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Abstract—1In the last decade, visual odometry (VO) has
attracted significant research attention within the computer
vision community. Most of the works have been carried out using
standard visible-band cameras. These sensors offer numerous
advantages but also suffer from some drawbacks such as illu-
mination variations and limited operational time (i.e., daytime
only). In this paper, we explore techniques that allow us to
extend the concepts beyond the visible spectrum. We introduce a
localization solution based on a pair of thermal cameras. We
focus on VO and demonstrate the accuracy of the proposed
solution in daytime as well as night-time. The first challenge
with thermal cameras is their geometric calibration. Here, we
propose a solution to overcome this issue and enable stereopsis.
VO requires a good set of feature correspondences. We use
a combination of Fast-Hessian detector with for Fast Retina
Keypoint descriptor for that purpose. A range of optimization
techniques can be used to compute the incremental motion.
Here, we propose the double dogleg algorithm and show that
it presents an interesting alternative to the commonly used
Levenberg-Marquadt approach. In addition, we explore thermal
3-D reconstruction and show that similar performance to the
visible-band can be achieved. In order to validate the proposed
solution, we build an innovative experimental setup to capture
various data sets, where different weather and time conditions
are considered.

Index Terms— Visual odometry, thermal imagery, infrared,
geometric calibration, motion estimation, stereo vision system,
3D reconstruction.

I. INTRODUCTION

ISUAL odometry (VO) has received significant attention
Vin the computer vision community. In the last decade,
numerous contributions have been made to further improve the
algorithms of the different building blocks of VO. However,
most of these efforts have focused on standard visible-band
cameras. In this work, we explore techniques that allow us
to extend the VO concepts beyond the visible spectrum.
We introduce a localisation solution based on a pair of
thermal cameras in order to broaden the field of application of
most computer vision algorithms. Here, we focus on VO and
demonstrate the accuracy of the proposed system in day-time
as well as night-time conditions. In contrast to visible-
band cameras, infrared provide inherent robustness against
illumination variations known to induce serious challenges
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to standard cameras [1]. Thermal sensors capture temperature
variations within the scene and hence can be used in low-light
and dark environments without requiring additional lighting.
Despite the aforementioned advantages, thermal cameras also
come with some challenges such as low image resolution,
relatively low signal to noise ratios and non-uniformity noise.
These can render some computer vision algorithms non-usable.
The first challenge when using thermal cameras as a stereo
setup is their geometric calibration. This procedure has been
shown rather complicated for thermal modality. We studied
different calibration strategies and propose a simple solution
to overcome this issue.

Visual odometry, can be decomposed into a series of
subsequent tasks [2]. In order to obtain accurate estimates
of the camera motion, VO requires a set of good feature
correspondences. In general, classical feature detectors/
descriptors or tracking algorithms are used with visible
cameras. However, as illustrated in [3], different results may
be expected when used with thermal imagery. For this reason,
we conducted a performance analysis of common feature
detectors/descriptors in thermal imagery where a benchmark
similar to [4] and [5] was used as explained in Section IV-A.
A range of optimisation techniques can be used to compute
the incremental camera motion. We investigate the behaviour
of various approaches namely Gauss-Newton, Levenberg-
Marquadt and the Double Dogleg. We show that the latter
presents an appealing alternative compared to the former.
Thermal 3D reconstruction is also explored within the scope of
this work, through the adaptation of existing computer vision
algorithms.

The rest of the paper is organised as follows: Section II
details the related works. The thermal geometric calibration
is presented in Section III. The different sub-tasks of the
visual odometry pipeline are introduced in Section IV. The
experimental setup, datasets and results are discussed in detail
in Section V. Conclusive remarks and highlights into future
works are provided in Section VI.

II. RELATED WORKS

There have been various works investigating visual
odometry. Surveys and tutorials have been produced to
explain the different sub-tasks that are involved [2], [6], [7].
Some works have been conducted on navigation problems
beyond the visible spectrum. Jung et al. proposed an algorithm
for egomotion estimation from a monocular infrared
camera [8]. They used the focus of expansion for feature
matching and reprojection errors for egomotion estimation.
However, they did not include estimated trajectories with
their results. A similar approach was proposed in [9] using
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two cameras - thermal and visible. A handover mechanism was
introduced but each camera was used separately for monocular
simultaneous localisation and mapping (SLAM). In our
previous work [10], we made the first attempt to estimate
the egomotion of a vehicle from a pair of heterogeneous
cameras where promising results were obtained. A study was
conducted in [11] to investigate the suitability of various
types of infrared cameras deployed on unmanned ground
vehicles for night-time stereo vision. However, the outcomes
of this study have become obsolete due to recent advances
in infrared technology. A thermal camera was used in [12] to
enhance the estimates of the vehicle egomotion and indirectly
the road geometry in 3D. The authors fused proprioceptive
sensors with thermal imagery in order to improve the
egomotion estimation. However, limited results were shown
in their experimental results. Rankin et al. [13] carried out
several works with a thermal stereo vision system on board
an autonomous ground vehicle. Notably, they investigated
the problem of dense depth maps from thermal stereo. The
latter was used in the context of human and vehicle detection
and classification. However, VO was not investigated in
their work. A similar work was also conducted in [14].
An investigation was carried out in [15] where various sensor
configurations were considered for pedestrian detection.
These encompass colour, thermal and multi-spectral vision
systems. The latter were shown to provide better detection
accuracy.

