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Abstract 

This paper presents a case study of a young infant, from a larger isotopic and osteological investigation 
of Bronze/Iron Age (14th-4th century BC) skeletal assemblages from Croatia and Slovenia. The 
osteological analysis of this infant identified pathological lesions including abnormal porosity and new 
bone formation consistent with malnutrition and phases of recovery. The distribution and appearance 
of these pathological lesions (i.e. diffuse micro-porosities and plaques of subperiosteal new bone 
formation on the skull and long bones) led to the conclusion that this infant probably suffered from 
scurvy (vitamin C deficiency). The diet and nitrogen balance of this individual were investigated by 
incremental dentine sampling and stable carbon and nitrogen isotope analysis. This sampling method 
provided a high resolution record of dietary and metabolic changes from pre-birth to around the time of 
death. The resulting isotope data exhibited unusually high δ13C values for this region and time period 
(between -11.3‰ and -12.6‰), while δ15N values were observed to be c. 3‰ above that of rib collagen 
sampled from contemporary adults recovered from the same site. The isotope profiles generated from 
the incremental dentine analysis show that δ13C and especially δ15N continue to increase until death. 
The evidence from the skeletal remains and high resolution isotopic data support the hypothesis that 
this infant suffered from severe malnutrition and an increasingly negative nitrogen balance. The paper 
discusses some scenarios which could have resulted in these unusual isotope ratios, whilst considering 
the diagnosis of possible metabolic disease. The paper also addresses the need for context when 
interpreting isotopic results. The isotope data should not be viewed in isolation, but rather as part of a 
multidisciplinary approach, considering the multiple causes of isotopic variability.  
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1. Introduction 

 

Figure 1. Map of south-eastern Europe with the site of Zagorje ob Savi marked in red (Sources: www.freeworldmap.net; 
www.esri.com).  

This paper provides a case study combining contextual, osteological and isotopic data to produce a 

biography for a single individual buried at the Early Iron Age cemetery at Zagorje ob Savi, (46°8'7.84" 

N, 14°59'36.04" E) Slovenia (6th-4th centuries BC). The study was drawn from a larger osteological and 

stable isotope investigation of skeletal material recovered from central and eastern Slovenia, and 

northern Croatia (Nicholls 2017). The infant presented in this paper was exceptional in both their 

osteological and isotopic results.  

1.1 Zagorje ob Savi 

The Early Iron Age cemetery at Zagorje ob Savi (Kidričeva cesta) is located at the foot of the hill known 

as Ocepkov hrib, where the contemporary settlement is located. The location of this site is highlighted 

in Figure 1. It lies close to the Medija stream, a tributary of the Sava, one of the major rivers of the 

region. The site belongs to the Dolenjska Early Iron Age (Hallstatt) regional group, although it is located 

on the northern fringes of this group (Supplementary 1) and was active only in the Late Hallstatt period 

(6th-4th centuries BC), as was the case for a number of sites in this region.  

The cemetery is unusual in containing flat inhumation graves, in a region where monumental burial 

mounds are much more common. It is one of fourteen such cemeteries in the broader region, which, 

where they can be dated, generally belong to the Late Hallstatt period. Most are located in the northern 

http://www.freeworldmap.net/
http://www.freeworldmap.net/
http://www.esri.com/
http://www.esri.com/
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part of the Dolenjska cultural group area, i.e. the Posavsko hribovje hill range, close to the Sava River 

(Gabrovec 1966; Dular, Tecco Hvala 2007; Draksler 2007).  

The cemetery at Zagorje ob Savi has been known since the end of the 19th century, when several 

graves were found during construction work. Some contained high status artefacts, including a belt 

plate featuring a hunting scene; however, contextual information on these burials is scarce (Gabrovec 

1966; Draksler 2007). Recent development-led excavations provided the first opportunity to acquire 

high quality data from this site. This work revealed nine graves, six of which yielded human skeletal 

remains, set in three distinct groups. The central group comprised five graves including one with the 

infant skeletal remains that forms the basis of this paper.  

It is impossible to date all the graves individually, as some were disturbed or lacked any grave goods 

(e.g. grave 1 and 4). Nevertheless, those containing datable finds seem without exception to date to 

the Late Hallstatt Period (Draksler 2011; Murko 2011; Draksler and Murko 2020 in press). The most 

informative finds are a serpentine type fibula with a saddle-shaped bow and a disc from grave 8 (variant 

IVb after Tecco Hvala 2014), dating to the 6th century BC (Tecco Hvala 2014), and a Certosa type fibula, 

from grave 2 (variant XII after Teržan 1976), which is characteristic of the 4th century BC (Teržan 1976). 

Radiocarbon dates for two of the graves (the infant burial discussed here, i.e. grave 7 and grave 8, with 

the serpentine fibula) fall within the so-called Hallstatt plateau, between approx. 750 and 400 BC. The 

infant grave (SUERC-69421, 2412 ± 29 BP) is weighted to the 6th and 5th centuries BC (550-401 cal BC 

(80.8 %); OxCal v4.2.4), while grave 8 (SUERC-69422, 2499 ± 28 BC) is weighted to the 8th to 6th 

centuries BC (781-538 cal BC (95.4 %)); OxCal v4.2.4; although, as mentioned above, the 6th century 

fibula from this grave would suggest that it falls towards the end of this distribution. 

1.2 Evidence of diet in Iron Age Slovenia 

Iron Age Slovenia was inhabited by agricultural communities. Their diet probably consisted of 

domesticated plants and animals. Evidence of faunal remains obtained from large settlement centres, 

such as Stična and Cvinger, show a predominance of cattle, followed by caprine (sheep/goat) and pig 

(Dular and Tecco-Hvala 2007). Wild animals made up a relatively small proportion of faunal remains, 

the most common being red deer, wild boar and roe deer (Dular and Tecco-Hvala 2007).  

