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a b s t r a c t

A common feature of Multi-Criteria Decision Analysis (MCDA) to evaluate sustainable manufacturing is
the participation (to various extents) of Decision Makers (DMs) or experts (e.g. to define the importance,
or “weight”, of each criterion). This is an undesirable requirement that can be time consuming and
complex, but it can also lead to disagreement between multiple DMs. Another drawback of typical MCDA
methods is the limited scope of weight sensitivity analyses that are usually performed for one criterion at
the time or on an arbitrary basis, struggling to show the “big picture” of the decision making space that
can be complex in many real-world cases.

This work removes all the mentioned shortcomings implementing automatic weighting through an
ordinal combinatorial ranking of criteria objectively set by four pre-defined weight distributions. Such
solution provides the DM not only with a fast, rational and systematic method, but also with a broader
and more accurate insight into the decision making space considered. Additionally, the entropy of in-
formation in the criteria can be used to adjust the weights and emphasise the differences between
potentially close alternatives.

The proposed methodology is derived generalising a problem of material selection of automotive parts
in metal casting manufacturing systems. In particular, three typical aluminium, magnesium and zinc
alloys in a High-Pressure Die Casting (HPDC) process are compared using the deterministic Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) combining 18 criteria organised in 4 main
categories (cost, quality, time and environmental sustainability). A detailed and systematic approach to
calculate the considered criteria is also provided and it includes Life Cycle Assessment (LCA) consider-
ations. Results show that, although in most of the cases the aluminium alloy is the best option, there are a
few areas in the decision making space where magnesium and zinc alloys score better without a simple
correlation to categories. This shows how valuable the proposed mapping process is to understand the
complex MCDA analyses. The methodology does not make specific assumptions about metal casting and
can be applied to sustainable manufacturing in general.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The ecological situation of the Earth under current trends has
been considered not sustainable and cause of concern as exempli-
fied prominently by the “imperative to act” urged by the winners of
the Blue Planet Prize (Watson, 2014). In particular, it is climate
change that has received considerable public attention with the
agreement reached at the 21st Conference of the Parties (COP21) of
the UN Climate Convention held in Paris in 2015. One of the
ne).

r Ltd. This is an open access articl
important parts of the agreement is “holding the increase in the
global average temperature to well below 2�C above pre-industrial
levels and pursuing efforts to limit the temperature increase to
1.5�C above pre-industrial levels” (United Nations, 2015).

Despite its history spanning millennia (Milne et al., 2003, Chap.
1.18), metal casting continues to be a fundamental manufacturing
process for some products, and it is characterised by a relatively
large amount of energy consumed per unit of product (Pagone et al.,
2018), making it an “energy-intensive” process. Statistics from the
International Energy Agency (IEA) indicate that 36% of global car-
bon dioxide emissions (one of the most important greenhouse gas)
were generated by the industrial sector in 2016, making it themajor
contributor by end-use sector before buildings and transport
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(International Energy Agency, 2018). Therefore, metal casting is one
of the strategic industrial processes that could make a significant
impact in tackling climate change.

Historically, the EU has been one of the political entities pio-
neering governmental regulations to minimise climate change. For
example, in 2005 it established the world’s first international
emissions trading scheme with a “cap and trade” mechanism. The
Emission Trading System (ETS) is aimed at reducing the emissions
of carbon dioxide, nitrous oxide and perfluorocarbons (European
Commission, 2016). Although local results were achieved, with a
reduction of about 8% of emissions in the EU between 2013 and
2016 (European Commission, 2016), ETS are likely to have pro-
moted de-localisation of manufacturing to countries with less
stringent environmental regulations. The twofold negative
outcome of this process has been a relative de-industrialisation in
the EU (with its relevant economic implications) and the likely
increase of emissions worldwide. An alternative policy to the ETS
that may overcome these issues is the taxation (as a component of
the VAT, for example) based on the emissions and resource con-
sumption embodied by the product. In this way, more sustainable
practices at a global, systemic level are promoted without affecting
the competitiveness of environmentally virtuous players.

This work absorbs such considerations devising a framework for
Decision Makers (DMs) to select the best material to produce
automotive parts with a High Pressure Die Casting (HPDC) process
combining crucial traditional criteria like cost, quality and pro-
ductivity with sustainability metrics (including product life cycle
concepts). The alternative materials considered are typical
aluminium, magnesium and zinc based alloys used in HPDC pro-
cesses. A deterministic decision-making algorithm is interfaced
with an objective, automatic method to assign different criteria
weights distributions and, thus, a high-resolution map of the
decision-making space is generated. However, the proposed
framework does not make any specific assumptions to foundries,
material selection or automotive products and it can be applied to
automatically map the sustainability decision-making space of any
manufacturing system.

2. Multi-criteria decision analysis for sustainable metal
casting

The case study presented in this work combines several themes:
sustainability and energy efficiency in metal casting, material se-
lection for automotive components, elements of product Life Cycle
Assessment (LCA) and Multi-Criteria Decision Analysis (MCDA). It
will be shown that the proposed approach addresses a combination
of aspects currently not very much analysed in the scientific
literature.

Despite the resource intensive nature that characterises metal
casting, there is a limited amount of works in the scientific litera-
ture that investigates its sustainability. In this regard, energy effi-
ciency (that is an indicator of environmental sustainability) has
received more attention through different approaches. For
example, Sa et al. (2015) identified the links between management
practices and energy efficiency studying a Swedish foundry, with a
work of classification and characterisation, whereas Carabalí et al.
(2018) carried out an analysis of Colombian metal casting plants
identifying virtuous technical strategies for energy efficiency. Other
studies have looked into the potential to reduce consumption in
energy intensive processes within the UK (Chowdhury et al., 2018)
or focussing on specific alloys (cast iron) in Italy (Lazzarin and Noro,
2015) with particular attention to technological opportunities and
relevant barriers. Obstacles to energy efficiency in foundries have
been studied empirically for several geographical locations like
Europe (Trianni et al., 2013; Thollander et al., 2013), Sweden
(Rohdin et al., 2007) and Italy (Cagno et al., 2015).
However, other routes to energy efficiency in metal casting have

been considered beyond empirical studies. Liu et al. (2018) pro-
posed an on-line analysis and control system for die casting ma-
chines using the Internet of Things (IoT) paradigm and Pagone et al.
(2016) developed a computer program to assess rapidly material
and energy flows in the process chain. Other studies targeted en-
ergy reduction through process simulation (Mishra and Sharma,
2018) that can be integrated with numerical optimisers
(Papanikolaou et al., 2019) or it can be aimed firstly at quality and
cost reduction (Nyemba et al., 2018; Hodbe and Shinde, 2018) that
still affect indirectly energy efficiency and environmental sustain-
ability. In particular, the work by Pinto and Silva (2017) belongs to
this last category studying the production of automotive parts, but
without considering different alternative materials. Metal casting
energy reductions can be achieved also modelling (and minimis-
ing) energy consumption using statistical methods (He et al., 2019)
or benchmarking tools tailored to major energy consumers like
compressed air production (Benedetti et al., 2018). Furthermore,
waste heat recovery is another option that can improve signifi-
cantly the overall energy efficiency of a metal casting plant (Børset
et al., 2017).

