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Highlights 

 Specific requirements of an EV fleet management system (FMS) are analysed and 

a FMS case-study is simulated,  

 Ant Colony Optimisation (ACO) technique is used to develop a new ACO-based 

EV FMS algorithm, 

 Comparing to other FMS algorithms such as the nearest-neighbour, ACO’s 

performance is better, however, with additional computational time. 

Abstract 

This research is focused on implementation of the Ant Colony Optimisation (ACO) 

technique to solve an advanced version of the Vehicle Routing Problem (VRP), called 

fleet management system (FMS). An optimum solution of VRP can bring lots of benefits 

for the fleet operators as well as contributing to the environment. Nowadays, particular 

considerations and modifications are needed to be applied in the existing FMS algorithms 

in response to the rapid growth of electric vehicles (EVs). For example, current FMS 

algorithms don’t consider the limited range of EVs, their charging time or battery 

degradation. In this study, a new ACO-based FMS algorithm is developed for a fleet of 

EVs. A simulation platform is built in order to evaluate performance of the proposed FMS 

algorithm under different simulation case-studies. The simulation results are validated 

against a well-established method in the literature called Nearest-Neighbour technique. 

At each case-study, the overall mileage of the fleet is considered as an index to measure 

the performance of the FMS algorithm.  

Keywords: Ant colony optimisation; vehicle routing problem; electric vehicle; fleet 

management systems. 
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1. Introduction 

The Travelling Salesman Problem (TSP) is defined as a salesman that is required to visit 

“n” given cities just once, departing from a city or depot and returning to the same point 

(Lin, 1965). The concern is which of the possible routes is the shortest so the salesman 

can travel the least. For almost sixty years this problem has been approached from quite 

a large variety of methods (Ma, Yang, Hou, Tan, & Liu, 2007; Saji & Riffi, 2015; 

Ouaarab, Ahiod, & Yang, 2013). TSP has real applications in engineering problems as 

well; a good example is the Vehicle Routing Problem (VRP) that can be considered as 

form of TSP in which a vehicle is planned to visit a number of cities (Christofides, 1976). 

Mathematically, the problem can be defined as a graph G = (V, A) where V = {1,…,n} is 

a set of vertices that represent cities or customers with the depot located in vertex 1, and 

A is a set of arcs. Every arc (i, j) i≠j is associated to an element in the distance symmetrical 

matrix C=(cij) (Laporte, 1992). The aim of the TSP is to minimise the total distance (or 

cost) covered by the salesman. Let xij (i≠j) be a binary variable equal to 1 if and only if 

the arc (i, j) appears in the optimal solution; therefore, the main objective of the TSP is to 

find the most optimal route to be followed (Laporte, 1992):  

 𝒎𝒊𝒏 ∑ 𝒄𝒊𝒋 ∗ 𝒙𝒊𝒋
𝒏
𝒊≠𝒋  (1) 

The way to find the exact solution for the TSP is to calculate all the possible routes and 

get the best one (depending on the cost function). This can only be implemented if the 

number of cities or customers is very small. However, as the number of cities increases, 

the possibilities grow exponentially and the direct search method wouldn’t work. So, an 

advanced optimisation algorithm is needed to be implemented. Along the years, several 

approaches have been studied in order to solve this problem. One solution is the Nearest 

Neighbour algorithm that suggests travelling to the closest neighbour from the salesman’s 

current position, which is also named as the “greedy algorithm”. Although the process is 

fairly rapid, a visual analysis shows that the route is far to be optimal: the first distances 

will tend to be very small, while the last ones are often very large (Boone, Sathyan, & 

Cohen, 2015). A useful extension of the TSP is called Multiple Travelling Salesmen 

Problem (MTSP). An application of MTSP is in VRP where a number of vehicles visit 

all the given cities (target points). Nature has served as a window display for several 
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algorithms to solve the TSP in its different variations and mobile robots path planning 

(Palmieri, Yang, Rango, & Marano, 2017; Chen, Kong, Fang, & Wu, 2011). Genetic 

Algorithm, Metal Annealing, Neural Networks, Tabu Search and Ant Colony are good 

examples for this.  

