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Abstract

For a reaction diffusion system, it is well known that the diffusion co-
efficient of the inhibitor must be bigger than that of the activator when
the Turing instability is considered. However, the diffusion-driven insta-
bility/Turing instability for a single-handed discrete Fisher equation with
the Neumann boundary conditions may occur and a series of 2-periodic
patterns have been observed. Motivated by these pattern formations, the
existence of 2-periodic solutions is established. Naturally, the periodic
double and the chaos phenomenon should be considered. To this end, a
simplest two elements system will be further discussed, the flip bifurca-
tion theorem will be obtained by computing the center manifold, and the
bifurcation diagrams will be simulated by using the shooting method. It
proves that the Turing instability and the complexity of dynamical behav-
iors can be completely driven by the diffusion term. Additionally, those
effective methods of numerical simulations are valid for experiments of
other patterns, thus, are also beneficial for some application scientists.

MSC(2010): 39A10.
Keywords: Discrete Fisher equation, Turing instability, Turing bifu-

cation, flip bifurcation, shooting method.

1 Introduction

Turing structures arise when imbalances in diffusion rates make a stable steady-
state system sensitive to small heterogeneous perturbations. The ideas have pro-
foundly influenced theoretical understanding of pattern formation in nonlinear
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optics (see [1], [25] and [49]), fluid dynamic (see [7] and [29]), colloidal lithogra-
phy [46], epidemiology (see [35] and [40]), cell biology [17], solid-liquid-vapour
system [31], biological morphogenesis (see [44], [9], [16], [38] and [43]), nanos-
tructure (see [4], [13], [19] and [41]), biochemical networks [42], phytoplankton
dynamics [21], material science (see [5], [13], [39] and [6]), electrochemistry [23],
chemical reaction (see [44], [32], [20], [19] and [41]), social science [2], etc.

A reaction-diffusion system is said to exhibit Turing or the diffusion-driven
instability if the steady state solution is stable to small spatial perturbations in
absence of diffusion, but unstable when diffusion is present. Turing structures
typically emerge in reaction diffusion processes far from thermodynamic equi-
librium [44], in which the diffusion coefficient of the inhibitor must be larger
than that of the activator. That is, a reaction diffusion equation can not lead
to the Turing instability. For example, the Fisher equation

∂u

∂t
= D∆u+ u (a− bu) , D, a, b > 0, (1)

is well known and has been studied by many authors since it is a basic reaction
diffusion equation which can be used to model population dynamics with mi-
gration, temperature distribution under control, chemical reactions, etc. When
D = 0, equation (1) is reduced to the logistic equation

dx(t)

dt
= x(t)(a− bx(t)), (2)

which has a stable positive steady state a/b. We note that u∗ (t, x) ≡ a/b is
also the positive steady state of (1) with the Neumann or periodic boundary
conditions, and clearly, it is also stable.

Equation (2) can be rewritten by ((dx(t))/(x(t)dt)) = a − bx(t). Thus, the
constant a > 0 is the birth rate, bx(t) is the death rate, and b is a positive
constant. When the random walk is added to Equation (2), the Fisher equation
(1) will be obtained.

Many authors have argued that the discrete time models governed by d-
ifference equations are more appropriate than the continuous ones when the
populations have nonoverlapping generations, for example, see Freedman [8],
Murry [30], Punithan et al. [33], Huang et al. [15] and Wang et al. [45]. By us-
ing the different discrete methods, from equation (2) we can obtain the discrete
logistic equations:

xt+1 = rxt (1− xt) , (3)

xt+1 = xt exp(a− bxt), (4)

or

xt+1 =
eahxt

1 + ((eah − 1) b/a)xt
, (5)

see Liu and Cui [24], where h > 0 is the discrete step size. The dynamics of (3)
and (4) can become “chaotic” for certain parameter values while their “mother-
version” (2) has very simple dynamics, see May [26]. It is elementary to note
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that the fixed points of (5) are 0 and a/b as they are in the corresponding
continuous case (2). Also xt → a/b monotonously as t → ∞ when x0 > 0.
This is exactly the same as in (2). Thus, (5) can be considered as a better
discretization of the continuous logistic equation.

Let
p = eah and yt =

((
eah − 1

)
b/a
)
xt.

From (5), we have

yt+1 =
pyt

1 + yt
, (6)

where p > 1. Clearly, equation (6) has the steady states 0 and p − 1, the zero
solution is not stable, and the positive steady state p− 1 is stable.

In almost any real ecosystem, the population dynamics include both tem-
poral reproduction processes and spatial diffusion processes, see Punithan et
al. [33]. Let Z+ = {0, 1, 2, · · ·}. For any k, l ∈ Z+ with k < l, denote
[k, l] = {k, k + 1, · · ·, l}, and consider the discrete reaction diffusion equation
of the form

ut+1
ij = d∆ut

ij +
put

ij

1 + ut
ij

, (i, j) ∈ [1,m]× [1, n] , (7)

with the Neumann boundary conditions{
ut
i,0 = ut

i,1, u
t
i,n = ut

i,n+1, i ∈ [0,m+ 1] ,
ut
0,j = ut

1,j , u
t
m,j = ut

m+1,j , j ∈ [0, n+ 1] ,
(8)

for t ∈ Z+, where m and n are positive integers, d > 0 is the diffusion coefficient,
p > 1, and

∆ut
ij = ut

i+1,j + ut
i,j+1 + ut

i−1,j + ut
i,j−1 − 4ut

ij .