Although these studies are valuable, it has been shown in the
literature that the impact of energy efficiency or sustainability
measures can be very limited or misleading if considered without
including other product life phases beyond manufacturing. For
example, Haraldsson and Johansson (2018) analysed energy effi-
ciency opportunities in production-related processes of
aluminium-based products spanning from pre-manufacturing to
recycling and observed that manymanufacturing processes are less
energy demanding than raw-material electrolysis. Also Salonitis
et al. (2016) included a LCA while presenting a new casting pro-
cess designed to maximise energy efficiency and quality. Energy
savings can be achieved also developing new materials and
combining manufacturing processes reducing the consumption
during the use (instead of the production) phase of the product, as
showed by Krüger et al. (2019) combining casting and forging
processes. Furthermore, well-established energy-efficient choices
in material selection can be challenged when considered through
an LCA perspective. For example, passenger vehicle engine blocks
produced in heavier cast iron (under some circumstances) can be
less energy demanding in comparison to lighter aluminium-based
blocks, if their entire life-cycle is considered (Salonitis et al.,
2019). Similarity, Pagone et al. (2019b) developed new thermody-
namic metrics aimed at assessing energy efficiency in metal casting
and tested them for the material selection of die cast automotive
parts considering key elements of the product LCA. Such type of
works (material selection of automotive parts in a sustainable LCA
perspective) are not very common in the scientific literature but
can be traced back to pioneering studies in the Nineties. A good
example is a paper by Kar and Keoleian (1996) that compared en-
ergy, air emissions, waterborne waste, solid waste and cost of sand
cast and brazed aluminium intake manifolds of light-duty vehicles
over their life-cycle using energy and material flow analysis. The
authors presented a framework called “life cycle design”where the
mentioned sustainability criteria and multiple stakeholders are
considered but no method to combine the different indicators is
used, although a reference to the Analytic Hierarchy Process (AHP)
is provided.

However, MCDA (like AHP) has been used to assist decisions in
the manufacturing field. For example, Multi-Objective Decision
Analysis (MODA), a variant of MCDAwhere discrete alternatives are
substituted by continuous variables describing process parameters,
has been used to optimise Electro-Discharge Machining (EDM)
operations considering five DMs and the sensitivity of their choices
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in a full factorial analysis (Dewangan et al., 2015). However, no LCA
considerations are evaluated in this study as well as in other MODA
works aimed at improving the quality of continuous casting of steel
(Filipi�c et al., 2015) or Wire Electrode Discharge Machining
(WEDM) with aluminium hybrid composite (Muniappan et al.,
2018). Favi et al. (2016) combined a MODA approach with MCDA
in the early stages of product design to select the best options ac-
cording to five attributes (i.e. assembly, materials, processes, cost
and time) and illustrated the methodology with a case study. The
authors used the MCDA Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) with a discrete rating scale
pointing out that a sensitivity analysis is necessary to compensate
for the subjectivity of values and weights considered. The ordinal
combinatorial ranking of criteria presented in this paper addresses
this common shortcoming in an original way.

Furthermore, studies on MCDA applied to metal casting
(without necessarily considering sustainability aspects) are, as well,
not widespread in the scientific literature. Chakraborty et al. (2005)
applied AHP to reduce the number of die casting vendors in a
geographically defined area in India, based on five criteria (cost,
quality, tardiness, flexibility and cooperation), whereas the work by
Singh et al. (2006) combined lean tools (Value Stream Mapping),
fuzzy logic and MCDA to identify waste (according to the lean
thinking principle) in a die casting factory (pressure and gravity die
casting processes) using a Multi-Attribute Utility Function (MAUF)
and considering multiple DMs. Pal and Ravi (2007) used Quality
Function Deployment (QFD) with Analytic Network Process (ANP)
techniques to select, among twenty alternatives, the best process to
produce patterns for sand and investment casting, based on the
specifications of the casting engineer and a database. When one
process is selected, the most similar process plan in a database is
retrieved using Case-Based Reasoning (CBR) to estimate time and
cost. The combined QFD-ANP technique is used to calculate weights
of the tooling attributes through pair-wise comparisons that
become quickly a time-consuming task with the increase of the
attributes cardinality. Such inconvenience is common for a few
MCDA techniques (e.g. AHP and ANP) and it is avoided by the
proposed automatic mapping approach.

Neto et al. (2008) presented a method to identify the main
sources of pollution in the process steps of an aluminium pressure
die casting plant producing car parts. This approach combined LCA,
environmental systems management and a sum-based MCDA al-
gorithm with four different weighting distributions. Furthermore,
selected changes to process parameters to reduce the environ-
mental impact and total cost were considered in an additional
sensitivity study. Although the selected weight distributions pro-
vided some insight, such method failed to provide a high-
resolution picture of the entire decision making space extracting
some arbitrarily located, isolated samples.

Material selection between steel and an aluminium alloy for
manufacturing fan impellers has been carried out through AHP in a
paper by Liu et al. (2012). Fourteen basic criteria were organised
into five classes (i.e. time, quality, cost, environmental impact and
resource consumption) and a process associated with eachmaterial
was considered (i.e. stamping of a steel plate versus casting
aluminium alloy ingots). MCDA has been used also in a study to
identify the main indicators of quality in silica sand for casting,
although no information about the specific MCDA technique was
provided (Alhamdy and Ghalandary, 2014). Deshmukh and
Hiremath (2018) assessed through MCDA three typical metal cast-
ing furnaces (i.e. cupola, divided blast cupola and induction) ac-
cording to nine criteria in the area of sustainability and cost.
However, limited information is provided about the relevant data
sources. This is a common problem with other literature sources
where it is sometimes unclear what calculation procedure have
been carried out or what specific references have been consulted. In
this study, this issue has been addressed providing a detailed
explanation of the calculation procedure adopted and specific ci-
tations for the sources of data.