The botanical material has provided evidence for a mixture of domesticated plants, including C3 cereals 

(barley, wheat, oats, and rye), legumes (vetch, faba bean, pea, lentils) and vegetables (cabbage, 

mustard, turnip and kohlrabi) (Dular and Tecco-Hvala 2007). The charred remains of millet (a C4 plant) 

grains found in over a dozen late prehistoric sites in south-east Slovenia and northern Croatia, are 

evidence that this crop was being exploited in this region by the Late Bronze Age, if not earlier (Dular 

and Tecco-Hvala 2007; Karavanić et al. 2015; Reed and Drnić 2016). 

1.3 Stable isotope analysis 

The analysis of stable carbon and nitrogen isotopes in human bone and dentine collagen has become 

commonplace for the investigation of diet in the past (Tykot 2004; Craig et al. 2009; Tafuri et al. 2009; 
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Killgrove and Tykot 2013; Lightfoot et al. 2014). δ15N values have also been used for the investigation 

of health status, as this ratio is not only reflective of diet, but of an individual’s nitrogen balance (Fuller 

et al. 2004; Fuller et al. 2005; Beaumont et al. 2013; Beaumont et al. 2015). This balance is affected by 

dietary nitrogen, but also by metabolic processes and states, such as growth, malnutrition, and illness 

(Mekota et al. 2009; Reitsema 2013; Waters-Rist and Katzenberg 2010). It depends on the amount of 

nitrogen excreted in relation to the amount of dietary nitrogen ingested. The body falls into a negative 

nitrogen balance also known as catabolism, or a catabolic state, for example, during periods of 

nutritional stress or disease (Fuller et al. 2005; Mekota et al. 2009; Beaumont et al. 2013; Beaumont et 

al. 2015). Catabolism raises δ15N values as the body breaks down tissues to replace nitrogen missing 

from the diet, which results in an increase in the 15N in newly-formed tissues relative to the original, and 

can be misinterpreted as ingestion of higher trophic level foods. The body enters into a positive nitrogen 

balance when less nitrogen is excreted than ingested, commonly during times of rapid growth, such as 

infancy and puberty (Waters-Rist and Katzenberg 2010). This is also known as anabolism, or an 

anabolic state, and has been reported to lower δ15N values (Fuller et al. 2006, Waters-Rist and 

Katzenberg 2010). This current case study from Early Iron Age Slovenia aims to investigate temporal 

changes in nitrogen balance in the hard tissues of an infant exhibiting a range of pathological skeletal 

lesions. 

This study illustrates the advantages of bringing together multiple strands of evidence to create more 

informed interpretations regarding life and death in prehistory. It also demonstrates the importance of 

context when interpreting stable carbon and nitrogen isotope data. 

2. Material and Methods 

2.1 Osteological Analysis 

Poor preservation can limit the nature of information gleaned from osteological analysis (Bytheway and 

Ross 2010). The burial conditions within the current study area are predominantly detrimental to bone 

preservation, leading to severe cortical exfoliation, root etching, as well as a variable level of 

completeness, frequently 50% or less (Nicholls 2017).  

Osteological and palaeopathological analysis was undertaken through macroscopic observation and 

using a magnifying hand lens. Standard analysis and recording methods were used for biological sex 

assessment (pelvis: (Walker 2005; Phenice 1969; Klales et al. 2012) skull: (Buikstra and Ubelaker 1994; 

Walker 2008; İşcan and Steyn 2013)) and age estimation (Buckberry and Chamberlain 2002; Brooks 

and Suchey 1990; Brothwell 1981). Tooth wear (Brothwell 1981) was used with caution due to a lack 

of published, calibrated, population-specific standards for the study area. Supporting evidence was 

taken from late fusing epiphyses (Belcastro et al. 2008; Webb and Suchey 1985). Due to the generally 

poor preservation of the skeletal material, broad ranges of young, middle and mature adult were 

considered more appropriate than numerical ages (after Buikstra and Ubelaker, 1994). Standard 

protocols and guidelines were used for recording the appearance and location of pathological lesions 

(Buikstra and Ubelaker 1994; Aufderheide and Rodríguez-Martín 1998; Brickley and Ives 2008).  

Although some radiographs were taken, they were of limited use due to the presence of taphonomic 
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damage (including the loss of metaphases on all but the right femur of the infant) and soil within the 

medullary cavities and trabecular spaces. The degree of fragmentation did, however, allow for the 

observation of the internal structures of some of the long bones.  

Age estimation for the infant was carried out using dental development (AlQahtani 2010; Moorrees et 

al. 1963). Due to the young age of the infant the remains were not assessed for sex. 

2.2 Isotope analysis 

Stable carbon and nitrogen isotope ratio analysis was carried out on rib collagen from three adults 

interred within the same site. A rib collagen sample was taken from the infant, in addition to incremental 

dentine collagen sampling. Care was taken not to sample from an area that exhibited any pathological 

lesions (Olsen et al. 2014). The study also included faunal material from three cows, two pigs and a 

deer. Animal bones were excavated from the grave fills and their immediate surroundings. These are, 

however, unlikely to represent grave goods, and are most probably remains from a settlement, 

immediately pre-dating the cemetery in this location, and so represent a contemporary faunal baseline 

of stable carbon and nitrogen isotope ratios for the area. 