Geometric calibration is an important prerequisite for using
a set of cameras in navigation applications. It is a well-studied
problem in the computer vision community. However, most
of the works address visible-band cameras. Lately, with the
proliferation of infrared sensors, there have been some
efforts with thermal cameras [13], [16]-[20]. These resulted
in a variety of calibration targets and tools with varying
accuracies and manufacturing difficulties. The latter generally
give an indication of the time and cost required to build
the calibration board. A common observation with thermal
cameras is that their lenses cause relatively large radial
distortion due to a design trade-off for which the lenses are
optimised for radiometric resolution rather than geometric.
Zelek et al. attempted thermal camera calibration nearly a
decade ago [19]. Luhmann et al. [16] produced a calibration
board using self-adhesive foil augmented with various targets.
They showed better performance than those obtained with
an elaborate calibration board - a planar test-field. A variant
of this test-field board was used to calibrate a multi-modal
setup in [21] and a thermal camera in [22]. A complex target
was manufactured in [13] as calibration was unsuccessful
with simpler boards. Engstrom et al. relied on the difference
of thermal emissivity to build calibration boards [17].
Essentially, these were made using aluminium plates with
high emissivity materials taped on. A similar solution was
introduced in [23] where a saddle point detector was used.
Vidas et al. proposed a different approach coined mask-based
calibration [18]. It was suggested as alternative to the classical
heated chessboard (with flood lamps) as used in [24] and [25].
The board was designed as a mask that is placed in front of
a heat source (e.g. monitor) to improve the contrast.

(b)

Fig. 1. Aluminium and paper chessboards. (a) Captured with visible-band
camera. (b) Captured with thermal camera without heating.

III. GEOMETRIC CALIBRATION OF THERMAL CAMERAS

In order to use two infrared cameras in a stereo setup,
their intrinsic and extrinsic camera parameters need to
be determined accurately. This is usually done through
the geometric calibration of the system which allows the
correction of lens distortion and the determination of the rigid
motion transformation relating the left and right cameras. The
classical printed chessboard pattern cannot be used in this
context due to its uniform temperature which yields a blurry
image (Fig. 1b). There have been ongoing efforts to tackle this
issue resulting in a variety of calibration tools and targets with
various accuracies and manufacturing difficulties. Depending
on the end application, the calibration accuracy may be traded
against ease of manufacturing. Here, the aim is to use the
thermal stereo vision system in a localisation framework and
therefore low accuracies are not acceptable. For this reason, we
investigate different approaches to seek an acceptable solution
with respect to accuracy and time scale. The first approach
(Section III-A) is based on the method generally adopted for
visible-band imagery through the use of a special calibration
chessboard [26]. The second approach (Section III-B) is based
on the method proposed in [18]. The calibration was carried
out both manually and automatically. The former means that
the user is asked to intervene, particularly in the extraction
of the chessboard corners, whereas the latter does not require
any user interaction. Both approaches were considered to
allow a fair comparison with the mask-based approach where
the process is fully independent from user interactions.

A. Special Chessboard Calibration

In order to use the standard calibration tools, generally
based on chessboards, we had to produce one that allows the
extraction of the corners in thermal imagery. We studied dif-
ferent options such as heating a printed chessboard but without
success. As outlined in [18], the major issue when using
heated printed chessboards is their relatively short cooling time
i.e. the contrast created by heating the chessboard does not
last long enough. Therefore, we had to look at the properties
of different materials and their behaviour in thermal imagery.
A readily available material that attracted our attention due
to its reflective properties is aluminium. It was reported to
have a reflectance of around 95% in the far infrared [27].
Consequently, we produced an aluminium-based chessboard
pattern by coating a polished aluminium plate (1.6mm thick)
with matt black squares (Fig. la). This process was carried
out by a specialised manufacturer to guarantee high accuracy.



(b) ©
Fig. 2. Good vs bad examples of calibration images using the cold sky effect.
(a) Good image, (b) (c) Bad images.
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(a) (b)
Fig. 3. Images of the mask calibration board. (a) Visible-band. (b) Thermal.
In order to obtain a reasonable contrast in thermal imagery,
we exploited the reflectance property of aluminium and the
cold sky effect. This is done by setting the calibration board
outdoors in a position where it reflects the cold sky (Fig. 2).
Some precautions need to be taken though when setting up
the board to avoid reflecting hot objects (Fig. 2b and 2¢) and
yield crisp noise-free calibration images (Fig. 2a). This is
largely due to the fact that, in thermal imagery, aluminium
acts as a mirror in the visible-band. As shown in Fig. 2a,
setting the calibration pattern outdoor in a clear day allows
the acquisition of remarkable images where a sharp contrast
between the chessboard elements can be observed. This
contrast comes from the temperature difference between the
reflected cold sky and the adhesive black squares printed
on the aluminium plate which have different emissivity
properties (with respect to aluminium).

B. Mask-Based Calibration

We reproduced a similar calibration pattern to the one
introduced in [18] on an A2 board where 40 x 40mm
squares were professionally laser-cut. Instead of the cardboard,
we opted for Medium-Density Fibreboard (MDF), as shown
in Fig. 3. The motivation was that MDF provides a better
thermal isolation than cardboard when in contact with a source
of heat. It requires relatively longer to heat-up and therefore
allows more time for acquisition of the calibration images.

C. Comparison

In addition to the produced -calibration boards, we
explored different software options. The first tool is the

TABLE I
STEREO PARAMETERS OBTAINED USING THE
STUDIED CALIBRATION APPROACHES

Parameters T = [txtyt.] R = [ryryr.]

