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Abstract: In this paper, closed loop system characteristics with an incremental backstepping
controller are investigated through theoretical analysis when both measurement biases and
model uncertainties exist. Incremental backstepping algorithm is proposed in previous studies
to reduce model dependency of classical backstepping algorithm with additional measurements
about state derivatives and control surface deflection angles. This research enables to have
following critical understandings especially about the effects of biases on these additional
measurements to system characteristics with incremental backstepping method. First, these
biases do not affect a characteristic equation, so they do not have any influence about a condition
for absolute stability. Second, these biases cause a steady state error, and model uncertainty in
control effectiveness information starts to have an impact to it when these biases are additionally
considered.

Keywords: Backstepping control, Incremental backstepping control, Closed-loop analysis,
Measurement bias, Model uncertainty, Model-based approach, Sensor-based approach

1. INTRODUCTION

Backstepping(BKS) method has been widely applied as
one of nonlinear flight controllers. Nevertheless, it has a
crucial drawback to be sensitive to model uncertainties
because it requires explicit model information for its
implementation. In reality, it is difficult to get an accurate
model, so incremental backstepping(IBKS) algorithm is
proposed to reduce model dependency of BKS. Thanks
to additional measurements about state derivatives and
control surface deflection angles, only control effectiveness
information is required to implement IBKS.

There have been several researches Gils (2016); Ali (2014);
Acquatella (2013); Falconi (2016) where closed loop char-
acteristics with IBKS under model uncertainties can be
found from numerical simulations or experiments. Jeon
(2018) suggested theoretical closed loop analysis results to
have critical understandings about them. Previous studies

⋆ This research is co-funded by the European Union in the scope of
INCEPTION project, which has received funding from the EUs Hori-
zon2020 Research and Innovation Programme under grant agreement
No. 723515.

indicate that IBKS has a strong advantage when model
uncertainties exist; one of important characteristics ob-
tained from the analysis in Jeon (2018) is that a system is
robust with respect to an uncertainty even in control ef-
fectiveness information if a control command is calculated,
transmitted and reflected fast enough to a real control
surface deflection. However, there is a limitation in pre-
vious works that measurements are assummed to be ideal,
which is hard to be achieved in practical applications. If
measurement related issues like a bias, a noise and a delay
are additionally considered, IBKS which lies in between
model based and sensor based approach, might show worse
performance than BKS.

In this paper, closed loop analysis with IBKS consider-
ing both measurement biases and model uncertainties,
is performed. The main purpose of this research is to
have critical understandings about the effects of biases to
system characteristics with IBKS, which can make aimed
performance and stability characteristics difficult to be
acheived. As previously mentioned, measurements about
state derivatives and control surface deflection angles are
additionally required to implement IBKS comparing to
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BKS, so biases on them are mainly considered in this
analysis. Besides, in this paper, it will be investigated
whether closed loop system with IBKS is still robust with
respect to model uncertainties although those biases are
additionally considered.

In section 2, dynamics for control law derivation will
be suggested as a preliminary. In section 3, a control
algorithm using IBKS will be derived and proposed. In
section 4, closed loop analysis with IBKS considering both
measurement biases and model uncertainties, is performed
to have critical understandings especially about the effects
of biases to a system. To verify properties obtained from
section 4, simulations will be carried out and following
results will be suggested in section 5.

2. PRELIMINARY : DYNAMICS

For control law derivation and closed loop analysis, short
period mode dynamics (1), one of the longitudinal oscilla-
tion modes with a high natural frequency, is applied. This
simplified version of dynamics, not full 6-DoF dynamics, is
utilized for simplicity of analysis. This short period mode is
of paramount importance in flight control, because one of
the main purposes of a stability augmentation system for
an airplane is to improve characteristics about this mode.
Since the main objective of this paper is to have critical un-
derstandings about closed loop characteristics with IBKS
especially considering measurement biases, dynamics (1)
is reasonable for this purpose.

α̇ =Z∗

α (M,α)α+ q + Z∗

δ (M,α) δ

q̇ =M∗

α (M,α)α+M∗

q (M,α) q +M∗

δ (M,α) δ
(1)

The state variables α and q indicate angle of attack and
pitch rate. The control input δ represents elevator de-
flection angle. Z∗

α, Z
∗

δ , M
∗

α, M
∗

q and M∗

δ denote aerody-
namic derivatives where M corresponds to Mach number.
Dynamics (1) can be regarded as a linear parameter-
varying(LPV) system i.e., a nonlinear system which can
be expressed into a parametrized linear system whose
parameters change with the states.