A new application of the MTSP which is also considered in this study, is electric vehicle 

(EV) fleet management system (FMS). There are few studies in the literature focusing on 

this topic. In a study by Betz, Werner, & Lienkamp (2016), a mixed fleet of non-electric 

and electric vehicles was assessed. Then, a new model was developed to investigate the 

financial and ecological influences of replacing conventional vehicles with EVs to 

generate a personalized optimal fleet composition according to the number of trips and 

vehicle specifications. In a study by Hu, Morais, Sousa, & Lind (2016), a review of the 

optimization and control methods of intelligent EV fleet charging is discussed and the 

fleet operator services to other actors in a smart grid are presented. In a study by Chen, 

Kockelman, & Hanna (2016), operation of an autonomous EV fleet has been studied by 

doing simulations. The results have shown that the size of the fleet should be determined 

based on the charging infrastructure and vehicle range. In another study by Chao & 

Xiaohong (2013), differences between a fleet of electric buses and a fleet of diesel buses 

are assessed. It is shown that such differences need significant changes in vehicle 

scheduling methods when switching from diesel to electric. 

Going through the comparative studies of the theoretical methods that can be considered 

for VRP, the Ant Colony Optimisation (ACO) technique is one of the most promising 

techniques in the literature (Tarasewich & McMullen, 2002). ACO algorithm copies the 

behaviour of insects, specifically ants due to the clarity of their conduct and big research 

behind. It is possible to apply ACO in MTSP by using multiple colonies since the multiple 

colony approach is shown to perform better for larger problems (Bell & McMullen, 2004). 

Algorithms like ACO that get the intelligence from individual elements can perform 

better than the others that work based on a central thinking system (Johnson, 2001). This 

advantage is quite relevant and applicable to VRP. FMS problem that is studied here, can 

be considered as a particular type of VRP. Furthermore, ACO can be combined with other 

algorithms which copy swarm intelligence improving mileage results (Goel and Maini, 

2018). 
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This study is focused on design and simulation of a FMS algorithm for managing a fleet 

of commercial EVs. The idea is to utilise an optimisation technique to minimise the 

overall fleet mileage while visiting a number of target points which are randomly 

distributed in a surrounded area. Vehicles depart and return to a depot which is located at 

the centre of the area. Simultaneously, the depot is served as the only charging point 

(overnight slow charging). This case-study has been introduced in a previous study and a 

solution was obtained for it using Nearest-Neighbour technique (Fotouhi, et al., 2016). In 

this study, firstly the Nearest-Neighbour FMS algorithm is improved and secondly, a new 

FMS algorithm is developed based on ACO technique. Performances of both algorithms 

are simulated and results are compared. Although, this is not the first time ACO is been 

used to solve a VRP (Abousleiman & Rawashdeh, 2014) or the original TSP (Jaradat, 

2018). Standing out among the literature, this study is novel in terms of the application of 

ACO for FMS. In addition, particular requirements of an EV fleet are considered such as 

EVs’ limited travel range and battery degradation minimisation via slow charging 

overnight.  

2. EV Fleet Management System 

Considerations of an EV Routing Problem 

The main differences, in terms of practicality, between VRP and Electric Vehicle Routing 

Problem (EVRP) is the necessity of considering the recharging process of the EV battery 

and its shorter range in comparison to the conventional vehicles (Murakami, 2017). There 

are different EV charging technologies such as slow charging at depots, fast and super 

charging between journeys or battery swapping. Each charging technology has its 

advantages and disadvantages which are out of the framework of this study. The other 

difference is the EV’s range that should be considered when vehicles are dispatched in 

order to guarantee enough charge to return to depot. In this study, slow charging at depot 

is considered and the proposed FMS algorithm is able to handle the EV range limitation.  

Since charging between journeys is not considered here, the issues due to the charging 

time are not investigated in terms of time management (assuming slow charging over 

night at depot) however, this is an important subject which should be addressed in future 

studies as mentioned in the literature as well (Erdoĝan & Miller-Hooks, 2012; Schiffer & 
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Walther, 2017). This is important because fleet operator companies tend to use their fleet 

at the maximum capacity per day in order to amortize and renew it using the latest 

technologies. In addition to the charging time, battery degradation and disposal should be 

also considered. Usually a proper trade-off is needed to make a balance between the 

charging time and battery degradation. Battery State of Health (SoH) is a quite important 

factor for today’s devices (Barco, Guerra, Muñoz, & Quijano, 2017).  