All collagen extractions were carried out following the modified Longin method (Longin 1971; Brown et 

al. 1988). Rib fragments (c. 300mg) were demineralised in 0.5M HCl at 4°C, which took between two 

and four weeks. Once the production of CO2 had ceased and the reaction was complete, all samples 

were rinsed three times with deionised water and placed in an HCl solution of pH3 at 70°C for 48 hours 

to gelatinise. The solutions were filtered using Ezee filters, followed by centrifugal filtering using Millipore 

ultrafilters. The resulting liquid was then freeze-dried, weighed in duplicate and measured at the 

University of Bradford Stable Isotope Facility by combustion in a Thermo Flash EA 1112. Internal and 

external standards were run throughout, as well as separated N2 and CO2 references gases, using a 

Delta plus XL via a Conflo III interface. The analytical precision for both the δ13C and δ15N, based on 

instrumental error, is ± 0.2‰. 

For the infant, seven 1mm incremental dentine samples were taken from the crown to the apex of the 

first right maxillary deciduous incisor, following method 2 from Beaumont et al. (2013). The first right 

maxillary incisor was selected for stable isotope analysis based on preservation and because this was 

the most developed of the available teeth. Because of the overlap of dentine layers in each 1mm sample 

(apart from the first and final sections as the tooth was forming at the time of death) the isotope results 

will represent a rolling average of dietary input (Beaumont et al. 2013). Temporal resolution is much 

better than that seen in bone collagen, but the results are discussed in terms of general trends of 

increasing and decreasing isotope values, rather than attempting to assign exact age to each section.  

Isotopic data, together with associated chronological and other supporting information from this study, 

has been added in the IsoArcH database (Salesse et al. 2018; Salesse et al. 2019). 
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3. Results 

3.1 Osteological analysis 

The first and second right incisors had complete crowns and ¼ roots. The right canine and first molar 

had yet to erupt from the maxilla, while the crown of the second right molar (loose) was complete, but 

with no initiation of the root. The stage of development and tooth eruption is consistent with an age of 

7.5 months +/- 3 months following AlQahtani (2010). The development of the second molar is consistent 

with an age of 6-9 months following Moorrees et al. (1963). It was concluded that the infant was 6-9 

months old at the time of death based on dental development (AlQahtani 2010; Moorrees et al. 1963). 

The age and sex determinations of the adult skeletal remains are presented in Table 1.  

The preservation and fragmentation of skeletal remains has had considerable consequences for the 

identification of pathological lesions. Subsequently, it cannot be said that pathological lesions were 

never present, only that there was no evidence upon examination. 

The middle aged adult female buried in grave 8 exhibited cribra orbitalia and diffuse porosity across the 

cranial vault fragments. Diffuse porosity and compact, striated bone was also identified on surviving 

fragments of the long bones. Probable systematic non-specific inflammation possibly due to infection 

or metabolic disease is suggested, however, further diagnosis was not possible due to the fragmented 

nature of the remains. 

No other palaeopathological lesions were observed on the other adults. However, the taphonomic 

damage to the skeletal remains was very severe, and the cortical surface of these remains was heavily 

impacted. There is a possibility that any pathological lesions were destroyed in the burial environment.   

3.1.1 Palaeopathological analysis of the Zagorje ob Savi infant 

Some of the pathological lesions described here are depicted in Figure 2. The skeletal remains of the 

infant exhibited a high prevalence of abnormal porosity. In the cranium, this was noted in the roof of 

both eye orbits; diffusely across the ectocranial surface of the surviving fragment of frontal bone; and 

in small patches on both parietal bones around the parietal bosses and the coronal suture. The external 

areas of the right maxilla (Figure 3A), extending away from the alveolar bone towards the infra-orbital 

foramen, and the hard palate also exhibited extensive porosity.  

Isolated small plaques of porous woven bone were observed on the endocranial surfaces of the parietal 

bones (Figure 3B) and the squamous portion of the temporal adjacent to the squamous suture. Layers 

of woven and compact new bone formation were also identified in the roof of the eye orbits (Figure 3C), 

the external (inferior) surface of the basilar portion (Figure 3D), and on the surface of the left pars 

lateralis of the occipital, adjacent to the occipital condyle and the hypoglossal canal.  

Diffuse plaques of porous sub-periosteal new bone formation were identified on the surviving long 

bones, specifically; covering the middle third of both femoral and both humeral diaphysis (Figure 3E), 

the proximal and middle third of the right fibula and the entire surviving fragment of the right tibia (Figure 
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3F) (the left side being absent). Compact and striated bone was also noted along the linea aspera of 

the right femur (Figure 3G). The additional surviving fragments from the axial skeleton were too poorly 

preserved to detect the presence or absence of any pathological lesions. 
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Figure 2. Left: Inventory of skeletal remains from the infant; Right: A. Right maxilla fragment showing porosity around maxillary sinus; B. Endocranial surface of parietal bone with plaques of compact bone; C. Right orbit with layers of porous woven bone; D. Basilar portion with abnormal 
porosity; E. Posterior right humerus showing plaque of porous woven and compact bone on top of original cortical surface F. Anterior right tibia showing plaque of porous woven and compact bone on top of original cortical surface; G Posterior right femur with porous compact bone on and 

around the linea aspera; H. Radiograph of right femur
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3.2 Carbon and nitrogen Isotopes 

3.2.1 Rib collagen samples of individuals buried at Zagorje ob Savi 

The stable carbon and nitrogen isotope results of bulk rib collagen from four individuals buried at 

Zagorje ob Savi can be seen in Figure 3 and Table 1. All samples fell within the accepted C:N ratio and 

>1 % collagen yield, indicating good collagen preservation (Van-Klinken 1999).  

Adult rib δ13C values range between -15.2 and -14.4‰, and δ15N values between 8.6 and 9‰. The 

collagen extracted from the rib of the infant has considerably higher δ13C (+2.9‰) and δ15N (+3‰) 

values when compared to the adult values.   

 

Specimen Element Grave 
No. 