3. CONTROL LAW DERIVATION

Before derivation of a control algorithm, dynamics (1) is
modified as follows. First, aerodynamic derivatives esti-

mates (̂·) are utilized instead of real aerodynamic deriva-
tives (·), because only estimated values are available in

a controller design phase. Second, Ẑ∗

δ δ related to non-
minimum phase is neglected. IBKS control law is also
based on backstepping method, so a system is required
to be in strictly feedback form. This is valid for most
of aircrafts, often made in flight control systems’ design
process, because Ẑ∗

δ δ is usually small enough comparing
to the other terms in α̇ equation.

α̇ = Ẑ∗

αα+ q

q̇ = M̂∗

αα+ M̂∗

q q + M̂∗

δ δ
(2)

The state errors are defined as follows.
z1 = α− αc

z2 = q − qc
(3)

where subscript c represents a command.

If Lyapunov candidate function becomes positive definite
and its derivative becomes negative definite, asymptotic
stability for a nonlinear system can be guaranteed. To
derive a control command which satisfies asymptotic sta-

bility assuming that (̂·) have their true values, following 2
cascaded steps are performed.

First, Lyapunov function candidate V1 considering only z1
for an outer-loop controller design is selected as

V1 =
1

2
z21 (4)

which is positive definite. The derivative of V1 becomes

V̇1 = z1ż1

= z1

(

Ẑ∗

αα+ q − α̇c

) (5)

In order to satisfy Lyapunov stability condition, a psedo-
command qc is derived as

qc , −C1z1 − Ẑ∗

αα+ α̇c (6)

which makes negative definite V̇1 = −C1z
2
1 where C1 is a

positive design parameter.

For the outer-loop controller design, classical BKS, not
IBKS, is applied in this paper. If IBKS is applied here
for the outer loop control, α̇0 measurement is additionally
required instead of model information Ẑ∗

α. There exist

more practical ways to replace Ẑ∗

α information, so an
incremental algorithm is not normally used for an outer
loop control. This can be seen also in other papers Gils
(2016) Acquatella (2013) Sieberling (2010) Smeur (2016)
which just applied BKS or PID for it.

For the second step to design an inner-loop controller, q
dynamics in (2) is modified assuming that the states α, q
and the control input δ can be expressed as combination of
reference points (·)0 and perturbations ∆(·) around them.
This is a valid assumption especially with a sufficiently
high sampling rate.

q̇ = M̂∗

α (α0 +∆α) + M̂∗

q (q0 +∆q) + M̂∗

δ (δ0 +∆δ)

= q̇0 + M̂∗

α∆α+ M̂∗

q∆q + M̂∗

δ∆δ
(7)

The increments in states, ∆α and ∆q, are negligible com-
paring to the increment in input, ∆u, since a control
surface deflection directly affects pitch moment, while inte-
gations are required first for states. Then, final incremental
q dynamics for the inner loop controller design with IBKS
is given as below.

q̇ ≃ q̇0 + M̂∗

δ∆δ (8)

In the second step, Lyapunov function candidate V2 con-
sidering both z1 and z2 is selected as

V2 =
1

2
z21 +

1

2
z22 (9)

which is positive definite. The derivative of V2 becomes

V̇2 = z1ż1 + z2ż2

= z1

(

Ẑ∗

αα+ q − α̇c

)

+ z2

(

q̇0 + M̂∗

δ∆δ − q̇c

) (10)

Using the pseudo-command (6), V̇2 becomes

V̇2 = z1 (−C1z1 + z2) + z2

(

q̇0 + M̂∗

δ∆δ − q̇c

)

(11)



To satisfy Lyapunov stability condition, ∆δ is derived as

∆δ ,
1

M̂∗

δ

(−C2z2 − z1 − q̇0 + q̇c) (12)

which makes negative definite V̇2 = −C1z
2
1 − C2z

2
2 where

C1 and C2 are positive design parameters.