Furthermore, Bairagi et al. (2014) compared three different
fuzzy MCDA approaches and a Complex PRoportional ASsessment
method coupled with Grey systems theory (COPRAS-G) to select
robots for foundry operations. The fuzzy weights were estimated by
a fuzzy AHP method that required time consuming pair-wise
comparisons. Salonitis et al. (2015) proposed a framework
combining energy audits, LCA of manufacturing processes and
TOPSIS to evaluate ten alternative process plans combining six
criteria in the area of cost, time, quality and environmental impact.
The tool is demonstrated considering a high pressure ceramics
casting plant where criteria weighting was ranked by the produc-
tionmanager of the facility. Such approachmay be unsuitablewhen
multiple DMs disagree on the criteria ranking and does not provide
information about the sensitivity to the chosenweight distribution.
This is demonstrated in a paper where a committee of twenty DMs
evaluated the level of danger in foundries, weighting and
combining three main criteria and ten sub-criteria with Analytic
Network Process (ANP) and fuzzy logic (Ilangkumaran et al., 2015).
The multiple weight distribution method proposed in this work
addresses these shortcomings setting the importance of criteria
automatically and objectively.

AHP and TOPSIS have been combined also in the field of metal
casting international resource policy. In particular, MCDA has been
used to select supplier countries for the Iranian steel industry ac-
cording to four environmental sustainability indicators (CO2
emissions, number of employees, water consumption and distance)
performing a sensitivity analysis varying the weights of criteria
individually (Azimifard et al., 2018). However, no information about
the procedure to obtain the different sets of weights in the sensi-
tivity analysis is provided, making the assessment opaque to the
user.

Yang et al. (2017) proposed a tool to select materials for re-
manufacturing purposes using a fuzzy TOPSIS approach with
weighting based on a mixture of entropy of information and a
linguistic approach. Two case studies based on sixteen criteria were
illustrated: an engine block and an intake manifold with four and
three alternative materials, respectively. Although not strictly
related to metal casting, this work combines MCDA with material
selection of automotive products but does not include broader LCA
considerations. Similarly, Paraskevas et al. (2019) proposed a sto-
chastic decision support tool aimed at resource efficiency of the
aluminium recycling chain, that contributes to understand the
relevant LCA but does not include the decision making process. On
the other hand, a study on aluminium alloy products for automo-
tive or aerospace components compared additive manufacturing,
machining and forming on the basis of the life cycle environmental
impact (Ingarao et al., 2018). Although comprehensive and
harmonised environmental indicators of the ReCiPe model
(Huijbregts et al., 2017) have been used, this study does not
consider economic, social and manufacturing productivity in-
dicators in the final ranking of the alternatives; all aspects
addressed by the current study.

Recent MCDA frameworks, specifically developed for sustain-
ablemanufacturing, respond to the scarcity of quantitativeworks in
the literature comprising sustainability (Stoycheva et al., 2018). The
methodology proposed by Stoycheva et al. (2018) focussed on the
full sustainability spectrum in the automotive industry and was
illustrated choosing among five alternativematerials and 15 criteria
organised according to the three pillars of sustainability (i.e. eco-
nomic, environmental and social aspects) using the Weighted Sum
Method (WSM) and a sensitivity analysis. Four weight
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distributions, representing the point of view of pre-determined
stakeholders, are considered. As previously stated, such arbitrary
choices are useful in interpreting the typical interests of potential
DMs but lack flexibility and scope in understanding the full decision
making space. Furthermore, traditional (and important) indicators
do not directly map into the sustainability dimensions (e.g. pro-
ductivity) and not being able to include them in the framework
might make more difficult its adoption. The choice of the WSM is
another aspect that could hinder applicability when there are sig-
nificant complementarities between criteria that may not be
handled correctly by the method (Hwang and Yoon, 1981). The
proposed MCDA automatic mapping algorithm with the choice of
the TOPSIS technique resolves both these shortcomings. Also Saad
et al. (2019) presented a comprehensive framework aimed at
assessing sustainability in manufacturing processes. The work
presented an excellent overview of the overall sustainability
assessment process with a critical discussion about the major
normalisation and aggregation methods, in particular. Concerning
the weighting process, although one objective way to set distri-
butions is mentioned (i.e. the established technique based on the
criteria entropy of information) there is only a further generic
reference to “other methods”with no other specific and systematic
approach. The automatic weight distribution method presented in
this work can be used to make the suggested framework complete.

According to the presented literature survey, it appears that
there is a scarcity of works at the intersection of sustainable metal
casting with the use of MCDA techniques to perform the material
selection of automotive parts, including LCA considerations. The
case study presented in this paper introduces a framework to
perform such type of analysis with a clear and detailed procedure to
calculate the values of indicators (another aspect sometimes not
well presented in similar works). Moreover, such framework pro-
duces automatically a high-resolution map of the decision making
space with an objective weighting based on the ordinal, combina-
torial ranking of criteria. This feature removes important short-
comings in sustainable manufacturing MCDA: the considerable
amount of input necessary by experts or DMs, the potential
disagreement that can arise between them and the limited scope of
pre-determined, arbitrary samples of the decision making space
generated by criteriaweight sensitivity. Finally, the framework does
not make any specific assumption about metal casting, material
selection or particular products and, thus, it is applicable to explore
the sustainability of any manufacturing system.

3. A case study: Material selection for an automotive
component produced with a high pressure die casting (HPDC)
process

The product considered in this analysis is an automotive
component produced with a HPDC process with typical materials.
The volume of the product is assumed fixed and the relevant mass
is obtained from the density of each alloy. A more rigorous
approach would consider a tailored design driven by the specific
material mechanical properties (see Section 3.2.2.2 for more de-
tails). However, such approach would lose generality and prevent
the wider applicability of the method. Capitalising on the
compensatory nature of TOPSIS, this approximation is (at least
partially) offset including the mechanical properties in the criteria
considered. The mass of the product is then used to obtain
dimensional quantities from data usually available normalised by
unit mass (further represented with uppercase and lowercase
symbols, respectively). Another important implication arise from
the comparative nature of TOPSIS in combination with the
assumption of a fixed volume product: the results are independent
by the specific mass considered.
3.1. Materials

The alternative materials considered are three typical alloys
used in HPDC processes, all suitable for automotive parts. Namely,
aluminium A380, magnesium AZ91D and zinc ZA-8 alloys. The first
two are cast in a cold chamber machine whereas the last in a hot
chamber one. The specifications of the facility processing
aluminium alloys have been provided by an industrial contact and
are based on data collected monthly for two years. The information
about the magnesium and zinc alloy facilities has been collected
from the open literature and is provided on a monthly basis for at
least one year. The main reference for these two foundries is a
report of the USA Department of Energy (Eppich, 2004). The
assumption that a hot chamber machine is used to produce zinc
parts implies that the maximummass of the product in the analysis
cannot exceed the volume of about 5 kg of ZA-8 (since this is the
maximum capacity of hot chamber machines on the market). Be-
sides this consideration, as explained introducing this case study,
the specific mass of the product does not affect the results in this
comparative analysis.

