The proposed TLM is characterized as a one-dimensional
(1D) model, so it retains the advantages of fast methods of
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analysis while at the same time addressing accurately issues of
inhomogeneity or nonlinearity on the propagation axis. By
applying the transmission line method, the non-uniformity of
the grating inscription along its length, due to possible
imperfections such as the distribution of germanium in the
fiber core or the alignment in the inscription technique, can be
analyzed. This analysis may estimate the final tolerances
expected during the inscription of the grating while a
corresponding analysis can be made after introducing a non-
linearity of the refractive index, which can also be simulated by
the proposed method.

The paper is organized as follows: Section II presents the
theoretical framework for single mode fibers, which enables the
FBG simulation with the use of transmission line theory. In the
same section, the implementation of the TLM calculation
scheme is provided for lossless gratings and its application for
nonlinear, lossy or gained, chirped, and tilted grating is also
described. This discussion is further extended to include the
use of TLM for the design of a grating. In section III the
method’s accuracy is verified in comparison to the CMT
method, while in the same section numerical results are
provided for random variations in inscription, as well as for
erbium doped gratings. In section IV an experimental
verification of the method is conducted for the operation of an
Erbium-doped fiber grating, while in the final section
conclusions on the TLM are provided.

2. Modeling of an FBG with a Transmission Line
Method

In this section we deploy the transmission line method in
order to analyze the reflection and transmission of
homogeneous or inhomogeneous FBGs with losses or gain, e.g.
when an Erbium-Doped core material is used. The method may
be applied for an arbitrary complex refractive index
distribution along the grating. The proposed method may
substitute other typical methods, such as the CMT, in order to
model an arbitrary complex refractive index perturbation
inside a grating, while at the same time retaining its simple,
accurate and fast calculation features. Section A analyzes the
theory that establishes the fundamentals for the application of
the equivalent transmission lines. In Section B we describe the
application of the method for the calculation of the spectral
reflection for a typical uniform FBG with losses or gain.

A. Equivalent Transmission Lines in Fiber Bragg Gratings

We consider an FBG which, for the length of the grating along
the z axis, is a perturbation (homogeneous or inhomogeneous)
of the core refractive index of the single mode fiber (SMF). For
multimode fibers (MMF), a similar though more complicated
procedure may be followed since the coupling coefficients
between the modes have to be determined. Adopting the
electromagnetic description approach for the propagation of
light along the z-axis of the fiber’s core, we assume that the
tangential electric and magnetic field components, E: and H, in
the grating are of the following form [15]:

Et(xsy»z)=a1(Z)Elt(xay) (1.1)
H,(x,y,z)=b/(z)H,(x,») (1.2)

with Eir and Hie being the tangential field components inside
the unperturbed fiber, where the index 1 denotes that we have
only one propagation mode. Additionally, a1 and b1 are the
amplitude coefficients that modify the field components with
respect to the unperturbed fiber, which are interconnected
through the following equations [15]:
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where K11, k11 are coupling factors (calculated in the Appendix),
B, =nk, is the propagation constant for the unperturbed SMF

with 7 the effective index and k, the wavenumber. By

integrating (1) over the x-y fiber core’s cross section and
substituting it into (2), the following equations can be derived:
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Next, the auxiliary quantities of magnetic voltage and current
along the propagation z axis are defined as follows:

z) = J- H, (x,y,z)dxdy (4.1)

= [[ £.(x. y, 2)dxay “.2)

As a result, the transmission line magnetic impedance for the
corresponding unperturbed SMF is defined as follows:

_”H 1e\X )dxdy 5
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By introducing (4) and (5) into (3) we arrive at the following
equations:
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Equations (6) represent a magnetic transmission line along
the z direction, with characteristic impedance Zy and
transmission constant yu as follows:
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As a result, the fiber grating may be modeled as a chain of N
transmission lines connected in tandem with length AL,
characteristic impedance Zui and transmission constant ywmi,
respectively.

