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Abstract: This research presents multi-objective optimization for control allocation problem
based on the Evolutionary Game Theory to solve distribution of redundant control input on the
over actuated system in real-time. Optimizing the conflicting objectives, an evolutionary game
theory based approach with replicator dynamics is used to find the optimal weighting using
the weighted sum method. The main idea of this method is that the best strategy or dominant
solution can be selected as a solution that survive among other non-dominant solutions. The
Evolutionary Game Theory considers strategies as a player and investigates how these strategies
can survive using replicator dynamics with payoff matrix. The numerical simulation results show
the optimal weightings selected by Evolutionary Game and how the payoff has been changed in
replicator dynamics.
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1. INTRODUCTION

In aerospace engineering, Unmanned Aerial Vehicle (UAV)
is getting more and more attention and the demand for the
UAV has beed increased in various areas throughout the
industry and research institute. Especially rotor type UAV
such as quadrotor or this kind of multi rotor type UAV is
widely used, since it is easy to operate, inexpensive, and
powerful compared to the conventional aircraft. One of
features of multi rotor type UAV is that it can be seen as
an over-actuated system which has redundant rotors and a
decision for the control combination must be determined.
For this reason, as the number of rotors has increased,
the control allocation (or control distribution) problem is
followed.

There have been several attempts to allocate redundant
control input on the over actuated system. Direct (or con-
strained) control allocation has beed proposed by Durham
(1994) as a method that provides an optimal solution
using the attainable moment set for the given control
effectiveness and constraint conditions. Härkeg̊ard (2003)
suggests the Dynamic Control Allocation which addresses
the mixed optimization combined the error and control
minimization problem into a single problem, and Oppen-
heimer (2006) and Johansen (2013) describe other control
allocation schemes.

This research aims to solve the control allocation by
formulating Multi-Objective Optimization (MOO), where
the conflicting objective functions and control input are
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decision variables. In order for the over-actuated system
to deal with the control allocation problem, the optimal
solution for the formulated multi-objective optimization
problem is suggested based on the weighted-sum method
where the weights are determined by Game Theory.

MOO is the process of optimizing a set of more than
one objective simultaneously and is also known as multi-
objective programming, vector optimization. MOO has
been applied in many areas of science, engineering, eco-
nomics and logistics where the optimal decision making
concerned with optimization problems is required in the
presence of tradeoff between more than one conflicting
objective functions. Cho (2016) provides a comprehensive
survey on modeling and optimizing MOO problem. In
aerospace engineering, MOO can be applicable to dis-
tribute control input for over actuated system which has
more than one control input about one axis compared
to the conventional aircraft. Jamil (2012) and Salama
(2014) solve multi-objective control allocation problem
with two objective functions, which utilize the minmax
control allocation scheme for two objective functions. The
conflicting objective functions are solved by finding the
Pareto optimal solution defined as a solution to the multi-
objective optimization problem.

Evolutionary Game Theory (EGT) is one of the game
theory that is the study of decision theory, which tries
to find the best response that a player should perform
maximizing the chances of success mathematically, and
widely used form to determine the optimal strategy among
interactive situation and players. The main idea of EGT is
to determine its observable characteristics and its payoff
in a given game where organism providing greater fitness
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will tend to produce more off spring to increase their
population. Leboucher (2014) first attempts to use EGT
to determine the weights to solve MOO problem for
weapon target assignment problem, and Lee (2016) solves
MOO problem for network resilience using EGT to find
the weighting of the weighted sum method. Shin (2016)
proposes a priori MOO approach based on the EGT to
determine the weights of each objectives where conflicting
objectives need to be optimized. The MOO problem is
formulated as an evolutionary game of optimal solutions
by solving this game with replicator dynamics.

Based on this background, this paper suggests a method
to deal with control allocation problem based on the com-
bination of MOO and EGT with weighted sum approach.

This paper is organized as follows: Section 2 describes
over-actuated system and control allocation algorithm,
which is the optimized based method. Section 3 presents
the multi-objective optimization based control allocation
algorithm where objectives are used in the Section 2. A
brief summary of evolutionary game theory is introduced
and evolutionary game theory based control allocation
algorithm is presented in Section 4. Section 5 discusses
the obtained result of numerical simulation. Finally, con-
clusion is addressed.