Bouguet [-267.8445 0.4383 0.8668] [-0.0154 -0.0117 0.0037]
Amcc [-267.8441 0.4702 0.5850] [-0.0145 -0.0121 0.0037]
Calibrator  [-267.8802 0.1741 -4.1270] [0.0069 0.0179 -0.0028]
mm-chess  [-267.1987 0.1666 -10.2591] [0.0126 0.0141 -0.0027]
mm-mask  [-270.5508 -3.7881 -5.9573]  [0.0009 0.0129 -0.0025]

well-documented Caltech Camera Calibration Toolbox
proposed by Bouguet [26]. The second is the Automatic
Multi-Camera Calibration (Amec) toolbox [28] (adaptation
of Bouguet’s software). It allows automatic extraction of the
chessboard corners and implements automated monocular
and stereo calibration procedures [28]. The third tool is from
Mathworks who issued a calibration tool (calibrator) in their
2014b MATLAB release (also an adaptation of Bouguet’s
toolbox). Our aluminium-based chessboard target was used
with these tools. The mask-based approach was tested using
the chessboard (mm-chess) and the mask pattern (mm-mask).

It uses an automatic corner extraction. In contrast to the
others, an automatic selection of the best set of calibration
images is implemented. The mean reprojection error (MRE) is
used to assess the quality of camera calibration. It is computed
as follows:

1 M K
7 2 2 XD =X G D (1
i=1 j=1

where X are 2D points extracted from the calibration images
and X their 3D location. X are the reprojected 2D points using
the estimated camera calibration matrices. K represents the
total number of points and M the total number of images.
In order to set all the algorithms on an equal footing, we used
the same set of calibration images (M = 22). The results
are summarised in Tables I and II for monocular and stereo
parameters, respectively.

In Table II, ( Ix» fy) represent the focal lengths, (1o, vg) is
the centre point. k1 and k» correspond to the radial distortion
coefficients whereas p; and p; are the tangential coefficients.
In addition to the MRE, we also use the epipolar geometry
to evaluate the accuracy of the stereo calibration [29]. More
specifically, we plot the epipolar lines of corresponding points
in two stereo images in order to analyse the epipolar errors.
The latter corresponds to the distance between the feature
location and the epipolar line corresponding to its match.
In the ideal case (perfect calibration), this error should be
equal to zero. Corresponding features in the left and right
images should be crossed by the same line. Table III shows
the epipolar errors for the studied calibration algorithms.
Error_1-2 and Error_2-1 correspond to the epipolar errors
when using the left image and right images as origin.
Fig. 4 shows a stereo image pair where three epipolar lines
corresponding to three feature locations are plotted.

Comparing the epipolar errors in Table III, and looking
at Fig. 4, we can state that calibrator (Mathworks 2014)

MRE =



TABLE 11

CALIBRATION RESULTS

Parameters Bouguet Amce Calibrator mm-chess mm-calib

Left Right Left Right Left Right Left Right Left Right
Ifx 522.1570 521.8004 522.3360 521.7557 516.8043 514.1008 524.8815 521.3998 535.1738 528.4455
fy 519.9779 5189811 520.0211 518.7962 510.2553 507.6046 521.3927 517.0899 534.4184 527.9880
Ug 317.9416 319.5849 317.8889 319.7698 316.5400 321.5900 326.1222 328.9086 313.8362 316.6676
g 261.3959 248.3533 261.0548 248.4461 253.3017 244.8522 2534161 242.1563 246.1570 243.9634
k1 -0.2850 -0.2918 -0.2851 -0.2901 -0.2787 -0.2949 -0.2757 -0.3157 -0.3240 -0.3109
ko 0.0859 0.1014 0.0864 0.0966 0.0739 0.1250 -0.0496 0.1692 0.2335 0.1967
p1 -0.0035 -0.0031 -0.0033 -0.0032 -0.0017 -0.0035 -0.0019 -0.0021 -0.0013 -0.0037
D2 0.0012 0.0011 0.0011 0.0011 0.0029 2.16e7%  0.0017 2.18¢7%  0.0035 -5.0e%4
MRE 0.1749 0.1884 0.1679 0.1786 0.2205 0.2172 1.2399 1.2432 0.5323 0.7364

TABLE III

EPIPOLAR ERRORS OF THE COMPARED CALIBRATION APPROACHES

Error Bouguet Amcc Calibrator mm-chess mm-mask
Error_1-2  0.7010  0.6906 9.7247 0.8506 1.2072
Error_2-1  0.7088  0.6983 9.6560 0.8578 1.2150

® ®

Fig. 4. Thermal stereo calibration accuracy. Lines of the same colour should
pass through the same point in the left and right images. (a)(b) Bouguet,
(c)(d) Amce, (e)(f) calibrator, (g)(h) mm-chess, and (i)(j) mm-mask.

provides the least reliable calibration parameters of the thermal
vision system. This indicates that obtaining low MRE during
the calibration procedure (0.2205) does not necessarily yield to
accurate calibration parameters. Vidas’ algorithm (mm-chess
& mm-mask) provided better error rate with the chessboard
pattern than with the custom made mask pattern. Bouguet
software and Amcec provided similar outcomes. The main
difference between the two algorithms is that Amecc was
designed to alleviate the user interaction during the calibra-
tion process. Indeed, in contrast to Bouguet software, Amcc
extracts the chessboard corners and the calibration parameters
automatically [28]. Looking at the MRE and the epipolar
error figures (Tables II and III), we can conclude that the
calibration parameters provided by Amecc algorithm using
our calibration board are the most accurate. The monocular

and stereo calibration parameters estimated using the Amecc
approach using our calibration board are used in the remainder
of this work.