Now, we have a problem. Can the diffusion term of (7)-(8) drive instability?
That is, can (7)-(8) be the diffusion-driven instability or Turing instability?
Indeed, there is the different statement for the space- and time-discrete model,
the dynamical behaviors of activator and inhibitor from t to t+ 1 contains two
distinctly different processes, one is the “reaction” stage, the other is “dispersal”
stage, for example, see Mistro et al. [34] and [28], Punithan et al. [33], Huang
et al. [14] and [15] for the predator-prey model, competitive system ([12] and
[22]), diffusion-migeration systems [51], statistical physics [3], Gierer–Meinhardt
system [45] and so on. However, all above models are the space- and time-
discrete systems.

Xu et al. [48] and [47] considered a two-dimensional logistic coupled map
lattice of the form

ut+1
ij = (1− ε) f

(
ut
ij

)
+

ε

4

[
f
(
ut
i+1,j

)
+ f

(
ut
i,j+1

)
+ f

(
ut
i−1,j

)
+ f

(
ut
i,j−1

)]
or

ut+1
ij = f

(
ut
ij

)
+ ε∆f

(
ut
ij

)
(9)

3



with the periodic boundary conditions

ut
0,j = ut

m,j , ut
1,j = ut

m+1,j , u
t
i,0 = ut

i,n, ut
i,1 = ut

i,n+1,

where f (x) = λx (1− x) for λ ∈ (1, 3), and

∆f
(
ut
ij

)
= f

(
ut
i+1,j

)
+ f

(
ut
i,j+1

)
+ f

(
ut
i−1,j

)
+ f

(
ut
i,j−1

)
− 4f

(
ut
ij

)
.

The conditions of Turing instability had been obtained and some interest pat-
terns had also been simulated in [48] and [47].

The present paper is motivated by Xu et al. [48] and [47] and the problem
(7)-(8) will be considered. Note that the diffusion term in (7) is linear and that
the positive steady state p−1 of (6) is stable for all p > 1. These will cause some
difficulties in numerical simulations. We simulate all possible cases, however,
only obtain the 2-periodic patterns in this paper. In this case, we consider the
different problems from Xu et al. [48] and [47], for example, the existence of
2-periodic solutions, the flip bifurcation theorem and the bifurcation diagrams
of a simplest two elements system. In particular, for the simplest two elements
system, the other periodic orbits are also obtained by using the numerical simu-
lation. Thus, the Turing instability and the complexity of dynamical behaviors
are completely driven by the diffusion term.

The present paper will be organized as follows. The necessary and suffi-
cient conditions of Turing instability for problem (7)-(8) will be established in
the following section. To date most numerical simulations of reaction-diffusion
models have used small random perturbations about the kinetic steady state as
initial data. However, in view of the discrete Grobman-Hartman Theorem [18],
we find that the numerical simulations are obvious effected by using the linear
combinations of the eigenvectors. By using such method, some Turing patterns
will be simulated in Section 3. The 2-periodic patterns have been observed.
Thus, in Section 4, the existence of 2-periodic solutions will be proved by us-
ing the inverse function theorem. Naturally, we should also further discuss the
periodic double and the chaos phenomenon of (7)-(8). Unfortunately, all pat-
terns are 2-periodic. To obtain other dynamical informations of (7)-(8), we will
further analyse a simplest two elements system when p > 1 is fixed and d > 0
is a parameter. As a result, we find that this system can cause the complexity.
These facts will be given in Section 5. In the final section, we will conclude
some conclusions and give some open problems.

2 Linearization analysis and the Turing instabil-
ity

The idea of linearization analysis is an efficient approach. It has been also
adopted in the work [36]. Note that ut

ij ≡ p − 1 is a solution of (7)-(8). Thus,
we can obtain the linearization problem of (7)-(8) about the kinetic steady state

vt+1
ij = d∆vtij +

1

p
vtij , t = 0, 1, 2, · · ·, (10)
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with the Neumann boundary conditions{
vti,0 = vti,1, v

t
i,n = vti,n+1, i ∈ [0,m+ 1] ,

vt0,j = vt1,j , v
t
m,j = vtm+1,j , j ∈ [0, n+ 1] .

(11)

The eigenvalues and eigenvectors of the discrete Neumann equations are demon-
strated in the Appemdix.

Assume that
{
vtij
}
is a solution of (10)-(11). According to Able lemma and

the corresponding boundary condition (11), we have

m∑
i=1

n∑
j=1

φ
(kl)
ij vt+1

ij = d
m∑
i=1

n∑
j=1

φ
(kl)
ij ∆vtij +

1

p

m∑
i=1

n∑
j=1

φ
(kl)
ij vtij

= d

m∑
i=1

n∑
j=1

vtij∆φ
(kl)
ij +

1

p

m∑
i=1

n∑
j=1

φ
(kl)
ij vtij

=

(
1

p
− dλkl

) m∑
i=1

n∑
j=1

φ
(kl)
ij vtij .