2. CONTROL ALLOCATION

Control Allocation (CA) can be applicable on the over-
actuated system in which the number of input variable is
greater than that of state variables to handle redundant
control input variables. It essentially distributes the virtual
command to redundant actuators. This means there is an
infinite number of control input u, therefore, there is no
unique solution for control input, u, and control distribu-
tion algorithm is required to handle mapping problem.
Consider an over-actuated system dynamics on state space
form as follows:

ẋ = Ax+Buu (1)

where x ∈ Rn is the state variable, u ∈ Rm is the control
input variable, A ∈ Rn×n is the known state matrix and
Bu ∈ Rn×m is the known control effectiveness matrix,
respectively. There is a nullspace of dimension n−m, since
Bu has rank n < m. Thus, a number of control input can
be computed, and Bu matrix can be factorized as:

Bu = BνB (2)

where Bν ∈ Rn×k and B ∈ Rk×m in which both matrices
have rank k (k < n, k < m). Given control input u and B,
CA problem can be formulated to determine u such that:

Bu = ν (3)

where ν ∈ Rk is the virtual control input produced by the
outer loop controller. Therefore, system dynamics can be
rewrited as:

ẋ = Ax+Buu

= Ax+Bνν
(4)

The CA problem is to achieve the solution of the (3), which
can apply to the (4).

2.1 Control Energy Minimization

The objective function defined by the following equation
is to minimize the total displacement of the control input
relative to its trim position, neutral position, or ideal
position, which is one of the simplest linearized objective
function :

(5)J1(ut) = min
ut

1

2
W1‖ut − ud‖2 subject to ν = Bu

where ud is designed parameter, and W1 is a positive
diagonal weighting matrix a particular actuator can be
prioritized to the preference of application, respectively.
The numerical solution can be obtained using the following
hamiltonian function, where λ denotes a Lagrange multi-
plier.

H1(ut, λ) =
1

2
(ut − ud)

TW1(ut − ud) + λ(ν −But) (6)

The optimization based CA problem has the following
explicit solution considering the control demand constraint
condition, ν −Bu.

u∗

t = ud +W−1
1 BT (BW−1

1 BT )−1(ν −Bud) (7)

2.2 Control Input Deflection Minimization

The objective function defined by the following equation
is to minimize the total deflection rate of the control input
at each time step. The CA minimizes the total deflection
rate as opposed to the minimum deflection.

(8)J2(ut) = min
ut

1

2
W2‖ut − ut−T ‖2 subject to ν = Bu

where u(t − T ) is the position of the actuators at the
previous time step, T is the sampling time, and W2 is
the positive diagonal weighting matrix where a particular
actuator can be prioritized to the preference of application,
which is similar to W1. The numerical solution can also be
obtained in the same manner as to that of (6) by defining
the hamiltonian function as follows:

H2(ut, λ) =
1

2
(ut−ut−T )

TW2(ut−ut−T )+λ(ν−But) (9)

The optimal solution considering the demand constraint
condition, ν −Bu, can also be derived.

u∗

t = ut−T +W−1
2 BT (BW−1

2 BT )−1(ν −But−T ) (10)

3. MULTI-OBJECTIVE CONTROL ALLOCATION

3.1 Multi-Objective Optimization

MOO is the multiple criteria decision making area that
concerns with more than one objective to be optimized

e805814
Text Box

e805814
Text Box

e805814
Text Box

e805814
Text Box

e805814
Text Box



simultaneously. Optimization involves the values of deci-
sion variables that generate the maximum or minimum
objective. The objectives of the MOO problem are con-
flicting each other and impossible to find a solution which
can satisfy all objectives of MOO problem. The solution
computed to optimize each objective can not optimize all
objective functions and find the trivial solution of the
multiple optimization problem. Therefore, MOO aims to
find a point which attains to the optimal solution or a set
of an appropriate tradeoff among the objective functions.
As the design of objective function depends on the decision
variable, the MOO problem can be formulated as:

min
u

J1(u), J2(u), .., Jp(u) (11)

where the the number of objective function, p is larger than
2 , and u is the decision variable, respectively. Equality and
inequality constraints can either exist or not. There are
many techniques to solve the MOO problem, for exam-
ple, scalarization techniques, metaheuristic method, and
hybrid method. In this paper, the weighted sum method
which is one of the scalarization techniques and the most
widely used algorithm to solve MOO problem is used since
its simplicity and intuitiveness, which integrates multiple
weighted objectives into a single objective function as:

min
w

Jt = w1J1 + w2J2 + · · ·+ wpJp

=

p
∑

i=1

wiJi
(12)

where each weight, wi represents the importance of objec-
tive function. It is critical to determine appropriate weight
and normalization of weight unit.

