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Abstract 
Objective: To evaluate the validity and reliability of inertial measurement unit (IMU) sensors in the 
assessment of spinal mobility in axial Spondyloarthritis (axSpA). 

Methods: A repeated measures study design involving 40 participants with axSpA was used. Pairs of 
IMU sensors were used to measure the maximum range of movement at the cervical and lumbar 
spine. A composite IMU score was defined by combining the IMU measures. Conventional metrology 
and physical function assessment were performed. Validation was assessed considering the 
agreement of IMU measures with conventional metrology and correlation with physical function. 
Reliability was assessed using intra-class correlation coefficients (ICCs).  

Results: The composite IMU score correlated closely (r=0.88) with the Bath Ankylosing Spondylitis 
Metrology Index (BASMI). Conventional cervical rotation and lateral flexion tests correlated closely 
with IMU equivalents (r=0.85,0.84). All IMU movement tests correlated strongly with Bath 
Ankylosing Spondylitis Functional Index (BASFI) whilst this was true for only some of the BASMI tests. 
The reliability of both conventional and IMU tests (except for chest expansion) ranged from good to 
excellent. Test-retest ICCs for individual conventional tests varied between 0.57 and 0.91, in 
comparison to a range from 0.74 to 0.98 for each of the IMU tests. Each of the composite regional 
IMU scores had excellent test-retest reliability (ICCs 0.94-0.97), comparable to the reliability of the 
BASMI (ICC 0.96). 

Conclusion: Cervical and lumbar spinal mobility measured using wearable IMU sensors is a valid and 
reliable assessment in multiple planes (including rotation), in patients with a wide range of axSpA 
severity. 

 

Key Messages 

1.       Wearable IMU sensors show excellent reliability in the measurement of spinal mobility 
in axSpA patients 
2.       A composite ‘IMU-ASMI’ score shows excellent reliability as an outcome score for axSpA 
spinal mobility   
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Introduction  
It is widely recognised that spinal mobility should be measured as an outcome measure in axial 
spondyloarthritis (axSpA). The Assessment in SpondyloArthritis international Society (ASAS) has 
recommended spinal mobility as a core domain in both clinical practice and trials  (1). The European 
Medicines Agency stated that “spinal mobility is of great importance in ankylosing spondylitis (AS) 
and constitutes the most specific domain because other domains are common with many other 
rheumatic diseases. Although it may be difficult to detect changes in spinal mobility on the short 
term, spinal mobility is considered an important measure to assess efficacy” (2). The most frequently 
used spinal mobility tool is the Bath AS Metrology Index (BASMI)  (3). This index is based on a 
mixture of tests carried out using a tape measure and goniometer: only three of the five tests are 
tests of spinal mobility. The only movement test measured in degrees is cervical rotation. Critics 
have highlighted floor effects with components of the BASMI  (4), whilst others have highlighted its 
poor responsiveness to change and its dubious content validity  (5–7). A recent attempt to develop 
and validate another manual metrology tool (the Edmonton AS Metrology Index [EDASMI]) showed 
some improvements over BASMI but responsiveness to change was still relatively poor  (8). Some 
researchers prefer to report the individual components of spinal mobility rather than the composite 
BASMI, but there is no consistent evidence that any one component is more responsive to change 
than the overall score.  

Motion capture methods are widely regarded as the gold standard for the accurate and automated 
measurement of movement  (9–12). In 2004 Jordan et al. used an electromagnetic measurement 
system  (Fastrak©) to measure range of movement in the shoulder and cervical spine in axSpA  (13). 
A high level of reliability was demonstrated, especially in the cervical spine, however such 
technology is known to suffer from metallic interference  (14). Garrido-Castro et al. subsequently 
developed and validated the UCOTrack© motion capture system to measure spinal mobility in axSpA  
(15). A spinal mobility score based on this system (the University of Cordoba AS Metrology Index - 
UCOASMI) has superior reliability and responsiveness in axSpA in comparison to the BASMI  (16,17). 
However, this movement laboratory-based method is expensive and requires dedicated facilities and 
expertise to set up and to perform the tests.  