FMS Case-Study 

The case-study that is considered here includes an optimisation problem in which the 

overall mileage of a fleet of commercial vehicles is minimised while visiting certain 

number of target points in a surrounded area. Vehicles depart from and return to a depot 

which is located at the centre of the area. The depot is served as the only charging point 

(overnight slow charging). The target points are randomly distributed in a 50 × 50 𝑘𝑚2 

area. Different densities are also investigated by changing the number of target points in 

the same area (50, 200, and 500 points for low, medium and high density cases) as shown 

in Fig. 1. 

Regarding the slow charging scenario in this case-study, the scheduling plan is prepared 

for the next day by assuming that target points are known from a day before (an example 

of this application is the delivery tasks which are performed by commercial fleets). So, 

each EV starts its journey at fully charged state every day and operates until no more 

charge is available (by considering the required charge to return to the depot). In terms of 

the optimisation problem’s complexity, this is a simpler case comparing to a dynamic 

demand scenario like a fleet of taxi where the next target point is unknown. The reason 

for choosing the simpler scenario in this study, is the time needed for performing the 

optimisation using ACO (quick real-time optimisation is left for future studies).  

Therefore, the role of the FMS algorithm is to allocate the target points to a number of 

EVs (depending on the number of target points and their distances) in a way to minimise 

the overall mileage of the fleet. The main constraint here is the range of EV (i.e. identical 

for all EVs in the fleet). The FMS algorithm would try to use each EV as much as possible 

however, it should guarantee enough charge for each EV to return to the charging depot 
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after completing its task. For the sake of simplicity, no vehicle dynamics, nor topography 

considerations, nor energy recovery by kinematics or heat is implemented in this study.  

 

 

 

Fig. 1: Random distribution of target points: (a) low density, (b) medium density, and (c) high 

density 

 

The minimum range of EVs to operate in a 50 × 50 𝑘𝑚2 area is determined based on a 

previous study by Fotouhi, et al., (2016) in the literature that suggests a range of 125 km 

for a similar size area. It should be noted that the main conclusions of this study are not 

expected to be affected by changing the range of EV. Because the only effect on results 

when for example we have double range (250 km), is to dispatch less EVs however, the 
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effect is similar to the change of target points’ density which is considered in this study. 

The effectiveness of ACO technique for FMS application is investigated based on the 

above mentioned case-study however, it is extendable to other case-studies as well. 

3. A New Algorithm for EV FMS using ACO 

In this study, a new EV FMS algorithm is developed using ACO technique. Performance 

of the proposed algorithm is simulated and analysed for the case-study explained in 

Section 2.2. As a benchmark to evaluate the simulation results, the Nearest-Neighbour 

FMS algorithm is also implemented and the results are compared. The two techniques are 

fundamentally different; while the Nearest Neighbour-based FMS algorithm always tends 

to travel to the closest point from the current position, the ACO-based FMS algorithm 

considers a wider range of different options to travel.  

A basic version of the Nearest Neighbour-based FMS algorithm has been developed in 

the literature by Fotouhi, et al., (2016). However, in this study, improved versions of the 

Nearest Neighbour technique are proposed and used that are called 2 Point Optimisation 

(2-Opt) and 3 Point Optimisations (3-Opt) Nearest Neighbour algorithm. In both 

algorithms, the original signal that is obtained from Nearest Neighbour is rechecked for 

possible improvements by selecting consecutive points and evaluating all possible 

scenarios to pass them to find the shortest one. In 2-Opt, each two consecutive points are 

rechecked whereas in 3-Opt, same procedure is performed for each three consecutive 

points. These techniques are helpful when a route line crosses itself. This is a very 

common situation in Nearest Neighbour, especially in high city density scenarios. 

Computation time increases, although the reduction in overall mileage over additional 

time is worth the effort (Lin, 1965). 

The Nearest Neighbour-based FMS algorithm is used in this study just as a benchmark to 

evaluate ACO-based FMS algorithm.  

Introduction to ACO 

While an ant is walking it leaves pheromones along the path, the artificial pheromones in 

the ACO algorithm represent the desirability of a path. The more ants decide to take that 

path the more pheromones will be deposited and then the route is identified as a desired 
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route (Narasimha & Kumar, 2011). The more ants are over the graph, the more 

information will be available and consequently a better result might be achievable. 

