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Purpose: The purpose of this study is to quantify the impact of online customer reputation on 
financial profitability. 
Design/methodology/approach: Online reputation is captured by extracting the most 
recurring textual themes associated with customer satisfaction and dissatisfaction, expressed 
within positive vs. negative online guest reviews on Booking.com. Latent Semantic Analysis 
is used. Proxies of overall financial performance are manually constructed for the sample 
hotels, using financial data from the FAME (Financial Analysis Made Easy) database. Ordinary 
Least Squares is employed to gauge the effect of online customer reputation on financial 
profitability.  
Findings: Empirical findings indicate that recurring textual themes from positive online 
reviews (in contrast to negative reviews) exhibit a higher degree of homogeneity and 
consensus. The themes repeated in positive, but not in negative reviews, are found to 
significantly associate with hotel financial performance. Results contribute to the discussion 
about the measurable effect of online reputation on financial performance.  
Originality/value: Contemporary quantitative methods are used to extract online reputation 
for a sample of UK hotels, and associate this reputation with bottom-line financial profitability. 
The relationship between online reputation, as manifested within hotel guest reviews, and the 
financial performance of hotels is examined. Financial profitability is the result of revenue, 
minus cost incurred in order to offer a given level of service. Previous studies have mainly 
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Introduction 

Online customer reviews represent a form of electronic Word of Mouth (eWOM). Reviews are 

considered to be more successful in influencing consumer behavior, compared to traditional marketing 

tools (Phillips et al., 2017). They are typically independent of marketers’ selling efforts, so they appear 

more trustworthy and credible in the eyes of consumers (Nieto et al., 2014). Online reviews are 

important sources of information that can shape the reputation of tourism enterprises (Au et al., 2014; 

Phillips et al., 2015).  

Past research has established a significant effect of customer online review characteristics (i.e. review 

valence, volume, or dispersion) on hotel performance. This is expressed in the form of room bookings, 

sales, prices, revenue per available room (RevPAR) or occupancy (e.g. ; Anderson, 2012; Kim et al., 

2015; Sainaghi et al., 2017; Viglia et al., 2016; Xie et al., 2014; Ye et al., 2009). However, the impact 

of user generated online reviews on business activities has focussed on sales and bookings, and less on 

the impact on bottom-line financial performance (Phillips et al., 2015). Hotel managers have to ensure 

the achievement of profitability high enough to cover investment, assets and the related fixed costs (Ben 

Aissa and Goaied, 2016). Although a close link between occupancy and profitability has been supported 

(Viglia et al., 2016), profitability, rather than room occupancy is the ultimate goal of every hotel 

manager (Jeffrey and Barden, 2000).  

The purpose of this study is to quantify the effect of online reputation created through customer reviews 

on tourism business performance, following relevant calls by Phillips et al. (2015) and Anderson (2012). 

Increasingly, reputation depends on public opinion online, largely depending on the variety of images, 

opinion and discussions online (Buhalis and Inversini, 2014). User Generated Comments (UGC) create 

a digitalized WOM, and the aggregation of all this online feedback creates web reputation. Reputation 

is crucial for the desirability of tourism and hospitality products and services, and it is, therefore, a 

major asset that requires investment and being managed (Berezina et al., 2016; Bolton et al., 2004), 

Reputation influences the ability of organizations to improve their profitability and sustainable growth 

(Viglia et al., 2016; Xiang et al., 2017).  

Hotel reputation among customers is manifested through the description and arguments used in online 

reviews. In our study, reputation is extracted by subjecting hotel review comments, characterized as 

‘positive’ οr ‘negative’ by customers themselves, from the travel website of Booking.com to textual 

analysis using Latent Semantic Analysis (LSA). LSA allows the extraction of underlying textual 

concepts from online guest reviews using a statistical way and is free of any reader/coder bias and 

judgement. Reviews on Booking.com were used as the site is widely thought of as more reliable than 

Tripadvisor.com. This is because Booking.com only invites reviews from people who have made a 
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reservation and paid through the site, and, therefore, it can avoid fake reviews (Yahoo Finance, 2019). 

The statistical association of these themes is then examined, with respect to hotel profitability expressed 

in financial terms. This research focuses on independent hotels, rather than chain hotels. Independent 

hotels are self-proprietary properties not affiliated to any brand, whereas chain hotels belong to the same 

hotel group or consortium. Given these differences, rating patterns attracted by independent and chain 

hotels are not always comparable (Banerjee and Chua, 2016).  

To the best of our knowledge, this is the first study to associate online review content with bottom line 

financial performance defined in a way that combines revenues, expenses and investment, as previous 

studies stop at defining financial performance in the form of RevPAR, bookings or booking income. To 

produce a satisfied customer and create positive online reputation, the hotel in question needs to make 

a relevant effort, and this effort implies sacrificing economic resources, or incurring costs to produce a 

given level of service. This cost is simply ignored when research stops at defining financial performance 

in terms of revenue or booking income. 

The approach taken in this paper is to measure hotel performance in terms of achieved financial results 

that combine revenues against expenses made for service offered to customers and capital investment. 

This is accomplished by manually compiling a sample that consists of all UK unlisted, and independent 

(non-chain belonging) hotels located in 13 major cities, namely: Birmingham, Bradford, Bristol, 

Cardiff, Edinburgh, Glasgow, London, Leeds, Liverpool, Manchester, Newcastle, Sheffield, and 

Wolverhampton. Financial/accounting data from the FAME (Financial Analysis Made Easy) database 

were obtained for hotels with at least one online guest review on Booking.com. By combining online 

guest reviews from Booking.com with financial measures of enterprise performance (FAME) for the 

first time, this study makes a meaningful contribution to the strategic management of hotel businesses. 

It identifies which attributes are actually associated with ‘bottom line’ financial earnings per unit of 

capital investment. 