Let

V t =
m∑
i=1

n∑
j=1

φ
(kl)
ij vtij .

We get that

V t+1 =

(
1

p
− dλkl

)
V t, t = 0, 1, 2, · · ·. (12)

If {V t} is a solution of (12), then vij = V tφ
(kl)
ij , is clearly a solution of

(10)-(11). Thus, we have the following result.

Theorem 1. (10)-(11) is stable if and only if equation (12) is stable for all
(k, l) ∈ [1,m]× [1, n].

Note that the eigenvalue of (12) is dλkl − 1/p, in view of Theorem 1, we
immediately obtain the following result.

Corollary 1. (10)-(11) is stable if and only if the inequality∣∣∣∣1p − dλkl

∣∣∣∣ < 1 (13)

holds for all (k, l) ∈ [1,m]× [1, n].

Corollary 2. (10)-(11) is stable if and only if the inequality

λmn = 4
[
cos2

π

2m
+ cos2

π

2n

]
<

1

d
+

1

dp
(14)

holds.
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Proof. We know that the inequality∣∣∣∣1p − dλkl

∣∣∣∣ < 1

holds if and only if the inequality

−1 <
1

p
− dλkl < 1

or
1

p
− 1 < dλkl < 1 +

1

p

holds. Note that p > 1 which implies that the first one of the above inequalities
is obvious. On the other hand,

max
k∈[1,m],l∈[1,n]

{λkl} = 4 max
i∈[1,m],j∈[1,n]

[
sin2

(k − 1)π

2m
+ sin2

(s− 1)π

2n

]
= 4

[
sin2

(m− 1)π

2m
+ sin2

(n− 1)π

2n

]
= 4

[
cos2

π

2m
+ cos2

π

2n

]
.

The proof is complete.

Corollary 3. (10)-(11) is unstable if and only if there exists (k, l) ∈ [1,m]×
[1, n] such that

λkl >
1

d
+

1

dp
(15)

holds. That is, the positive steady state solution ut
ij ≡ p− 1 of (7)-(8) is Turing

unstable if and only if there exists (k, l) ∈ [1,m] × [1, n] such that inequality
(15) holds.

3 Turing patterns

In this section, we will give some numerical simulations when all conditions of the
Turing instability hold. To achieve the desired results of numerical simulation,
we need to give some theoretical analysis. They will be obtained in the following
subsection. An example will be given in the second subsection and a series of
2-periodic patterns can be observed.

3.1 Some theoretical analysis

Consider now a recurrence sequence defined by

xt+1 = f (xt) for xt ∈ Rn, (16)
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where f is sufficiently smooth, f (0) = 0. Let the eigenvalues of the Jacobian
matrix A evaluated at the fixed point x0 = 0 be µ1, µ2, · · ·, µn. Assume that
there are n+ multipliers outside the unit circle, n0 multipliers on the unit circle,
and n− multipliers inside the unit circle. The fixed point 0 is called to be
hyperbolic if n+ + n− = n. The following lemma is Theorem 2.4 in [18].

Lemma 1. The phase portraits of (16) near two hyperbolic fixed points,
x0 and y0, are locally topologically equivalent if and only if these fixed points
have the same number n− and n+ of multipliers with |µ| < 1 and |µ| > 1,
respectively, and the signs of the products of all the multipliers with |µ| < 1
and with |µ| > 1 are the same for both fixed points.

In view of Lemma 1, suppose that the equilibrium is hyperbolic and there
are n+ multipliers outside the unit circle, and n− multipliers inside the unit
circle. Using an eigenbasis, we can also rewrite the system (16) as{

ut+1 = But + g (ut, vt) ,
vt+1 = Cvt,

(17)

where ut ∈ Rn+ , vt ∈ Rn− , the eigenvalues of B ∈ Rn+ × Rn+ are outside the
unit circle, and the eigenvalues of C ∈ Rn− ×Rn− are inside the unit circle.

Note that limt→∞ vt = 0, in view of Lemma 1, we find that the long-time
dynamical behavior of (16) should depend on the system

ut+1 ≈ But + g (ut, 0) .

Thus, the initial values should be chosen from the unstable tangent bundles.

Remark 1. The numerical simulations of patterns are difficult for the ran-
dom initial values when the number of |µ| > 1 is small. For problem (7)-(8), we
assume that there exists (k, l) ∈ [1,m]× [1, n] such that

λkl >
1

d
+

1

dp

which implies that

λk+τ,l+ι >
1

d
+

1

dp
for (τ, ι) ∈ [0,m− k]× [0, n− l] . (18)

Thus, the initial values should be chosen by

u0
ij = p− 1 + ε

m−k∑
τ=0

n−l∑
ι=0

cτιφ
(k+τ,l+ι)
ij . (19)

In particular, we assume that

λmn >
1

d
+

1

dp
and max {λm−1,n, λm,n−1} <

1

d
+

1

dp
(20)

7



hold. Then, the initial values should be chosen by

u0
ij = p− 1 + εφ

(mn)
ij . (21)

In this case, if we randomly choose the initial values τ0ij ∈ [−1, 1] for (i, j) ∈
[1,m]× [1, n], then there exists ckl such that

τ0ij =
m∑
i=1

n∑
j=1

cklφ
(kl)
ij for (i, j) ∈ [1,m]× [1, n] .