Sex δ13C
‰ 

δ15N
‰ 

C:N Amt%N Amt%C 

Middle adult* rib 2 M -14.8 8.6 3.2 16.7 46.0 

Middle adult rib 8 F -15.2 8.9 3.2 17.4 47.6 

Middle adult rib 5 F -14.4 9.0 3.2 17.2 46.8 

Infant  rib 7 N/A -11.9 11.8 3.2 15.3 41.3 

Infant dentine (average of whole tooth root) incisor 7 N/A -12.1 12.0 3.2 15.9 43.2 

Deer metatarsal 9 N/A -23.1 3.3 3.3 13.5 38.1 

Cow scapula 5 N/A -19.0 4.8 3.2 14.9 41.0 

Cow metatarsal 1 N/A -19.2 6.3 3.2 15.2 41.9 

Cow metatarsal 5 N/A -18.5 6.7 3.3 14.4 40.5 

Pig mandible 8 N/A -21.0 6.3 3.2 14.4 40.1 

Pig scapula 8 N/A -19.3 4.8 3.3 14.0 39.1 

Table 1. Carbon and nitrogen ratios from human and faunal remains from Zagorje ob Savi (*Middle adult age range 36-50yr, Buikstra and 
Ubelaker 1994) 
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Figure 3. Plot of carbon and nitrogen isotope ratios obtained from the remains of individuals buried at Zagorje ob Savi. Samples include rib bone 
collagen from three adult individuals (black circles) and the rib (white circle) and mean dentine collagen extracted from the Infant (grey triangle). 
The plot also includes carbon and nitrogen isotope ratios of animal bone collagen sourced from graves in the same cemetery assemblage as the 
human remains. The error bars represent the analytical precision of carbon and nitrogen isotope analysis, based on instrumental error of ± 0.2‰. 

 

3.2.2. Incremental dentine collagen analysis of a first deciduous incisor from the infant  

The results of incremental dentine collagen analysis are shown in Table 2 and Figure 4. Figure 4 

displays an increase in both δ13C (+1.2‰) and δ15N (+2.3‰) values throughout the development of the 

tooth root. If we accept that this tooth represents tissue from 2 months pre-birth through to 9 months 

post-birth, (Beaumont and Montgomery 2015)  we can see that, in comparison to δ13C values, δ15N 

values are observed to increase more rapidly and by a higher magnitude, most notably from section 5 

through to death (δ15N = +1.7‰; δ13C = + 0.8‰). 

Dentine 
increment δ13C ‰ δ15N ‰ C:N Amt%N Amt%C 

1 (crown)  -12.6 11.2 3.2 15.8 43.3 

2 -12.4 11.4 3.2 14.1 38.4 

3 -12.2 11.6 3.2 16.4 44.5 

4 -12.1 11.8 3.2 16.8 45.4 

5 -12.0 12.1 3.2 16.7 45.1 

6 -11.7 12.7 3.2 16.5 45.0 

7 (apex)  -11.3 13.5 3.2 14.8 40.6 

Table 2. Carbon and nitrogen isotope ratios of dentine increments sampled from the first deciduous incisor, Zagorje ob Savi infant 
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Figure 4. A plot of carbon and nitrogen isotope ratios of incremental dentine sections sampled from the first deciduous incisor of the Zagorje ob 
Savi infant. The red and blue trend lines represent changing metabolic and dietary conditions from pre-birth to around the time of death, reflected 

through isotopic variation. The red line represents the mean adult rib δ15N value of 8.8‰ and the blue line the mean adult rib δ13C value of -
14.8‰. The red dashed line represents the infant rib δ15N value of 11.8‰ and the blue dashed line the infant rib δ13C value of -11.9‰. The error 

bars represent the analytical precision of carbon and nitrogen isotope analysis, based on instrumental error of ± 0.2‰. 

  

4. Discussion 

4.1 Pathological lesions  

Normal growth and development of the infant skeleton causes areas of porosity because of increased 

vascularisation, particularly around the growth plates at the metaphyses of long bones (Cunningham et 

al. 2016). Ortner et al. (2001) suggest that porous lesions that extend 10 mm past the growing 

metaphyseal end of the diaphysis are less likely to be connected to normal bone growth. Sub-periosteal 

bone formation has been linked with several pathological conditions, including non-specific 

inflammation and metabolic disease, such as haemolytic (caused by the premature destruction of red 

blood cells) or megaloblastic (deficient in vitamin B12 and folic acid) anaemia, rickets (childhood vitamin 

D deficiency) and scurvy (vitamin C deficiency) (Ortner and Ericksen 1997; Ortner and Mays 1998; 

Ortner et al. 2001; Brickley and Ives 2006; Mays 2008a; Walker et al. 2009; Snoddy et al. 2018).  

4.2. Differential diagnoses  

Megaloblastic and haemolytic anaemias can be caused by a range of dietary and genetic factors 

(Walker et al. 2009).  Porosity within the eye orbit and the cranial vault has been linked to anaemia, 

thought to occur as a response to increased red blood cell production. Expansion of the hematopoietic 

marrow within the diploë of the skull causes greater vascularisation at the expense of the outer and 

inner table of the cranial vault (Walker et al. 2009). Whilst porosity was observed at these locations in 
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the current investigation, the absence of hyperplasia of the diploë and the presence of sub-periosteal 

new bone formation suggests these lesions were not primarily the result of anaemia (Ortner et al. 2001; 

Brickley and Ives 2006). 

Rickets results from the inability to adequately mineralise bone due to the lack of vitamin D during 

growth. This produces pores in dry bone as the inadequately mineralised osteoid that once filled these 

spaces does not survive the burial environment (Ortner and Mays 1998; Mays et al. 2006). It is 

commonly associated with the deformation of long bones and sternal rib ends, as well as a roughened 

bone surface beneath epiphyseal joint plates. As some of these deformities are related to weight 

bearing whilst crawling or walking, it is unlikely they would be visible in the lower limbs of this infant. 