Nevertheless, the technique requires additional computational effort. There are three clues 

to understand the formation of optimum paths with ACO: “(i) the preference for paths 

with a high pheromone level, (ii) the higher rate of growth of the amount of pheromone 

on shorter paths, and (iii) the trail mediated communication among ants” (Dorigo & 

Gambardella, 1997). In addition, ‘artificial’ ants have the memory of the visited points so 

they can perform the whole TSP (Bell & McMullen, 2004). In such a scenario, ants are 

guided along the possible routes between cities. In these kind of self-learning algorithms 

the solution is not unique and might change at every attempt.  

The ACO equations are designed to give a percentage of randomness in finding the 

solutions that can help to avoid ‘local minima’ solutions. In general, it is very difficult to 

find the ‘global minima’ for TSP especially when the number of points increases. So, here 

we are talking about semi-optimum solutions and there is no mathematical prove that the 

result of ACO is the best. As mentioned before, the nearest-neighbour algorithm is used 

as a benchmark in all the simulation cases in order to have a better judge about the ACO 

performance.  

Parameter initialisation is something important that the ACO’s performance relies on it. 

Indeed, using the most suitable parameters is a matter of fact to get the best results. The 

ACO initialisation process contains determination of general parameters such as the 

number of iterations and the number of ants (which affect the simulation time and the 

algorithm convergence) and also more specific parameters (listed in Table 1) which affect 

the algorithm’s performance in terms of ant behaviour. Table 1 gives a brief explanation 

about four main parameters in ACO. In this study, the ACO parameters are tuned by 

repeating the simulations using different set of parameters and considering the average 

performance.  
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Table 1: ACO Parameter Explanation 

Parameter  Description  

Evaporation ratio, ρ (rho) 
This parameter defines the percentage of pheromones that 

remain after every iteration, ρ changes between 0 and 1 

Pheromone exponential 

weight, α (alpha) 

This parameter weights the amount of initial and new 

pheromones when pheromone concentration is updated, α 

changes between 0 and 1 

Heuristic exponential 

weight, β (beta) 

This parameter weights the distance and pheromone trail, β 

changes between 0 and ∞ 

Next customer selection 

parameter, Q0 

This is compared with q (random) to choose equation for next 

customer selection, Q0 changes between 0 and 1 

 

FMS Algorithm using ACO 

In this study, a novel FMS algorithm is developed for a fleet of EVs to operate based on 

the case-study presented in Section 2.2. ACO technique is used as the main part of the 

proposed FMS algorithm. Literature has covered ACO to solve the EV routing problem, 

even going further in complexity than this paper’s approach, such as Zhang et al. (2018). 

However, this research brings to front page the fleet behaviour using ACO, which is not 

considered in literature. The algorithm is developed and simulated using MATLAB 

software. As a starting point of the code generation process, a basic ACO code is used 

from the literature (Heris, 2015). Essential changes have been applied to the original ACO 

algorithm in order to make it applicable for EV FMS. As a result, a new algorithm has 

been developed as shown in Fig. 2 in form of a flow chart. One of the main changes 

applied in the baseline ACO code to propose an ACO-based FMS algorithm is the 

inclusion of several EVs. While the baseline algorithm performs the whole problem with 

one agent (i.e. a vehicle in this case), the proposed FMS algorithm is able to dispatch 

several EVs due to their limited range. Furthermore, the proposed algorithm has different 

parts including initialisation, iterations, ants’ state updating (inside iterations) and ants’ 

pheromone updating. There are five main functions in the algorithm: 1) determination of 

the first point to start, 2) investigation of possible points to travel next, 3) selection of the 

next point to travel, 4) pheromone updating, and 5) pheromone evaporation. The number 

of iterations and the number of ants are initialised at the beginning.  
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Determination of the first point to travel can be performed by a random function, so any 

city can be chosen. This piece of randomness in the FMS algorithm can lead to some gain 

in the performance since it contributes to algorithm’s exploration. However, a previous 

study in the literature by Fotouhi, et al. (2016) demonstrates that the initial point in such 

a FMS case-study is quite important. Although, the results are shown for Nearest 

Neighbour-based FMS algorithm, this can be extended to ACO algorithm as well. To 

investigate this further, both the random (normal) initialisation and ‘best point’ 

initialisation approaches are simulated in Section 4. The ‘best point’ initialisation 

approach comes from the literature (Fotouhi, et al., 2016) where all the existing points 

are tested as the initial point at the beginning and the one that gives the best result is 

selected. Previous research shows an impressive improvement with the implementation 

of the best initial condition for Nearest Neighbour technique. In this study, firstly the best 

initial condition is determined using the Nearest Neighbour technique and then ACO 

starts from that point instead of a random point. The process of ‘best initialisation’ can be 

performed only for the first EV or it can be repeated every time when a new EV is 

dispatched (i.e. for all EVs at the beginning of their journeys). The results of all 

initialisation techniques are investigated in Section 4.  