Let

u0
ij = p− 1 + ε

m∑
i=1

n∑
j=1

cklφ
(kl)
ij .

It is very difficult to achieve the desired results of numerical simulation. Indeed,
Lemma 1 implies that

lim
t→∞

ut
ij = p− 1 for (i, j) ∈ [1,m]× [1, n]

when cmn = 0. In fact, the probability of cmn ̸= 0 is 1/mn.

Remark 2. Turing patterns of numerical simulation will depend on the
tangent eigenvectors of maximum norm eigenvalues. For any v0ij ∈ R with
(i, j) ∈ [1,m]× [1, n], then, there exists ckl ∈ R such that

v0ij =
m∑

k=1

n∑
l=1

cklφ
(kl)
ij for (i, j) ∈ [1,m]× [1, n] .

From (10)-(11), we have

v1ij = d∆v0ij +
1

p
v0ij

= d∆

(
m∑

k=1

n∑
l=1

cklφ
(kl)
ij

)
+

1

p

m∑
k=1

n∑
l=1

cklφ
(kl)
ij

= d
m∑

k=1

n∑
l=1

ckl∆φ
(kl)
ij +

1

p

m∑
k=1

n∑
l=1

cklφ
(kl)
ij

=

m∑
k=1

n∑
l=1

ckl

(
1

p
− dλkl

)
φ
(kl)
ij ,

v2ij = d∆v1ij +
1

p
v1ij

=
m∑

k=1

n∑
l=1

ckl

(
1

p
− dλkl

)2

φ
(kl)
ij ,
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· · · · ··,

vtij =

m∑
k=1

n∑
l=1

ckl

(
1

p
− dλkl

)t

φ
(kl)
ij for (i, j) ∈ [1,m]× [1, n] . (22)

Let

(m′, n′) =

{
(k, l) : max

ckl ̸=0

∣∣∣∣1p − dλkl

∣∣∣∣} .

In this case, we have

vtij =

m′∑
k=1

n′∑
l=1

ckl

(
1

p
− dλkl

)t

φ
(kl)
ij

or

vtij(
1
p − dλm′n′

)t =

m′∑
k=1

n′∑
l=1

ckl

(
1
p − dλkl

1
p − dλm′n′

)t

φ
(kl)
ij (23)

∼ cm′n′φ
(kl)
ij for (i, j) ∈ [1,m]× [1, n] .

In view of Lemma 1 and (23), Turing patterns of numerical simulation will de-
pend on the tangent eigenvector of maximum norm eigenvalue. That is, the
tangent eigenvector of maximum norm eigenvalue will be the embryo of the
Turing patterns. These facts will also be seen in the following numerical simu-
lations.

3.2 An example

In this subsection, we assume that p = 2 and m = n = 64. In this case, we have

λkl = 4

[
sin2

(k − 1)π

2× 64
+ sin2

(l − 1)π

2× 64

]
,

λ64,64 = 8 sin2
(64− 1)π

2× 64
≈ 7. 995 2

and

λ63,64 = λ64,63 = 4

[
sin2

(64− 1)π

2× 64
+ sin2

(64− 2)π

2× 64

]
≈ 7. 988 0.

Suppose that

7. 988 0 <
1

d
+

1

2d
=

3

2d
< 7. 995 2

or

0.187 61 ≈ 3

2× 7. 995 2
< d <

3

2× 7. 988 0
≈ 0.187 78.
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(a) t = 0 (b) t = 89

(c) t = 90 (d) t = 200000

Figure 1: m = n = 64, p = 2, d = 50000 and u0
ij is chosen by (30).

Then, the condition (20) holds. In this case, we choose that d = 0.1877 and
that

u0
ij = 1 + 0.01 cos

(64− 1) (2i− 1)π

2× 64
cos

(64− 1) (2j − 1)π

2× 64
, (24)

an eventual 2-periodic pattern is obtained.
On the other hand, we also choose the initial values distribution (24) and

give a series of numerical simulations for d > 0.187 61. Similarly, all patterns
are eventually 2-periodic. The only difference is the time from the initial values
distribution to the 2-periodic patterns. For example, for d = 50000, see Figure
1. From these simulations, we see that the patterns are two period mode from
t = 1, that is, all patterns are selfsaue when t is odd and they are also same
if t > 0 is even, for example, see (c) and (d) in Figure 1 they are obtained
for t = 90 and 200000, respectively. In fact, (a) in Figure 1 has been seen the
embryo (d) in Figure 1.

Let

d >
3

2× 4 sin2 π
2×64

≈ 622. 64.