Bony changes have been recognised in infants as young as 3 months, affecting the upper limb, ribs, 

orbital roof, cranial vault, and growth plates (Ortner and Mays 1998). A pattern of struts and slits across 

major long bones were also observed by Ortner and Mays (1998), showing that rickets is diagnosable 

in infants who have not yet begun walking. In the Zagorje ob Savi case, macroscopic and radiographic 

(right femur; Figure 3H) observations did not identify deformation of the long bones, struts or slits near 

the metaphyses, and the one surviving metaphyseal surface (right, proximal femur) appeared normal. 

This makes a diagnosis of rickets unlikely.   

Non-specific inflammation involving the periosteum can also result in abnormal bone porosity (Lewis 

2004; Weston 2008). Plaques of new bone on top of the original cortical surface of long bones have 

also been associated with an inflammatory response to non-specific infection (Roberts and Manchester 

2010). Whilst this type of lesion was observed in the Zagorje ob Savi infant, Ortner (2003) has cautioned 

that under the age of four, woven periosteal new bone at this location this cannot be differentiated from 

normal bone growth. Thus, whilst non-specific inflammation due to a systemic infection cannot be ruled 

out there is insufficient skeletal evidence to make this diagnosis.  

The Zagorje ob Savi infant exhibits several features that have been associated with scurvy. Using 

criteria suggested from Snoddy et al’s (2018) synthesis of clinical and palaeopathological studies, we 

have highlighted skeletal lesions that have been described as ‘suggestive’ or ‘diagnostic’ (see Table 3).  

Lesion Location Lesion type Proposed diagnostic strength 
Frontal orbital roof Bilateral sub-periosteal new 

bone 
Diagnostic 

Right maxilla: Anterior surface/ 
infra-orbital foramen  

Abnormal cortical porosity Diagnostic 

Right maxilla: palatal surface Abnormal cortical porosity Diagnostic 
Ectocranial parietal Abnormal cortical porosity Diagnostic 
Endocranial parietal and 
squamous temporal 

Islands of abnormal cortical 
porosity and sub-periosteal 
new bone 

Suggestive 

Occipital inferior surface: pars 
basilaris 

Abnormal cortical porosity and 
sub-periosteal new bone 

Suggestive 

Femur: linea aspera Sub-periosteal new bone  Suggestive 
Appendicular skeleton: 
diaphysis 

Sub-periosteal new bone 
(diffuse) 

Diagnostic* 

Table 3: Macroscopic lesions that have been attributed to scurvy (Snoddy et al. 2018) *not exclusive to scurvy  
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There are only two additional features described by Snoddy et al. as ‘diagnostic’ and these are found 

on the sphenoid and scapulae bones.  Unfortunately, in the current case, these elements were absent 

and, therefore, could not be assessed. However, we have identified five criteria thought to be diagnostic 

of scurvy and others that are suggestive (Table 3). Additionally, Ortner et al. (2001) have argued that 

scurvy can affect the skeleton without involving the greater wing of the sphenoid and Brickley and Ives 

(2006) have cautioned against the over-dependence on one skeletal element for the diagnosis of 

pathology. 

Scurvy occurs when there is insufficient vitamin C intake. This micronutrient is responsible for the 

correct formation of collagen (Munday et al. 2005; Tsuchiya and Bates 2003). Collagen is a structural 

protein that is ubiquitous within the human body contributing to the formation of skin, muscle, tendon, 

the lining of vital organs, as well as bones and teeth. A lack of vitamin C can thus result in weakened 

connective tissues and vessels that are susceptible to haemorrhage (Hirschmann and Raugi 1999). 

Chronic bleeding of tissues adjacent to the bone surface can lead to an inflammatory response, i.e. 

porosity and sub-periosteal new bone formation (Mays 2008b). The pathological lesions consistent with 

scurvy have been argued to be more common in the skeletal remains of young children because of the 

high demands of rapid growth (Ortner and Ericksen 1997; Ortner et al. 1999). As the child develops, 

poor collagen formation leads to arrested osteoblastic activity and the collagenous bone matrix does 

not ossify.  

The new bone growth identified across the skull and long bones was formed on top of the existing 

cortical surface, consistent with haemorrhage resulting from minor trauma, for instance lesions in the 

eye orbit may be caused by the movement of the ocular muscles (Lewis 2004; Mays 2008a; Moore and 

Koon 2017; Walker et al. 2009). The plaques of compact bone identified on the endocranial surface of 

the skull, in conjunction with the layers of woven and compact bone observed within the orbits and on 

the long bone diaphyses, suggest that there were phases of recovery and healing, as new bone could 

only have been laid down during a recovery phase following the reintroduction of vitamin C (Brickley 

and Ives 2006). The lesions are, therefore, consistent with chronic scurvy with some evidence of 

reintroduction of vitamin C prior to death (Brickley and Ives 2006; Mays 2008a; Walker et al. 2009). 

It is important to note that a malnourished individual could suffer from more than one disease or 

condition. The occurrence of one can weaken the immune system, causing the individual to become 

more susceptible to other illnesses. The individual presented here may have been additionally affected 

by any of the disorders mentioned above, as well as other deficiencies and infections that do cause 

skeletal changes. Overall, it was concluded that this infant had suffered from severe and chronic 

malnutrition, resulting in vitamin C deficiency and probable scurvy. 