3.2. Product and process performance indicators

Eighteen metrics describing the specifications of the metal al-
loys during the life phases of the product have been considered.
Their positive or negative impact have been assessed considering
the effect of an increase of each quantity. Furthermore, the metrics
have been categorised according to areas of cost, time, quality and
environmental sustainability (Table 1).

3.2.1. Cost
From a broad perspective, cost estimation in metal casting can

be derived from general studies in manufacturing processes.
Different approaches can be identified in the literature and can be
classified in the following three avenues (Keeter, 2015):

� previous experience and similarity to existing products, e.g.
Duverlie and Castelain (1999),

� process mapping with relevant empirical equations, e.g. Feng
et al. (1996); Ou-Yang and Lin (1997),

� geometric features of the product (Farineau et al., 2001) that can
be parametrised using existing data (Fagade and Kazmer, 2000;
Cavalieri et al., 2004).

More specific studies focussed on selected manufacturing pro-
cesses are not equally common (Chougule and Ravi, 2006). One
example is the work by Chougule and Ravi (2006), specifically
developed for gravity die casting and aimed to provide a method-
ology suitable also for people with limited technical knowledge.
Concerning HPDC, methods that estimate cost on the basis of
product weight and overall foundry material efficiency are well-
suited considering the typical large volumes of similar product
that these plants produce (Chougule and Ravi, 2006). In general,
five broad categories to identify cost in casting processes have been
identified since the 1970s (Chronister, 1975): material, tooling, la-
bour, energy and overheads.

This study applies the latter broad approach and, since TOPSIS is
a comparative method with alternatives belonging to the same
casting family, the cost of labour and overheads is assumed to be
comparable in all cases and, thus, ignored. As a consequence, the
relevant metrics used in the calculations and the final results do not
estimate the actual values to produce a product but they are valid
only on a comparative basis.

The final indicator to assess cost Ccg is the sum of the material
CM , energy CE and tooling CT contributions calculated according to



Table 1
Categorised selected metrics of the metal alloys to produce an automotive part with a High Pressure Die Casting process.

Quantity Impact Category Product life phase

Cradle to gate Cost Ccg negative cost LCA cradle to gate
Volumetric solidification shrinkage Vss negative quality manufacturing
Solid linear thermal contraction as negative quality manufacturing
Freezing temperature range DTf negative quality manufacturing
Solidus temperature Ts negative quality manufacturing
Tensile strength Ftu positive quality use phase, design specification
Modulus of elasticity Et positive quality use phase, design specification
Yield strength Fy positive quality use phase, design specification
Elongation to break εb positive quality use phase, design specification
Fracture toughness kIc positive quality use phase, design specification
Corrosion depth in atmosphere dca negative quality use phase
Density r negative environmental sust and quality use phase, design specification
Energy consumption cradle to gate Ecg negative environmental sustainability LCA cradle to gate
Cradle to gate mass of CO2 emitted mCO2;cg negative environmental sustainability LCA cradle to gate
Primary production specific water consumption Vwp negative environmental sustainability pre-manufacturing
Manufacturing energy efficiency hom positive environmental sustainability manufacturing
Manufacturing Operational Material Efficiency OMEm positive environmental sustainability manufacturing
Heat of fusion DHf (proportional to machine cycle time) negative time manufacturing
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the “cradle to gate” Life Cycle Assessment (LCA) approach (i.e. it will
include the pre-manufacturing and manufacturing phase, when
relevant) for one product. However, input data (detailed below) is
mostly available in terms of unit mass and, thus, Ccg is derived by
normalised values per unit mass of product ccg , cM , cE , cT and its
mass mp:

Ccg ¼ ccg mp ¼ðcM þ cE þ cT Þmp (1)

Material cost. The input data of material cost per unit mass used
in this study (Granta Design, 2017) cM;f is normalised by mass of
feedstock materialmf (i.e. the amount of material purchased by the
foundry)

cM;f ¼
CM
mf

(2)

and not by mass of final product

cM ¼ CM
mp

(3)

One would be tempted to use the Operational Material Effi-
ciency OMEm that measures the overall yield of the manufacturing
processes

OMEm ¼ mp

min
(4)

to obtain cM from cM;f , but it can be easily shown that the overall
input mass of the foundry min does not necessarily coincide with
the purchased feedstock mass mf .

In fact, considering the schematic in Fig. 1, min is the sum of mf ,
mr;e;in and mr;i where the last two addends are the mass recycled
externally (e.g. by a subcontractor or an associated company) and
internally by the foundry. Thus, the feedstock mass is only a
contributor to min and OMEm is not suitable to obtain cM from cM;f .

Continuing to refer to Fig. 1, in this work it is assumed that the
cash flows associated with externally recycled mass are negligible
(i.e.mr;e;in ¼mr;e;out ¼ 0) and the total mass that leaves the foundry
with no added value (e.g. dross, scrap not internally recycled, swarf,
etc…) is consolidated into one valueml. Hence, the conservation of
mass to the flows external to the foundry reads:
mp ¼mf �ml (5)

i.e. the mass of the product is the feedstock mass removed by the
no-adding value material losses. Combining Eqs. (2), (3) and (5)
yields

cM ¼ cM;f mf

mp
¼ cM;f mf

mf �ml
(6)

Factoring out mf from the last equation, a new relationship
between cM;f and cM is obtained that is dependent only from factor
fM;l ¼ ml=mp

cM ¼ cM;f

1� fM;l
(7)

Assuming a suitable value of fM;l it is possible to calculate cM to
be substituted in Eq. (1).

Energy cost. The specific cost of energy normalised by mass of
final product cE is obtained by the available specific cost of elec-
tricity cE;el and natural gas cE;g per energy unit. In fact, in the plants
considered, only these two sources of energy are used, but the
following method can be generalised to any source of energy
(provided that data is available). The contributions of electrical
energy and the combustion of natural gas are combined consid-
ering their relevant fractions of the total energy consumption, fE;el
and fE;g . Multiplying their specific costs by the overall specific en-
ergy consumption of the manufacturing process em, yields cE:

cE ¼ em
�
fE;el cE;el þ fE;g cE;g

�
(8)

Finally, cE is substituted in Eq. (1).
Tooling cost. Another aspect that may impact the profitability of

a HPDC foundry is the life of the die. This tool is usually charac-
terised by a complex design and it is produced with expensive
materials like special steels (DeGarmo et al., 2003). The alloy being
cast in the die affects its life significantly (DeGarmo et al., 2003) and
thus, it can be another contributor to the overall cost. However,
considering that the typical order of magnitude of cycles that the
die canwithstand is between 105 and 106 (Schrader et al., 2000), its
cost per product becomes trivial and, then, cT ¼ 0 is substituted in
Eq. (1).