Final form of the control law can be suggested as follows.

qc = −C1z1 − Ẑ∗

αα+ α̇c

δ = δ0 +∆δ

=
1

M̂∗

δ

(−C2z2 − z1 − q̇0 + q̇c) + δ0

(13)

δ makes q to achieve qc, and α goes to its desired value
αc by qc. For implementation of a control algorithm,
only Ẑ∗

α and M̂∗

δ are required, and M̂∗

α and M̂∗

q are
not necessary because the incremental dynamics about
q is utilized for a derivation process of IBKS as an
inner loop controller. Hence, comparing to BKS only
controller, model information is less required and a system
becomes robust with respect to the uncertainties in M̂∗

α

and M̂∗

q . Instead, the additional measurements δ0 and q̇0
are required to compensate them.

4. CLOSED-LOOP ANALYSIS

Closed-loop analysis considering both biases on additional
measurements and model uncertainties, is performed. As
in Lee (2016), analysis is carried out in piece-wise way
to easily apply existing analysis framework for a linear
time-invariant(LTI) system. The effects of measurement
biases, which can make aimed performance and stability
characteristics in a controller design phase difficult to be
acheived, are investigated.

Dynamics (1) with Z∗

δ = 0 can be expressed as a state

space equation (14) below. In general, Ẑ∗

δ is small enough
to be neglected, especially for large airplanes.

ẋ = Ax+Bu y = Cx

where

x = [ α q ]
T

u = δ

A =

[

Z∗

α 1
M∗

α M∗

q

]

B =

[

0
M∗

δ

]

C = [ 1 0 ]

(14)

Comparing to the dynamics (2) for the control law deriva-
tion, real aerodynamic derivatives, not estimates, are con-
sidered in this dynamics (14) for the analysis.

In (13), δ can be rewritten as follows by substituting qc,
under the assumption of constant αc (i.e. α̇c = α̈c = 0).

δ =
1

M̂∗

δ

{

−
(

C1 + Ẑ∗

α

)

(C2 + Z∗

α)α−
(

C1 + C2 + Ẑ∗

α

)

q

+C1C2αc − z1} −
1

M̂∗

δ

q̇0 + δ0

(15)

As mentioned in previous section, measurements δ0 and
q̇0 are additionally required to implement IBKS. Hence, if
there exist biases on these additional measurement, as an
innerloop controller, IBKS might show worse performance
than BKS. In this paper, biases on δ0 and q̇0 measure-
ments, bq̇0 and bδ0 , are considered in closed loop analysis

as follows, to have critical understandings about the effects
of them to system characteristics with IBKS.

q̇0 = q̇0,true + bq̇0
δ0 = δ0,true + bδ0

where

q̇0,true = M∗

αα+M∗

q q +M∗

δ δ0,true

δ0,true = δ(t− τ)

(16)

From a piece-wise version of (1), the model for q̇0,true
in (16) is suggested. Under the assumption of an ideal
actuator, a control surface deflection becomes the same
as a generated control command. Then, δ0,true can be
regarded as a control command generated in previous step,
where τ indicates a step size.

By substituting (16) to (15), δ can be rearranged as below.

δ = −
1

M̂∗

δ

ν2,αα−
1

M̂∗

δ

ν2,qq +
1

M̂∗

δ

(C1C2 + 1)αc

+

(

1−
M∗

δ

M̂∗

δ

)

δ (t− τ)−
1

M̂∗

δ

bq̇0 + bδ0

where

να =
{(

C1 + Ẑ∗

α

)

(C2 + Z∗

α) +M∗

α + 1
}

νq =
(

C1 + C2 +M∗

q + Ẑ∗

α

)

(17)

Applying Laplace transform to (17) and arranging this
equation with respect to δ,

δ(s) =
[

− 1
φ(s)να(s) − 1

φ(s)νq(s)
]

X(s)

+
1

φ(s)
(C1C2 + 1)αc(s)−

1

φ(s)
bq̇0 +

M̂∗

δ

φ(s)
bδ0

where

φ(s) = M̂∗

δ

(

1− e−τs
)

+M∗

δ e
−τs

(18)

If Laplace transform is applied to (14) and δ(s) in (18) is
substituted into that equation, a closed loop system can
be suggested, as follows.

sX(s) = A(s)X(s) +B(s)αc(s) +D(s)b(s)

Y = C(s)X(s)

where

A(s) =

[

a2,11(s) a2,12(s)
a2,21(s) a2,22(s)

]

=

[

Z∗

α 1

M∗

α −
M∗

δ

φ(s)ν2,α(s) M∗

q −
M∗

δ

φ(s)ν2,q(s)

]

B(s) =

[

0
M∗

δ

φ(s) (C1C2 + 1)

]

C(s) = [ 1 0 ]

D(s) =

[

0 0

−
M∗

δ

φ(s)
M∗

δ M̂
∗

δ

φ(s)

]

b(s) =

[

bq̇0(s)
bδ0(s)

]

(19)

Then α(s) can be derived as below.