Clinical symptoms associated with scurvy become identifiable after 1-3 months of insufficient vitamin C 

intake, depending on existing body stores (Hodges et al. 1969; Larralde et al. 2007) and haemorrhages 

only after around 6 months of total absence of vitamin C (Hodges et al. 1971). Given the presence of 

bony lesions on the infant skeleton it is likely they suffered from a chronic deficiency of vitamin C.  
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It is known from modern-day cases of infantile scurvy that abnormal collagen formation can lead to 

bleeding in the skin, mucous membranes, muscles, gastrointestinal tract and around the joints (Jackson 

and Park 1935; Larralde et al. 2007; Weinstein et al. 2001). Individuals suffering from scurvy may also 

have difficulties with coagulation of the blood, which can exacerbate the problem and lead to 

complications with healing wounds (Larralde et al. 2007). Clinical symptoms include fatigue, irritability, 

and delayed or stunted development. Haemorrhagic skin lesions are common, and haemorrhaging from 

the eyelids and gums has also been described (Larralde et al. 2007; Weinstein et al. 2001). 

Swelling of the lower extremities has been observed, potentially with multiple causalities, including 

leaking capillaries and soft tissue haemorrhage (Larralde et al. 2007). Intense joint pain and muscle 

weakness, especially in the lower limbs, constricts movement and leads to children laying in an abduct 

or ‘frog-like’ position (Larralde et al. 2007). Therefore, the Zagorje ob Savi case of probable infantile 

scurvy would have resulted in particularly visible symptoms. 

4.3 Carbon and nitrogen isotopes 

4.3.1 Animal bone collagen 

There is a small shift in the carbon and nitrogen isotope ratios between wild (i.e. deer) and domesticated 

animals. This is probably due to the higher levels of controlled feeding in domesticated animal 

populations, including potential penning, which can raise δ15N values if animals are consuming 

vegetation grown in 15N enriched soil by their faeces, and foddering, where fodder may have similarly 

been grown on land enriched in 15N from manure (Bogaard et al. 2007; Fraser et al. 2011). Additionally, 

if this fodder included C4 plants (grain or crop waste), δ13C values would also be increased relative to 

non-foddered animals (Tieszen 1991; Tafuri et al. 2009). If the deer were living under heavily forested 

conditions, the δ13C values produced from their bone collagen could be reflecting the ‘canopy effect’, 

where plants become depleted in 13C because of either reduced light intensity or recycled CO2   (Bonafini 

et al. 2013; Noe-Nygaard et al. 2005; Van der Merwe and Medina 1991). This depletion is then 

transmitted up the food chain. If this were the case, the consumption of vegetation under forest 

conditions could mask the consumption of native C4 species.  

When the human carbon and nitrogen isotope data is compared to the animal baseline, the predicted 

trophic level shift of c.2-5‰ between humans and most herbivores is present (Ambrose 1991; Hedges 

and Reynard 2007). This supports the interpretation that humans were ingesting herbivorous animal 

protein, either dairy or meat. 
 

 

 

4.3.2. Human bone and dentine collagen 

The δ13C and δ15N values produced as part of this study are indicative of a terrestrial-based diet, with 

a focus on a mix of C3 and C4 plants, probably millet, with the addition of herbivorous animal protein 



15 
 

(Hedges and Reynard 2007; Richards 2003; Tieszen 1991; Tykot 2004). This is consistent with 

contemporary faunal and botanical evidence (Dular and Tecco-Hvala 2007).  

 

Isotopically, there is a clear difference between the bone (and dentine) collagen of the infant and the 

three contemporaneous adults from Zagorje ob Savi (Figures 3 and 4). On first examination, and given 

the age of the infant (6-9 months), this elevated δ15N value is likely linked to breastfeeding. High δ15N 

values have been linked to breastfeeding practices in previous isotopic studies (Beaumont et al. 2013; 

Fuller et al. 2006; Jay et al. 2008; King et al. 2018; Millard 2000). Modern data (infant hair and nail) has 

demonstrated that breastfeeding results in a rapid trophic level shift in δ15N of 1.5‰ (de Luca et al. 

2012) and up to 2-3‰, (Fuller et al. 2006) above birth values. This rise occurs as the infant ingests the 

proteins of their mother via breastmilk, which results in additional isotopic fractionation in comparison 

to the maternal δ15N values (Fogel et al. 1989). δ15N drops gradually to a value similar to the mother 

throughout the process of weaning (introduction of solid foods commonly combined with continued 

nursing) and the cessation of breastfeeding, provided the mother and child are sharing a similar diet 

(Fuller et al. 2006; Jay et al. 2008; Millard 2000) (see Supplementary 2) . A smaller trophic shift of 0.4 

and 1‰ in δ13C values has similarly been observed (de Luca et al. 2012; Fuller et al. 2006; Tsutaya 

and Yoneda 2015).  

 

The ~2‰ difference between the first infant dentine increment and the mean adult rib δ15N value fits 

this breastfeeding pattern. δ15N values continue to rise throughout the development of the dentine, a 

trend that similarly supports the interpretation of a trophic shift consistent with breastfeeding. The 

difference of 3‰ between the adult and infant rib collagen δ15N values is also consistent with a trophic 

shift related to breastfeeding. When viewed at face value, the infant isotope profiles presented here can 

reasonably be associated with the onset and continuation of exclusive breastfeeding. However, the first 

increment (which will include pre-natal dentine) is already comparatively high, and there is a gradual 

rise in the δ15N values rather than the rapid upward curve expected (see Supplementary 2). δ15N values 

for the infant then rise sharply through the final three increments prior to death. δ13C values follow a 

similar trend. The final increment of infant dentine (representing the time of death) has a δ15N value 

4.7‰ above that of the mean adult rib value, while the δ13C value is 3.5‰ above the adults. Both of 

these differences in isotope ratios are greater than that anticipated from breastfeeding alone. Indeed, 

δ13C and δ15N from rib collagen (-11.9‰ δ13C; 11.8‰ δ15N) for this infant was notably higher than for 

other rib collagen samples from across Iron Age Slovenia, with mean δ13C and δ15N values of -15.3‰ 

and 9.1‰, respectively (Nicholls and Koon 2016; Nicholls 2017). With the additional context of chronic 

dietary deficiencies, the isotope data indicates a more nuanced interpretation. 