3.2 Multi-Objective Optimization for Control Allocation

The generalized multi-objective optimization problem is
presented in order to understand the multi-objective con-
trol allocation. In order to understand the multi-objective
optimization for CA, a generalized multi-objective opti-
mization problem must be formulated as such:

(13)min
u ∈Ω

J1(u), J2(u), ..., Jp(u) subject to ν = Bu

where p is the number of the conflicting objectives, and
Ω denotes a set of design constraints, respectively. u is
the control input variable, which is the decision variable
of MOO problem. All the attainable solutions are affected
by the constraints condition, Ω that limits the feasible set
of attainable solutions, u, among the objective functions.
By combining the two objective functions (5) and (8),
which is described in a previous section, the following aug-
mented objective function can be defined. The augmented
objective function, Jt, comprises two objectives, J1 and
J2.

Jt = min
ut

1

2
W1‖ut − ud‖2+

1

2
W2‖ut − ut−T ‖2 (14)

The numerical solution of the augmented objective func-
tion can be derived in the same manner as to that of (6),
(9) by using Lagrange multiplier λ:

Ht(ut, λ) =
1

2
(ut − ud)

TW1(ut − ud)

+
1

2
(ut − ut−T )

TW2(ut − ut−T ) + λ(ν −But)

(15)

The optimal solution of the augmented objective function
can be calculated by a similar methodology used in (7)
and (10) as that of the single objective weighted pseudo-
inverse method, and taking the partial derivatives of the
objective function with respect to the input variable, u,
and the Lagrange multiplier, λ as follows:

u∗

t = W−1
0 (W1ud +W2ut−T )

+W−1
0 BT (BW−1

0 BT )−1[ν −BW−1
0 (W1ud +W2ut−T )]

(16)

where W0 = W1 +W2

4. EVOLUTIONARY GAME THEORY BASED
MULTI-OBJECTIVE OPTIMIZATION

4.1 Evolutionary Game Theory

Game Theory is mathematical model of strategic interac-
tion between self-interested players (or decision makers)
who are engaged in a given game. The classical game
theory deals with making a decision (or strategy) with
other players in order to maximize payoff (or fitness)
which is a mathematical measurement that describes how
much the player like or does not like a given situation.
In contrast, Evolutionary Game Theory (EGT) deals with
a dynamics describing how the population of players will
change over time. The main insight of EGT is equilibria of
games played by a population of players, where the payoff
is derived from the interaction of multiple populations, and
the success of any one of populations depends on how their
behavior interacts with that of others.

The main evolutionary game theoretic concept is Evolu-
tionary Stable Strategy (ESS), which is a strategy with
high payoff that will spread within the population and
tend to maintain once if the strategy is prevalent in the
population. It means that when the whole population uses
the evolutionary stable strategy, a, any populations, called
mutant, using a different strategy, b, can not invade in
this population. In order for a strategy to be evolutionary
stable, the following conditions should be satisfied.

u(a, (1− µ)a+ µb) > u(b, (1− µ)a+ µb) (17)

where u is the expected payoff, and µ is a frequency of
mutants playing with strategy b in which u(a, b) means
the payoff playing strategy a, when mutant plays strategy
b. Since a is evolutionary stable strategy, the payoff of a
population following amust be greater than that of mutant
following b. If frequency of mutants playing with µ is small
enough, the condition (17) can be seen as:



u(a, a) > u(b, a) (18)

If u(a, a)=u(b, a), the second term of the condition (17)
must meet the following condition:

(19)u(a, b) > u(b, b) such that u(a, a)=u(a, b)

Choi (2009), and Easely (2010) describe more details about
the EGT and ESS condition.