B. Application of the TLM for the simulation of an FBG

We assume a uniform sinusoidal FBG of length L with variable
refractive index along the grating in the core n(z) according to
the following form:

2 = An? cos(%{z + ¢(z)j + nO2 (8)

where no is the refractive index in the core of the fiber, An
represents the amplitude of the refractive index variation in the
grating and A is the grating period. Next, in order to apply the
TLM, we consider that the length L of the grating consists of N
thin layers each of length AL. As will be discussed in Section II,
AL is a fraction of A but the actual value depends on the
convergence of numerical results with respect to the targeted
numerical accuracy. Their equivalent model is depicted in
Figure 1 with N transmission lines connected in tandem. The
characteristic impedance Zui and transmission constant ywm; for
the ith layer depends on n(z), since the factors Kii, ki1 also
depend on the variation of the refractive index along the z-axis
according to (A.6-A.12).
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Fig. 1. Transmission lines connected in tandem for the modeling of an
FBG oflength L.

For the calculation of Zin, a recursive procedure should be
followed. As depicted in Fig. 2, the ith transmission line of Fig. 1
may be approximated by its ‘T impedance equivalent circuit,
where the series and parallel impedances are given by the
following expressions:

Z,; = Z,y; tanh(y,,AL/2) (10.1)
Z,; =Zy;/sinh(y,),AL) (10.2)

In the case where the refractive index of the core is real
(without losses or gain), the reflection coefficient from the ith
transmission line is given as follows:

Zini —Zyia

mn,l
Pii=o an
ZiitZyia

where Z,,=Z;+Z, //(Z +Zm,+1) and may iteratively

come to the calculation of Zi» and p in (9).
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Fig. 2. Equivalent circuit of the ith transmission line of Fig.1.

The reflection coefficient p at the input of the transmission
line circuit of Fig. 1 represents the incident light intensity
reflection coefficient and can be calculated as follows:

2
Zin = Zom.
Z +Zyy

=1l =

(9)

If we take into account the losses or gain of the fiber core
material, then the imaginary part of the refractive index may be
negative (losses) or positive (gain). Assuming the imaginary
part of the refractive index as % jn;; the input impedance of the

ith transmission line will be modified as follows:

1+ p,_y (1 £ 2n, koAL)
1- pz (l+2nzsk0 )

(12)

where, ko is the wavenumber for the wavelength of operation
and pi.1 is given by (11).

For the calculation of the optical power transmission
coefficient of the grating, the current through the ‘T’ circuit
chain should be calculated, considering the end current as
unity. Taking into account the boundary condition for current
and voltage in the front interface of the grating the
transmission coefficient is calculated as follows:

I = (13)
1, Z
where, Zin is calculated by (12), p is calculated through (9) and
Iin is calculated recursively using a current division calculation
scheme along the ‘T’ circuit chain.
Furthermore, the circuit model of Fig.2 may be used for the
calculation of the field distribution across the grating using a



recursive method for the calculation of the magnetic voltage
and current along the transmission line. A profound application
of the TLM capability to estimate the field distribution across
the layers is the simulation of a nonlinear grating. Particularly,
the refractive index within a layer may be power dependent.
Consequently, the circuit elements of Fig.2 may be calculated
from the magnetic current or voltage across the layer.
Following a similar procedure described in [16] for planar
structure reflectors, according to which the current distribution
determines the refractive index of each thin layer, the power-
depended reflectivity of the fiber grating may be simulated.

Another class of grating is the non-uniform FBG, which
includes chirped FBGs (CFBG), phase shifted FBGs and tilted
FBGs. For CFBGs, which are utilized for the fabrication of
asymmetric optical filters, the analysis with TLM is based on (8)
considering A(z), whereas analysis with the CMT-TMM requires
uniform segmentation. Phase shifted FBGs may also be
analyzed using the TLM, as will be presented in the next
section, while for tilted gratings and for SMF, the closed form of
the refractive index variation in fiber axis, as it is described in
[11], is directly applicable for TLM analysis.