Fig. 1. Simplified material flows in a generic foundry highlighting feedstock mf , externally mr;e and internally mr;i recycled, lost ml and final product mp masses.
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3.2.2. Quality
Quality can be evaluated in terms of geometric and functional

features (Chryssolouris, 2013) that in this work, in the context of
metal casting, are loosely translated in terms of castability and
mechanical properties.

Castability. Four quantities are considered to describe the cast-
ability of the alternative metal alloys as a measure of the expected
manufacturing quality: volumetric solidification shrinkage Vss,
linear thermal contraction of the solid phase as, freezing temper-
ature range DTf and solidus temperature Ts.

The volumetric solidification shrinkage has been estimated from
themetal elements that comprise each alloy according to the Kopp-
Neumann rule applied to density (Valencia and Yu, 2002; Quested
et al., 2000):

Vss ¼
X

n
i¼1 Vss;i xi ci2N∩ ½1;n� (9)

where an alloy of n elements with molar fraction x is considered.
Three shrinkage regimes are generally identified in metal cast-

ing processes and, in chronological order, they are: liquid
contraction, solidification shrinkage and solid contraction
(DeGarmo et al., 2003). In HPDC the first two are more strictly
related to internal defects, whereas solid contraction mainly affects
dimensional tolerances, draft angles and allowances (North
American Die Casting Association, 2018). Liquid contraction is
considered the least harmful of the three because most of it hap-
pens before filling the die (North American Die Casting Association,
2018) and, for this reason, it has been ignored in this analysis. Since
the effects of solidification and solid-phase shrinkage on the casting
quality are quite different, a separate criterion for each of them is
considered. The choice to assess separately the two types of
contraction permits the consideration of different ways to measure
shrinkage (i.e. volumetric solidification versus linear solid-phase
contraction) without affecting the correctness of the comparison
(see Section 4).

Castability is significantly affected by fluidity (DeGarmo et al.,
2003). For metal casting in general, it is well-established that
larger freezing ranges are usually associated with reduced fluidity
and, thus, relevant defects (Bastien et al., 1962). However, specific
studies on the HPDC process (with AleSi alloys) showed that in this
specific case the solidus temperature dominates over freezing
range to control fluidity: in particular, the lower the solidus tem-
perature, the higher the fluidity (Han and Xu, 2005). Moreover,
large freezing ranges are undesirable in HPDC because they prevent
the rapid ejection of the casting from the mould increasing expo-
sure to residual stresses (or, in the worst cases, hot tearing), while
heat treatments are generally unsuitable for HPDC products
(DeGarmo et al., 2003).

Mechanical properties. HPDC products are known to be easily
affected by micro-porosities (Milne et al., 2003, Chap. 1.18) that
reduces ductility and toughness alongside other mechanical
properties (DeGarmo et al., 2003). Moreover, typical problems that
can be potentially faced in material substitution are reduced
corrosion resistance and reduced rigidity when thinner sections of
a better performing material are designed (DeGarmo et al., 2003).
For these reasons, a number of mechanical properties (tensile
strength Ftu, modulus of elasticity Et, yield strength Fy, elongation to
break εb , fracture toughness kIc, corrosion depth in atmosphere dca)
have been considered as additional criteria in this analysis,
although the minimum values of these properties for every alloy
consideredmust meet theminimal design requirements. Moreover,
as mentioned introducing this case study, the mass of the product
(used to obtain the extensive quantities from the intensive values)
is calculated based on its fixed volume, ignoring the need to
redesign it based on its mechanical properties. Such simplification
favours unfairly lighter materials even though they might be less
performing. Thus, the inclusion of these quantities in the analysis
balances such intrinsic bias and expresses a measure of quality in
providing an additional margin to the minimum design
requirements.

Further to the above considerations, density r has very promi-
nent importance among the design criteria of modern automotive
parts because it affects significantly fuel economy and ride quality
of the vehicles.
3.2.3. Environmental sustainability
Considering the energy-intensive nature of metal casting, an

important role to apprise its environmental sustainability is energy
efficiency (Pagone et al., 2019b). The “cradle to gate” specific energy
consumption ecg is included in the comparison of this analysis and
takes into account of both the specific energy consumed during
primary production of the material ep and the specific energy of the
entire manufacturing process em (sometimes referred to as SEC)
through the material efficiency of the full manufacturing process
OMEm. Thus, the “cradle to gate” energy consumption per product
Ecg reads

Ecg ¼ ecg mp (10)

with

ecg ¼ ep
OMEm

þ em (11)

The specific carbon dioxide emissions associated with the
required energy are assessed by the carbon intensity CI, comprising
both the primary production and the manufacturing steps. The
manufacturing carbon intensity has been calculated considering
the fraction of electric energy and natural gas consumed together
with their carbon dioxide specific emissions, in a similar way of Eq.
(8) and substituting the specific cost with the carbon intensity.
Thus, the “cradle to gate” mass of CO2 emissions per product is
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mCO2;cg
¼CIcg mp (12)

This assessment does not include the energy consumed for
transport of materials and the production of the HPDC machineries
that are assumed to be comparable for all alternatives considered
and, thus, can be ignored.

The specific energy consumption of the manufacturing process
em provides an absolute value of the foundry overall energy effi-
ciency, but it does not assess its performance in comparison to the
ideal case for the specific alloy being processed. Thus, the definition
of a manufacturing energy efficiency based on thermodynamic
properties hom has been proposed by Pagone et al. (2018, 2019a):

hom ¼Dhl
em

(13)

whereDhl is the specific enthalpic rise from ambient to the liquidus
temperature.

Finally, the impact of production of the primary material on
water consumption Vwp has been included to consider also a non
energy-related environmental sustainability indicator.

3.3. Time

Machine cycle time is an important contributor to the produc-
tivity of HPDC foundries (DeGarmo et al., 2003). If no plant-specific
data is available, this metric can be approximated by heat of fusion
of the material being processed DHf that is known to be propor-
tional to machine cycle time (Davis, 1998). Although DHf is a
contributor to the previously defined energy consumption Ecg , its
impact as a component of the total allows to estimate productivity.

4. Multiple-criteria decision-making methods

Several methods have been developed in the last decades to
support decision-making while considering multiple conflicting
criteria. They can be classified based on the type of data that sup-
ports them as deterministic, stochastic or fuzzy. Examples of the
more popular methods are the Weighted Sum Model (WSM), the
Weighted Product Model (WPM), the elimination et choix traduisant
la realit�e (ELECTRE), the Analytic Hierarchy Process (AHP) and the
Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS). Several variations and improvements of the mentioned
methods have been proposed. In the past years, TOPSIS (in its
different forms) have seen a significant grow in popularity since it is
perceived to have addressed some of the shortcomings of the other
methods (e.g. compensatory tradeoff between criteria, correct
comparison of criteria with significantly different scales or inter-
dependency, mixture of qualitative and quantitative criteria).
(Triantaphyllou et al., 1998).

