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1. Introduction  30 

 31 

The question of whether Alzheimer’s disease (AD) is an infectious condition has been proposed 32 

previously but, received little support. This appears mainly due to an inability of being able to satisfy 33 

Koch’s postulates in the context of chronic neurodegenerative diseases. The clinical signs of cognitive 34 

deficit and the neuropathological markers of amyloid-beta (Aβ) plaques and phosphorylated tau 35 

neurofibrillary tangles (p-TauNFTs) define AD. Clinical trials based on the concept that Aβ removal 36 

may successfully reverse memory loss as a plausible therapy have failed; thus negating the theory of 37 

a causal relationship. We address the question of AD being a non-transmittable infectious disease from 38 

the perspective of microbial dysbiosis of the host’s microbiome. 39 

The Human Microbiome Project consortium (2012) estimated that the human gastrointestinal tract, of 40 

which, the oral and nasal cavities are a part, contains around 1014 microorganisms, out numbering the 41 

cells of the host by 100 to 1.1,2 At a genetic level, microbes contribute to 150-fold more genes over the 42 

total number of genes in an individual, implying both bacteria and the host employ host/bacterial genes 43 

for their harmonious relationship during health. The nasal/oral/gut symbiotic microbiome, therefore, 44 

acts as a “surrogate human organ”.3 What, then, is the impact on a genetically vulnerable elderly 45 

individual when the bacterial surrogate human organ becomes dysbiotic?4 46 

It is becoming clear that the polymorphic Apolipoprotein gene (E4) allele (APOE є4) 47 

susceptibility gene of AD induces a dysregulated innate immune inflammatory response via cytokine 48 

liberation by deregulating C1q to keep the classical complement pathway activated in the brain.5 Hence 49 

these individuals possess an inflammatory phenotype at the outset. APOE є4 genetic susceptibility in 50 

AD is also associated with atherosclerosis, and other cerebro/cardiovascular conditions implicating the 51 

role of co-morbid states in the onset of this neurodegenerative condition. Of recommendation is the 52 

review by Fulop et al.6 The apolipoprotein E null mice, demonstrate susceptibility to infection,7  53 

suggesting microbes will feature in AD subjects due to altered APOE є4 gene function. In this context, 54 

common microbial infectious agents, especially Porphyromonas gingivalis, may be associated with 55 

the AD brain via apparent shared common disease pathways of the innate immune system acting to 56 

enhance and perpetuate the inflammatory burden.8 Inflammatory mediators can erode the proteins that 57 

preserve the full integrity of the blood-brain barrier (BBB) within the brain, as shown previously.9 58 

Nation et al. have shown that the clinical impact of a BBB breach is cognitive impairment10. An 59 

alternative mechanism for cognitive impairment is via inflammation, whereby microglia  induce  60 

excessive pruning (loss) of synapses.11   61 
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 The argument on whether spirochetes are “dementia important” appears to be a historic one, 62 

originating from the Dr. Alzheimer, Dr. Fisher and Dr. Gaetano era who allegedly examined the same 63 

demented brain tissue specimens without detecting spirochetes; leading to scientists ‘agreeing to 64 

disagree’. One would expect with the improvements in methodologies now available to scientists, that 65 

the debate could be concluded accepting the outstanding efforts of Miklossy who has detected Borrelia 66 

burgdorferi in AD brains implicating their role in dementia.12,13  67 

 The reports supporting a fungal association within AD brains is also unravelling. 68 

Actinomyces species have been detected in post-mortem AD brains by next generation high throughput 69 

sequencing methodologies.14,15 Actinomyces species are at the interface of bacteria and fungi as they 70 

show up with Gram-positive characteristics (bacteria) and with Grocott’s silver impregnation (fungi). 71 

Interestingly, P. gingivalis has some synergy with Actinomyces in AD brains as cases that were positive 72 

for P. gingivalis lipopolysaccharide were also positive for Actinomyces species when analysed by next 73 

generation sequencing.15,16  74 

 75 

1.1 Blood-brain barrier and netrophil defects  76 

The dominant microbes detected consistently from AD brains are select species of spirochaetes; 77 

herpes simplex type 1 virus (HSV1), Chlamydia pneumoniae, P. gingivalis, and select fungi.16-20 These 78 

microbes appear adept at altering the opsonophagocytic activity of neutrophil function. They 79 

manipulate monocytes to become defective and to act as ‘Trojan horses’; meaning the monocyte has 80 

lost its legitimate function and the pathogen, for example, C. Pneumoniae, can use it as a vector for its 81 

survival and a place to multiply and a means of spread to the brain. A permeable BBB enables 82 

pathogens within defective monocytes to directly access the brain. P. gingivalis uses several pathways 83 

including the vascular route, via daily bacteraemias caused by gingival bleeding after toothbrushing or 84 

chewing food on periodontally involved teeth; and via a permeable BBB through aging and with the 85 

onset of AD.21,22  86 

The olfactory pathway includes the nose, which contains neurosensory cells and olfactory 87 

glands for smelling odours. Several nerve fibres from these cells pass through cribiform plate foramina 88 

of the ethmoid bone, which partitions the nose from the brain. The porous barrier between the nasal 89 

passages allows neurosensory cell fibres to enter the brain in the entorhinal region, which connects 90 

with the hippocampus, as previously described.23 This appears the pathway of choice for C. 91 