4.2 Replicator Dynamics

The main difference between EGT and classical game
theory is the investigation of dynamics of strategy change.
EGT is interested in the dynamics of the competing strate-
gies in the population, how the population evolves over
time. In order to express the growth rate of the population
using a certain strategy, the Replicator Dynamics is intro-
duced. The Replicator Dynamics models how the propor-
tion of players playing each strategy changes assuming that
each player asexually reproduces offsprings who play the
same strategy, where the number of offspring depends on
their payoff. The general equation of replicator dynamics
is defined as follow:

ẇi = wi[u(e
ix)− u(x, x)] (20)

where wi is the proportion of the population following the
ith strategy, u(ei, x) is the individual payoff of a player
following the ith strategy, and u(x, x) is the current aver-
age payoff of the population, respectively. This equation
states the growth rate ẇ

w
of the population.

4.3 Evolutionary Game based Multi Objective Optimization

The main idea of the evolutionary game based MOO
problem is a type of non-cooperative game where the
decision variables and cost functions act as players. Among
the objective functions, the objective that has a priority
dominates at least one of the others, and the weight is
applied to the objective function that is more sensitive
to the one of which objective functions to be optimized,
which can be compared to the concept of equilibrium in
the game theory.
Finding the equilibrium solution in a non-cooperative
game requires analyzing the player’s fitness to formulate a
payoff matrix. The decision variables and cost functions
act as players, and objectives to be optimized are the
possible strategies. The weightings of a MOO problem
can also be considered as the Nash equilibrium of the
mixed strategies, which is the solution of non-cooperative
game involving players in which each player is assumed to
know the equilibrium strategy and there is no reason to
change their own strategy. Therefore, the payoff table can
be defined such that the row is the objective function and
the column is the optimal decision variables corresponding
to each objective function. The payoff matrix for (11) can
be defined as such:

In this paper, the payoff table can be reduced to 2 × 2
matrix since the number of objective function is 2 defined
in a previous section. Thus, the payoff matrix for (13) can
be composed as

where u∗

i is the optimal solution for the ith objective
function.

The normalization method can affect the characteristic of
the payoff matrix. Different scales of each cost function
affect to relative importance, thus the cost functions
are normalized. The linear normalized payoff matrix is
composed as:

Āij =
Ji(uj

∗)

Ji
+ (21)

Using the normalized payoff matrix, the evolving dynamics
of the fitness (20) can be represented by the replicator
dynamics as follows:

ẇ = wi(e
T
i Aw − wTAw) (22)

where A is the payoff matrix, ei is a column vector
with one at the ith element and zero at the others, w
is the proportion of the ith strategy in the population,
respectively.

The analytic solution of the evolutionary stable solution
w̄ can be derived from the derivative of the replicator
dynamics, which means that the payoff difference between
individual and average of population becomes zero at the
stable point.

eTi Aw̄T − w̄TAw̄ = 0 (23)

where individual payoff converges to the average payoff of
the population, k. Thus, (23) can be rearranged as follow:

IAw̄ = w̄TAw̄1p×1 = k1p×1 (24)

The second condition for the analytic solution is that
summation of the weights is always 1.

w̄1 + w̄2 + ...+ w̄p = 1 (25)

These two condition can be expressed as an augmented
matrix, and it can be solved when the augmented matrix
is invertible.

[

w̄T

k

]

=

[

A −1p×1

11×p 0

]−1 [
0p×1

1

]

(26)

Table 1. The payoff matrix

u1 u2 · · · up

J1 J1(u1) J2(u2) · · · J1(up)
J2 J2(u2) J2(u2) · · · J2(up)
...

...
...

. . .
...

Jp Jp(u1) Jp(u2) · · · Jp(up)

Table 2. The payoff matrix setting for two
objectives

u
∗

1
u
∗

2

J1 J1(u∗

1
) J2(u∗

2
)

J2 J2(u∗

2
) J2(u∗

2
)



The stability of the stable point can be determined when
the following relationship is accomplished.

{

wTAw̄ < w̄TAw̄

wTAw < w̄TAw if wTAw̄ = w̄TAw̄
(27)

The first condition means that u(a, a) > u(b, a), which is
the evolutionary equilibrium condition: no invader does
better than the resident. The second condition means
that if u(a, a) = u(b, a), then u(a, b) > u(b, b), which
is the stability condition: if the invader does as well as
the resident against the resident, then it does less than
the resident against the invader, which corresponds to the
ESS. Lee (2016), Ohtsuki (2006), and Hofbauer (2006)
describe more details about this relationship, and these
equilibrium and stability condition of replicator dynamics.