Although the above methods may have little relevance to clinicians, novel Inertial Measurement Unit 
(IMU) sensor technology promises to provide the clinician with advanced tools that are affordable, 
accurate and easy to use. Wearable devices incorporating these sensors should represent a 
significant step forward in the accurate measurement of spinal mobility. Current measurements 
based on the use of goniometers and tape measures are open to observer variability. Spinal mobility 
measures based on the use of tape measures do not directly measure the angle of movement and 
are therefore subject to variation between subjects due to anthropomorphic features such as height 
and leg length. These measures lack content validity as they cannot record potentially important 
aspects of spinal mobility such as spinal rotation (5–7). Unlike traditional tools, IMU sensors can also 
be used to measure dynamic movement i.e. continuous variation of angles, the speed of movement 
as well as the maximal range of movement. Besides this, they can be used in the home or work 
environment. Early IMU devices were subject to errors, but the use of combined sensors, filtering of 
‘noise’ and compensation for drift gyroscope error enable accurate measurements as confirmed in 
tests against gold standard motion capture methods.  
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There is a growing body of evidence that IMU-based sensors can accurately measure spinal 
movement in normal individuals and those with back pain  (18–21). Ronchi tested a set of IMU 
sensors positioned according to the limits of the Modified-Modified Schöber test and demonstrated 
excellent reliability in normal subjects, superior to the traditional tape measure method and to dual 
inclinometers  (22). The ViMove© IMU system was based on that work but evolved further with the 
addition of lumbar rotation and cervical movement tests to the protocol. The primary objective of 
this study was to investigate the validity and reliability of an IMU-sensor based test of spinal 
movement. Our choice of ViMove IMU sensors was based on strong validation studies in normal 
individuals and patients with back pain. These studies used a clearly defined method and careful 
placement of sensors across the lumbar spine that seemed to parallel Schober’s test, features that 
we felt would reduce variability. Furthermore, these sensors have been validated against a motion 
capture system (23), are approved for use in patients with back pain, and the software is 
straightforward for the non-expert user. The primary objective of this study was to investigate the 
validity and reliability of an IMU-sensor based test of spinal movement in people with axSpA. 

 

PATIENTS AND METHODS 
People with axSpA were involved in the design and analysis of the study: discussions were held 
before the study protocol was finalised and the results have been shared with our patient research 
forum.  
The study was approved by the regional ethics committee (Office for Research Ethics Committees 
Northern Ireland) and was carried out in compliance with the Helsinki Declaration. It was registered 
with clinicaltrials.gov (NCT03159767). All participants gave informed consent to take part in the 
study. Clinical physiotherapists, with at least 2 years of experience in measuring axSpA patients, 
carried out clinical and sensor movement tests.  

Study Sample 
Participants over the age of 18 with axSpA who fulfilled the ASAS classification criteria were included 
in the study. The selection was performed through ‘convenience’ sampling at clinics or 
physiotherapy sessions. Those with a history of spinal/hip surgery and those with a history of spinal 
fracture or a major scoliosis deformity were excluded. Severe joint or spinal pain at the time of the 
study resulted in exclusion.  Information on age, sex, diagnosis, duration of disease and therapy was 
collected. The Bath AS Disease Activity Index (BASDAI), the Bath AS Global score (BASG), and the 
Bath AS Functional Index (BASFI) questionnaires were completed. BASMI and chest expansion 
testing was carried out according to the ASAS handbook guidelines using a tape measure and 
goniometer  (7). The linear version of BASMI (BASMIlin) was used and the values of each component 
recorded  (23). (24).  

Study Design/Procedures 
Flow diagram of assessment is shown if Figure 1. On the first visit (Day One), each participant had 
conventional metrology and sensor testing carried out three times. One physiotherapist (Rater A) 
carried out a twin set of measurements an hour apart. The sensors and any marks were removed 
between assessments and before re-application. The second physiotherapist (Rater B) - working in 
another room - carried out a third set of measurements without knowledge of previous results.  
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Participants were asked to return 1-2 weeks later at the same time of day for repeat conventional 
metrology and sensor testing (Day Two).  