IV. VisuaAL ODOMETRY
A. Feature Extraction, Description and Matching

At each time step, the visual odometry pipeline is fed a
pair of thermal images (¢t — 1,¢). The first step in VO is
the extraction of stable and tractable features from images.
We carried out a performance analysis' of popular feature
detection and description algorithms in order to study their
behaviour in the thermal modality. More specifically, we stud-
ied the repeatability and matching scores of feature detectors
namely DoG [30], Fast-Hessian [31], FAST [32], Harris [33],
Shi-Tomasi [34] and CenSurE [35]. In addition, we evaluated
the recall/l-precision curves of description algorithms namely
SIFT [30], SURF [31], LIOP [36], ORB [37], BRISK [38] and
FREAK [39]. For that purpose, we generated a thermal dataset
encompassing various environments and image transforms.
Building on this analysis, we adopted a mixed feature
detection/description scheme. First, we detect Fast-Hessian
features from the acquired images. These are then described
using the binary FREAK descriptor. FREAK was preferred to
other descriptors as it provided good performance at a fraction
of their computational cost. One of the advantages when
using binary descriptors is the gain in matching speed. Indeed,
the bit string descriptors can be matched using simple XOR
and POPCNT instructions from SSE4.2 [40]. In addition, the
coarse-to-fine approach of the FREAK descriptor allows to
further reduce the computational burden. It was claimed that
this coarse-to-fine approach allows to discard 90% of the
candidates therefore accelerating the matching process [39].
Overall, Fast-Hessian provided the best scores in our
performance analysis. Furthermore, it was adopted in this
work for its relatively low computational requirements.

The matching process is carried out in a loop fashion [10].
This ensures more reliable and accurate feature correspon-
dences. Note that to obtain a decent number of extracted
features with Fast-Hessian, the standard thresholds used
with visible-band imagery need to be considerably lowered.
Notably, the Hessian threshold has to be set to as low as

lCurrently under review in the International Journal of Computer Vision.



Fig. 5. TIllustration of stereo matching using Fast-Hessian features and
FREAK descriptors.

5 to yield a decent number of features. Fig. 5 shows a stereo
matching example using Fast-Hessian features described using
FREAK.

B. Motion Estimation

The camera motion is estimated from a set of 3D-2D feature
matches by minimising the sum of the reprojection errors.
A frame to frame approach is adopted where the six motion
parameters defining the inter-frame rotation and transla-
tion are computed. Traditionally, Gauss-Newton (GN) and
Levenberg-Marquadt (LM) [41], [42] optimisation schemes are
used. Here, we explore another algorithm, called the Double
Dogleg (DDL) [43], and show that it presents an interesting
alternative. Let us consider the objective function formulated
in Eq. 2. Let f be the projection function that maps the
3D points Xl(,’r) of the previous frame (obtained through the
parameters vector p) to the 2D coordinates X}; and X} in
the current left and right images, respectively.

. N , 2 , 2
min > X — £ (X ) I+ IxG = £ (XEs p)
@)

In order to retrieve the motion parameters p, Eq.2 is minimised
using GN, LM or DDL. To make the paper self-contained, we
provide a short description of the LM and DDL algorithms.
More details can be found in [41]-[43]. GN was implemented
in [10] where a RANdom SAmpling Consensus (RANSAC)
framework [44] was adopted for the outlier rejection scheme
based on the reprojection errors.

1) Levenberg-Marquadt: also known as the damped
least-squares (DLS) method, LM is one of the most used
optimisation algorithms to solve non-linear least squares
problems in computer vision applications. LM can be
thought of as a combination of the steepest descent and
the Gauss-Newton method. When the current solution is
far from a local minimum, the algorithm behaves like a
steepest descent method: slow, but guaranteed to converge.
When the current solution is close to a local minimum,
it becomes a Gauss-Newton method and exhibits fast
convergence [45]. Similarly to Gauss-Newton, LM is an
iterative procedure. Given an initial estimate of the motion
parameters p = (9,0, y, 1, 1,, ;) and a measurement vector
X = (XcL, XcR), it computes a series of parameters pji that
converge to the minimiser popsim of f. The LM algorithm
solves the equation given by

(J"T —Ip)opm=J"r 3)

Algorithm 1: Pseudo-Code for Levenberg-Marquardt

Input: X, XcRr, Xp, Po

Output: Poptim

Set: k = 0; maxIter =100;¢; = ¢ = 1073, v = 2;
algorithm:

Pk=po; A=J'J; rp, =X~ f(Xp,Px;) g =J"1p,;
converged := ||g|| < €1;

while (not converged) and (k < maxIter) do

k:= k+1;

repeat

Solve (A+ ul)orm = g;

if [|0Lml| < e2/Ipk|| then

| converged:= true;

else

Pnew := Pk + OLM;

lIrpy |12 —11X— £ (Xp.Pnew)|1? .

o7y (WoLm+g) ’
if p > O then
Pk = Pnew;

A:=J"J;rp, =X~ f(Xp, pk); € :=JTrp,;
converged:= (||g|loo < €1);
W= u X max (%, 1—-@2p— 1)3); vi=2;
else
Lu=uxv;v:=2xv;

| until p > 0 or (converged);
Poptim ‘= Pk;

where [ is the identity matrix, J is the Jacobian matrix,
r € R" is the residual vector and (JTJ) is an approximation of
the Hessian matrix [46]. The strategy of altering the diagonal
elements of JTJ is called damping and u is the damping
parameter. It allows LM to alternate between a slow descent
approach when it is far from the minimum by increasing u
and a fast, quadratic convergence when being near the
minimum’s neighbourhood by decreasing u. In each iteration
of LM, u is adjusted to achieve the best possible update.
Algorithm 1 illustrates the necessary steps for the LM method.