5. THE NUMERICAL SIMULATION

5.1 System Dynamics

The over-actuated dynamics modeled and simulated here
is the multi-rotor system, which has more than four rotors.
The following equation of motion describes the attitude
dynamics of the multirotor UAV:

ṗ =
Iy − Iz

Ix
qr +

1

Ix
l

q̇ =
Iz − Ix

Iy
rp+

1

Iy
m

ṙ =
Ix − Iy

Iz
pq +

1

Iz
n

(28)

where Ix, Iy, Iz are inertia term, p, q, r are angular velocity
and l.m.n are angular moment in the body fixed frame,
respectively. Furthermore, consider the z axis velocity in
the inertial frame.

ż = −g +
cosφcosθ

m
T (29)

where g gravitational acceleration, φ, θ are angular posi-
tion in the roll and pitch axis, m is mass of the UAV, and
T is total thrust force, respectively. (28) and (29) can be
formulated in the state space form as:







ż
ṗ
q̇
ṙ






=







−g
(Iy − Iz)/Ixqr
(Iz − Ix)/Iyrp
(Ix − Iy)/Izpq






+







cosφcosθ/m
1/Ix
1/Iy
1/Iz













T
l
m
n






(30)

where (30) can be seen as ẋ = f(x) + gν(x)ν which is
equal to (4) in terms of virtual control input matrix, Bν

and virtual control input, ν. Furthermore, the actuator
model in the following equations:







T
l
m
n






=







ct1 ct2 · · · ctm
ct1dl ct2dl · · · ctmdl
ct1dm ct2dm · · · ctmdm
cn1 cn2 · · · cnm















u1

u2

...
um









(31)

Fig. 1. Block diagram of the controller and control alloca-
tion

Fig. 2. UAV Trajectory

Fig. 3. Time history of virtual command

where (31) can be seen as ν = Bu which is equal to (3),
and ct is the thrust coefficient, cn is the torque coefficient,
dl, dm are moment arm with respect to each body axis
frame.

5.2 Simulation Results

The presented method has been applied to the waypoint
navigation of multi rotor UAV. This simulation is carried
out with inner-loop and outer-loop controller to control
waypoint and attitude of UAV using Nonlinear Dynamic
Inversion (NDI) method for generating virtual control
input (ν), which is shown in Fig. 1.

The Fig.2 ∼ Fig.5 show the result of the numerical sim-
ulation. As figures shown, the weights has been changed
when the virtual command (ν) is generated. The physical
meaning is that the weights generally try to minimize
control energy, which seems to be a single objective opti-
mization problem, because without virtual command, the
minimization of control deflection rate does not need to
be considered as control deflection does not exist. How-



Fig. 4. Time history of weight variation

Fig. 5. Time history of payoff variation

ever, when the virtual control is generated, the weight for
control energy minimization decreases to satisfy the com-
mand, and the weight for control deflection rate increases
to prevent abrupt deflection of the control input.

As mentioned in the section 4.3, individual payoff con-
verges to average payoff of the population at the stable
weight point. The Fig.5 shows the results of augmented
matrix (26), individual payoff and average payoff, respec-
tively. It can be seen that these three values converge
and the difference between individual and average payoff
becomes zero. Thus, the inner term of right side term of
(22) becomes zero as shown in the right two figures of
Fig.5. Furthermore, the derivative of weight converge to
zero and the replicator dynamics becomes stable.

6. CONCLUSION

This paper proposes Multi-Objective Optimization ap-
proach to solve control allocation problem for over ac-
tuated system that has redundant control input. Based
on the Evolutionary Game Theory with replicator dynam-
ics to express multi-objective optimization problems, the
proposed method shows reliable result in terms of control
allocation. The proposed method shows reliable result in
terms of two objectives such as minimization of control
energy and control deflection rate. The results of this
method depend on the payoff matrix which is used to solve
replicator dynamics and analytical solution, thus, the key
point of this method is to find a proper payoff matrix.

This study is expected to suggest a method for designing a
solution of control allocation problem in any over actuated
system. Such a method, taking advantage of the concept
of Evolutionary Game Theory with replicator dynamics,
can be extended to deal with more objectives and resolves
conflicting objectives.
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