Inertial Measurement Unit (IMU) Sensor Movement Test Procedures 
The ViMove© wireless sensor kit (DorsaVi, Australia) is a wireless IMU system comprised of two 
wireless movement sensors each containing a gyroscope, a magnetometer and an accelerometer 
(Figure 2). These were paired with a pocket wireless device recording at a rate of 20Hz and 
connected to a laptop, so that the angular displacement of each sensor could be viewed in real time. 
This sensor setup had previously been validated against the Fastrak motion sensor system  (22,24). 
Physiotherapists had a 3-hour individual training session to familiarise themselves with the 
standardised palpation of bony landmarks, sensor placement and sensor protocols. Physiotherapists 
had to practice the protocol at least twice before the study commenced. Each set of movement tests 
lasted around 20 minutes.  (22,25). Physiotherapists had a 3-hour individual training session to 
familiarise themselves with the standardised palpation of bony landmarks, sensor placement and 
sensor protocols. Physiotherapists had to practice the protocol at least twice before the study 
commenced. Each set of movement tests lasted around 20 minutes. Sensor testing protocols, 
namely lumbar and neck movement protocols, are presented in the supplementary material. 

Sensor Data Analysis 
The peak angle of each sensor movement was recorded by the ViMove software as the mean peak 
angle from the three repetitions of each movement. Peak angles for lumbar and cervical movements 
were derived from subtracting the maximum angular movement from the sensors above and below 
the respective regions. The lumbo-pelvic ratio was calculated by taking the ratio of maximal pelvic 
flexion to trunk flexion, presenting it as a percentage  (25). (26).  

Sample Size and Statistical Considerations 
The sample size estimate was based on our primary aim of assessing reliability using intra-class 
correlation coefficient (ICC) values. In order to define an anticipated ICC of 0.8 with a confidence 
interval of +/- 0.1, a sample size of 40 was selected  (26). The scale from Bland and Altman was used 
in the classification of reliability (0.21-0.40 fair, 0.41-0.60 moderate, 0.61-0.80 good, ≥0.81 
excellent). Inter-rater, intra-rater and test-retest intra-class correlation coefficients (ICC) were 
calculated to determine reliability  (26–28). Reliability tests were applied to the values for peak 
range of movement, and the lumbo-pelvic ratio. The two way random effects, single rater, absolute 
agreement model for inter-rater, intra-rater and test-retest ICCs were used  (27,29). (27). The scale 
from Bland and Altman was used in the classification of reliability (0.21-0.40 fair, 0.41-0.60 
moderate, 0.61-0.80 good, ≥0.81 excellent). Inter-rater, intra-rater and test-retest intra-class 
correlation coefficients (ICC) were calculated to determine reliability  (27–29). Reliability tests were 
applied to the values for peak range of movement, and the lumbo-pelvic ratio. The two way random 
effects, single rater, absolute agreement model for inter-rater, intra-rater and test-retest ICCs were 
used  (28,30). SPSS v23 was employed for statistical analysis.  

Data Transformation 
The ViMove software processes orientation quaternions to calculate angles between IMU sensors. 
This software also applies filtering and error correction resulting in kinematic data output saved in 
separate spreadsheet files for each movement test.   
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The maximum angles at the limits of movement are identified automatically in the software, but we 
also checked these values manually from spreadsheet data. We did not find this to be a significant 
source of error.  