Literature review and research hypotheses  

Online hotel customer reviews and hotel performance 

The internet has revolutionised hospitality marketing and distribution (Buhalis, 2000; Law et al., 2014; 

Paraskevas et al., 2011).  

One stream of research has established a significant effect of guest review characteristics (review 

valence (rating), volume (number of reviews), or dispersion) on hotel performance. This performance 

is often expressed in the form of room bookings, sales, booking income, prices, RevPAR or occupancy 

(Viglia et al., 2016). Review scores and volume positively relate to bookings and/or sales, Average 
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Daily Rates and RevPAR, and also booking transaction value (Anderson, 2012; Kim et al., 2015; Torres 

et al., 2015; Xie et al., 2014; Ye et al., 2009). 

Another stream of research has used quantitative content analysis to extract consumer preferences from 

the text of customer online reviews. This enables users to discover relationships, patterns or trends in 

textual data (Singh et al., 2007; Stepchenkova et al., 2009). Li et al. (2015) use the Emerging Pattern 

Mining technique to identify emergent hotel features of interest and changes in customer preferences, 

extracted through online reviews. This is in line with similar methods applied by Xiang et al. (2009), 

and Chaves et al. (2012). Stringam and Gerdes (2010), and Stringam et al. (2010) also subject comments 

on online hotel distribution sites to textual analysis. They identify frequently used words, patterns of 

word usage, and their effect on hotel features rating. Li et al. (2013), Liu et al. (2013) and Berezina et 

al. (2016) analyze customer expectations,preferences, and common themes mentioned by satisfied and 

dissatisfied customers using text mining. Mazanec (2017) and Guo et al. (2017) apply latent Dirichlet 

allocation to provide results on the heterogeneity of perceptions across different demographic profiles. 

Xu and Li (2016) apply LSA to extract the determinants that create either customer satisfaction or 

dissatisfaction. . Liu et al. (2017) use big data to investigate the role of tourist cultural backgrounds for 

the formation of preferences for various hotel attributes. The emphasis of this research in on the 

extraction of consumer preferences via text mining of online reviews, and the identification of which 

hotel attributes are mostly associated with customer satisfaction. 

Research hypotheses 

WOM taking place via oral communication normally involves face-to-face or some form of 

interpersonal contact. This allows body language and voice intonations to reinforce the meaning of 

transmitted messages (Jeong and Jang, 2011; Nieto et al., 2014). In contrast, eWOM involves written 

feedback and lacks non-verbal cues (Nieto et al., 2014). Review contents are more influential than 

ratings (Fong et al., 2017), because consumers rely more on sentiment when making purchase decisions 

(Ong, 2012). Ratings also luck detailed evaluations (Racherla et al., 2013). For this reason, focusing on 

the textual descriptions of online customer reviews results in additional insights about which factors are 

important for customers to enhance (or reduce) the value of their stay. These factors (e.g. the quality of 

rooms, Internet provision, building, Phillips et al., 2017) are expected to shape hotel online reputation.  

Customers evaluate the degree of satisfaction based on their perceptions of hotel attributes that they 

consider most important. These hotel attributes represent dimensions of satisfaction (Guo et al., 2017). 

The overwhelming majority of visitors regularly examine online reviews before booking hotels and also 

read online reviews before making purchase decisions (Tan et al., 2018). Decision making and 
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consumption processes for tourism products tend to be different, because of their experiential and 

intangible nature (Tan et al., 2018).  

The importance of customer ratings lies on their expected influence on hotel bookings, and ultimately, 

performance (Phillips et al., 2017). Research has provided extensive insights about which hotel 

attributes and quality of service factors are important to customers. Such factors include room 

cleanliness, convenience of location, value-for-money and friendliness of staff (Phillips et al., 2017). 

More specific factors, such as breakfast, food service, wellness or Wi-Fi are also important (Albayrak 

and Caber, 2015). Technology has been transforming the nature of service provision and the ability to 

understand context and dynamically cocreate tourism hospitality is increasingly critical in service 

excellence (Buhalis and Leung, 2018; Buhalis and Sinarta, 2019; Buhalis et al., 2019).  

The literature on  hotel industry uniformly indicates that there are many attributes that influence the 

customers’ choice, ranging from location and room rate, to the quality of service, reputation, security, 

and cleanliness (Chu and Choi, 2000; Becerra et al., 2013). Certain hotel characteristics, e.g. service 

quality, are arguably important for all customers. However, some customers value certain features more 

than others (Becerra et al., 2013), so they should be expected to be more strongly associated with the 

revenue side of financial performance. Customer reviews are idiosyncratic by nature, as travellers have 

individualised preferences. They may weight differently the several attributes of a hotel, such as the 

quality of breakfast or hotel location depending on their internal and external context (Buhalis and 

Foerste, 2015; Neirotti et al., 2016). Sometimes, there is disagreement about the desirability of different 

hospitality services attributes among guests (Becerra et al., 2015). Different cultural backgrounds, needs 

and types of travel affect guest preferences for various hotel attributes e.g. value for money, cleanliness, 

and location (Liu et al., 2017).   

Previous research on customer perceptions and decision making and online customer reviews has 

focused on marketing and impact (Phillips et al., 2017). The focus on the influence of online reviews 

on sales and bookings may well be justified by a difficulty to match review data with performance data. 

Research has shown that positive (negative) valence of online customer reviews is positively 

(negatively, or neutrally) associated with hotel performance (Phillips et al., 2017; Ye et al., 2009). 

WOM generates positive attitudes and increases the possibility of purchase, whilst negative WOM has 

the opposite effect (Melián-González et al., 2013). This is consistent with the established relationship 

between profit, growth and customer loyalty (Kim et al., 2015).  