The proposed model may also be applied to the synthesis of
non-uniform gratings using the discrete layer-peeling (DLP)
technique [17-19]. The implementation of the DLP technique
for the synthesis of non-uniform gratings, which are
characterized by a specified spectral reflectivity, requires its
inverse Fourier transformation and its application on each of
the layers that have been defined for the TLM. Thus, the
refractive index of each layer may be calculated through the
circuit of Fig.2, assuming that it is terminated in Zom, and using
(9), given that the reflection coefficient p for each layer may be
calculated using the algorithm described in [4].

Overall, the TLM may offer an alternative to the CMT -TMM
method of analysis and synthesis of any kind of FBGs, including
non-uniform and nonlinear, by avoiding adaptations that may
require mathematical manipulations with respect to the basic
couple-mode theory.

3. Numerical Results

We consider a uniform FBG of length 4mm with Bragg
wavelength 1530.23nm and An in the order of 0.04% of the
core’s refractive index no=1.56. By applying the CMT method
we may calculate the spectral reflectivity that is illustrated in
Fig. 3 (solid red line) for an optical fiber with effective
refractive index = 1.55. Using the TLM we may analyze this FBG
by slicing its length in layers of thickness AL=A/5 and A/10 in
order to demonstrate the convergence properties of the
method. The spectral power reflectivity is depicted in Fig. 3
(dashed and dotted lines respectively). It can be seen that for
AL=A/10 an almost perfect coincidence with the CMT is
obtained (dotted line). It is evident that layer thickness is a
critical parameter for the application of the TLM and increases
the complexity due to the increased number of layers for a
specific grating length. For the examined case, the layer’s
thickness should be less than A/10 in order to esnure the
numerical accuracy of the method and, as a result, the
computational complexity increases in comparison with the
CMT for a uniform lossless grating. It is worth noting that the
AL values depend on the FBG bandwidth and eventually AL will

decrease as long as the bandwidth decreases. Nevertheless, for
non-uniform, lossy or nonlinear FBG, the complexity of both
CMT-TMM and TLM are of the same order, while the TLM
approach is advantageous over the CMT-TMM due to the direct
application of the method.

A more complex application of the proposed method
concerns the analysis of an erbium-doped FBG. This device is
characterized by the core’s complex refractive index, where the
real part follows the uniform sinusoidal form, while the
imaginary part is power-depended. Particularly, the imaginary
part of the refractive index may be either negative or positive
and its value depends on the pump power provided by an
external laser diode (LD) source.

The spectral reflectivity of the aforementioned device has
been analyzed using the CMT [20] for a grating of length 4mm
with An in the order of 0.0043% of the core’s refractive index
and with an erbium ion concentration of 6.6x1025 ions per m3.
The power-depended imaginary part of the complex refractive
index has been calculated according to [20] and [21] for the
unpumped and for the saturated case, where the imaginary part
approaches the null value.
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Fig. 3. Convergence of the TLM to CMT method (solid red line)
for a typical homogeneous FBG segment. The dashed and
dotted line represent the TLM'’s spectral power reflectivity with
AL =A/5 and AL =A/10, respectively.

In Fig. 4 the solid lines represent the spectral reflectivity
estimated by CMT for the unpumped and pumped cases. It is
evident that for the unpumped case, the complex refractive
index depicts losses due to negative imaginary part and, as a
result, the reflectivity is reduced.

Next, we may approach the same system by applying the TLM.
In Fig.4 the dashed lines represent the spectral reflectivity of
the ED-FBG with AL=A/10. The small deviation at the peak
reflectivity between the two methods (less than 4%) may be
further decreased if we reduce the layer thickness AL to A/20
(see dotted lines in Fig.4). Evidently, the application of the TLM
requires at least one order higher number of layers than would
be used in the CMT method for the simulation of a uniform FBG,
and therefore it is more time consuming. Nevertheless, the
application of CMT on gratings with non-uniform sinusoidal
refractive index requires an increased number of layers and in
such cases the CMT computational time is similar to the one
experienced with TLM.