Normalised scales allow clinicians to quickly assess the severity of mobility restriction without 
knowing the normal ranges for each movement, and in contrast to ROM, the values increase in value 
from 0 to 10 with increasing limitation of movement. Each movement is converted into the same 
scale even though the range of movement may be quite different. This is widely used in the BASMI, 
where the raw test results are transformed into normalised scales using the BASMI10BASMIlin 

formulae  (30). (31). Each sensor-based movement test result was therefore converted into a 
normalised index using a similar methodology to that used for the BASMI10BASMI1lin.  Values under 1 
or over 9 units in the normalised 0-10 index were taken as indications of potential floor or ceiling 
effects, taking into consideration the average change in BASMI scores reported following treatment 
with biologic drugs  (31). (32).  

The mean of the normalised scores for each set of movements in each region was reported as the 
regional composite score for the cervical, lumbar and lumbo-pelvic regions. Two further composite 
scores were developed using the mean of the cervical (Cx) ASMI and either the lumbar (Lu) or 
lumbo-pelvic (LP) ASMI. Each movement was allocated equal ‘weight’ within the composite IMU-
ASMI score. The overall IMU-ASMI score was correlated with the BASMIlnBASMIlin and the BASFI. The 
intra-rater, inter-rater and test-retest intraclass correlations for these composite scores were 
calculated. Bland-Altman plots were prepared to identify any systematic difference between the 
measurements or possible outliers, and to calculate the smallest detectable difference (SDD) using 
95% confidence intervals (mean +/- 1.96 x SD of the mean difference between status scores). The 
standard error of measurement (SEM) was calculated as follows: SEM = SD × √(1 – ICC), with SD 
representing the pooled (2 measurements) standard deviation of the measure. The smallest 
detectable change (SDC) is the magnitude of change necessary to provide confidence that a change 
is not the result of random variation or measurement error, and it is calculated as follows: SDC = 
1.96 × SEM × √2 (3233). 

RESULTS 
Demographics 
The group was comprised of 40 participants, 29 (72.5%) of whom were men. The mean age was 48 
(27-71) years, and average disease duration of 13 (1–45) years (Table 1). One participant was not 
able to complete the second visit, so the ‘test-retest’ analysis was based on the remaining 39 
participants. There was a wide range of disease severity, as reflected in the wide range of BASG, 
BASDAI, BASFI and BASMIBASMIlin values. There was no change in patient or physician-reported 
disease status or in medication usage in any participant between the first and second study days.  

No participant reported side effects from shaving/wearing the sensors, and there were no 
withdrawals from the study. One participant was not able to complete the second visit due to work 
commitments, so the ‘test-retest’ analysis was based on the remaining 39 participants. 

The ROM for each measurement using IMU sensors and conventional metrology is shown in Table 2. 
The range of normalised scores for each movement is shown in Table 3.  



7 
 

Validity of IMU Movement tests 
IMU movement tests are reported in angles (Table 2) and can be normalised to provide a global 
mobility index, providing insights as to which movements are most affected. Overall, 53% of the 
restriction in the lumbar spine was due to limited lateral flexion (23-100%); 27% to limited rotation 
(0-53%) and 20% due to limited flexion/extension (0-53%). There was considerable variation within 
individuals regarding the movement with the greatest limitation. With sensor testing, the relative 
contribution of pelvic and lumbar movement to flexion becomes clear – this study showed clinically 
significant variation in lumbo-pelvic patterns. Movements measured by the trunk IMU correlated 
better with BASFI than ‘lumbar’ movements (Table 2). Two of five BASMI components correlated 
closely with BASFI (r >0.7) (Table 3). Cervical rotation by goniometry correlated strongly with the 
IMU test (r=0.85). Lumbar lateral flexion by IMU correlated strongly with the tape measure method 
(r=0.84). Correlations between Schober’s test/Lumbar IMU-Anterior Flexion/Extension and between 
Tragus to wall test/Cervical IMU- Anterior Flexion/Extension were only moderate (r=0.62, 0.65, 
respectively). The CxLP-ASMI and CxLu-ASMI correlated closely with the BASMI (r=0.88 and r=0.85, 
respectively). 

Reliability of IMU movement tests 
Each movement in the protocol was repeated three times without moving the sensors. The ICC for 
the reliability of the peak ROM estimate was 0.98 overall, 0.99 if the first set of movements was 
discarded.  