Pneumoniae  and HSV1 to gain access into the brain.6 92 

 93 

1.2 Inflammation in the context of an infection 94 
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The existence of pathogens in AD brains signifies inflammation, that always follows an infectious 95 

episode in the body. If not resolved early, this results in neuronal loss and glial cell cytokine secretion, 96 

which poses a risk to individuals with inherited polymorphic APOE є424 because their glial cells are 97 

already primed for immediate activation. Microglia are the resident macrophages of the brain with a 98 

primary innate immune function.25 They become activated following an immune challenge leading to 99 

secretion of cytokines, chemokines, prostaglandins, nitric oxide and reactive oxygen species.26 100 

Intracerebrally, these cytokines can erode proteins that normally preserve the full integrity of the BBB. 101 

Conversely, patients with periodontal disease have elevated levels of the same cytokines in their blood, 102 

suggesting an extracerebral source of the BBB breach.  103 

 104 

1.3 AD Hallmark proteins and polymicrobial infections 105 

If we were to consider the neuropathological lesions, plaques and p-tauNFTs, of AD as being end stage 106 

phenomenon, then it may be possible to trace their origins from previous infections. Based on the 107 

current literature, the antimicrobial protection hypothesis of AD provides a convincing argument for 108 

plausible causal links of Aβ27. Research from the Moir and Tanzi laboratories has convincingly 109 

demonstrated that the Aβ plaques of AD represent antimicrobial peptides that combat “polymicrobial” 110 

infections in the brain.27-30 This concept strongly links the Aβ lesion to microbes (bacteria, viruses and 111 

fungi). Furthermore, inflammation resulting as the consequence of Aβ is in line with its antimicrobial 112 

peptide properties. In support of this, Illievski et al.31 confirmed that Aβ plaques arise in mice brains 113 

following P. gingivalis (serotype 1) oral infection, and this suggests an overall contribution of this 114 

bacterium, and others including HSV1 and fungi, to Aβ hallmark lesions in the brain. If Aβ1-40/42 115 

plaques are metabolites of the human amyloid precursor protein (APP) gene in AD brains, then how 116 

can prokayote proteins mix with eukaryote proteins to form the same lesion? One explantion is that 117 

the Aβ refers largely to a conformational state of a truncated protein (β pleated sheet structure of 118 

fragmented APP). Bacterial and some other proteins in nature can undergo conformational changes to 119 

form β pleated sheet structures under appropriate conditions.32 Therefore, it is plausible to suggest that 120 

the insoluble Aβ1-40/42 plaques may be remants of an extracellular polymeric substance scaffold from 121 

a former miniature biofilm consortium as described by Dueholm and Nielsen32. and supported by 122 

Miklossy.13  This would require evidence of the brain harbourings a biofilm prior to clinical AD, and, 123 

to date, remains the missing link cementing this theory.   124 

The NFTs represent destabilized microtubules. Dominy et al.19 have provided some clues 125 

towards why tau-binding microtubules may be succumbing to disease in AD. The pathological 126 

microbial link with both hallmark proteins links back to lipopolysaccharide and “gingipains”, a 127 
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protease secreted by P. gingivalis, that can be found in its outer membrane vesicles, with potential to 128 

cause AD in some individuals.19,33 However, a stronger argument for the role of pathogenic tau in AD 129 

development is evidence of tau to be a substrate for gingipains.19 Some of the fragments generated 130 

from tau appear to be neurotoxic and may contribute to the severity and progression of AD. 131 

Alternatively, gingipains, following their release by P. gingivalis, enter the cytoplasm for 132 

detoxification. This, in turn, may lead to release of tau fragments into the brain parenchyma. Small 133 

extracellular fragments of tau may subsequently be taken up by neurons facilitating their spread in a 134 

phenomenon known as ‘tau spreading’.  135 

 136 

   137 

2. Conclusions 138 

The sporadic form of AD has a multitude of pathways for its expression and the microbial contribution 139 

from dysbiotic host microbiomes can be involved from comorbid states. In this case, periodontal 140 

disease and its association with multiple other diseases, especially arteriosclerotic vascular disease,34 141 

are strong candidates for perpetuating inflammation. If AD was to be regarded as an infectious disease, 142 

it would be a polymicrobial non-transmissible infection of the brain resulting from a dysbiotic host 143 

microbiome (an environmental factor, acting in concert with APOE є4 susceptibility). Adult 144 

periodontal disease of 10 years and longer duration double the risk of developing AD.35,36 Warren and 145 

colleagues found that poor oral hygiene was more likely to contribute to the severity of dementia, and 146 

that these patients suffered silently from tooth related pain, which may be reflected in their difficult 147 

clinical behaviour.37 We are of the opinion that the pathogen load (poor oral hygiene) is the likely risk 148 

for AD at any age38 and the general public have their own perception of adequate oral hygiene. This 149 

behavioral perception and often painless progression of periodontal disease, masking the need to seek 150 

dental treatment, makes it difficult to engage with people to enforce the idea that their oral hygiene on 151 

daily basis is subjective, and as such, carries the risk of developing dementia. 152 

The oral pathogen P. gingivalis hypothesis for AD has provided the basis for current drug 153 

testing which targets its toxic proteases to reduce the risk of AD development.19 This novel treatment 154 

is undergoing phase III clinical trials (GAIN Trial: Phase 2/3 Study of COR388 in subjects with AD. 155 

ClinicalTrials.gov Identifier: NCT03823404). If successful, this will give greater credence to the 156 

hypothesis that a subgroup of sporadic AD results from a polymicrobial host microbiome dysbiosis. 157 

As periodontal disease is not transmissible per se, the same analogy applies to AD if the dysbiotic 158 

microbiome pathogens have a causative role. This will further enforce the vital importance of 159 
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modifiable risk factors in preventing and/or delaying AD onset and  challenges the WHO to accept 160 

poor oral hygiene as a robust risk factor for AD.  161 

 162 
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