In this case, we can choose the initial values distribution

u0
ij = 1 + 0.01 cos

(k − 1) (2i− 1)π

2× 64
cos

(l − 1) (2j − 1)π

2× 64
(25)

for (k, l) ∈ [1, 64] × [2, 64] or (k, l) ∈ [2, 64] × [1, 64]. The obtained patterns
are also 2-periodic. For example, we fix d = 50000 and choose different k and
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(a) k = 1 and l = 2 (b) k = 1 and l = 19 (c) k = 1 and l = 37 (d) k = 1 and l = 53

(e) k = 3 and l = 2 (f) k = 3 and l = 3 (g) k = 3 and l = 7 (h) k = 2 and l = 59

Figure 2: m = n = 64, p = 2, d = 50000 and u0
ij is chosen by (31).

l, the patterns are obtained in Figure 2 in which we can obtain the following
facts: (i) all patterns are the alternation of two different forms, (ii) for the fixed
k = 1 and the different l, there are the difference of the widths of the green or
yellow stripes, see (a)-(d), and (iii) the area [1, 64]× [1, 64] will be cut apart the
corresponding parts which depend on the selections of k and l, see (e)-(h).

For (k, l) ∈ [1, 64] × [2, 64] or (k, l) ∈ [2, 64] × [1, 64], some eigenvalues are
same, however, their corresponding eigenvectors are different. For example, the
minimal eigenvalue is

λ2,1 = λ1,2 = 4 sin2
π

2× 64
≈ 2. 409 1× 10−3

which have respectively the corresponding eigenvectors

cos
(2i− 1)π

2× 64
for i ∈ [1, 64]

and

cos
(2j − 1)π

2× 64
for j ∈ [1, 64] .

In this case, we choose the initial values distributions

u0
ij = 1 + 0.01 cos

(2i− 1)π

2× 64
+ 0.01 cos

(2j − 1)π

2× 64
, (26)

u0
ij = 1 + 0.01 cos

(2i− 1)π

2× 64
+ 0.005 cos

(2j − 1)π

2× 64
(27)

and

u0
ij = 1 + 0.01 cos

(2i− 1)π

2× 64
+ 0.09 cos

(2j − 1)π

2× 64
(28)

and the different 2-periodic patterns can be obtained, please see the correspond-
ing (a), (b) and (c) in Figure 3. For d = 50000, m = n = 64, and p = 2, we can
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(a) u0 is (32) (b) u0 is (33)

(c) u0 is (34) (d) u0 is (35)

Figure 3: m = n = 64, p = 2, d = 50000.

further choose the initial values distribution

u0
ij = 1 + 0.01 cos

(2j − 1)π

2× 64
(29)

+0.01 cos
(3− 1) (2i− 1)π

2× 64
cos

(4− 1) (2j − 1)π

2× 64
.

The simulation result is the pattern (d) in Figure 3, the eigenvector of the
greater eigenvalue is the leader. The pattern is exactly the same as one of the
initial values distribution

u0
ij = 1 + 0.01 cos

(3− 1) (2i− 1)π

2× 64
cos

(4− 1) (2j − 1)π

2× 64
.

Thus, (23) holds true.
From the above pattern formations, they are the flip bifurcation, the periodic

double, and the chaos phenomenon will occur for problem (7)-(8). Thus, we hope
to simulate the other different periodic patterns, unfortunately, we fail.

4 The existence of 2-periodic solutions

From previous discussion, we found that problem (7)-(8) should have many 2-
periodic solutions when some conditions hold. In this section, we will further
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discuss such problem. To this end, we consider the nonlinear algebraic system
of the form 

u1
ij = d∆u0

ij +
pu0

ij

1+u0
ij
, (i, j) ∈ [1,m]× [1, n] ,

u0
ij = d∆u1

ij +
pu1

ij

1+ut
ij
, (i, j) ∈ [1,m]× [1, n] ,

ut
i,0 = ut

i,1, u
t
i,n = ut

i,n+1, i ∈ [0,m+ 1] , t = 0, 1
ut
0,j = ut

1,j , u
t
m,j = ut

m+1,j , j ∈ [0, n+ 1] , t = 0, 1.

(30)

We need the following inverse function theorem which can be seen Theorem
1.2.1 in [10].

Lemma 2. Let G be a Cr map from an open set W into Rm, with r ≥ 1.
Let x be a point of W and assume that the Jacobian matrix DG (x) is invertible.
Then x has an open neighborhood U such that the restriction of G to U is a Cr

diffeomorphism onto the open set G (U).

Theorem 2. For all (k, l) ∈ [1,m]× [1, n], assume that

1

dp
̸= λkl ̸=

p

d
(31)

hold. Then system (30) has a nontrivial solution
(
u0
∗, u

1
∗
)
∈ U×V , where U×V

is an open neighborhood of
(
u0, u1

)
, u0 =

(
u0
ij

)
m×n

, u1 =
(
u1
ij

)
m×n

, and u0
ij

and u1
ij are 0 or p− 1 for [1,m]× [1, n]. In particular, when the inequality

λmn >
1

d
+

1

dp
(32)

holds and
1

dp
̸= λkl for (k, l) ∈ [1,m]× [1, n] ,

system (30) has a nontrivial positive solution
(
u0
∗, u

1
∗
)
∈ U × V , where U × V

is an open neighborhood of
(
u0, u1

)
, u0 =

(
u0
ij

)
m×n

, u1 =
(
u1
ij

)
m×n

, and

u0
ij = u1

ij = p− 1 for [1,m]× [1, n].