The reliability of using combined left/right or flexion/extension movements (‘full-arc’) or 
measurements from the midline (‘half-arc’) was compared. The reliability of full-arc movements was 
slightly higher (Supplementary document 2), so the combined ‘full-arc’ movements were used in all 
subsequent calculations. 

The reliability results for IMU and conventional movement tests are shown in Table 4. The intra-
rater, inter-rater and test-retest reliability for all the IMU cervical measurements were in the ‘good 
to excellent’ range of reliability (ICCs >0.8), but lumbo-pelvic and lumbar measurements showed 
slightly lower reliability, particularly the lumbar tests. The lumbar values are derived by subtracting 
movement at the pelvic sensor from that at the upper lumbar sensor, but it is important to be aware 
that the pelvic sensor did move significantly in most participants. The conversion of raw angles to 
normalised indices did not have any effect on reliability (data not shown). No difference was found 
between intra-rater and inter-rater reliability. Three of the six conventional tests showed good to 
excellent reliability, but the reliability of chest expansion measurement was particularly poor. Test-
retest reliability was generally lower than intra-rater and inter-rater reliability for conventional 
testing. 

All the regional IMU-ASMI scores showed excellent reliability, particularly the ‘Cervico-Lumbo-Pelvic-
ASMI’ which compares most closely to the BASMI. The reliability of both IMU and conventional 
movement tests improves when combined into composite indices. Researchers can select the 
regional mobility score most relevant to their study bearing in mind that the reliability of lumbar 
scores is slightly lower. Bland-Altman graphs were scrutinized for each movement test (graphs not 
shown). There was no trend towards worse reliability with reduced range of movement. The 
smallest detectable change values (SDC95) were comparable or superior to conventional tests, 
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which would suggest that the responsiveness to change of the sensor mobility scores are likely to be 
superior to conventional tests. 

The mean Lumbo-Pelvic ratio during flexion was 52%, but this varied widely from 7.4 to 98.0%. Six 
participants had mostly lumbar movement (LPR <35%), and eight were pelvic dominant with an LPR 
>65%. Lumbar restriction is a characteristic feature in axSpA, but hip arthritis is also relatively 
common. Five of six participants with severely restricted pelvic movement also had a reduced 
intermalleolar distance. The intra-rater ICC for LPR ratio measurement was 0.90, inter-rater ICC 0.84, 
test-retest ICC 0.79. 

Discussion 
This study demonstrates that IMU sensor-based measurements in axSpA show strong validity and 
reliability. This method has the potential to replace conventional measurement tests in clinical 
practice. We expected reliability in the lumbar spine to be greater than in the cervical spine (due to 
better skin fixation) but the opposite was true. The results in the cervical spine suggest that the 
‘technical’ reliability of sensor measurements was excellent, whilst in the lumbar spine most of the 
variability was due to ‘biological’ factors due to the complexities of ‘compound’ lumbar and pelvic 
movement. The CxLP-ASMI minimises this variability by ignoring pelvic movement, but the CxLu-
ASMI isolates lumbar movement and correlates better with Shober’sSchober’s test. Both measures 
can be reported from a single test. 

As expected, cervical rotation measured by sensors was strongly correlated to goniometry, as were 
the lateral flexion tests by sensor and tape measure methods. Of all the patient reported outcome 
measures, the BASMI test usually correlates most closely with the BASFI  (23). This was also true of 
the IMU-ASMI and both measures correlated quite closely with BASFI. The BASMI and CxLP-ASMI 
were closely correlated (r=0.85). 

As expected, cervical rotation measured by sensors was strongly correlated to goniometry, as were 
the lateral flexion tests by sensor and tape measure methods. The BASMI and CxLP-ASMI were 
closely correlated (r=0.85). 

Of all the patient reported outcome measures, the BASMI test usually correlates most closely with 
the BASFI  (24). This was also true of the IMU-ASMI and both measures correlated quite closely with 
BASFI (r=0.7 for each).  