Game-theory research indeed addresses prices as signals and suggests that, in the long run, firms are 

able to charge a premium price only for quality service (Israely, 2002). Prices may work as signals of 

quality, and firms that do not provide quality service according to industry standards will have to settle 
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for less than a premium price. Hence, quality, related to the level of service offered, is important for 

price determination (Israely, 2002). Torres et al. (2015) demonstrates that hotel ratings, ranking and 

number of reviews have a significant impact on a hotel’s ability to generate revenues through its 

booking transactions. 

This study examines the association between online hotel reputation, as captured though user-mined 

textual themes extracted from positive and negative online hotel reviews with different degrees of 

importance, and hotel performance, defining performance in a way that blends profit with investment 

made for the achievement of this profit. Evaluating the effect of online reputation, shaped by customer 

reviews to the hotel bottom-line financial performance offers a strategic management perspective. The 

service level provided requires the sacrifice of variable economic resources, in order to achieve quality 

and satisfactory hotel product attributes for customers. This is often reflected on financial statements 

through the incurrence of accounting costs. In order for service of a given level and quality to be offered 

to customers, so that customers appreciate the service in question in a positive (negative) way, the 

incurred revenue/cost relation must result in a positive (negative) net financial result. Profit also has to 

be consistent with the level of investment made in the production process, especially as the cost of debt 

is reflected into profitability via the creation of interest expenses. Therefore the following research 

hypotheses are developed: 

H1: Positive online reputation, as manifested through textual themes explaining the variation in positive 

customer online review comments, is positively associated with hotel financial performance. 

H2: Negative online reputation, as manifested through textual themes explaining the variation in 

negative customer online review comments, is negatively associated with hotel financial performance. 

Latent Semantic Analysis (LSA) and online hotel guest reviews 
 

LSA was introduced by Dumais et al. (1988) to extract the main underlying or latent textual meanings 

and concepts from a sample of text. Compared to other natural language processing techniques used in 

analyzing online hotel guest reviews (Stepchenkova et al., 2009; Stringam and Gerdes, 2010; Li et al., 

2015), LSA has innate advantages. These include: statistical and objective nature; noise-reduction 

properties and ability to quantify text similarities; common ‘latent’ or hidden semantic structure, whilst 

handling synonymy and polysemy at the same time. It permits the identification of specific, latent 

textual themes within positive and negative guest reviews, which explain (according to different 

percentages of efficiency) the overall variability of reviews by hotel guests. 

Before performing LSA, all positive online guest reviews (!" = 189,967) in the sample written in 

English were grouped together into one textual collection called the “(positive) corpus”, and similarly 
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all negative online guest reviews (!* = 155,594) into one “(negative) corpus”. Each review on 

Booking.com has clear and separate areas for guest-written pros and cons, and as in Bjørkelund et al. 

(2012), these are quantitatively analysed separately. The total sample of ! = !" + !*= 345,561 online 

hotel guest reviews and their characteristics are further discussed in section 4.1. The two corpora were 

pre-processed, as it is customary in LSA applications (see Mazis and Tsekrekos, 2017).  

For brevity, our exposition here uses only the ‘positive’ corpus of online reviews. Each pre-processed 

review in the ‘positive’ corpus	/" = 1,… ,189,967 = !", was used to construct a [23" × 1] vector that 

will be referred to as the positive term-frequency vector. The !" = 189,967 different term-frequency 

vectors in the sample were subsequently merged, so as to keep any common words/terms only once. 

This resulted in a 2" × !" matrix, with the number of rows, 2" = 678{23
"}, /" = 1,… , !", to reflect 

the unique words/terms across all positive online reviews, and the matrix columns, !",	equal to the 

number of positive online guest reviews in the sample. The elements of each matrix row were demeaned 

to produce the so-called term-document matrix, denoted by ;, which expresses a unique term’s 

frequency in each online review in relative terms, vis-à-vis its average frequency across all reviews. 

Finally, the latent textual “themes” from the sample online reviews (positive and negative) were 

extracted using Singular Value Decomposition (SVD) of the term-document matrix ;. SVD expresses 

the term-document matrix ; as 

;<=×>= = ?<=×>=@>=×>=A>=×>=
B 																																																				(1) 

Since the term-document matrix ;	is mean-centered, the columns of matrix ? are the eigenvectors of 

;;B  while the rows of AB are the principal components of ;. Matrix @ is diagonal, with the square 

roots of the eigenvalues of ;B;, appearing in its main diagonal, in decreasing order. The most 

important, latent textual theme in the (positive or negative) corpus correspond to the highest eigenvalue 

(first diagonal element of @), with the second most-important appearing in the second, and so on.  

Sample selection/methodology 

Sample selection 

Guest online reviews were extracted via auto-parsed web-crawling (as in Xie et al., 2014, among others) 

for all hotels with at least one review on Booking.com for a two year period. Hotels in the 13 largest 

UK cities according to population were selected and that included Birmingham, Bradford, Bristol, 

Cardiff, Edinburgh, Glasgow, London, Leeds, Liverpool, Manchester, Newcastle, Sheffield, and 

Wolverhampton (U.K. Census 2011, Mellinas et al., 2016; p. 81). According to Table 1, this process 

resulted in a total of 4,668 hotels, out of which London and Edinburgh were more strongly represented 

(2,797 and 631 hotels, respectively). Hotels pertaining to a branded chain were deleted. This was 
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because research has consistently shown that chain hotels have improved efficiency (Ben Aissa and 

Goaied, 2016), economies of scale, and better performance in terms of revenues, occupancy and other 

performance metrics (Ivanova and Ivanov, 2015), as well as travellers' rating patterns (Banerjee and 

Chua, 2016). Hotel chains also have the ability to charge higher prices (Silva, 2015). Hotel chain 

affiliation would influence the observed level of financial performance of sample hotels and therefore 

the removal of chain-brand hotels resulted in a total of 3,670 hotels. 

[Insert Table 1 about here.] 