In this work a deterministic TOPSIS analysis will be performed
(Hwang and Yoon, 1981; Yoon and Hwang, 1995).

4.1. The TOPSIS method

TOPSIS was conceived in the early Eighties of the last century by
Hwang and Yoon according to the principle that the best choice
among a number of alternatives is the closest to the positive ideal
solution Aþ and the furthest from the negative ideal solution A�,
both identified by a clearly defined number of steps (Hwang and
Yoon, 1981). The technique was further developed in the subse-
quent decades (Hwang et al., 1993; Yoon and Hwang, 1995).

The distance between each alternative and the ideal solutions is
defined according to the expression in a multi-dimensional
Euclidean space. This aspect implies that the impact of all criteria
is assumed to be monotonic. In this way, the scoring of each cri-
terion can be aggregated and compensated after normalisation and
appropriate weighting.

The procedure of TOPSIS algorithm (Fig. 2) is based on a decision
matrix X built with the combination of n decision criteria values for
m different alternative options.

X¼

2
664
x1;1 x1;2 / x1;n
x2;1 x2;2 / x2;n
« « 1 «

xm;1 xm;2 / xm;n

3
775 (14)

The first computational step is the normalisation of each deci-
sion criterion in X to obtain matrix R as follows:

ri;j ¼
xi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k¼1

m
x2k;j

r ci; j2N : i2½1;m�; j2½1;n� (15)

Then, a vector of nweights w so that
P n

j¼1wj ¼ 1 is introduced
to represent the importance of each criterion for the DM. Every
criteria is scaled accordingly to calculate the normalised weighted
matrix V:

vi;j ¼ ri;j wj ci; j2N : i2½1;m�; j2½1;n� (16)

The ideal solutions Aþ and A� are built combining themaximum
vþi or minimum v�i value among the m alternatives of vi;j, consid-
ering for each criteria.

� the maximum value for Aþ and the minimum value for A� if the
criterion considered has a positive impact,

� the minimum value for Aþ and the maximum value for A� if the
criterion considered has a negative impact.

Then, the distances between each alternative and Aþ (giving dþi )
and A� (giving d�i ) are calculated:

dþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

�
vi;j � vþj

�2s
ci; j2N : i2½1;m�; j2½1;n�

d�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

�
vi;j � v�j

�2s
ci; j2N : i2½1;m�; j2½1;n�

(17)

Finally, the similarity s�i to the worst ideal solution

s�i ¼ d�i
dþi þ d�i

ci2N∩½1;m� (18)

allows the DM to rank the alternatives and identify as the best
solution the highest s�i .
4.2. Automatic weight distributions

As mentioned, automatic weighting addresses a number of
related, typical MCDA issues.

� No time consuming and complex DMs consultation is necessary
beforehand to determine the importance of criteria.

� Weighting is objectively set, avoiding disagreement between
multiple DMs.

� If multiple weight distributions are considered, their scope is
again objectively set and it is not restricted by the demanding
process of involving DMs for defining each distribution.



Fig. 2. Process flow of the proposed MCDA methodology combining the TOPSIS technique with automatic weighting by pre-set distributions and (optionally) using the entropy of
information present in the normalised values of the criteria. Ellipses are inputs or outputs and rectangles are process steps, asterisked inputs are mutually exclusive and thicker lines
suggest that multiple solutions (i.e. n!) are generated.
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After experimentation, four pre-set weight distribution laws
have been found sufficient (as the results will show) to encompass
almost completely the possible DM choices for an arbitrary number
of criteria. For this reason, the terms “uniform”, “halving”,
“quadratic” and “first two” are chosen to describe the four distri-
butions defined as follows.

The “uniform” weighting considers every criteria with equal
importance whereas, in the other cases, at every successive j-th
position in the ranking the weight w is reduced by a factor fwðjÞ:

wðjÞ¼ 1
fwðjÞ cj2N∩ ½1;n� (19)

The equations that describe fwðjÞ in each case are the following:

� “halving”

fwð1Þ ¼ 1
fwðjÞ ¼ 2 fwðj� 1Þ cj2N∩ ½2;n� (20)
� “quadratic”

fwðjÞ ¼ 2 j2 cj2N∩ ½2;n� (21)
� “first two”

fwð1Þ ¼ fwð2Þ ¼ 1
fwðjÞ ¼ j2 cj2N∩ ½3;n� (22)
Fig. 3. Distribution of weights on a percentage basis for the pre-defined laws of th
The distributions are exemplified graphically using the case
study of Section 3 in Fig. 3 where four categories of metrics are used
as main decision making criteria.

Furthermore, it is proposed to introduce optionally an additional
weighting based on the entropy of information present in the
values of criteria (Hwang and Yoon, 1981). This is accomplished
calculating the entropy E for each of the n criteria, using the ele-
ments of the normalised decision matrix R showed in Eq. 15

Ei ¼ � 1
lnn

X
n
i¼1 rij lnrij ci; j2N : i2½1;m�; j2½1;n�

(23)

The resulting weights ws are calculated as follows

ws;i ¼
j1� EijP n
i¼1j1� Eij

ci2N∩½1;n� (24)

and, finally, combined with the weights provided by the distribu-
tions defined above wd

wi ¼
ws;i wd;iP n
i¼1ws;i wd;i

ci2N∩½1;n� (25)

The rationale to use entropic weights is two-fold. In the first
instance, it is another objective way to set weights with no inter-
vention from the DM. Furthermore, it amplifies the importance of
criteria with higher degree of divergence (i.e. with more pro-
nounced differences) and, thus, separates them more clearly.
e proposed MCDA methodology. Example with four categories used as criteria.
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5. Results