This spinal sensor protocol enables the clinicians to isolate segmental spinal movements within the 
cervical, lumbar and pelvic regions. The lumbo-pelvic ratio in our study group covered a surprisingly 
wide range when compared to previously reported data from normal controls and people with 
chronic low back pain  (33–35): this aspect of spinal mobility merits further study in axSpA patients. 
(34–36): this aspect of spinal mobility merits further study in axSpA patients. Of the eight 
participants who were found to have severely restricted pelvic movement, all but two also had a 
significant reduction in intermalleolar distance – suggesting that the inclusion of pelvic sensor data 
gives an important insight into the pelvic contribution. 

The test-retest reliability of individual cervical movement tests was good to excellent (ICCs >0.8), 
superior to those reported by Theobald  (21). Lumbar movement tests had slightly lower test-
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reliability (ICCs >0.7), similar to the findings reported by Ronchi  (22) and Laird  (3637) using the 
same sensor setup.  

Combining the right and left or flexion/extension movements improved reliability, probably because 
it is difficult for assessors to appraise the return to the exact midline point. Measuring the full arc of 
movement was also shown to be more reliable than half arc movements in a recent study of cervical 
spine mobility  (38) There was no difference between intra-rater and inter-rater reliability. It was 
surprising to find that cervical movement tests were more reliable than lumbar spine movement 
tests, since the sensors were not as firmly attached to the skin as in the lumbar tests. This suggests 
that the variability in lumbar measurements was due to biological variability rather than sensor 
error. Laird suggested that it was due to inherent variability in the ‘lumbo-pelvic rhythm’, which was 
also observed in our study  (36–38). (37,39,40). The test-retest reliability of conventional spinal 
mobility tests was excellent for side flexion (ICC >0.9), good for tragus to wall and intermalleolar 
distance tests (ICC>0.8) but below 0.8 for the key tests of cervical rotation and modified Schöber’s 
test. Garrido-Castro has previously noted poor reliability for Schöber’s test, side flexion and cervical 
rotation  (17). In that study, it was shown that movement tests using the UCOTrack motion capture 
method showed uniformly excellent levels of inter-rater reliability apart from frontal spinal flexion. 

Converting raw movement angles into normalised scales does not negatively impact test-retest 
reliability. This stage is an important intermediate step in developing a composite spinal mobility 
score which further improves reliability and reduces the potential for floor/ceiling artefact. It allows 
restrictions in different planar movements to be compared without further adjustments. For 
instance, in this study 53% of the composite lumbar index was due to limited lateral flexion (range 
23-100%); 27% to limited rotation (0-53%) and 20% due to limited flexion/extension (0-53%). There 
was considerable variation within individuals as to which movement showed the greatest limitation. 

The reliability of the regional composite indices (Cervical, Lumbar, Lumbo-Pelvic, Cervico-Lumbar 
and Cervico-Lumbo-Pelvic) was clearly superior to that of the individual components and showed 
fewer floor/ceiling effects (Table 4). The regional indices provide insights as to which regions are 
most affected. For instance, in this group of individuals, 68% (range 42-100%) of the CxLP-ASMI was 
due to lumbo-pelvic limitation, while 32% (range 0-57%) was due to cervical limitation. The reliability 
of the IMU sensor based ASMI reported here is similar to that reported for the motion-capture 
based UCOASMI (17).The limitations of this study include a probable underestimation of the trunk 
rotation angle. We used a trans-lumbar sensor positioning as at that time there was no validated 
protocol for measurement across the whole thoracic spine. Moreover, the precision of normalised 
scores would be improved by referencing the range of movements of a larger, age-adjusted, normal 
population  (41,42).  

The limitations of this study include a probable underestimation of trunk rotation angles due to the 
use of validated sensor positioning protocols which may significantly underestimate thoracic 
rotation. Moreover, the precision of normalised scores would be improved by referencing the range 
of movements of a larger, age-adjusted, normal population  (39,40).  