2) Double Dogleg: the DL algorithm, as well as its Double
Dogleg variation [43], belong to the trust region optimisation
methods. Similarly to the LM algorithm, the Dogleg combines
Gauss-Newton with the steepest descent techniques. The
Dogleg method was shown in [45] to provide similar results to
LM at a fraction of the computational cost for the 3D recon-
struction bundle adjustment formulation. It was also concluded
that the trust region method could be used for constrained
versions of bundle adjustment. In the Dogleg algorithm,
the objective function is approximated by a quadratic model
function L which is trusted only for points within a region of
radius A centred at the current point. Finding the candidate
step ¢ corresponds to solving the following constrained
equation

rnainL (8) subjectto |8 <A “4)

The radius of the trust region is of crucial importance. In prac-
tice, it is based on the success of the model in the previous
approximations of the objective function. If the model is
reliable, the radius is increased allowing the test of larger steps.



Algorithm 2: Pseudo-Code for Double Dogleg
Input: XcL, XcR, Xp, Po
Output: Poptim
Set: k =0; A = 1; maxIter = 100; o1 = 0.15; g2 =
0.75; y1 =05 2 =21€1 =€ = 1074

algorithm:
p=po: A=J"Jirp =X — f(Xp,px): g=J"rp;
converged := ||g|| < €1; while (not converged) and
(k < maxlIter) do
k=k+1;
dcp = H‘!lgngfzi'.lH g: GN = false;
repeat
if ||ocp| = A then
_ A .
‘ dDDL = 5-;79CP;
else

if not GN then
L OGN = A’lg; GN = true;
if ||ogn| < A then

OpDL = OGN
else

L dppL =dcp + B(dcp — IGn);

if (oppLll < e2(lpl) then
| converged = true;
else

Pnew = Pk +0pp1;

&= 1X—f (Xp,PK) | = [1X— f Xp,Pnew) | .
- L(0)—L(3ppr) i

if &£ > 0 then

P = Pnew;
L A=J"Jrp=[X— fXp, Px)ll; & = Jrp;
converged := (||gll < €1);
update A using Eq. 5;
| converged := (A < e2|pl);

| until (¢ > 0) or (converged);
Poptim = P;

If the model fails, the radius is reduced accordingly and Eq. 4
is solved again over a smaller region. Powell suggested that
Eq. 4 can be decomposed into two line segments: follow the
steepest descent direction to reach the Cauchy Point (CP) and
then converge to the Newton Point (NP) through the Dogleg
step. The Dogleg path intersects the trust region boundary at
most once. The variation proposed by Dennis and Mei [43]
introduces a bias towards the Gauss-Newton direction through
an intermediate Newton step between the CP and the actual
NP resulting in improved performance.

Once the new parameter vector is computed, the trust
region has to be updated according to the gain ratio
(& in Algorithm 2) The update equations of the trust region
are then given by

xixAp if & <o
Apy1 = 1 Ak if o1<& <o (5)
xex A if &> o2

where 0 < y1 <1 < ypand 0 < g1 < g2 < 1. Algorithm 2
highlights the different steps of the Double Dogleg technique
where 8cp and gy correspond to the Cauchy point and the

Gauss-Newton steps. f must achieve ||dppL|| = A. y = 0.8 %
x 4+ 0.2 (x € [0, 1]) represents an adjusting factor which sets
the position of the intermediate NP step in the DDL algorithm.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. Quadrotor UAV and the Vision System

In this section, we present the hardware components of
the experimental setup. The quadrotor platform used in our
experiments is the Pelican from Ascending Technologies.?
It weighs 1.5kg and spans a diameter of 0.65m with a
payload capacity of 0.65 kg. The quadrotor is equipped with an
on-board Intel Core i7-3612QE Mastermind processor. It also
comes with a GPS receiver which allows the acquisition
of ground truth (GT) information when performing outdoor
experiments.

We installed two FLIR Tau2 infrared cameras on a
front-looking stereo rig with a 27 cm baseline i.e. distance
between the left and right camera centres. The FLIR Tau2
cameras are based on uncooled Vanadium Oxide (VOXx)
micro-bolometers and capture thermal radiation in the spectral
band 7.5 — 13.5 um, which corresponds to the far infrared
region. The cameras have a Noise-Equivalent Differential
Temperature (NETD) below 50 m K. The 9 mm lenses mounted
on the camera offer a generous 69° x 56° field of view
when combined with the 17 micron detectors (pixel size).
We installed two Sensoray frame grabbers, one for each
camera, to stream 8/14-bit monochromatic images. This was
due to the fact that the cameras do not provide a digital output
without the use of another device from the manufacturer. The
thermal vision system is able to capture stereo images of
640 x 480 pixels at approximately 30 fps. The synchroni-
sation between the GPS device and the frame-grabbers was
ensured using individual timestamps. This allowed the compar-
ison of the estimated and measured trajectories i.e. VO vs GT.
The quadrotor MAV and the thermal stereo system are shown
in Fig. 6. In general, uncooled infrared cameras require ther-
mal calibrations to prevent non-uniformities from building-up.
In the case of the acquired TAU2 cameras, this involves
presenting a material/shutter with uniform temperature
(flat field) to the detector elements (pixels) - this operation
is coined flat field correction (FFC). Therefore, a data inter-
ruption (up to 1 second) happens every time this operation
is performed. However, FFCs are necessary to correct for
temperature drift in the camera to ensure that pixel values
(i.e. intensities) do not drift away from the real thermal
radiance.