After travelling to the first point, all other points are considered as a possible candidate 

to be the second point. However, some of them might not be feasible because of the EV 

range limitation. In addition to the unfeasible points in term of EV range, the visited points 

should be also eliminated from the list of possible next points. This will be the input for 

the next customer function that selects the next point by comparison of two variables Q0 

(parameter, 0≤Q0≤1) and q (random variable with uniform probability, [0,1]) as follows 

(Dorigo & Gambardella, 1997; Bell & McMullen, 2004): 

 𝑖𝑓 𝑄0 ≤ 𝑞            𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑆

{(𝜏𝑖𝑢)(η𝑖𝑢)𝛽}           𝑢 ∉ 𝑀𝑘 (2) 

where 𝑖 is the current position and 𝑢 is the next one, τ is the pheromone concentration, η 

is a heuristic function taken from the inverse of the distance between cities 𝑖 and 𝑢, β is a 

parameter that weighs the distance and pheromone trail (β>0), 𝑀𝑘 is a vector that contains 

all visited cities. The parameter 𝑠 is a random variable based on the probability 
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distribution 𝑃, it will favour short routes with high level of pheromones (Bell & 

McMullen, 2004): 

 𝑃𝑖𝑠 =  
(𝜏𝑖𝑠)(𝜇𝑖𝑠)𝛽

∑ (𝜏𝑖𝑢)(𝜇𝑖𝑢)𝛽
𝑢∈𝑀𝑘

             
𝑠 ∉ 𝑀𝑘

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0
 (3) 

Pheromone updating for TSP has been approached from the point of view that every ant 

affects the pheromone concentration as it happens in real life. However, previous research 

in EVRP models show that better behaviour is observed when pheromones are updated if 

and only if a better solution is reached, hence, not all ants will contribute to pheromone 

updating (Abousleiman & Rawashdeh, 2014). The pheromone updating equation will 

select a percentage of the initial and new pheromones (Bell & McMullen, 2004): 

 𝜏𝑖𝑗 = (1 − 𝛼)𝜏𝑖𝑗 + (𝛼)𝜏0 (4) 

where α is a parameter that weighs the amount of initial and new pheromone that will 

remain (𝛼(0, 1)), 𝑖 and 𝑗 are the current and next position, τ0 is the initial pheromone 

concentration ruled by the following formula (Heris, 2015): 

 𝜏𝑜 =  
10∗ 𝑄0

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑖𝑒𝑠∗𝑚𝑒𝑎𝑛(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥)
 (5) 

Pheromone evaporation takes place before the start of a new iteration (Heris, 2015):  

 𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗 (6) 

Where ρ is the evaporation ratio. 

Referring to Fig. 2, inside every iteration loop, there is another loop regarding the number 

of ants. At the end of each stage, a cost function is calculated (i.e. the overall mileage of 

the fleet) and the new solution is saved if it outperforms the previous best solution. The 

same check is done when updating the pheromone concentration via Equation 4. Before 

going to the next iteration, the best solution is updated if necessary so the algorithm can 

keep on improving. Additionally, parameters will ensure proper development of the 

solutions as explained before. The solution might not improve after a certain number of 

iterations. This is due to a stabilisation in pheromone concentration over the best solution 

or sometimes an excessive pheromone evaporation. 
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Fig. 2: ACO-based FMS algorithm’s flow chart 
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4. FMS Simulation and Results Analysis 

In this section, the proposed ACO-based FMS algorithm is simulated for the case-study 

explained in Section 2.2. For each simulation case, the overall mileage of the fleet is 

considered as the ‘cost function’ to evaluate performance of the FMS algorithm. Indeed, 

a better performance is defined in a way to achieve less total mileage while reaching all 

the target points (i.e. the constraint of the optimisation problem).   

In order to have a comprehensive study of the ACO-based FMS algorithm, adjustable 

parameters of the ACO algorithm are changed and performance of the fleet is investigated 

in each case separately. In addition, the effect of initial condition on FMS performance is 

investigated. 