 

 

 

5. Interpretations  

The following presents some potential scenarios, which could explain the variation in carbon and 

nitrogen isotope ratios observed between the infant and associated adults. 
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 5.1 Dietary change 
 

The high δ13C and δ15N, particularly in the initial incremental dentine samples of the infant, suggest a 

possible change in maternal diet over time. The high δ13C values ranging between -12.6‰ and -11.3‰ 

indicate either a substantial marine or C4 dietary input and are considerably higher than that of the 

isotope ratios obtained from the three adults (+3 - 4‰). The ingestion of marine food is unlikely given 

the location of the cemetery, but also there is no isotopic or faunal evidence (to date) for the 

consumption of marine food during prehistory in Slovenia (Murray and Schoeninger 1988; Nicholls and 

Koon 2016). There is, however, substantial evidence for the consumption of C4 plants in the wider area 

during the Late Bronze and the Iron Age, namely millet (Dular and Tecco-Hvala 2007; Lightfoot et al. 

2014; Murray and Schoeninger 1988; Nicholls and Koon 2016; Reed and Drnić 2016). The adult 

individuals buried at Zagorje ob Savi also provide evidence of C4 plant consumption. It is posited, then, 

that a substantial amount of the dietary carbon for the infant was obtained from millet, and that the 

amount of millet ingested increased with time, as indicated by the increase in δ13C values throughout 

the development of the tooth. 

This is not to say that the infant was ingesting millet as a grain—given the age of the individual it is 

unlikely that they were eating solids—but that the C4 isotope signature was being transmitted indirectly 

into their diet through another route. This signal may have initially been introduced to the foetus in-utero 

via the mother. If the infant was nursing, the gradually increasing δ13C values could indicate that the 

mother was also ingesting increasing quantities of millet whilst breastfeeding. In addition, a small portion 

of the increase (i.e. 0.4-1.0 per mil) could be caused by the small carbon isotope breastfeeding trophic 

shift. 

 

While this explains the carbon isotope values, it does not account the rapid increase in nitrogen isotope 

values observed in the latter three increments. The ingestion of millet would not result in elevated δ15N. 

Additionally, the increase in δ15N is beyond the trophic level shift associated with breastfeeding. This 

suggests that isotopic changes are not solely the result of a change in diet.  

 

5.2 Nutritionally stressed mother equals nutritionally stressed child  
 

Studies have shown that the nitrogen isotope ratios of children are complex, linking high δ15N values to 

changes in metabolism, maternal health, or falling into a negative nitrogen balance resulting in tissue 

catabolism (Beaumont et al. 2015; Reynard and Tuross 2015). When the body does not receive 

required dietary nitrogen (e.g. needed for protein synthesis), it instead obtains it from its own tissues. 

This breakdown of body tissues, known as catabolism, causes isotopic fractionation as molecules 

containing the lighter isotope, 14N, break down more readily. This results in an enrichment of the heavier 

isotope, 15N, in the tissues that are then sampled for isotopic analyses  (Mekota et al. 2009). Increased 

δ15N values have been linked to malnutrition on several occasions (Hobson et al. 1993 (animal); Fuller 

et al. 2005; Mekota et al. 2009 (clinical); Beaumont et al. 2015 (archaeological)). If the mother of the 
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infant was severely malnourished, this would have had a negative impact on their child. Studies into 

archaeological dentine and modern hair and breast milk samples have suggested that high δ15N values 

in infants are not exclusively the result of the ingestion of breastmilk (Beaumont et al. 2013; Beaumont 

et al. 2015; Beaumont and Montgomery 2016; de Luca et al. 2012; Romek et al. 2013). In the current 

study, δ15N values continue to rise post-birth, beyond the trophic shift associated with breastfeeding. 

This may reflect the mother’s continued metabolic status, in addition to her diet. It might equally reflect 

undernutrition in the infant to the extent that they are beginning to recycle their own tissues (Beaumont 

and Montgomery 2016). 

When examining the earliest incremental dentine sections, probably including dentine formed in-utero, 

the high nitrogen isotope ratios could actually be reflecting a mother in the third trimester of pregnancy. 

The unborn foetus would have obtained its nutrients directly from the mother across the placenta, 

thereby transferring the maternal isotope ratios into the forming tissues of the unborn baby (Beaumont 

et al. 2015). δ15N values influenced by dentine formed prior to birth are notably higher than that of the 

three adult rib values (c.+2.4‰ between the mean adult rib δ15N value and the first dentine increment 

of the infant). As discussed above, this δ15N value may be indicative of the nitrogen balance of a 

physiologically stressed mother.  

At this point, to understand more fully the comparatively high δ15N values (and comparatively smaller 

corresponding increase in δ13C values) from the bones and teeth of the infant, it is vital to consider the 

probable diagnosis of chronic scurvy. A lack of dietary vitamin C alone does not cause starvation or 

increased δ15N values associated with catabolism. In fact, clinical paediatric studies have shown normal 

weight gain in children with vitamin C deficiency, but an otherwise normal diet (Weinstein et al. 2001). 

Nevertheless, there are several reasons why scurvy may have been a factor in causing malnutrition. 

Symptoms of scurvy include painful and bleeding gums and irritability in infants; this may well have 

caused difficulties with feeding and suckling (Larralde et al. 2007). Also, vitamin C deficiencies are often 

linked to other nutrition deficiencies and co-morbidities (Schattmann et al. 2016), such as infections, 

that would exacerbate feeding problems and could themselves lead to malnutrition (Nguyen et al. 2013).  