Conclusion 
This study has demonstrated that an IMU sensor-based method of measuring spinal mobility in 
axSpA is valid, reliable, and able to give a detailed and reliable ‘snapshot’ of spinal mobility in 
different dimensions and over different regions of the spine. These tests correlate both with 
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conventional mobility tests and with physical function. Physiotherapists or other trained health 
professionals can perform the test in a standard clinic setting equipped with sensors and a laptop. 
The clinician is presented with a range of maximum angles of movement in the cervical and lumbar 
spine from which normalised indices of spinal mobility can be derived.  
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Table 1. Descriptive Characteristics of Study Participants (n=40) 

 Mean (SD) Range 
Age (yrs) 48 (13.4) 27-71 
Disease Duration (yrs) 13 (10.9) 1-44 
BMI (Kg/m2) 27.7 (5.0) 17.7–39.6 
Height (cm) 171.8 (9.6) 147-190 
BASG (0-10) 4.2 (2.8) 0.3-9.3 
BASDAI (0-10) 4.5 (2.6) 0-9.9 
BASFI (0-10) 4.6 (3.1) 0.1-9.7 
BASMIBASMIlin (0-10) 5.0 (1.9) 0.7-8.2 
BMI – Body Mass Index, BASG – Bath Ankylosing Spondylitis Global; BASDAI - Bath Ankylosing Spondylitis Disease Activity Index; BASFI - 
Bath Ankylosing Spondylitis Functional Index; BASMIBASMIlin - Bath Ankylosing Spondylitis Metrology Index (linear) 

 

Table 2. Range of spinal movement in Study Participants (n=40) 

 
Method 

Movement Test 
 
 

Mean 
 
 

Range 
 
 

BASFI  
correlation 

Cervical region 
IMU 

Flexion+Extension (deg) 77.5 5.0-131.0 -0.5 
Lateral Flexion L+R (deg) 46.1 3.0-94.0 -0.4 
Rotation L+R (deg) 104.0 11.7-184.3 -0.6 

Trunk IMU ( 
Lumbo-Pelvic 
region) IMU 

Flexion+Extension (deg) 94.9 36.3-152.0 -0.7 
Lateral Flexion L+R (deg) 31.9 4.3-73.3 -0.5 
Rotation L+R (deg) 27.7 0-65.7 -0.7 

Lumbar region 
IMU 

Flexion+Extension (deg) 47.1 5.3-92.0 -0.5 
Lateral Flexion L+R (deg) 23.9 3.0-61.3 -0.4 
Rotation L+R (deg) 17.5 0-42.7 -0.7 

Conventional 
metrologyMetr
ology 

Side Flexion L+R (cms) 19.7 4.0-41.0 -0.6 
Tragus to Wall distance (cms)  16.4 9.8-24.4 -0.4 
Modified Schöbers (cms) 3.6 0.7-7.3 -0.4 
Intermalleolar distance (cms) 70.3 25.5-121.7 -0.7 
Cervical Rotation L+R (deg) 87.9 10.7-170.0 -0.7 
Chest Expansion (cms) 3.9 1.5-9.7 -0.4 

Key: Correlation <-0.7 shown in bold 

Key: Lumbo-Pelvic region – the orientation angle from the upper L1 sensor to the ground, representing both lumbar and pelvic movement. 
Lumbar region – the angle between the L1 and Sacrum sensors. Strong correlation ≥-0.7 shown in bold 

  



15 
 

Table 3: Normalised indices for BASMI and IMU measurements 

 
Method Movement Test Mean Range 

Floor 
effect 
(no.) 

Ceiling 
effect  
(no.) 