As described in Section 3.2, some of the criteria considered for
the TOPSIS analysis required additional calculations. To evaluate
ccg , the specific cost of each alloy normalised by the mass of the
foundry feedstock cM;f has been taken from the database Edupack
by Granta Design (2017). The fraction of the feedstock mass that
leaves the foundry with no added value fM;l has been assumed 10%
for all the materials. Unfortunately, no specific information in this
regard is available except from data on melt dross of about 7% for
the facility producing zinc alloy parts (Eppich, 2004). The choice to
increase this value to 10% is motivated by the observation that a few
other process steps will generate material losses in the foundry
with no added value. On the other hand, this percentage has not
been increased further because no economic value of this metal is
considered in the calculations although actually between 10% and
about 30% of the feedstock value can be recovered (Eppich, 2004). It
is expected that the combination of these two opposite effects will
bring the relevant error within the level of approximation of the
entire analysis. For the calculation of the volumetric solidification
shrinkage Vss, the individual values for each metal element have
been taken from a book by Campbell (1991) and the composition of
the alloys from the online database MatWeb. The two components
of the cradle to gate specific energy consumption ecg , i.e. primary
production ep and manufacturing em have been estimated respec-
tively using the database Edupack (Granta Design, 2017) for ep and
Eppich’s report (Eppich, 2004) with direct foundry measurements
(for the aluminum alloy processing plant) for em. These energy
values have been used also to calculate ccg and CIcg as described in
Section 3.2. Carbon intensities for the primary production have
been taken from the database Edupack (Granta Design, 2017)
whereas, to calculate the values of the manufacturing steps, a car-
bon intensity for electric energy of 76:64 gCO2

=MJ (the EU28 value
in 2014, European Environment Agency) and of 56:1 gCO2

=MJ
(Jurich, 2016) for natural gas has been used. The manufacturing
energy efficiency hom has been taken from a previous publication
by the authors (Pagone et al., 2019a).

As explained in Section 3, considering that TOPSIS is a
comparative technique, the specific mass of the productmp used to
obtain some of the extensive properties from the normalised ones
does not affect the ranking of results. To a first approximation, the
volume of the product has been kept constant regardless of the
material considered. Since the data of the zinc alloy plant refers to a
hot-chamber machine (Eppich, 2004) that is limited to parts of
maximum 5 kg of mass, this is the reference value used to calculate
the volume of the product from the density of zinc alloy ZA-8. A list
of the values used in this analysis is provided in Table 2.

5.1. Uniformly distributed weights by category

In the first instance, the weights used for each criterion have
been distributed evenly among themain categories listed in Table 1.

The quality criteria (Fig. 4) show almost always a supremacy of
ZA-8 with A380 a close second, except for fracture toughness kIc
where the aluminium-based alloy performs clearly better than the
other two materials. When considering the effect of the entropic
weighting, it is clear how corrosion resistance dca and (less mark-
edly) the freezing temperature range DTf are amplified in impor-
tance with a detrimental effect on the score of AZ91D. The
corrosion resistance metric in particular, shows that alloy A380 has
clearly better characteristics than its competitors.

On the other hand, looking at the environmental indicators
(Fig. 5), a casewheremagnesium alloy AZ91D appears awinner and
zinc ZA-8 is largely the least desirable alternative is the value of
density r. This clearly confirms the efforts in the automotive
industry in the past years to increase the adoption of this material
to increase the fuel economy of vehicles. However, looking at the
other environmental sustainability indicators, it becomes apparent
how partial this conclusion is. The plant producing zinc-based ZA-8
parts is sometimes the best performer (“cradle to grave” energy
consumption Ecg and carbon emissions mCO2;cg), although not by a
large extent when compared to the aluminium alloy plant.

It is interesting to note that the manufacturing energy efficiency
of the plant hom (that compares the energy performance to the
theoretical maximum specific for the material being cast) shows a
low value for the plant processing ZA-8 alloy. This suggests the
opportunity to further improve the performance of the foundry,
bringing it closer to its theoretical minimum energy consumption.
This hypothesis has been verified in a previous study where it has
been identified that the melting phase, in particular, can be
improved with great potential benefit for the overall foundry en-
ergy performance (Pagone et al., 2019a).

Analysing the cost criterion Ccg (Fig. 5), it can be noticed that the
choice to consider a fixed volume for the part produced favours
lighter alloys. The same can be stated when looking at the pro-
ductivity criterion DHf although the significantly smaller latent
heat of the zinc alloy makes it very close to the best performer (i.e.
magnesium AZ91D). Additional weighting based on entropy shows
a significant impact mainly on carbon emissions (again exacer-
bating the poor performance of the magnesium processing plant)
and (to a smaller extent) cost.

When criteria are combined to provide a single score s� (defined
in Section 4.1), magnesium performed best with parts produced in
aluminium as a close second (Fig. 6). Interestingly, the changes in
weights when also entropy is considered, determine a rank reversal
of the best material with almost symmetric results, favouring
aluminium. In this instance, parts made of zinc ZA-8 do not seem
appealing to the DM.

5.2. Combinatorial ranking of categories by importance

To better map the decision making space, three sets of analyses
are considered by computing all rank permutations of categories
and associating the weight distributions (with and without en-
tropy) presented in Section 4.2:

� the weight is halved at each next position in the ranking (Fig. 7
top),

� a more aggressive reduction of the weight with the position in
the ranking according to a quadratic expression (Fig. 7 middle),

� weight distribution dominated by the first two categories (Fig. 7
bottom).

In Fig. 7 the ordinal ranking of categories that dictates their
importance is represented by the position of the initial letter of the
relevant category in the identifier.

It can be noticed that the aluminium alloy appears usually as the
best choice with magnesium as a relatively close second. The zinc
alloy is negatively affectedmostly by the cost criterion and in all the
circumstances when this aspect becomes less important, it emerges
as a strong competitor (e.g. “teqc” and “qtec” with the “halving”
weight distribution, “qtec” for the “quadratic” distribution and in
eight other cases in the “first two” distribution). The significant
importance of the cost criterion for the zinc alloy can also be
observed when comparing the cases “qcte” and “qcet” for the
“quadratic” and “first two” distribution laws. In these cases a rank
reversal between zinc ZA-8 and magnesium AZ91D can be
observed.

The effect of entropy weighting is visible in a few circumstances.
For example, in the results “tcqe” and “tceq” of “halving” weight



Table 2
Values of the criteria considered to compare differentmetal alloys to produce a transfer casewith a High Pressure Die Casting process. A reference to the source is provided next
to the values that have been not calculated or are not confidential.