Furthermore, the TLM may simulate a non-uniform non-



sinusoidal grating, where the CMT is not directly applicable. In
particular, the inscription of a grating may be subject to
deviations from the ideal uniform sinusoidal form on both the
inscription depth and the periodicity. Similar deviations may be
caused by several factors, such as the accuracy of the phase
mask and the uniformity of the UV sensitivity of the fiber’s core
along the inscription axis.
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wavelength (nm)

Fig. 4. Convergence of the TLM to CMT method (red solid line)
for an Erbium-Doped FBG. The dashed and dotted lines
represent the TLM’s spectral power reflectivity with AL =A/10
and A/20, respectively. The higher (lower) reflectivity
represents the pumped (unpumped) FBG.

In order to simulate such deviation scenarios we have
introduced a random error to the inscription depth and
periodicity by using a numerical random generator that may
vary the refractive index accordingly. In Fig.5a, the refractive
index variation of a 10pum-long section of a grating of length
4mm is depicted. The random generator provides a variation of
0 to -3% on the inscription depth and of 0 to +0.0013% on the
inscription periodicity.
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Fig. 5a. The refractive index variation for a length of 10um from
a 4mm grating; the ideal sinusoidal inscription (black solid line)
and its version with a random variation of 0 to -3% on the
inscription depth and of 0 to +0.0013% on the inscription
periodicity (red solid line).

along the inscription axis, such as the one depicted in Fig.5a, is
straight forward without any modification of the model that is
described in section 2.B. Simply, by introducing random
changes in An and A values as they appear in (8) the deviations
from the ideal uniform sinusoidal form are simulated.

The corresponding spectral reflectivities for both the ideal
uniform sinusoidal grating and that with the random error are
illustrated in Fig.5b. The introduction of the aforementioned
random error in the refractive index form may reduce the
maximum reflectance by 11.5% and shift the corresponding
wavelength by 0.002%. As a result, the application of the TLM
may predict the potential random error encountered during the
inscription of the grating.
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Fig. 5b. The spectral reflectivity of an FBG with ideal inscription
(black solid line) versus the spectral reflectivity of the FBG with
random variation of the amplitude and periodicity (red solid
line).

The application of the TLM for a refractive index distribution

Although the sensor is the most popular application of the
uniform gratings, their use as optical filters has attracted great
interest in the field of fiber lasers and optical communications.
Particularly, the phase shifted FBGs (PS-FBG) have been
utilized as optical filters not only in their typical form of the
simple m-phase FBG, but also in their multiple m-phase shift
version [22]. The analysis of a PS-FBG with the TLM may reveal
the straight forward procedure of its application. Considering a

PS-FBG, the phase difference @(z) of (8) should be activated at
the point of the phase shift as depicted in Fig. 6. For a m-phase
shift point in the middle of the grating and for the FBG of Fig.3,
the distribution of the series and parallel circuit components
are illustrated in Fig. 7.
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Fig. 6. Equivalent circuit at the phase shift point.




In Fig.7, it is evident that the sinusoidal variation and the phase
shift of the inscribed refractive index directly affect the
components of the TLM’s equivalent circuit.
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Fig.7. Variation of parallel and series equivalent circuit elements Zp
(solid lines) and Zs (dashed lines) at the phase shift point of a simple m-
phase shift FBG.