BASFI 
correlation 

Cervical IMU Flexion+Extension 3.0 0-9.9 9 1 0.5 

Lateral Flexion 4.1 0-9.4 6 1 0.4 

Rotation 3.4 0-9.7 8 2 0.6 

Trunk IMU 
(Lumbo-Pelvic 
region)pelvic  
IMU  

Flexion+Extension 4.8 0.4-9.8 2 2 0.7 

Lateral Flexion 6.0 0.6-9.8 1  2 0.5 

Rotation 8.0 6.0-9.7 
0 9 0.6 

Lumbar region 
IMU 

Flexion+Extension 3.7 0.1-9.2 2 8 0.6 

Lateral Flexion 6.1 0-9.7 1 7 0.5 

Rotation 4.9 0-8.8 4 0 0.7 
Conventional 
metrologyMetro
logy 

Side Flexion 5.3 0-9.1 2 1 0.6 

Tragus to Wall 2.9 0.8-4.3 1 0 0.4 

Schöber’s test 3.6 0.6-9.9 2 3 0.4 

Intramalleolar distance 5.2 0.4-9.8 4 3 0.7 

Cervical Rotation 5.2 0-10 1 3 0.6 

IMU regional 
ASMIs 

Cervical Region (Cx-ASMI) 3.50 0-9.7 3 1 0.5 
Lumbar Region (Lu-ASMI) 4.59 0.1-9.4 0 0 0.7 
Lumbo-Pelvic (LP-ASMI) 4.40 1.3-6.5 2 4 0.7 

Cervical + Lumbar (CxLu-ASMI) 4.04 0.1-9.3 0 0 0.7 

Cervico-Lumbo-Pelvic (CxLP-ASMI) 3.95 0.6-7.5 4 1 0.7 
BASMIBASMIlin Cervico-Lumbo-Pelvic + Hips 4.83 1.2-8.4 1 2 0.7 

Key: Potential ceiling/floor effect >6/40 in bold; Correlation coefficient >≥0.7 in bold. 
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Table 4: Reliability of IMU and conventional movement tests (ICCs) 

Method Region/ Test Intra-
rater 
ICC 

 

Inter-
rater 
ICC 

Test-retest 
ICC SDC95** 

 
 
 
 
IMU sensor for 
individual 
movements 

Cervical Flexion+Extension 
 

0.95 0.94 0.92 26.1 
Rotation (deg) 0.97 0.97 0.96 21.5 
Lateral Flexion (deg) 0.83 0.96 0.84 27.1 

Lumbo-Pelvic Flexion+Extension 
 

0.97 0.92 0.91 23.9 
Rotation (deg) 0.84 0.94 0.92 18.6 
Lateral Flexion (deg) 0.80 0.75 0.82 11.4 

Lumbar Flexion+Extension 
 

0.89 0.76 0.71 23.8 
Rotation (deg) 0.90 0.95 0.89 16.0 
Lateral Flexion (deg) 0.78 0.74 0.76 13.7 

 
Regional 
Composite 
IMU scores 

Cervical (Cx-ASMI: units) 0.97 0.98 0.97 1.28 
Lumbar (Lu-ASMI: units) 0.90 0.90 0.94 1.83 
Lumbo-Pelvic (LP-ASMI: units) 0.91 0.94 0.95 1.17 
Cervico-Lumbar (CxLu-ASMI: units) 0.96 0.98 0.96 1.10 
Cervico-Lumbo-Pelvic (CxLP-ASMI: units) 0.96 0.99 0.97 0.83 

 
 
 
Conventional 

Tragus to wall distance (units) 0.96 0.93 0.82 3.0 
Intermalleolar distance (units) 0.91 0.94 0.83 2.93 
Cervical Rotation (units) 0.96 0.91 0.79 3.3 
Modified Schöber’s test (units) 1.00 0.68 0.73 3.7 
Lateral Flexion (units) 0.94 0.96 0.91 2.1 
Chest Expansion (units) 0.41 0.32 0.57 4.5 

BASMIBASMIlin 
 

Cervico-Lumbo-Pelvic (CxLP: units) 0.97 0.98 0.96 0.91 
*ICC(3,1) 2 way random effects, absolute agreement, single rater. ICCs >0.80 in bold. **SDC95 smallest detectable change based on 95% 
confidence interval: Low SDC95 (0.< 1 units) in bold.    
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