Quantity Unit of measure Al-A380 Mg-AZ91D Zn-ZA8

Cradle to gate cost Ccg GBP 4.54 4.37 10.97
Volumetric solidification shrinkage Vss % 6.23 4.36 4.65
Solid linear thermal contraction as mm/(m

�
C) 22 (MakeItFrom) 27 (MakeItFrom) 23 (MakeItFrom)

Freezing temperature range DTf
�
C 55 (MatWeb) 125 (MatWeb) 29 (MatWeb)

Solidus temperature Ts
�
C 538 (MatWeb) 470 (MatWeb) 375 (MatWeb)

Tensile strength Ftu MPa 340 (Granta Design, 2017) 245.5 (Granta Design, 2017) 322.5 (Granta Design, 2017)
Modulus of elasticity Et GPa 71 (Granta Design, 2017) 45 (Granta Design, 2017) 86 (Granta Design, 2017)
Yield strength Fy MPa 160 (Granta Design, 2017) 155 (Granta Design, 2017) 245 (Granta Design, 2017)
Elongation to break εb % 3.5 (MatWeb) 3 (MatWeb) 8 (MatWeb)
Fracture toughness kIc MPa

ffiffiffiffiffi
m

p
27.05 (Granta Design, 2017) 13 (Granta Design, 2017) 15 (Granta Design, 2017)

Corrosion depth in atmosphere dca mm/yr 1.39 (Davis, 1998) 19.57 (Davis, 1998) 6.57 (Davis, 1998)
Density r kg/l 2.74 (Granta Design, 2017) 1.81 (Granta Design, 2017) 6.3 (Granta Design, 2017)
Cradle to gate energy consumption Ecg MJ 759.71 699.39 654.12
Cradle to gate mass of CO2 emitted mCO2 ;cg kg 27.34 100.33 21.60
Primary production specific water consumption Vwp l 2294.21 (Granta Design, 2017) 1433.63 (Granta Design, 2017) 2085 (Granta Design, 2017)
Manufacturing energy efficiency hom % 6.14 3.28 1.71
Manufacturing Operational Material Efficiency OMEm / 0.545 0.57 (Eppich, 2004) 0.52 (Eppich, 2004)
Heat of fusion DHf (proportional to machine cycle time) kJ 845.92 (MatWeb) 535.82 (MatWeb) 560 (MatWeb)

Fig. 4. Weighted and normalised values of the criteria in quality domain to compare different metal alloys to produce a product with a high pressure die casting process. The
weighting modified to consider also the entropy of information in the criteria is indicated appending the subscript “s” to the name of the alloy.

Fig. 5. Weighted and normalised values of the criteria in the environmental sustainability, cost and time domains to compare different metal alloys to produce a transfer case with a
high pressure die casting process. The weighting modified to consider also the entropy of information in the criteria is indicated appending the subscript “s” to the name of the alloy.
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distribution, aluminium and zinc alloys score equally in practical
terms, but the use of entropy weighting favours clearly the former
alternative over the latter. A similar situation can be seen in favour
of aluminium A380 when looking at the results for the “quadratic”
weight distribution of cases “qect” and “qetc”, when the entropy
weighting is factored in.

Cumulating the number of best results for each alternative in all
145 cases considered in this study (Fig. 8), aluminium alloy A380
has been the best choice most of the times, followed bymagnesium
alloy AZ91D with zinc ZA-8 last. The effect of entropy consolidates
even more the lead of the aluminium alloy according to this clas-
sification. Alternative, more refined, ways to post-process such
results might be performed on a statistical basis as suggested, for
example, by Hwang and Yoon (1981). For the case to hand in this
work, the presented cumulative approach is deemed sufficient.



Fig. 6. Similarity index s� to the negative ideal solution of different metal alloys to
produce a transfer case with a high pressure die casting process. The best alternative
has the highest score.

Fig. 7. Ranking of the alternative materials through the score parameter s� with weight distributions “halving” (top), “quadratic” (middle) and “first two” (bottom) of criteria based
on their ordinal position. The ranking of the four categories of criteria is shown using a sequence of their first letter (c: cost, q: quality, t: time, e: environmental sustainability). The
entropic weighting is indicated by appending the subscript “s” to the name of the alternative materials.

Fig. 8. Cumulative count of times when each alternative has resulted the best option
for all the cases in this study.
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6. Discussion

In general, decision making is a challenging task where it is
difficult to weight fairly compensatory trade-offs of incommensu-
rable metrics. Sustainability is inherently multi-disciplinary since it
considers a broad variety of dimensions (i.e. environmental, eco-
nomic and social) holistically and, thus, decision making that in-
cludes its instances is even more complex than usual. Attempts to
support this task tried to raise awareness of such complexity,
providing also a structured and objective process supported by a
number MCDA methods. However, such approaches are time
consuming and, although data-driven, are still highly subjective,
especially whenmultiple DMs or stakeholders may disagree or lose
confidence in the process. Attempts seen in the literature (Section
2) to interpret the typical DM interests by weighting criteria in
specific ways might not be sufficiently accurate and may still fail to
show a satisfactory overview of cases as illustrated by the results of
the case study. In fact, the decision making map obtained
combining the 144 cases of Fig. 7 with the one in Fig. 6 can be used
both to satisfy specific DMs requests and also to gauge the sensi-
tivity of the solutions to the criteria weights. Such sensitivity
analysis can be considered more practical and effective than
traditional approaches in manufacturing MCDA d e.g. (Stoycheva
et al., 2018) d when only one criterion weight at the time is var-
ied. Such single-dimensional approach fails to show the sensitivity
to simultaneous changes of multiple attributeweights as it happens
more likely in real life choices.

7. Conclusion

Amethodology that includes the automatic weighting of criteria
in Multi-Criteria Decision Analysis (MCDA) of sustainable
manufacturing systems has been presented. Such methodology,
that can be translated into a framework, has been developed from a
tool used to solve a case study on sustainable metal casting. The
Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) was used to select a material between three typical ma-
terials processed in High Pressure Die Casting (HPDC) plants pro-
ducing automotive components. About thirty deterministic criteria
have been consolidated into eighteen indicators categorised in the
areas of cost, quality, time and environmental sustainability. The
procedure to calculate such quantities have been described in detail
and the relevant results suggested some interesting conclusions.

� Aluminium alloy A380 has resulted the best choice for the
largest number of cases investigated confirming recent indus-
trial trends in the sector.

� The mapping of the decision making space has exposed a few
cases when conventional material choices are challenged and
zinc alloy ZA-8 is preferred over lighter aluminium and mag-
nesium based alternatives. Broadly speaking, this result has
been observed in a series of circumstances when the cost cri-
terion is less important, although the mentioned map of the
decision making space better describes the complex scenario.

� The contribution of entropy weighting has determined both
rank reversals and better separation of close alternatives.

� No simple correlation between the importance of categories and
the score of alternative materials can be generally identified
and, for this reason, the high-resolution decision making map is
significantly valuable.

The automatic allocation of weights is achieved objectively
through an ordinal combinatorial ranking of attributes where four
weight distributions are applied. The user can optionally decide to
mix these weights with a contribution based on the entropy of
information of the criteria. Also this optional step does not require
any input from the Decision Maker (DM). Such characteristics
provide some clear advantages to the user when compared to
traditional approaches that are time consuming, subjective and
might draw partial conclusions that can also be misleading. The
presented framework is devised to minimise the subjectivity in
setting up decision making investigations with a fast, rational and
systematic procedure. Finally, the underlying methodology makes
no specific assumption linked to the initial case study and, thus, it
can be applied to assess sustainability in any manufacturing
system.
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