Proof. Note that (
pu

1 + u

)′

=
p

(1 + u)
2 ,(

pu

1 + u

)′

|u=0 = p

and (
pu

1 + u

)′ ∣∣∣∣u=p−1 =
1

p
.

13



Thus, the Jacobian matrix of system (30) is invertible if and only if

dλkl ̸= p and dλkl ̸=
1

p
for (k, l) ∈ [1,m]× [1, n] ,

where λkl is defined by (51), u0
ij and u1

ij are 0 or p− 1 for [1,m]× [1, n].
The second part of theorem is clear. The proof is complete.

Remark 3. In view of Lemma 2, W is an open set of Rm. Suppose that

min (λ12, λ21) >
1

d
+

1

dp

holds and

dλkl ̸=
1

p
for (k, l) ∈ [1,m]× [1, n] .

Then, the open set W can be chosen the subset of
{
cφ

(kl)
ij , c ∈ R

}
, where φ

(kl)
ij

is defined in (52), (i, j) ∈ [1,m] × [1, n], (k, l) ∈ [2,m] × [1, n] or [1,m] × [2, n].
In this case, system (30) has mn− 1 nontrivial positive solutions. On the other
hand, if there exists (k, l) and (k′, l′) such that λkl = λk′l′ , then the open set
W can also be chosen the subset of{

bφ
(kl)
ij + bφ

(k′l′)
ij , a, b ∈ R

}
.

Some new positive solutions will be added.

Remark 4. Certainly, the feedback control can be added when the system
is unstable, see Shang [37]. Such work will be considered in the further.

5 A simplest two elements system

Motivated by the pattern formations of Section 3, we should further discuss the
dynamical behaviors of (7)-(8). Unfortunately, we can not give a more general
analysis. In this section, we will consider a simplest two elements system which
is the case of m = 1 and n = 2, and hope to obtain some valuable informations.
The simplest Neumann problem is ut+1

1 = d (−ut
1 + ut

2) +
put

1

1+ut
1
,

ut+1
2 = d (ut

1 − ut
2) +

put
2

1+ut
2
.

(33)

When d = 0, system (33) is reduced to

ut+1 =
put

1 + ut

which has a unique positive steady state p− 1 and is stable for p > 1.

14



Clearly, the point E = (p− 1, p− 1) is also the unique positive equilibrium
of (33). The linearization of (33) about E has the Jacobian matrix

JE =

( −d+ 1
p d

d −d+ 1
p

)
(34)

which has the eigenvalues

λ1 =
1

p
− 2d and λ2 =

1

p
(35)

and the corresponding eigenvectors

φ(1) = col (−1, 1) and φ(2) = col (1, 1) . (36)

Note that 0 < λ2 < 1 for p > 1. We assume that λ1 < −1 and obtain that

d >
1 + p

2p
.

Property 1. For any p > 1, the unique positive equilibrium E = (p− 1, p− 1)
of system (33) is stable if and only if

d <
1 + p

2p
. (37)

In view of Property 1, we find that system (33) is Turing unstable if and
only if

d >
1 + p

2p
. (38)

Thus, d = d1 = (1 + p) /2p is the Turing unstable bifurcation of (33) and the
Turing unstable domain is

Ω =

{
(p, d) : d >

1 + p

2p
, p > 1

}
.

To obtain the further information, we let d = d1 = (1 + p) /2p. In this case,
we find that λ1 = −1 and λ2 = 1/p < 1. Thus, d = d1 = (1 + p) /2p is also the
flip bifurcation of (33).

Now, we assume that d is a parameter and rewrite (33) as u1

u2

d

→

 d (−ut
1 + ut

2) +
put

1

1+ut
1

d (ut
1 − ut

2) +
put

2

1+ut
2

d

 . (39)

Let
x = u1 − u∗

1, y = u2 − u∗
2 and δ = d− d1.

15



We have x
y
δ

→

 1
p − d1 d1 0

d1
1
p − d1 0

0 0 1

 x
y
δ

+

 f1 (x, y, δ)
g1 (x, y, δ)

0

 , (40)

where

f1 =
1

2
a200x

2 + a101xδ + a011yδ +
1

6
a300x

3 +O (4) ,

g1 =
1

2
b020y

2 + b101xδ + b011yδ +
1

6
b030y

3 +O (4) ,

a100 =
1

p
− d1, a010 = d1, a200 = − 2

p2
, a101 = −1, a011 = 1, a300 =

6

p3
,

b100 = d1, b010 =
1

p
− d1, b020 = − 2

p2
, b010 = 1, b011 = −1, b030 =

6

p3

and O (4) represents the terms with order greater than or equal to 4 in the
variables (x, y, δ).

Assume that  x
y
δ

 = T

 w
z
δ

 ,

where

T =

 −1 1 0
1 1 0
0 0 1


which implies that

T−1 =

 − 1
2

1
2 0

1
2

1
2 0

0 0 1

 .