In visual odometry, such interruptions may cause estimation
failures and are therefore unacceptable. On the other hand,
thermal cameras that operate for long periods of time without
FFC may also be detrimental. A solution to accommodate
the inherent thermal imagery issue must be found. One way
to alleviate this is to increase the time interval between
consecutive FFC operations. However, there is no guarantee
that they would not happen at crucial times e.g. turning MAV.
For this reason, we adopted another solution where a

2http://www‘asctec.de/uav—uas—drohnen—produkte/asctec—pelican/
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Fig. 6. MAV quadrotor with the thermal stereo system. (a) Front view of

the system. (b) Close-up rear-view of the system with labeled components.

TABLE IV
THERMAL STEREO SEQUENCES

travelled

# Sequence Time of day Weather conditions

distance

1 Seql 687m daytime (11am) cloudy and cold

2 Seq2 497m daytime (10am) foggy and relatively warm
3 Seq3 701m daytime (9am) foggy and relatively warm
4 Seq4 460m daytime (11am) cloudy and cold

5 Seq5 882m daytime (10am) cloudy and warm

6 Seq6 489m night-time (9pm) clear sky and very cold

7 Seq7 399m night-time (10pm) cloudy and cold

8 Seq8 314m night-time (10.30pm) cloudy and cold

9 Seq9 655m night-time (10pm) cloudy and cold

shutterless FFC-like operation is performed. This is possible
through thermal calibration of the cameras. Using cold and
warm blackbodies, non-volatile flat fields are created and
stored in the memory of the camera. These will be used
instead of the standard FFC which will have to be deactivated
to ensure operational continuity.

B. Thermal Sequences

Here, we introduce the stereo thermal dataset that was
captured using the vision system described in Section V-A.
Various scenarios with different weather and time conditions
were considered. Table IV provides a description of
the generated test sequences which include daytime as
well as night-time scenarios and cover an overall distance of
over 5 km. The top five rows in Table IV correspond to daytime
sequences whereas the four bottom rows were captured
during night-time. The generated dataset provides a variety of
trajectories with different lengths (300 m —900m) and shapes.
Ground truth information was recorded for each sequence to
enable quantitative as well as qualitative evaluations.

(a) (b)

Fig. 7. Tllustration of the ROI influence on the quality of the captured images.
(a) ROI = full image. (b) Sky excluded from the ROI.

In order to obtain the best image quality, different camera
settings and improvements were explored. This pre-processing
stage is necessary to enhance the images that are fed to
the visual odometry pipeline. The FLIR TAU2 cameras have
various parameters that require tuning to obtain usable images
(depending on the scene type). In particular, scaling the
raw 14-bit data to 8-bit images causes a loss in dynamic
range. This is aggravated when objects exhibiting a large
temperature difference are imaged (e.g. cold sky and hot cars
in a sunny day). Fig. 7 shows an example where setting an
appropriate region of interest (ROI) for the automatic gain
control algorithm (AGC) improves the image quality. In this
example, the ROI was set to exclude the upper part of the
image, which in many instances corresponds to the sky. This
causes the AGC to ignore that part when computing the image
histogram. Consequently, the dynamic range of the interesting
scene content is increased.

In order to avoid illumination-variation-like problems,
which are common with standard cameras, the automatic gain
control threshold needs to be appropriately tuned. The value
of this threshold determines how fast the AGC is allowed
to vary when the scene content changes. Indeed, setting the
value close to 255 causes abrupt intensity changes when a
relatively hot object is introduced in the imaged scene. These
sudden variations can fail the temporal feature matching and
hence the trajectory estimates. If set too low (close to zero),
the captured intensity values may not correspond to the real
thermal radiance. Therefore, one must find a trade-off value
to account for both aspects. We illustrate an example in Fig. 8
where we show the effect of introducing a hot object in the
imaged scene for two threshold values (1 and 100). We can
observe from Fig. 8a and 8b that introducing a hot object
(the user’s arm) in the scene has virtually no impact when the
threshold is set to 1 as the AGC algorithm requires a longer
period of time to adapt to the scene content. In contrast, setting
a relatively higher threshold value (Fig. 8c and 8d) induces
instantaneous intensity changes when a hot object enters/leaves
the scene.

C. Results and Discussion

1) Stereo Thermal Odometry: in this section we present
the thermal visual odometry results corresponding to the
dataset presented in Section V-B. For each sequence, we
evaluate the quality of the trajectories estimated using the
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Fig. 8. Illustration of the influence of the AGC threshold on the quality of the
captured images. Both sets of images were acquired in the same conditions.
A similar time gap elapsed between introducing and removing the user’s arm
in both sequences (top and bottom row). (a) (b) correspond to a threshold
value of 1 (c) (d) corresponds to a value of 100. Note that introducing a
hot object (the human arm) in the scene has virtually no impact when the
threshold is set to 1 as the AGC requires a longer period of time to adapt.
In contrast, setting a relatively high threshold value induces instantaneous
intensity changes when a hot object enters/leaves the scene.
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Fig. 9. Impact of the quality of the captured images on visual odometry
(red star: starting point; black line: GT; green line: DDL on original images;
magenta line: DDL on enhanced images).

different optimisation algorithms i.e. Gauss-Newton (GN),
Levenberg-Marquadt (LM) and Double Dogleg (DDL). Each
algorithm has been tuned separately. The selected parameters
can be found in Algorithm 1 and Algorithm 2 for LM and
DDL, respectively.