The spectral reflection and transmission of the aforementioned
simple m-PS-FBG are illustrated in Fig.8. We have to mention
here that the results coincide with the corresponding CMT
analysis. Furthermore, should we use m/2 phase shift, the
transmission wavelength is shifted at a lower value (1530nm)
as depicted in Fig. 8.
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Fig8. Reflection (solid lines) and transmission (dashed lines) of a
simple mi-phase shift FBG (red lines) and a simple m/2-phase shift FBG
(black lines). TLM and CMT simulations coincide. Both gratings are
homogeneous with a length of 4mm and inscription depth of 0.04%
while the phase shift point is in the middle of the grating.

two phase-shift points acts as a coupling network, we may
increase its length in order to create a transmitting wavelength
with a specified bandwidth and reduced ripple (dashed line).
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Fig.9. Reflection of symmetric double m-phase shift FBGs. Both gratings
are homogeneous with a length of 4mm and inscription depth of
0.04% whereas the distance between the phase shift points is 1.6
(solid line) and 3.8mm (dashed line) respectively.

Next, we apply the method for the simulation of a double m-PS-
FBG. Its spectral reflection is depicted in Fig.9 whereas the
grating is symmetric and the distance between the phase shift
points is 1.6 mm (solid line). It is evident that there are two
wavelengths that may pass through the grating and the
grating’s length between the two phase shift points determines
the distance between the two wavelengths. Furthermore,
experience from electronic bandpass filters may be applied
here in order to move the transmitting wavelengths closer to
each other. Considering that the grating’s length between the

Continuing with the narrow band, double n-PS-FBG of Fig.9, we
analyze its Erbium-doped version. In Fig. 10 the spectral
transmission of this grating is depicted, whereas the solid line
represents its un-doped version and the dashed line the
Erbium-doped version without pumping. From Fig. 10 it is
evident that the doped version may increase the loss of the
transmission wavelength passband as also presented elsewhere
[14]. The switching properties of the ED-PS-FBG may be
provided using an external pumping source and increasing the
length of the grating.
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transmission
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Fig.10. Transmission of a symmetric double mi-phase shift FBG without
Erbium doping (solid line) and with doping (dashed line). The gratings
are 4mm in length with inscription depth of 0.04% and the distance
between the phase shift points is 3.8mm.

The application of the TLM is also straight forward for the latter
ED-PS-FBG configuration, whereas the use of the CMT-TMM
requires an extended mathematical analysis [20]. Overall,
although the proposed TLM method is more time-consuming, it
is easy to implement and to our opinion provides a better
physical insight into the problem under simulation.



4. Experimental Validation

In this section an experimental case study for an ED-FBG, which
serves as a verification procedure of the proposed method, is
presented. The ED-FBG element was fabricated using an
Erbium doped single mode fiber (Er110, nLIGHT) with an
Erbium-ion concentration of 6.6x1025 ions per m3. In order to
inscribe the grating in the EDF, the core of the EDF was first UV-
sensitized by the hydrogen loading technique. Finally, the
inscription process of the grating with the use of a phase mask
resulted in an ED-FBG element, which consists of two parts, one
2mm long EDF and one 2mm long ED-FBG. The inscription
depth is about 0.0043% of the core’s refractive index while the
Bragg wavelength is 1530.23nm.

circulator coupler
980 —1530nm
BBS §
7" ED-FBG
[ ] Couree s
Source at
OSA 980nm

Fig. 11. Experimental setup: BBS is the broad band source and
OSA is the optical spectrum analyzer.

For the experimental characterization of this element, the
setup of Fig. 11 has been implemented. The broadband light
source covers the wavelength spectrum of the ED-FBG
reflectivity with almost flat output power, while the power of
the pumping source at 980nm is adjustable up to 330 mW.

—— pumped
—— unpumped

Reflectivity (%)
IS
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T J T N
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Fig12. Erbium-Doped FBG spectral power reflectivity for
saturating pumping at 980nm (blue line) and without pumping
(red line) respectively. The dashed lines represent the
corresponding TLM results.