This sample was then matched to hotels included in the Financial Analysis Made Easy (FAME) 

database, compiled by Bureau Van Dijk. The FAME database has been consistently used in accounting 

and finance research, due to its coverage of financial data for private companies, enabling research that 

makes use of such companies (Ball and Shivakumar, 2005; Brav, 2009). The manual matching process 

resulted in a total of 325 different matches for private or unlisted hotels (198 in the London area). This 

represents a significant reduction in terms of observations, as the average number of hotels with online 

guest reviews from Booking.com also included in FAME is marginally less than 10% on a per city 

basis. The number of hotels with data on financial performance proxies is even lower, with a total 

number of hotels with data availability on profitability and total assets to be 159, for a total of 304 hotel-

year observations. This significant drop in the number of usable observations with financial data 

available is consistent with the identified difficulty by past research to match online reviews with actual 

performance data (Phillips et al., 2017). However, this innovative approach, allows for the first time the 

impact examination of online reputation through the use of actual financial information and controls. 

This also represents an attempt to ‘study what is important’ instead of limiting our sight to what can be 

measured readily (Phillips and Moutinho, 2014). 

Table 1 shows that sample hotels receive on average 381.8 positive reviews in Glasgow (median 278.0), 

while in Bristol the average (median) is just 36.3 (36.0). Across all sample cities, one can observe a 

statistically significant higher number of average (and median) positive reviews, compared to the 

number of negative reviews. This is consistent with the finding of Bjørkelund et al. (2012) that hotel 

guest numerical scores on Booking.com shift towards the higher end of the scale.  

The fact that online reviews primarily skew toward the positive end of the spectrum, as hotel ratings 

tend to be favorable, has been established by past research (Melián-González et al., 2013; Fong et al., 

2017). However, relative to positive reviews, negative reviews have a stronger relationship with 

perceived helpfulness (Fong et al., 2017) and are more difficult to analyze semantically (Alaei et al., 

2019). The number of positive vs. negative reviews reported in Table 1 does not exhibit a particularly 

high degree of discrepancy such as the one observed in other research (Fong et al., 2017).  
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Financial performance measurement 

Hotel financial performance was measured in a way that combines revenues and costs incurred for 

providing service to customers, as well as investment. The performance indicators used are pre-tax 

profit margin, expressing profitability (unaffected by externally imposed taxation but taking into 

account all operating and financial expenses), as a percentage of hotel sales, and also pre-tax profit 

scaled by the level of investment in terms of total assets. Financial performance is measured using a 

proxy combining costs (operating and financial ones) and revenues. That ultimately combines the 

amount of investment made, with total assets used as a proxy for investment. 

It should be noted at this point that at the single user level, guests who wrote a negative online comment 

should be the same guests that contributed to the revenue generated by the hotel in question. However, 

such guests were most certainly affected by the (inefficient) incurrence of costs made by the hotel in 

order to provide them with a given level of service, which turned out to be unsatisfactory for them given 

their negative review. In every case, the scope of the study is to examine the effect of positive and 

negative online reputation at the aggregate level, under the expectation that aggregate or cumulative 

effect of positive and negative online reputation (via relevant reviews) should affect profitability within 

a given financial year, reflecting the way of measuring financial performance.  

Main regression model – Control variables  

The following specification was used for examining the significance of themes identified in positive 

and negative online reviews for hotel financial performance:  

EFGGH3,<	or	EFGI3,< = 7J + K LMENO/2/PQ	GℎQ6QOM,3,<

S	or	V

MWX

+ K YZ[Q\72/PQ	GℎQ6QOZ,3,<

S	or	V

ZWX

+ 7X]^_GH/,2` 

+7a]QP/,2 +
7SbH/,2
b]/,2

+ 7cb/2d3 + 7V]^ e[N	Nf	ENO/2/PQ	gQP/QhO/,2i 

+7j]^ e[N	Nf	[Q\72/PQ	gQP/QhO/,2i + 7kg72/^\/ +	Q3,<									(2) 

where EFGGH3,<  and EFGI3,< are Profit before Tax divided by Total Assets (ROA) and divided by 

Sales (Profit margin), respectively. Equation (2) is estimated using OLS. ENO/2/PQ	GℎQ6QOM,3,< 

([Q\72/PQ	GℎQ6QOZ,3,<) regressors are defined as the prevalence on hotel / in year 2 of the main three 

(or five, among robustness checks) textual themes identified in the positive (negative) hotel guest 

reviews, estimated via LSA as described in section 3. The selection of control variables follows past 

research (Ben Aissa and Goaied, 2016). The natural logarithm of Total Assets ]^_GH3,<` is used as a 
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hotel size proxy, given the association of hotel size with performance (Pine and Phillips, 2005; Kim et 

al., 2015). ]QP3,< is a proxy for financial leverage, defined as the sum of short-term loans and long-term 

debt as provided by FAME, divided by Total Assets, consistent with arguments on an eventual 

association of financial indebtness with profitability (Ben Aissa and Goaied, 2016). Hotel companies 

tend to have high proportion of fixed assets, and it is generally easier for firms carrying a significant 

proportion of fixed assets to issue debt (Phillips and Sipahioglou, 2004). bH3,</b]3,<  represents the 

current ratio, defined as current assets divided by current liabilities, and is a proxy for hotel liquidity, 

or the ability of the firm to cover short-term obligations with its more liquid or current assets. b/2d3 is 

a variable taking values from 1 to 13 depending on the city where the hotel is based, while g72/^\3	 

stands for the overall rating of hotel /, as reported by Booking.com. Controls for the number of positive 

or negative reviews used for positive and negative theme extraction ]^_[N	Nf	ENO/2/PQ	gQP/QhO3,<` 

and ]^_[N	Nf	[Q\72/PQ	gQP/QhO3,<` were included, following the association of review volume with 

hotel performance (Blal and Sturman, 2014). 