First, we illustrate the impact of image quality on visual
odometry. As discussed in Section V-B, the captured images
need to be pre-processed in order to enhance their quality.
Fig. 9 shows the estimated trajectories using DDL from
the original and improved images (contrast enhancement).
AGC was performed on the lower part of the image to exclude
the sky. The same parameters were used in both runs to ensure
that only image quality varies. As it can be seen from Fig. 9,
feeding unprocessed images to the VO pipeline can result in
large errors in terms of trajectory estimation.
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Fig. 10. Computed trajectories and travelled errors for Seql. (a) Computed
trajectories overlaid on Google Earth maps (red star: starting point; black line:
GT; blue line: GN; red line: LM; green line: DDL) (b) computed trajectories
(same legend applies) (c) corresponding travelled errors (same legend applies).
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Fig. 11. Computed trajectories and travelled errors for Seq2. (a) Computed

trajectories overlaid on Google Earth maps (red star: starting point; black line:
GT; blue line: GN; red line: LM; green line: DDL) (b) computed trajectories
(same legend applies) (c) corresponding traveled errors (same legend applies).

Fig. 10-18 show the computed trajectories using the
different optimisation algorithms for all sequences (Table IV).
These figures also include the relative travelled errors obtained
using each algorithm. The travelled errors at a given frame
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Fig. 12.  Computed trajectories and travelled errors for Seq3. (a) Computed
trajectories overlaid on Google Earth maps (red star: starting point; black line:
GT; blue line: GN; red line: LM; green line: DDL) (b) computed trajectories
(same legend applies) (c) corresponding travelled errors (same legend applies).

are calculated by (1), as shown at the bottom of this page,
where P = [X, Y, Z]" are the estimated camera poses and
GT = [GTx, GTy, GT,]" correspond to the ground truth.
These travelled errors are plotted for the whole trajectory
for each sequence. In addition, the average (Avg) and final
errors (Fin.) are summarised in Table V for each sequence
and each optimisation algorithm (GN, LM and DDL). The
average errors were computed at predefined travelled distances
in a similar manner to the Kitti Benchmark.? In contrast to
the final errors, the average errors provide a better indication
of the performance of the algorithms. We chose to illustrate
both metrics for all algorithms/sequences. For each sequence
in Table V, the best performance in terms of the average
error is highlighted in bold. Similarly, the best final errors
are highlighted in red.

Note that the GPS measurements are imprecise. This
issue was also reported in [10] and [47]. Indeed, we can
clearly notice from Fig. 10a that the ground truth presents
some irregularities, especially at the beginning of the
sequence. On the other hand, the estimated trajectories
appear to be smoother. This indicates that the quality of
the estimations might be better than the GPS measurements

3http://www.cvlibs4net/datasets/kitti/eval_odometry.php
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Fig. 13.  Computed trajectories and travelled errors for Seq4. (a) Computed

trajectories overlaid on Google Earth maps (red star: starting point; black line:
GT; blue line: GN; red line: LM; green line: DDL) (b) computed trajectories
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TABLE V
AVERAGE AND FINAL TRAVELLED ERRORS FOR THE DIFFERENT
SEQUENCES AND OPTIMIZATION ALGORITHMS

GN LM DDL
Seqr  ravelled e Fin. % m) Avg Fin. % (m) Avg Fin. % (m)
distance
Seql  687m 379 178 (122m) 3.53 224 (1539m) 3.07 1.19 (8.18m)
Seq2  497m 306 0.15(0.75m) 230 057 (2.83m) 3.04 1.38 (6.86m)
Seq3  70lm  3.05 244 (17.10m) 2.85 1.04(729m) 114 1.33 (9.32m)
Seqd  460m 211 050 (23m) 239 1.88 (8.65m) 2.07 0.61 (2.81m)
Seqs  882m 359 120 (1138m) 3.87 152 (13.41m) 217 1.53 (13.49m)
Seq6  489m 628 1.46(7.13m) 559 4.06 (19.85m) 428 1.33 (6.5m)
Seq7  399m 208 226 (9.02m) 200 1.99 (7.94m) 136 0.67 (2.67m)
Seq8  314m 146 138 4.33m) 144 095 (2.98m) 151 0.72 (1.32m)
Seq9  655m 191 1.65(10.8lm) 191 2.13 (13.95m) 141 0.45 (2.95m)

(e.g. near buildings). This observation is valid for all the
datasets.

The achieved results summarised in Table V are successful.
Indeed, the final errors reached below 1% while the average
errors were between 1% and 4%. These results are comparable
to those obtained using standard visible-band stereo vision
systems.

In general, the performance for daytime and night-time
sequences is similar. This demonstrates the feasibility of

JE O = GT@)? + (Y () - GTy) + (Z() - GT.(1))

c(@)=

(6)

\/(GTx(i) — GTo(i = 1))* + (GTy (i) = GTy (i — 1))’ + (GTo(i) — GTo(i — 1))
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Fig. 14.  Computed trajectories and travelled errors for Seq5. (a) Computed
trajectories overlaid on Google Earth maps (red star: starting point; black line:
GT; blue line: GN; red line: LM; green line: DDL) (b) computed trajectories
(same legend applies) (c) corresponding travelled errors (same legend applies).
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Fig. 16. Computed trajectories and travelled errors for Seq7. (a) Computed
trajectories overlaid on Google Earth maps (red star: starting point; black line:
GT; blue line: GN; red line: LM; green line: DDL) (b) computed trajectories
(same legend applies) (c) corresponding travelled errors (same legend applies).
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Fig. 15. Computed trajectories and travelled errors for Seq6. (a) Computed

trajectories overlaid on Google Earth maps (red star: starting point; black line:
GT; blue line: GN; red line: LM; green line: DDL) (b) computed trajectories
(same legend applies) (c) corresponding travelled errors (same legend applies).