FMS simulation using different values of ACO parameters 

In this section, the effects of ACO parameters on the FMS performance are investigated 

including the number of ants, the number of iterations, pheromone evaporation rate, 

pheromone concentration, weighting of pheromone trail with distance, and next city 

selection process. All the simulation cases are performed for the medium density (as 

defined earlier in this article) to keep consistency.  

Number of ants  

To investigate the impact of the number of ants on FMS performance, the FMS case-

study is simulated using different numbers of ants. Table 2 contains average and the best 

results of FMS algorithm in term of the total fleet mileage using different number of ants 

varying from 20 to 100. The results demonstrate that increasing the number of ants 

doesn’t necessarily improve the FMS performance. This result can be explained in a way 

that having more ants implies more pheromone information, hence less accuracy from a 

certain value. On the other hand, having less ants would lead to lack of pheromone 

concentration. So, an optimum number of ants can be obtained for each application that 

is 50 ants in this case based on Table 2. 

 

 



14 

Table 2: the effect of number of ants on overall fleet mileage 

number of ants 
average result 

(km) 

the best result 

(km) 

20 723.29 690.40 

50 707.25 682.22 

75 714.02 701.37 

100 712.86 707.14 

Number of iterations 

According to the theory of ACO, by running the algorithm longer, the better results might 

be achieved but with additional computational time. So, a proper trade-off is needed to 

determine the optimum number of iterations based on the required level of accuracy in 

each application. Table 3 contains average and the best results of FMS algorithm in terms 

of the total fleet mileage using different number of iterations. As stated in the table, the 

simulation is performed by considering 200, 500, and 1000 iterations. It should be noted 

that each simulation case is repeated a number of times to avoid inaccuracy due to the 

randomness that exists in ACO algorithm. Both average and best result are presented for 

each case in Table 3. The results demonstrate that more iterations improve the results 

however, the rate of improvement decreases after a certain number of iterations. At that 

point, the computational time increases without enough benefit in terms of FMS 

performance that means a proper trade-off is needed between them. According to the 

results presented in Table 3, the number of iterations is set at 500. 

Table 3: The effect of number of iterations on overall fleet mileage 

number of 

iterations 

average result 

(km) 

the best result 

(km) 

200 709.35 689.19 

500 702.44 680.47 

1000 702.67 692.99 

Pheromone concentration, alpha (α) 

This parameter weights the pheromone concentration that will be deposited if a solution 

better than the best one is found. According to the ACO formulation, a percentage of the 

initial pheromone will remain and some new pheromone is added into the system. Short 

paths will tend to accumulate pheromones quicker than non-desired routes so, the 

pheromone concentration reflects path desirability. Fig. 3 shows the effect of pheromone 
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concentration factor on overall fleet mileage. According to the results, the optimum value 

of this parameter is selected to be 0.75 in this case-study.  

 
Fig. 3: The effect of pheromone concentration factor (alpha) on overall fleet mileage 

 

Pheromone evaporation, rho (ρ) 

This parameter implements a useful form of forgetting in the ACO algorithm. This is 

useful for exploration of new areas in the search space. Fig. 4 shows the effect of 

pheromone evaporation factor (rho) on overall fleet mileage including standard 

deviations, average and best values. Based on the results in Fig. 4, the value of rho around 

0.3 gives the best outcome for this case-study.  

For more details about pheromone updating mechanism in ACO algorithm refer to Zhang 

& Zhang (2018). 
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Fig. 4: The effect of pheromone evaporation factor (rho) on overall fleet mileage 

Beta (β) and Q0  

These two parameters are both related to the selection process of the next point to travel 

as explained in Section 3.2. The tuning process of these parameters are performed 

according to the literature and optimal values of β=6 and Q0=0.2 are considered as 

discussed in previous studies (Gaertner & Clark, 2005). The only difference here in the 

selection process of the next point comes from the limited range of EVs. In this study, an 

additional constraint is considered to check if the EV has enough charge to catch the next 

point and return to depot or not. If the charge is not enough (e.g. for the points at far 

distances), those points are automatically eliminated from the list of feasible next points. 

Summarising all the parametric investigations for the ACO-based FMS algorithm, Table 

4 gives the best values for each parameter that are used in this study. 