α(s) = C(s) {sI−A(s)}
−1

{B(s)αc(s) +D(s)b(s)}

=
1

s2 − (a2,11 + a2,22) s+ (a2,11a2,22 − a2,12a2,21)
{

M∗

δ

φ(s)
(C1C2 + 1)αc(s)−

M∗

δ

φ(s)
bq̇0(s) +

M∗

δ M̂
∗

δ

φ(s)
bδ0(s)

}

(20)

(20) can be simplified as (21) assuming τ ≃ 0 for analysis
purpose. Thanks to enhanced computation power and
reduced transmission time in recent avionics systems, this
assumption is reasonable.

α(s) =
T (s)

s2 + 2ζωns+ ω2
n

where

T (s) = (C1C2 + 1)αc(s)− bq̇0(s) + M̂∗

δ bδ0(s)

2ζωn = (C1 + C2) +
(

Ẑ∗

α − Z∗

α

)

ω2
n = (C1C2 + 1) + C2

(

Ẑ∗

α − Z∗

α

)

(21)

ζ and ωn represent a damping ratio and a natural fre-
quency for the closed loop system.

Absolute stability is normally guaranteed for a damped
system, so a condition G to maintain stability under mea-
surement biases and model uncertainties can be proposed
from 2ζωn > 0 (Cond.1) under ω2

n > 0 (Cond.2) as follows.

G = {C1, C2 ∈ R>0|Cond. 1 & Cond. 2}

Cond. 1 : C1 + C2 > −Z∗

α∆Z∗

α

Cond. 2 : C1C2 + C2Z
∗

α∆Z∗

α
> −1

(22)

∆(·) indicates an uncertainty in aerodynamic derivative

estimates (̂·) = (·)
{

1 + ∆(·)

}

.

αc(s) =
αc

s
, bq̇0(s) =

bq̇0
s
, and bδ0(s) =

bδ0
s

for a step input
and constant biases. Then, α(s) becomes

α(s) =
(C1C2 + 1)αc − bq̇0 + M̂∗

δ bδ0
s2 + 2ζωns+ ω2

n

1

s
(23)

Steady state error ess can be derived from

ess = αc − lim
t→∞

α(t) = αc − lim
s→0

sα(s) (24)

Then, ess can be suggested as below.

ess =
η2

η1 + η2
αc +

1

η1 + η2
bq̇0 +

η3

η1 + η2
bδ0

where

η1 = C1C2 + 1

η2 = C2

(

Ẑα − Zα

)

η3 = −M̂∗

δ

(25)

From the closed loop analysis above, following two main
observations can be found, and they can be further un-
derstood by comparing to Jeon (2018) where closed-loop
analysis with the same control structure was carried out
only considering model uncertainties under the assumption
of perfect measurements.

First, bq̇0 and bδ0 do not affect the characteristic equation
which is the same as the one in Jeon (2018) without
considering biases. Hence, the condition for absolute sta-
bility (22) becomes the same with the one in Jeon (2018)
to maintain stability just under the model uncertainties.

Unlike ∆Z∗

α
from BKS for the outerloop, ∆M∗

δ
from IBKS

for the innerloop doesn’t have any impact.

Second, bq̇0 and bδ0 additionally cause the second and the
third terms in steady state error (24) where the first term
is identical to the one in Jeon (2018). One of important
characteristics obtained from the analysis in Jeon (2018) is
that the system is robust with respect to ∆M∗

δ
if a control

command is calculated, transmitted and reflected fast
enough to a real control surface deflection, even though
M∗

δ information is required for implementation of IBKS.
However, if bq̇0 and bδ0 are considered, ∆M∗

δ
starts to have

an impact to the steady state error, as it can be seen
especially in bδ0 related term of (25).

5. SIMULATION

Simulations are carried out to verify theoretical analysis
results suggested in previous section. With a piece-wise
approach as in Lee (2016), several points for each grid
were simulated, and as an example, results when altitude
is 7.6200km and U0 = 185.9280m/s are suggested in
this paper. The corresponding aerodynamic derivatives are
Z∗

α = −1.963, Z∗

δ = 0, M∗

α = −4.749, M∗

q = −3.933 and
M∗

δ = −26.68.