night-time navigation to a relatively high degree of accuracy.
Consequently, it also shows that visual odometry concepts
can be extended to night-time. This can be exploited in
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Fig. 17.  Computed trajectories and travelled errors for Seq8. (a) Computed
trajectories overlaid on Google Earth maps (red star: starting point; black line:
GT; blue line: GN; red line: LM; green line: DDL) (b) computed trajectories
(same legend applies) (c) corresponding travelled errors (same legend applies).

a variety of applications e.g. intelligent transportation
systems, search and rescue, military operations to name
a few.
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Fig. 18. Computed trajectories and travelled errors for Seq9. (a) Computed

trajectories overlaid on Google Earth maps (red star: starting point; black line:
GT; blue line: GN; red line: LM; green line: DDL) (b) computed trajectories
(same legend applies) (c¢) corresponding travelled errors (same legend applies).

We can observe from Table V that the highest average
error corresponds to Seq6 which was captured during a very
cold night with clear sky. The main effect of cold weather
in thermal imagery is a loss in terms of contrast and texture
as the difference in temperature between scene elements is
reduced. This is mainly caused by the absence of a heat source
(e.g. the sun) and clouds (i.e. clear sky). This has an effect
on the matching sub-task and therefore the visual odometry
process. A similar trajectory to Seq6 was captured during
daytime and used in the evaluation process (Seq4). We can
note from Fig. 13 that the estimated trajectories during daytime
(Seq4) are better than for the very cold night-time (Seq6).
This observation is also valid for their corresponding travelled
errors (Table V) which are higher for Seq6. This said, in
warmer weather conditions, the performance in night-time is
comparable to daytime.

With respect to the optimisation algorithms, we can clearly
note from Table V and Fig. 10-18 that the general trend is
that the Double Dogleg algorithm provides better trajectory
estimates than Gauss-Newton and Levenberg-Marquadt.
This correlates with the findings of [48] where the Dogleg
approach was shown to perform better than LM for visible-
band VO. Here, we illustrated that DDL presents an
interesting alternative to LM, which is extensively used in
the optimisation sub-task of visual odometry.

2) Thermal 3D Reconstruction: in this section, we show
that 3D reconstruction can be achieved using a thermal stereo
vision system in a similar fashion to standard stereo setups.
Fig. 19 shows the disparity map along with the reconstructed
3D point cloud (PCL) computed from a pair of stereo thermal

© )
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Fig. 19. Example showing thermal and visible disparity maps and
3D reconstruction of a similar scene (a) (c) thermal left and right images
(b) (d) visible left and right images (e) (f) disparity map from thermal and
visible images (g) (h) 3D point clouds from thermal and visible images. Note
that we can identify the two signs (triangle and square) in the point clouds.

images. These were captured during daytime in cloudy and
cold weather. We also plot the disparity map and 3D PCl from
a pair of visible-band stereo images (Fig. 19b-19d) capturing
the same scene using the vision system proposed in [1].
We used a specifically tuned version of the standard semi-
global block matching algorithm [49] to generate the disparity
map (Fig. 19e-19f). The 3D point cloud was then reconstructed
using the stereo calibration parameters (Fig. 19g-19h). We can
note from Fig. 19 that both disparity maps and 3D point
clouds are comparable. This indicates that, similarly to the
visible-band, the infrared modality can be used for mapping
applications with an additional crucial advantage. Indeed,
while visible-band cameras can only be used in daytime,
thermal sensors extend the operability to night-time.

The computed 3D model can be augmented with thermal
information. Indeed, the Sensoray frame grabbers introduced
in Section V-A, allow the capture of up to two video feeds
from the TAU2 cameras. The first feed can be used for
VO whereas the second can be used to augment the 3D model
of the scene. This enables thermal 3D modelling i.e. building



3D models with temperature information overlaid. This can
be useful in many areas such as building inspection or search
and rescue operations.

VI. CONCLUSION

A thermal stereo odometry solution was proposed for
the estimation of travelled trajectories using solely captured
infrared images. The main objective of this work is to
demonstrate the usability of thermal cameras in applications
they were not specifically designed for. Notably, we were
able to extend the concepts of visual odometry beyond the
visible spectrum enabling a new range of crucial applications
e.g. night-time navigation. In contrast to visible band cameras,
the calibration of thermal sensors proved very challenging
due to numerous reasons (Section III). However, these
difficulties were overcome and the stereo vision system
was successfully calibrated. Fast-Hessian interest points
were combined with FREAK descriptors to enhance feature
matching in thermal modality. The validity of the proposed
approach has been extensively demonstrated using our own
datasets where different weather conditions and time-of-day
were considered. Daytime as well as night-time navigation
capabilities were established. More specifically, we showed
that using an alternative optimisation algorithm i.e. Double
Dogleg allowed us to improve the quality of the estimated
trajectories. Additionally, thermal 3D reconstruction was
illustrated. This shows that despite the inherent problems of
thermal imagery, many computer vision algorithms can be
adopted to produce outcomes comparable to standard vision
systems. For future work, we are looking at ways to further
improve the proposed approach. One way would be the
integration/fusion of other proprioceptive and/or exteroceptive
sensors. For instance, filtering algorithms can be considered
in a SLAM-like framework where IMU/image information is
fused. Alternatively, 3D cameras or laser scanners could be
used to further enhance the trajectory estimation accuracy.
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