Star rating (and corporate affiliation) represent signals of quality, with a corresponding influence on 

pricing (Israeli, 2002). Distinct pricing patterns have been identified in the presence of hotel vertical 

differentiation, for hotels with more stars, which have the ability to offer smaller discounts and charge 

higher prices (Becerra et al., 2013). Given this association between the number of hotel stars and 

financial performance, standard errors were clustered according to the number of hotel stars.  

Results 

Theme extraction/interpretation 

Table 2 summarizes results from applying SVD to term-document matrices (positive and negative). 

Panel Α (B) of Table 2 summarizes the contribution of each underlying textual theme to the “variability” 

of positive (negative) online hotel guest reviews.  

[Insert Table 2 about here.] 

For positive online reviews, the first five, most important (highest eigenvalue) textual themes can 

collectively account for 54.20% of the total variance in the reviews. In contrast, five latent textual 

themes can only account for 29.95% of the total variation in the negative sample hotel reviews. One 

would need nearly twenty textual themes in order to account for more than half (54.04%) of the total 

variation in negative customer hotel reviews in the sample. This finding, that positive online reviews, 

as a corpus, appear more homogenous and concise (as opposed to negative online reviews that are 

lengthier, more detailed, multi-faceted and more difficult to analyze semantically), is in line with the 

conclusions of Alaei et al. (2019) and the findings of Bjørkelund et al. (2012) in their opinion-mining 
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study of Booking.com. There exists more guest consensus about the hotel attributes considered 

satisfactory, compared to hotel attributes found dissatisfying.  

Interpretation of the extracted textual themes is a difficult and subjective task. Using the loadings of 

?	from the SVD allows one to measure the representation of each unique term to a particular textual 

theme. Figure 1 plots the loadings of the ten most important terms from textual Themes 1-5.  

 [Insert Figure 1about here.]  

The key terms for Theme 1 in positive online reviews are location, station, shop, underground, 

convenient, restaurant, distance, position, centre and attraction. This theme is interpreted as 

“Convenience of location”. The key terms for Theme 2 are staff, friend, helpful, reception, attend, 

pleasant, polite, professional, efficient and concierge, which can be interpreted as “Staff attentiveness 

and professionalism”. Theme 3 is mainly associated with terms such as clean, comfort, price, money, 

easy, shower, bed, quiet, wifi, and convenient. These terms seem to suggest an interpretation such as 

“Room quality and value-for-money”. Keywords in theme 4 include breakfast, facility, kitchen, decor, 

restaurant, tradition, cook, food, include and continental. This Theme is interpreted as “Breakfast and 

food quality”. Theme 5 is predominantly associated with the terms decor, atmosphere, luxury, fabulous, 

building, facility, relax, ambience, pool and spa, which can be interpreted as “Amenities, ambience and 

luxury”. 

The key terms in Theme 1 from negative online reviews are bathtub, loud, bedroom, bill, improve, 

wardrobe, garden, clean, key and lock. This Theme is interpreted as “Room condition”. The key terms 

in Theme 2 are breakfast, price, include, food, toast, coffee, continental, expensive, egg and tea. These 

terms seem to suggest an interpretation such as “Breakfast and food quality”. The main terms 

associated with Theme 3 are shower, bathroom, toilet, water, share, expensive, price, air condition, hot 

and cold, which can be interpreted as “Bathroom and air condition value-for-money”. Theme 4 can 

be best-described via terms such as noise, floor, loud, road, stairs, lift, sleep, traffic, hear and wall. This 

Theme is interpreted as “Noise and lack of quiet”. Finally, Theme 5 is associated with the terms staff, 

unfriendly, location, pressure, helpful, impolite, reception, car, complain and arrive, which seem to 

suggest an interpretation like “Staff politeness and reception attentiveness upon arrival”. 

Positive and negative review themes and hotel financial performance 

Table 3 reports estimation results for Equation (2). For brevity, the first three (and five in robustness 

tests) positive and negative textual themes are examined. Positive Theme 1 (convenience of location), 

and positive Theme 3 (overall quality of the room), are the ones most significantly associated with hotel 

profitability in terms of ROA and profit margins. Their coefficients are strongly positive and significant 

for most model specifications, with and without the inclusion of any hotel-specific control variables. 
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Positive Theme 2 (quality and attentiveness of staff) is also positively significant, but only when hotel-

specific controls are excluded from the equation. However, for negative themes, results are less strong: 

negative Theme 3 (quality of the bathroom and air-conditioning), is only significant for explaining ROA 

when no hotel-specific controls are included, while negative Theme 2 (quality of breakfast) is again 

only significant in just two model specifications.   

[Insert Table 3 about here.] 

Regarding hotel-specific controls, a strong and significant negative effect of financial leverage on hotel 

financial profitability, is observed, confirming the need to examine the effect of this factor for hotel 

financial performance (Ben Aissa and Goiaed, 2016). The liquidity variable, bH3,< b]3,<⁄ , is found to be 

positively and statistically significant in affecting hotel financial profitability in all regression 

specifications. Findings do not change even after including review rating among independent variables.  

Table 4 reports results when the analysis is repeated by estimating Equation (2) with positive vs. 

negative themes separately. Results confirm previous findings on a positive and significant effect of 

positive Themes 1 and 3 on financial profitability. Negative themes are uniformly not significant, as in 

Table 3, consistent with the notion that semantic constructs from negative online reviews are multi-

faceted and weaker. Results from Table 4 also confirm a strongly negative association between leverage 

and profitability, and a strongly positive association between hotel liquidity and profitability. 

Untabulated results are virtually indistinguishable if the estimation is repeated using the first five 

(instead of three) textual themes from online reviews. 

[Insert Table 4 about here.] 

 

Discussion and conclusions 

Conclusions 

This study examines the effect of online hotel reputation, extracted through guest reviews, on hotel 

financial performance, measured in a way that combines revenues, costs and investment. Latent 

Semantic Analysis is applied in order to mine customer impressions from hotel reviews, identifying the 

textual themes within positive and negative online reviews that are most important in explaining their 

overall variation.  