A deficiency in vitamin C can also inhibit the absorption of iron from the small intestine, leading to iron 

deficiency anaemia (Brickley and Ives 2006; Weinstein et al. 2001) and leaving the infant  more 

susceptible to infection and disease due to an under-developed immune system (Siegel, 1993; Thomas 

and Holt, 1978).   

Even though there is evidence to suggest the mother was malnourished during pregnancy and 

breastfeeding, this should not normally have caused the skeletal manifestations associated with scurvy 

observed in these infant remains. It is known that breast milk usually contains enough nutrition for an 

infant to thrive without additions to their diet, including water, for the first 6 months (Larralde et al. 2007; 

WHO 2005). The minimum required intake of vitamin C for infants is unestablished; however, the 

recommended daily allowance for 0 to 12 months varies from 35-50mg (Byerly and Kirskey, 1985; NIH 

2018; NRC 1989), which is well within the range of vitamin C available in breastmilk (Byerly and Kirskey, 

1985) even in marginally nourished women with low serum vitamin C levels (Ahmed et al. 2004). During 
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periods of short term stress, pregnant or lactating women will generally route necessary nutrients to the 

foetus or milk production at their own expense (Ahmed et al. 2004; Bates and Prentice 1994; Byerly 

and Kirskey 1985).  For a breastfed infant of this age (6-9 months) to exhibit such severe nutritional 

deficiencies, the mother must also have suffered from severe malnutrition (Bates and Prentice 1994; 

Jackson and Park 1935). This has been demonstrated in very rare clinical cases of congenital scurvy, 

where it is likely that the mother herself suffered from the disease whilst pregnant or lactating (Hirsch 

et al. 1976; Jackson and Park 1935). 

This interpretation of the mother’s health status should be treated with caution. The infant was buried 

in an individual grave and even had they been buried with an adult, it would be impossible to relate 

individuals without the use of aDNA, which could not be done in this instance. Furthermore, if it had 

been possible to identify the mother the slower rate of bone turnover in adults means that it is unlikely 

specific nutritional stress during pregnancy would be detectable in the rib collagen of the mother. 

 

5.3 Supplementation with animal milk?  

One possibility that could account for both the high δ13C and δ14N values (relative to adult rib collagen) 

is that they were the result of the ingestion of animal milk, as an emergency replacement or supplement 

for breastmilk, where the animal had been foddered on millet. As stated above, a successfully breastfed 

infant should not suffer from scurvy, as breast milk provides a good source of vitamin C. If a scenario 

arose where dietary supplementation was required, the ingestion of unmodified animal milk, for example 

bovine milk, by young infants (c. <12 months) is particularly unhealthy (Fleischer Michaelsen et al. 2000; 

Binns et al. 2007). Animal milk as a substitute for breastfeeding is a potential cause for this infant’s 

illness, as cow’s milk and goat’s milk are deficient in vital nutrients, including vitamin C. The 

consumption of cow’s milk by infants under the age of 12 months can cause blood loss from the 

gastrointestinal tract, also leading to iron deficiency, anaemia and diarrhoea (Binns et al. 2007; 

Wijndaele et al. 2009; Griebler et al. 2016). Although the ingestion of animal milk itself would not lead 

to raised δ15N values, the consequences to the health of an infant could result in a compromised 

immune system and illness, which, in turn could have resulted in tissue catabolism and 15N enrichment.  

Overall, it is not possible to establish which of these scenarios was most likely. All, some or none of 

these scenarios could account for the isotopic and osteological evidence presented in this case study. 

It is clear that multiple factors can affect the interpretation of stable isotope data and palaeopathological 

lesions. It is, therefore, vital that any interpretations are augmented with all available contextual 

information. 

 

6. Conclusion 

The infant presented here suffered from severe and chronic malnutrition, probably scurvy. This has 

been supported by both the stable isotope data and osteological observations. The rib and dentine 

collagen from the infant suggest that the mother was malnourished during pregnancy passing on high 

δ13C and δ15N values to the tissues of the child. The isotope ratios of the adults presented in the current 
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investigation are consistent with those found at a regional scale. The infant buried at Zagorje ob Savi 

had the highest rib collagen δ13C and δ15N values of the whole data set spanning central and eastern 

Slovenia, and northern Croatia, dating from the Bronze Age to the Late Iron Age. The combination of 

these findings and the palaeopathological status of this infant singled out this individual out as an 

interesting case study. 

In the past, δ13C and δ15N values obtained from the tissues of infants have been linked to breastfeeding 

practices alone. Here we can see a pattern that could suggest breastfeeding, but is overlaid by higher 

δ13C and δ15N values than would be predicted by the rib samples from the adults. This case study offers 

several alternative scenarios and supports the argument that isotopic data are complex and should not 

be interpreted in isolation. Through the application of novel, high resolution sampling methods, in 

combination with osteological techniques, it has been possible to establish a more nuanced 

understanding of the complex life history of an infant buried in the Early Iron Age cemetery at Zagorje 

ob Savi, Slovenia. 
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Supplementary 1 : Map showing major Early Iron Age centres of the Dolenjska region of Slovenia (Zagorje ob Savi marked in red). Map: N 

Dolinar, Archive IPCHS. 
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Supplimentary 2 : A schematic model of change in C and N isotope ratios in collagen over time, related to breastfeeding and weaning adapted 
from King et al (2018) and Millard (2000). The dashed line represents an abrupt increase in δ15N values related to the onset of breastfeeding. The 
dotted line represents the smaller change in δ13C values, unless the diet of the mother changes to incorporate/reduce marine or C4 based foods. 
The incremental dentine data obtained from the Zagorje ob Savi infant presented in figure 5 is also included for comparison (δ15N values in red 
and δ13C values in blue). 
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