Table 4: optimum values of the ACO parameters for FMS case-study 

parameter value 

number of ants 50 

number of iterations 500 

α (alpha) 0.75 

ρ (rho) 0.3 

β (beta) 6 

Q0 0.2 

680.00
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710.00
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750.00

760.00
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FMS simulation using different initial conditions 

In this section, the effect of the initial condition on performance of the proposed ACO-

based FMS algorithm is investigated by repeating same simulation using different initial 

conditions as explained in Section 3.2. In Table 5, the overall fleet mileage is presented 

using different initialisation techniques for ACO FMS algorithm. The results demonstrate 

that the initial condition can significantly affect the overall FMS performance. In the first 

case presented in Table 5, random initial condition is considered for all EVs. In the second 

case, the ACO algorithm starts from the best initial point that is obtained by the nearest-

neighbour (NN) technique. In this case, the best initial condition is only obtained at the 

beginning for the first EV however, the rest of the fleet (other EVs) would start randomly. 

The use of NN initial condition for the first EV together with the optimum parameters of 

ACO algorithm, leads to the best solution. The application of the NN best initial condition 

means that the ACO algorithm starts from a very good solution at the beginning. 

Although, this is kind of restriction for ACO (comparing to a random initial condition), 

it helps the algorithm to generate better results because the restriction is not that much to 

freeze the performance of the algorithm. If the NN initial condition is applied repeatedly 

for all EVs (the third case in Table 5), the drawback is that the ACO algorithm becomes 

restricted too much in terms of exploring new solutions (in this case, the results of ACO 

become exactly the same to the nearest-neighbour technique). In other words, the 

advantage of the random initial condition is having more chance of getting the global 

optima as presented in Table 5. 

Table 5: ACO best result using different initial conditions 

Initial Condition 
Fleet overall  

mileage (km) – best result 

Random initial condition for all EVs 678.54 

NN initial condition for EV1 661.53 

NN initial condition for all EVs 687.64 

FMS simulation with various densities 

In this section, various densities of target points (introduced in Section 2.2) are 

investigated. The influence of density on performance of a FMS algorithm can be 

investigated in two aspects: (i) simulation time and (ii) total fleet mileage (objective 
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function). For this purpose, similar simulations of ACO FMS algorithm are conducted for 

low, medium and high density cases (presented in Fig. 1). The results demonstrate 

significant effect of density on FMS algorithm’s performance where the proposed 

algorithm performs quite well for low density. However, it might face more challenge 

when the density increases. In a simulation case as an example, the simulation time of 

150 iterations is obtained 19 seconds for low density, 239 seconds for medium and 1925 

seconds for the high density scenario. In terms of accuracy, ACO performs better at lower 

densities like other optimisation algorithms. More iterations are required at higher 

densities since the problem becomes more complex. In such case, a more powerful 

computer is needed to decrease the run time. In addition, proper initial condition and 

pheromone concentration parameter updating can also help to improve ACO FMS 

algorithm’s performance at higher density scenarios. In all the following sections, 

‘medium’ density is considered for consistency.  

Simulation results validation vs. Nearest Neighbour algorithm 

In this section, performance of the proposed FMS algorithm using ACO is validated 

against the Nearest-Neighbour (NN) algorithm. For this purpose, different versions of 

both algorithms are considered by changing the initial conditions and the adjustable 

parameters. As presented in Table 6, the proposed ACO FMS algorithm is able to 

decrease the overall fleet mileage, in the medium density case study, from 687.64 km 

(best NN performance) to 661.53 km (best ACO performance) that means 3.8 % 

improvement. This means lots of energy saving when we look at it in larger scale. For 

example, in a fleet of twenty EVs where each EV has around 30 kWh energy on board, 

the total daily energy consumption of the fleet is around 600 kWh. This is equivalent to 

216,000 kWh per year. So, 3.8 % improvement in such a fleet would be equivalent to 

8200 kWh energy saving per year. This is a remarkable achievement since no additional 

investment is needed when applying such a change in FMS software.  

Additionally ACO algorithm is able to explore and obtain a huge number of different 

solutions, whereas NN algorithm has a unique solution. ACO as a self-learning algorithm, 

although not proving the global minima, is able to examine and get a better solution no 

matter the randomness of the environment. Complementary results demonstrate that more 

improvement is achievable in the case of low density however, ACO’s performance is 
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not much better than NN in the case of high density. Consequently, ACO algorithm is 

suggested to be used up to a certain level of complexity and after that, simpler algorithms 

such as NN can have roughly same performance with less computational effort. 