Findings indicate that the themes that recur in guest descriptions within positive reviews have a greater 

power to explain the overall variation of positive reviews, compared to themes from negative reviews. 

It takes five themes to explain more than half of the variability of positive reviews, when the same 
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number of themes does not explain even 30% of the variability of negative reviews. This is consistent 

with a greater degree of consensus among guests about the hotel attributes they consider satisfactory, 

compared to the (more idiosyncratic and multi-faceted) features that they found dissatisfying. Results 

finally indicate that positive, but not negative, review themes are significantly associated with hotel 

financial performance. This provides support on positive reviews being carried through to explain 

profitability  in accounting terms. It indicates that costs incurred in order to achieve a given level of 

service positively materialize into financial profitability.  

Most importantly, findings show that identified textual themes explaining positive guest reviews, 

positively and significantly associate with accounting profitability. Textual themes explaining negative 

reviews do not consistently have a significant effect on profitability.  

Theoretical implications 

Positive online reputation is carried through financial performance, while this does not occur for 

negative reputation. This is in contrast to marketing beliefs that negative online reviews can be 

catastrophic for reputation and profitability. This is because negative reviews, consistent with previous 

findings, tend to be seen as more idiosyncratic and multi-faceted, in comparison to positive reviews, so 

their effect does not appear to be carried through profitability. The findings appear to contradict past 

research from the marketing field, indicating that negative reviews influence consumers’ decision 

making more than positive reviews (Phillips et al., 2017). This evidence, the more dispersed or guest-

dependent negative reviews failing to translate negatively and significantly into bottom-line 

profitability, is the first of its kind indicating whether negative online reputation turns out to be harmful 

in bottom-line financial terms. However, findings are in accordance with evidence on decomposed 

valence scores by Phillips et al. (2017), indicating that only positive reviews have an impact on 

RevPAR, with the effect of negative reviews being insignificant, as the negativity effect is not strong 

enough to be carried through to performance.  

Evidence extends Berezina et al. (2016), who use a text-mining approach on online reviews. They 

identify common categories that are used in both positive and negative reviews, and our paper extracts 

these categories and further examines which of them actually translate into financial profitability. 

Overall, findings indicate a significantly positive association between the themes explaining positive 

reviews and ROA. This implies that revenues are worth the costs incurred, per unit of investment, for a 

given level of service to be offered to customers. It further provides tangible evidence to Neirotti et al. 

(2016) discussion on the extent to which online review ratings are actually carried to financial 

profitability well and above their effect on sales. Neirotti et al. (2016) are critical about the fact that the 

increase in perceived importance of user-generated reviews in online communities for travellers might 
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shift hotel competition from unit profit margin to volumes, and to higher room occupancy rates. 

Evidence indicates that positive reviews actually have a significant association with bottom line 

financial profitability, well and above volumes. In other words, evidence shows that in contrast to fears 

expressed by past literature that online reviews may only relate to bookings, we put this expectation 

into empirical testing and show that their impact goes all the way down and is translated into 

profitability. This constitutes an attempt to shift the performance measurement impact of online hotel 

reviews in terms of quantification, which is the ultimate business goal. It also opens relevant 

possibilities for future research to shift from a focus on revenues or booking income into bottom-line 

results. The quantification of online reputation and its business effect into bottom-line terms represents 

a natural extension of previous research, given that construction of positive reputation among customers 

comes through the sacrifice of resources to offer value to customers.  

Practical implications 

Results show that the two most crucial (for financial profitability) hotel attributes discussed in positive 

reviews are hotel location and room quality. The geographic location of a hotel, closely related to the 

level of investment made in the business, is its most unchangeable attribute, that cannot be altered or 

improved by the staff once a hotel property has been built (Xie et al., 2014). The findings are consistent 

with this investment being worth its costs in terms of translation into financial profitability. Hotel 

managers should also understand how hotel location affects their bottom-line profitability, and adjust 

their strategy accordingly.  

Findings also indicate that hotel-specific factors financial in nature, such as financial leverage (and 

liquidity), are significant for explaining accounting profitability. This is consistent with the fact that 

hotel profitability analysis should be performed by combining business-related, with financial factors. 

The fact that the UK market is not subject to the same seasonal concentration as other countries 

(Fernández-Morales et al., 2016) helps towards results generalization for different markets with similar 

characteristics. 

Limitations and future directions 

This study unavoidably has a few limitations. First, the study is ultimately based on a limited sample 

from UK hotels due to the need to combine data from online customer reviews with information on 

financial performance and appropriate control variables. Secondly, only one online platform, 

Booking.com, is employed for online guest review extraction. However, this platform is widely 

accredited for the most authentic reviews as reviewers need to have made a reservation and paid on the 

site before being invited to submit a review. Nevertheless, this research would benefit from the analysis 
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of customer reviews from other platforms and longer time periods, in support of result generalization, 

in light of recent evidence on significant variation across platforms in terms of linguistic characteristics, 

semantic features, sentiment, and rating (Xiang et al., 2017). Third, there is no control for qualitative 

guest characteristics, such as impressions made on repeat vs. first time visitors (Jarvis et al., 2016), 

business vs. leisure visitors, or local vs. foreign guests. Finally, as is the case with all textual analysis 

applied to any customer comments characterized as overall positive, or negative, the results may be 

affected by the existence of so-called dual valence reviews (Fong et al., 2017). 
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Table 1: The Table reports, per sample city, the number of available independent hotel entities with at least one positive or negative online guest review on Booking.com, with 
financial data from the FAME database. ***, **, * indicate that a paired, two-sided t-test rejects the null hypothesis that the number of positive comments and the number of 
negative comments are from populations with equal means, while †††, ††, †  indicate that a paired, two-sided Wilcoxon signed rank test rejects the null hypothesis that the 
difference between the median of positive comments and the median of negative comments is zero (at 1%, 5% and 10% significance levels, respectively). 