Simulation parameters such as an angle of attack com-
mand, design parameters, level of a model uncertainty in
control effectiveness information, and biases on additional
measurements are suggested in table 1. The initial values
for α and q are 0◦ and 0◦/s. Small enough τ = 0.001sec
is applied for the simulation. The effects of ∆Z∗

α
to this

closed loop system comes from BKS for the outerloop.
Since the main objective of this research is to have critical
understandings with IBKS, it is assumed in this simulation
that there is no model uncertainty in Ẑ∗

α. As suggested
in previous section, the condition to guarantee absolute
stability for the system is only affected by ∆Z∗

α
. Without

∆Z∗

α
, absolute stability can be accomplished just with pos-

itive design parameters, as intended in previous controller
design process. Theoretical analysis results indicate that
a primary effect of biases on additional measurements is
in a steady state error, so stable cases with ∆Z∗

α
= 0 are

examined in this simulation.

Table 1. Simulation Parameters

Parameter Value

αc 1.5◦

C1, C2 1.5

∆
M̂∗

δ

[−0.25, 0, 0.25]

bq̇0 , bδ0 [−0.1, 0.1]

Closed loop system responses obtained from simulations
considering only bq̇0 are suggested in Fig.1, and ess values
predicted by (25) for corresponding cases are summarized
in Table 2. When bδ0 is only considered, simulation results
are proposed in Fig.2 and predicted steady state errors
by (25) are suggested in Table 3. Since Ẑ∗

α information is
assumed not to have any uncertainty in this simulation, ζ
and ωn of the system doesn’t change depending on cases
as expected, resulting in the same rising and settling time
for Fig.1 and Fig.2. Steady state errors identified from
simulations and predicted from the analysis result (25)



Table 2. Predicted Steady State Error ess by (25) with bq̇0

P
P
P
P
P
PP

∆M∗

δ

bq̇0
−0.1◦/s 0.1◦/s

−0.25 −0.0308◦ 0.0308◦

0 −0.0308◦ 0.0308◦

0.25 −0.0308◦ 0.0308◦

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 (
°
)

c

 = -0.25

 = 0

 = 0.25

(a) Time response when bq̇0 = −0.1

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.5

1

1.5

 (
°
)

c

 = -0.25

 = 0

 = 0.25

(b) Time response when bq̇0 = 0.1

Fig. 1. Closed-loop System Response with bq̇0

Table 3. Predicted Steady State Error ess by (25) with bδ0

P
P
P
P
P
PP

∆M∗

δ

bδ0
−0.1◦ 0.1◦

−0.25 −0.6158◦ 0.6158◦

0 −0.8211◦ 0.8211◦

0.25 −1.0263◦ 1.0263◦

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.5

1

1.5

2

2.5

3

 (
°
)

c

 = -0.25

 = 0

 = 0.25

(a) Time response when bδ0 = −0.1

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.5

1

1.5

 (
°
)

c

 = -0.25

 = 0

 = 0.25

(b) Time response when bδ0 = 0.1

Fig. 2. Closed-loop System Response with bδ0

are shown to be the same for every cases. Additionally,
following phenomena observed in Fig.1 and Fig.2 can be
also understood from (25). While ∆M∗

δ
has an impact

on steady state errors induced by bδ0 , steady state errors
induced by bq̇0 are not affected by ∆M∗

δ
. Besides, the effect

of bδ0 is appeared to be bigger than of bq̇0 in steady state

error point of view, because |M̂∗

δ | > 1 in this simulation.

6. CONCLUSION

In this paper, closed loop analysis with IBKS consider-
ing both measurement biases and model uncertainties, is
performed to have critical understandings especially about
measurement bias effects. In previous study where closed

loop characteristics with IBKS considering only model
uncertainties are investigated, it is shown that a system
is robust with respect to an uncertainty even in control ef-
fectiveness information if a control command is calculated,
transmitted and reflected fast enough to a real control
surface deflection. However, if measurement biases are
additionally considered, the analysis results in this paper
indicate that a model uncertainty in control effectiveness
information starts to have an impact to a steady state
error. These biases on additional measurements cause a
steady state error, but they do not have any impact to the
characteristic equation. These properties obtained from
the analysis are verified through simulations.
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