Furthermore, the implementation of ACO in this research can be followed by future 

studies to try to make the algorithm closer to reality of applicable in a real case scenario. 

A clear advantage over NN which performance is always limited. 

Fig. 5 shows performance of both NN and ACO FMS algorithms in a case-study when 

EVs are dispatched to cover certain number of target points at medium density. As shown 

in the figure, vehicles’ routing is performed differently in the two cases. Although ACO 

performs better than NN in this case, there is no mathematical prove that the ACO gets 

the ‘global optima’. So, there is a possibility to achieve even better results when using 

other algorithms. 

Table 6: Nearest Neighbour and ACO FMS results comparison in medium density case-study 

Nearest Neighbour (NN) ACO 

NN with 

random 

initial 

condition 

NN with best 

initial 

condition for 

EV1 

NN with best 

initial 

conditions for 

all EVs 

ACO with best 

initial condition for 

EV1 

ACO with best initial 

condition for EV1 and 

optimum parameters 

782.90 703.19 687.64 703.95 661.53 

 

 
Fig. 5: FMS simulation in medium density case-study – each colour represents an EV’s journey: 

(a) Nearest Neighbour, (b) ACO 
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5. Conclusions 

In this study, a new algorithm was developed based on ACO for fleet management and 

vehicle routing in an optimum way. Nearest-Neighbour algorithm was used as a 

benchmark to evaluate performance of the proposed algorithm. The results demonstrated 

that the new algorithm is able to improve fleet’s performance 3.8 % in terms of overall 

fleet mileage that can lead to a significant save of energy in large scale over time. Even 

more achievement is theoretically possible by using other versions of ACO or other 

algorithms since there is no mathematical prove that the proposed ACO algorithm gets 

the ‘global optima’.  

Pheromone concentration was found as the most important aspect to get ACO algorithm 

work properly and get the desired performance. Initial pheromone and pheromone 

updating together with evaporation, which involve α and ρ parameters, are the main 

matters to accomplish the self-learning characteristic of the algorithm and make the best 

use of it for a FMS problem. In addition to the ACO parameters, the impacts of the initial 

condition and the level of density were investigated. The results demonstrated that initial 

condition has a significant effect on ACO FMS algorithm. According to the results, a 

combination of random and NN initial conditions can provide the best performance of the 

proposed ACO FMS algorithm. The influence of target points’ density was also 

investigated by considering three levels of density. The main outcome was that the ACO 

algorithm’s performance is restricted when complexity increases. In that case, a 

reasonably long time is required to do the optimisation. This cannot be a feasible solution 

particularly in an online application.  

In this study, a particular FMS case-study was considered in which EV fleet is charged 

over night at depot to be ready for operation in the next day. In comparison with literature, 

ACO had been already used to perform the Travelling Salesman or Vehicle Routing 

problems. However, direct implementation on FMS is what gives novelty to the research. 

Combining both research areas is where real application can be done. Regarding recent 

battery technology developments and increasing range of EVs, e.g. Nissan LEAF 2018 

with 40 kWh battery capacity vs. the older version with 24 kWh, slow overnight charging 

can be a feasible solution if the range of EV would be enough for the whole day operation 

of the fleet. This would bring benefits like decreasing battery degradation due to fast 
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charging, and also more efficient interaction between EV fleet and the grid. As an 

extension of this study, other scenarios can be considered as well. Examples are 

considering fast charging during the day or considering more than one depot. Additionally 

dynamic behaviour of the environment can be studied, e.g. the E-ACO done by Xu, Pu 

and Duan (2018). The multi-depot case-study is categorised as a MTSP. In that case, more 

than optimising the position of the depot, which is usually given randomly, the objective 

is to show the distribution between depots and customers. A solutions of such a problem 

in the literature is Minimum-Maximum MTSP where the aim is to “minimise the 

maximum tour length of a single agent instead of minimising the overall sum of tour 

lengths by all agents” (Kivelevitch, Cohen, & Kumar, 2012). The proposed FMS 

algorithm in this study is designed to work in offline condition however, an online version 

of it can be developed in future studies. In that case, the ‘optimisation time’ would be as 

important as the objective function that needs proper trade-offs.  
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