 UK city 
 Birmingham Bradford Bristol Cardiff Edinburgh Glasgow Leeds Liverpool London Manchester Newcastle Sheffield Wolverhampton 

Hotels with at  
least one 
review on 
booking.com  

111 38 108 135 631 183 74 164 2,797 230 130 50 17 

Excluding 
chained-brand 
hotels 

77 29 87 116 552 158 57 145 2,082 202 113 39 13 

Of  which, 
Hotels that 
have data on 
FAME 

8 
10.39% 

3 
10.35% 

4 
4.60% 

6 
5.17% 

38 
6.86% 

10 
6.33% 

5 
8.77% 

21 
14.48% 

198 
9.51% 

15 
7.43% 

11 
9.74% 

3 
7.69% 

3 
23.08% 

Positive (+) 
guest reviews 

Mean 
Median 
St. Dev. 
Maximum 
Minimum 

 
 

289.6*** 
201.0††† 
250.2 
879 
16 

 
 

166.6* 
94.5†† 
191.2 
505 
8 

 
 

36.3*** 
36.0††† 
19.8 
80 
12 

 
 

219.9* 
83.0††† 
305.8 
1,000 

62 

 
 

158.4*** 
71.0††† 
247.9 
1,249 

2 

 
 

381.8*** 
278.0††† 
281.8 
1,119 

15 

 
 

317.6*** 
189.0††† 
341.0 
1,101 

53 

 
 

135.5*** 
62.0††† 
171.9 
903 

3 

 
 

176.2*** 
116.0††† 
255.7 
3,105 

1 

 
 

198.4*** 
177.0††† 
142.4 
561 
12 

 
 

123.3*** 
89.5††† 
130.9 
643 
4 

 
 

111.0** 
127.0†† 

93.7 
247 
3 

 
 

244.0* 
300.5 
132.5 
328 
47 

Negative (-) 
guest reviews 

Mean 
Median 
St. Dev. 
Maximum 
Minimum 

 
 

240.2*** 
166.0††† 
214.8 
661 
7 

 
 

108.9* 
72.5†† 
117.4 
310 
8 

 
 

28.6*** 
27.0††† 
18.7 
75 
10 

 
 

160.1* 
57.0††† 
216.3 
687 
36 

 
 

119.1*** 
54.0††† 
188.4 
967 
1 

 
 

318.5*** 
253.0††† 
243.2 
1,016 

11 

 
 

248.9*** 
146.0††† 
274.4 
911 
35 

 
 

101.8*** 
48.0††† 
138.6 
711 

2 

 
 

147.4*** 
100.0††† 
219.0 
2,614 

0 

 
 

160.0*** 
145.0††† 
110.9 
413 
9 

 
 

96.6*** 
62.0††† 
107.0 
520 
3 

 
 

86.0** 
72.0†† 
84.2 
217 
1 

 
 

164.3* 
164.0 
87.5 
271 
58 
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Table 2: The Table summarizes the amount each theme contributes to the overall understanding of the text corpus 
based on the matrix of singular values (S). Panel A (B) reports the contribution of textual themes from Positive 
(Negative) online reviews/comments.  

Panel A. Variance of Positive comments, explained by themes  

Themes Singular 
Value EigenValue Variance explained Cumulative Variance 

explained 

1 1.8357 3.3699 18.97% 18.97% 
2 1.5321 2.3472 13.21% 32.18% 
3 1.3233 1.7512 9.86% 42.03% 
4 1.1580 1.3409 7.55% 49.58% 
5 0.9056 0.8200 4.62% 54.20% 
6 0.7420 0.5506 3.10% 57.30% 
7 0.6775 0.4589 2.58% 59.88% 
8 0.5575 0.3108 1.75% 61.63% 
9 0.5393 0.2908 1.64% 63.27% 
10 0.5215 0.2720 1.53% 64.80% 
20 0.3776 0.1426 0.80% 75.12% 

100 0.1191 0.0142 0.08% 91.97% 
500 0.0235 0.0006 0.00% 99.53% 
1000 0.0043 0.0000 0.00% 99.99% 
1174 0.0000 0.0000 0.00% 100.00% 

 

Panel B. Variance of Negative comments, explained by themes  

Themes Singular 
Value EigenValue Variance explained Cumulative Variance 

explained 

1 1.6524 2.7304 15.55% 15.55% 
2 0.9350 0.8743 4.98% 20.53% 
3 0.8167 0.6670 3.80% 24.33% 
4 0.7156 0.5120 2.92% 27.24% 
5 0.6896 0.4756 2.71% 29.95% 
6 0.6318 0.3992 2.27% 32.23% 
7 0.6154 0.3787 2.16% 34.38% 
8 0.5962 0.3555 2.02% 36.41% 
9 0.5849 0.3421 1.95% 38.36% 
10 0.5708 0.3259 1.86% 40.21% 
20 0.4204 0.1767 1.01% 54.04% 

100 0.1637 0.0268 0.15% 82.92% 
500 0.0364 0.0013 0.01% 98.71% 
1000 0.0084 0.0001 0.00% 99.96% 
1174 0.0000 0.0000 0.00% 100.00% 
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Table 3 The Table reports estimation results of Equation (2). The dependent variables are PBTTA i,t =Profit bef. Taxi,t/TAi,t and PBTS i,t =Profit bef. Taxi,t/Salesi,t. T-statistics, 
estimated via standard errors clustered by the number of hotel ‘stars’, are reported in parentheses.  ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.  

Specification (1)  (2)  (3) 
 Dependent variable  Dependent variable  Dependent variable 
 PBTTAi,t PBTSi,t  PBTTAi,t PBTSi,t  PBTTAi,t PBTSi,t 
Independent var.         