From (40), we get that w
z
δ

 = T−1

 1
p − d1 d1 0

d1
1
p − d1 0

0 0 1

T

 w
z
δ

 (41)

+T−1

 F1 (w, z, δ)
G1 (w, z, δ)

0


=

 −1 0 0
0 1

p 0

0 0 1

 w
z
δ

− 1

2

 F1

G1

0

 ,

where

F1 =
1

p3
(
−pw2 − pz2 + 2p3wδ + 2pwz − w3 + z3 + 3w2z − 3wz2

)
16



and

G1 = − 1

p3
(
pw2 + pz2 + 2p3wδ + 2pwz − w3 − z3 − 3w2z − 3wz2

)
.

In the following, we will compute the center manifold W c (0, 0, 0). To this
end, we assume that

W c (0, 0, 0) = {(w, z, δ) : z = H (w, δ) ,H (0, 0) = 0, DH (0, 0) = 0} , (42)

where
H (w, δ) = e1w

2 + e2wδ + e3δ
2 +O (|w|+ |δ|)3 .

Using the invariance of the center manifold, we get that

e1 =
1

2 (p− 1)
, e2 = 0 and e2 = 0.

The map (41) restricted to the center manifold W c (0, 0, 0) is

F : w → −w + c20w
2 + c11wτ + c21w

2τ + c12wτ
2 + c30w

3 +O (4) , (43)

where

c20 = c21 = c12 = 0, c11 = −4, c30 =
1− 3p

(p− 1) p3
.

Note that

η1 =

(
∂2F

∂w∂τ
+

1

2

∂F

∂τ

∂2F

∂w2

) ∣∣
(w,τ)=(0,0) = −4 ̸= 0 (44)

and

η2 =

(
1

6

∂3F

∂w3
+

(
1

2

∂2F

∂w2

)2
)∣∣

(w,τ)=(0,0) =

(
1− 3p

(p− 1) p3

)2

> 0. (45)

In view of the flip bifurcation theorem in [11] or [27], we conclude the fol-
lowing result.

Theorem 3. For any p > 1, system (33) undergoes a flip bifurcation and
the bifurcated 2-periodic points are stable.

In the following, we will give a bifurcation diagram for d > 0. For example,
can we succeed when p = 2? First of all, we randomly choose the initial values
such that

(
u0
1, u

0
2

)
∈ (1± ε, 1± ε). Unfortunately, all bifurcation diagrams are

ut
1 ≡ ut

2 ≡ 1. By using the discrete Grobman-Hartman Theorem, also see
Lemma 1, for the fixed p = 2, we choose that the initial values

col
(
u0
1, u

0
2

)
= col (1− ε, 1 + ε) , (46)

then the bifurcation diagrams will be obtained. For example, let p = 2 and

col
(
u0
1, u

0
2

)
= col (1− 0.001, 1 + 0.001) .
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However, we also are defeated.
We find that our system (33) is very special. Once the computation is reached

ut0
1 = ut0

2 for some time t0, the system will drop into the simple equation

ut+1
1 = ut+1

2 = ut+1 =
ut

1 + ut
for t ≥ t0.

In this case, naturally, we have limt→∞ ut
1 = limt→∞ ut

2 = limt→∞ ut = 1. Thus,
we need to avoid ut0

1 = ut0
2 for some time t0.

(a) p = 2

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

u1

u2

d=0.89

(b)

To overcome the above difficulties, we will use the shooting method. That
is, once the computation is reached ut0

1 = ut0
2 for some t0, the computer will

again compute from the initial values. It is very lucky, we obtain the following
bifurcation diagram for p = 2, please see (a) in Figure 4. When p = 2 and
d ≈ 0.89, we also indeed obtain the other periodic solution, please see (b) in
Figure 4.

6 Conclusions and open problems

In this paper, a single-handed discrete Fisher equation with the Neumann
boundary conditions has been considered. By the linearization analysis, the
necessary and sufficient condition of the diffusion-driven instability/Turing in-
stability is obtained. In this case, a series of 2-periodic patterns have been
obtained by the numerical simulations and the existence of 2-periodic solutions
has also been established. Further results, a simplest two elements system has
be discussed and the flip bifurcation theorem has been obtained by computing
the center manifold. At the same time, the bifurcation diagrams will be simu-
lated by using the shooting method. It proves that the Turing instability and
the complexity of dynamical behaviors of (33) can be completely driven by the
diffusion term. Finally, we provide some open problems.

Open Problem 1. Find the existence conditionds for other periodic solu-
tions solutions of (7)-(8) and simulate the corresponding periodic patterns.

Open Problem 2. Design the efficient numerical methods for the bifurca-
tion diagrams, the graghs of Lyapunov exponent, or the topological entropy of
problem (7)-(8).
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Appendix

In the appendix, we will discuss the Neumann eigenvalue problems and the
diffusion-driven instability or Turing instability of (7)-(8).

The discrete Neumann eigenvalue problem of the form{
−∆xi = λxi, i ∈ [1, n] ,
x0 = x1, xn = xn+1,

(47)

had been considered in [50], also see [52], where ∆xi = xi−1− 2xi+xi+1. Here,
we will give other method.

For any k ∈ [1, n], let

φ
(k)
i = cos

(k − 1) (2i− 1)π

2n
, i ∈ [1, n] .