In Fig. 12 the reflectivity of the ED-FBG element is depicted
for both the unpumped and pumped case (solid lines). In
particular, without pumping the erbium inside the core, the
refractive index of the core has a negative imaginary part, due
to energy absorption. Therefore the first 2mm EDF operates as

a simple absorber for the incoming signal, while the 2mm
grating operates as a combined absorber and reflector that
reflects back the light but with reduced reflectivity.

Next we applied pumping power from the LD at 980nm
through the WDM coupler. In order to saturate the erbium
inside the element and nullify the imaginary part of the
refractive index, the pumping power was properly adjusted.

In this case the reflectivity of the element increases (blue
solid line), since there is no absorption by the erbium ions on
the signal wavelengths. These two states were simulated by the
TLM and the results are also depicted in Fig.12 (dashed lines)
for comparison with the experimental data. The agreement
between simulation and experimental results are more
profound for the unpumped case. This is evident, since for the
pumped case the imaginary part of the refractive index may
take a small positive imaginary part that represents an
insignificant gain. Moreover, the two states reveal the intrinsic
characteristic of optical switching of the ED-FBG element.

5. Conclusions

An extension of the CMT method based on the transmission line
theory is developed for the analysis and synthesis of FBGs. The
method provides physical insight, ease and direct
implementation in any type of gratings and the ability to
simulate random variations of the index inscription.
Verification of the method has been conducted both
numerically and experimentally. The method could be extended
in two mode coupling for long period gratings as part of future
work.

Appendix

By introducing the expansion in terms of ideal modes and
considering single mode fiber, we adopt the following
equations [15]:

db, . - .
[d_z1 * Jﬂlal}(z xHy,)= jowe (nz —ny’ )alEl, (A1)

da . _ b, n®—n,’
|:d—zl+ ]ﬁ1b1:|(2' XEU): ]a)lgo nz—nog[vt X (Vt XH];)]

(A.2)

The scalar product of (A.1) with El*t gives:

db . * . 2 2 *
[d_zl + jpay :|Elt (Z X Hy, ) = JWE (n ) )alEltElz (A.3)
Equivalently, (A.3) may be rewritten as follows:
db . - * . 2 2 2
{d—;JFJﬂlal}Z(H]u XElt)= Jwgo(” —ny )01|E1z| (A.4)

By expressing H,;, with E), , (A.4) is simplified as follows:



db,

= (K1 = JB )y (A.5)
where,
2 2
K, =- jM (A6)

n

In a similar way, the scalar product of (A.2) with Hl*t gives:

d . s
{ﬂ"' JBiby :|Hlt(z XElt)z

dz
b nz_ ) . (A.7)
= ja)lé‘o nz—nongt[VtX(VtXHlt)]
Deploying the right-hand of (A.7) we have:
b n2 - 2 *
— - H, [V, x(V,xH,,)]=
JWEy nng
b I’l2 - 2 * . 2
— z—ngz[Vtx(]wgo”o Elz)]:
JWEy n7n
2 2 2 2
n-—n * n-—n * A.8
bITOHlt[VtXElz]=b1n—20Elz[thHlt]= (A8)
2 n2 —n 2 *
— J@Eyn bln—zoElelz
Substituting (A.8) into (A.7) we have:
da . - * ) 2, nt—ny’ 2
|:d_zl+]ﬂlbl:|z(EltXHlt):_]a)gOnO bln—20|Elz| (A.9)
or
da . ky |1 2
{—1"'],51[71}_0 _O|H1t| =
dz B\ & (A10)
2
. 2, B~ —n 2
=—jweyny b n—20|Elz|

By integrating (A.10) over the infinite cross section (A.10) is
modified as follows:

da .
_dl = (kll -Jjb )bl (A.11)
Z

where,
_ 2.2 2
n(n2 —noz)no2 j w’ey’|Ey.|"dA

j j |H,, | da

The electric and magnetic field intensity across the fiber’s cross
section in (A.12) as well as the propagation constant $1 may be
calculated either analytically or numerically, by also using a
transmission line resonance technique [21].

11—
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