!"#$ℎ&'&1),+ 10.661* 
(2.56) 

23.398*** 
(18.00) 

 6.002* 
(2.75) 

15.459*** 
(8.01) 

 5.675** 
(4.02) 

11.791 
(2.13) 

!"#$ℎ&'&2),+ 21.351* 
(2.63) 

26.090*** 
(7.01) 

 2.845 
(0.88) 

8.955 
(1.67) 

 6.605* 
(3.07) 

20.892 
(1.60) 

!"#$ℎ&'&3),+ 16.856*** 
(8.00) 

21.948*** 
(6.67) 

 12.352 
(2.33) 

14.753** 
(3.71) 

 16.264*** 
(5.80) 

25.992* 
(2.88) 

.&/$ℎ&'&1),+ -15.192 
(-1.58) 

-51.066 
(-1.24) 

 1.464 
(0.10) 

-25.287 
(-0.55) 

 -2.549 
(-0.20) 

-20.235 
(-0.49) 

.&/$ℎ&'&2),+ -3.870 
(-1.49) 

-14.418 
(-1.52) 

 -3.374 
(-0.98) 

-12.307* 
(-2.44) 

 -4.056 
(-1.75) 

-16.373 
(-1.69) 

.&/$ℎ&'&3),+ -6.206** 
(-3.43) 

-5.124 
(-0.94) 

 0.154 
(0.05) 

-0.156 
(-0.04) 

 1.282 
(0.54) 

0.155 
(0.04) 

012$3),+4   
 0.101 

(2.20) 
-0.014 
(-0.14) 

 0.087 
(1.44) 

-0.073 
(-0.52) 

0&5),+    
 -1.052*** 

(-39.67) 
-0.275 
(-2.34) 

 -1.066*** 
(-33.95) 

-0.304 
(-1.94) 

63),+/60),+   
 0.047** 

(4.59) 
0.140** 
(3.49) 

 0.049** 
(5.49) 

0.1574* 
(2.49) 

689:) 0.011 
(0.34) 

0.052* 
(2.36) 

 0.044*** 
(8.77) 

0.024* 
(2.90) 

 0.043*** 
(7.04) 

0.021 
(1.75) 

012."	"<	!"#8985&	=&58&>#),+4 -0.687 
(-1.66) 

1.202 
(1.54) 

 0.096 
(0.45) 

1.948 
(2.03) 

 -0.492 
(-0.87) 

0.429 
(0.69) 

012."	"<	.&/?985&	=&58&>#),+4 0.759 
(1.99) 

-0.894 
(-1.40) 

 -0.117 
(-0.57) 

-1.751 
(-2.27) 

 0.446 
(0.78) 

-0.247 
(-0.34) 

=?981/),+       0.214 
(1.48) 

0.817 
(0.85) 

Intercept -0.518** 
(-3.02) 

-2.027 
(-1.82) 

 -0.532 
(-0.92) 

-1.305*** 
(-9.28) 

 -1.905** 
(-3.71) 

-7.244 
(-1.02) 

         
=@ 0.068 0.237  0.891 0.378  0.893 0.408 
No. Obs 304 113  120 107  120 107 
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Table 4: The Table reports estimation results of Equation (2). The dependent variables are PBTTA i,t =Profit bef. Taxi,t/TAi,t and PBTS i,t =Profit bef. Taxi,t/Salesi,t. T-statistics, 
estimated via standard errors clustered by the number of hotel ‘stars’, are reported in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively. 

 (4)  (5) 
 Dependent variable  Dependent variable 
 PBTTAi,t PBTSi,t  PBTTAi,t PBTSi,t 
Independent var.      

!"#$ℎ&'&1),+ 6.035** 
(3.69) 

10.956* 
(2.41) 

 
  

!"#$ℎ&'&2),+ 6.820 
(2.02) 

15.404 
(1.24) 

 
  

!"#$ℎ&'&3),+ 16.197** 
(3.66) 

22.448* 
(2.51) 

 
  

.&/$ℎ&'&1),+   
 -1.532 

(-0.14) 
-20.411 
(-0.40) 

.&/$ℎ&'&2),+   
 -2.996 

(-1.07) 
-15.226 
(-1.55) 

.&/$ℎ&'&3),+   
 -3.799 

(-1.58) 
-2.658 
(-0.72) 

012$3),+4 0.085 
(1.75) 

0.064 
(0.54) 

 0.0302 
(0.45) 

0.141 
(1.46) 

0&5),+  -1.052*** 
(-22.29) 

-0.296 
(-2.04) 

 -1.065*** 
(-14.30) 

-0.337* 
(-3.02) 

63),+/60),+ 0.047*** 
(11.87) 

0.174 
(2.10) 

 0.059*** 
(6.15) 

0.1782*** 
(6.98) 

689:) 0.047** 
(3.91) 

0.014 
(0.95) 

 0.023 
(1.53) 

0.001 
(0.03) 

012."	"<	!"#8985&	=&58&>#),+4 0.430 
(0.74) 

0.587 
(1.33) 

 0.600 
(1.22) 

0.398 
(1.45) 

012."	"<	.&/?985&	=&58&>#),+4 -0.381 
(-0.68) 

-0.509 
(-1.27) 

 -0.671 
(-1.46) 

-0.028 
(-0.07) 

=?981/),+ 0.165 
(0.93) 

0.624 
(0.71) 

 0.127 
(0.65) 

0.790 
(1.58) 

Intercept -1.540 
(-2.22) 

-5.316 
(-0.88) 

 -1.175 
(-2.14) 

-7.258 
(-1.67) 

      
=@ 0.891 0.369  0.874 0.374 
No. Obs 120 107  120 107 
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Figure 1: Characteristic terms for Themes 1 through 5 

The Figure displays the ten most important terms, according to term contribution to themes (U matrix) for each of the first five themes, for positive (Panel A) and negative (Panel 
B) reviews.   
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Panel B, Negative Themes 
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