Note that

φ
(k)
0 = cos

− (k − 1)π

2n
= cos

(k − 1)π

2n
= φ

(k)
1

and that

φ(k)
n = cos

(k − 1) (2n− 1)π

2n

= cos

[
(k − 1)π − (k − 1)π

2n

]
= cos

[
(k − 1)π +

(k − 1)π

2n

]
= φ

(k)
n+1,
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thus, the function φ
(k)
i satisfies the boundary conditions of (47). On the other

hand, we have also

−∆φ
(k)
i = −

(
φ
(k)
i−1 − 2φ

(k)
i + φ

(k)
i+1

)
= 4 sin2

(k − 1)π

2n
cos

(k − 1) (2i− 1)π

2n

= 4 sin2
(k − 1)π

2n
φ
(k)
i .

Therefore, problem (47) has the eigenvalue

λk = 4 sin2
(k − 1)π

2n
(48)

and the corresponding eigenvector

φ
(k)
i = cos

(k − 1) (2i− 1)π

2n
, i ∈ [1, n] (49)

for k ∈ [1, n].
For k, l ∈ [1, n] with k ̸= l, we have

0 =

n∑
i=1

φ
(l)
i ∆φ

(k)
i + λk

n∑
i=1

φ
(l)
i φ

(k)
i

= (λk − λl)
n∑

i=1

φ
(l)
i φ

(k)
i

which implies that the inner product
(
φ(k), φ(l)

)
= 0 for k ̸= l.

For the completeness, in the following, we will give unitization of the above
vectors. To this end, let

β =
2 (k − 1)π

n
.

Then

sin

(
i+

1

2

)
β − sin

(
i− 1

2

)
β = 2 cos iβ sin

β

2

and

cos

(
i+

1

2

)
β − cos

(
i− 1

2

)
β = −2 sin iβ sin

β

2

or

cos iβ =
1

2 sin β
2

[
sin

(
i+

1

2

)
β − sin

(
i− 1

2

)
β

]
and

sin iβ = − 1

2 sin β
2

[
cos

(
i+

1

2

)
β − cos

(
i− 1

2

)
β

]
.
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Therefore, we have
∥∥φ(1)

∥∥2 = n and

∥∥∥φ(k)
∥∥∥2 =

n∑
i=1

cos2
(k − 1) (2i− 1)π

2n

=
1

2

n∑
i=1

[
1 + cos

(k − 1) (2i− 1)π

n

]

=
n

2
+

1

2
cos

β

2

n∑
i=1

cos iβ +
1

2
sin

β

2

n∑
i=1

sin iβ

=
n

2
+ cos

β

2

n∑
i=1

1

4 sin β
2

[
sin

(
i+

1

2

)
β − sin

(
i− 1

2

)
β

]

− sin
β

2

n∑
i=1

1

4 sin β
2

[
cos

(
i+

1

2

)
β − cos

(
i− 1

2

)
β

]

=
n

2
+

cos β
2

4 sin β
2

[
sin

(
n+

1

2

)
β − sin

β

2

]
−1

4

[
cos

(
n+

1

2

)
β − cos

β

2

]
=

n

2
+

cos β
2

4 sin β
2

sin

(
n+

1

2

)
β − 1

4
cos

(
n+

1

2

)
β

=
n

2
+

cos (k−1)π
n

4 sin (k−1)π
n

sin

[
2 (k − 1)π +

(k − 1)π

n

]
−1

4
cos

[
2 (k − 1)π +

(k − 1)π

n

]
=

n

2
for k ∈ [2, n] .

Now, the eigenvectors/eigenfunctions

e
(1)
i =

1√
n
φ
(1)
i and e

(k)
i =

√
2

n
φ
(k)
i for k ∈ [2, n] and i ∈ [1, n]

form a standard orthogonal basis of (47).
In the following, we consider the discrete eigenvalue problem of the form −∆uij = λuij , (i, j) ∈ [1,m]× [1, n] ,

ui,0 = ui,1, ui,n = ui,n+1, i ∈ [0,m+ 1] ,
u0,j = u1,j , um,j = um+1,j , j ∈ [0, n+ 1] ,

(50)

where
∆uij = ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij .
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By using the separation variables method, we can obtain the eigenvalue

λkl = 4

[
sin2

(k − 1)π

2m
+ sin2

(l − 1)π

2n

]
(51)

and the corresponding eigenfunction

φ
(kl)
ij = cos

(k − 1) (2i− 1)π

2m
cos

(l − 1) (2j − 1)π

2n
, (52)

for (i, j) , (k, l) ∈ [1,m]× [1, n].
Similarly, we can also obtain a standard orthogonal basis of (50) as follows

e
(11)
ij =

1√
mn

ϕ
(11)
ij ,

e
(k1)
ij =

√
2

mn
ϕ
(k1)
ij for k ∈ [2,m] ,

e
(1l)
ij =

√
2

mn
ϕ
(1l)
ij for l ∈ [2, n]

and

e
(kl)
ij =

√
4

mn
ϕ
(kl)
ij for (k, l) ∈ [2,m]× [2, n] .
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