
Graded Possibilistic Clustering
of Non-Stationary Data Streams

A. Abdullatif1,2, F. Masulli1,3, S. Rovetta1, and A. Cabri1

1 DIBRIS - Dept of Informatics, Bioingengering, Robotics and Systems Engineering
University of Genoa, Via Dodecaneso 35, 16146 Genoa, Italy

2 VEDECOM Institute, Versailles, France
3 Sbarro Institute for Cancer Research and Molecular Medicine

College of Science and Technology, Temple University, Philadelphia, PA, USA
{amr.abdullatif,francesco.masulli,stefano.rovetta}@unige.it

Abstract. Multidimensional data streams are a major paradigm in data
science. This work focuses on possibilistic clustering algorithms as means
to perform clustering of multidimensional streaming data. The proposed
approach exploits fuzzy outlier analysis to provide good learning and
tracking abilities in both concept shift and concept drift.

1 Introduction

Multidimensional data streams have arisen as a relevant topic in data science
during the past decade [1]. They arise in an ever increasing range of fields, from
the web, to wearable sensors, to intelligent transportation systems, to smart
homes and cities.

Data streams may represent actual time series, or quasi-stationary phenom-
ena that feature longer-term variability, e.g., changes in statistical distribution
or a cyclical behavior. In these non-stationary conditions, any model is expected
to be appropriate only in a neighborhood of the point in time where it has
been learned. Its validity may decrease smoothly with time (concept drift), or
there may be sudden changes, for instance when switching from one operating
condition to a new one (concept shift).

This work focuses on possibilistic clustering [3] as a means to perform clus-
tering of multidimensional streaming data. We specifically exploit the ability,
provided by the Graded Possibilistic c-Means [2], to learn clustering models it-
eratively using both batch (sliding-window) and online (by-pattern) strategies
that track and adapt to concept drift and shift in a natural way.

2 Clustering Non-Stationary Data Streams

Clustering streams requires tackling related, but different, problems: Handling
unbounded, possibly large data; detecting model changes (drift and shift); adapt-
ing to model changes. These are often treated independently in the literature.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/287584443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Model shift, either for rejection or tracking, has been extensively studied,
also under the name of change detection or change point identification. The key
to detect model differences is measuring the fit of observations. An observation
that does not fit a given model is either called novelty [6] or outlier [7] depend-
ing on the focus of the inquiry. Individual outliers can be detected or rejected
by evaluating their estimated probability or membership and comparing it to
a threshold, using distance-based or density-based criteria [8], or simply not
taken into account by using robust methods [9]. Alternatively it is possible to
gather a new sample and apply sequential statistical tests for comparing empir-
ical distributions [10]. Regarding fuzzy methods, techniques have been proposed
mainly for robustness [11],although some approaches directly include measures
of outlierness [13] that can indicate the inadequacy of a given current model.

Model drift is a much more difficult issue, usually simply tackled by continu-
ous learning. This brings us to the third problem, learning strategies for dynam-
ically changing models. Continuous learning can be done either by recomputing,
if affordable, or by incremental updates. Most fuzzy clustering models are fit
with a batch training procedure, owing to their derivation from (crisp) k Means.
This batch optimization, iterative and prone to local minima, makes them un-
suitable for data sets of very large/virtually unbounded cardinality. However, the
same prototype-based representation lends itself very well to alternative training
methods, e.g., online or “by pattern” [14],which are naturally suitable for incre-
mental updating. Due to the non-stationarity, it is not possible to resort to the
extensive literature about convergence of stochastic approximation or related
methods [15]. However, a measure of model inadequacy can be used to modulate
the required amount of update, avoiding unnecessary waste of computational
resources especially when the data are large in size. In addition, it might be
appropriate to dynamically change the number of centroids. In [16] this was ad-
dressed with a cross-validation approach. However we didn’t take this problem
into consideration.

We consider the case where the data are represented by numerical feature
vectors. In general they will be multi-dimensional, even in the case of scalar-
valued time series where time-lag encoding is used. We assume that the data are
generated independently by some underlying probability distribution, but on
the long run the distribution may change. As long as the underlying distribution
doesn’t “change much”, it can be considered stationary. However, for sufficiently
long observation periods this approximation is no longer valid. The extent of va-
lidity of a stationary approximation depends on the rate and intensity of change
of the source distribution, which is clearly difficult to estimate. In this work we
don’t consider this problem, but provide methods for two different scenarios.

The goal of the analysis is to summarize these data by (fuzzy) clustering,
with a process that should learn continuously from the input patterns as they
arrive. The data are stored in a sliding window W of constant size w ≥ 1 which
is updated every s observations by deleting the oldest s patterns and adding the
new ones, so that, at each time, the current W has an overlap of w− s patterns
with the previous one. We collect the s incoming observations in a probe set S

before incorporating them in the window; the probe set is used to adaptively
tune the learning parameters.

We assume that, within W , the data can be considered independent and
identically distributed i.i.d. As anticipated in the introduction, we will focus on
the following two scenarios:

– The source change rate so slow that W is sufficient to infer the clustering
structure;

– The rate is so high that W is not sufficient to perform a complete clustering,
and an incremental procedure is required.

Accordingly, in this work we consider the cases w > 1, s > 1 (batch learning,
batch density estimate) and w = s = 1 (online learning, online density estimate).

3 The Graded Possibilistic c−Means Model

In central clustering data objects are points or vectors in data space, and c
clusters are represented by means of their “central” points or centroids yj . The
Graded Possibilistic model is a soft central clustering method, implying that clus-
ter membership can be partial. This is usually represented by means of cluster
indicators (or membership functions) which are real-valued rather than integer.

In many cases methods are derived as the iterative optimization of a con-
strained objective function [4], usually the mean squared distortion:

D =
1

n

n∑
l=1

c∑
j=1

ulj ||xl − yj ||2 (1)

Centroids are obtained by imposing ∇D = 0:

yj =

∑n
l=1 uljxl∑n
l=1 ulj

. (2)

Usually constraints are placed on the sum ζl =
∑c
j=1 ulj of all memberships

for any given observation xl. The value ζl can be interpreted as the total mem-
bership mass of observation xl. We now survey from this perspective two related
soft clustering methods.

The Maximum Entropy (ME) approach [5] imposes ζl = 1, so we are in the
“probabilistic” case, where memberships are formally equivalent to probabilities.

The objective JME includes the distortion, plus an entropic penalty with
weight β and the normality constraint

∑c
j=1 ulj = 1 ∀l. The first-order necessary

minimum condition ∇JME = 0 then yields

ulj =
e−||xl−yj ||

2/β

ζl
. (3)

On the other end of the spectrum, the Possibilistic c-Means in its second
formulation (PCM-II) [3] does not impose any constraint on ζl, so memberships
are not formally equivalent to probabilities; they represent degrees of typicality.

The objective JPCM−II includes the distortion plus a penalty term to dis-
courage (but not exclude) extreme solutions. This term contains an individual
parameter βj for each cluster, and ∇JPCM−II = 0 yields

ulj = e−||xl−yj ||
2/βj . (4)

Both eq. (4) and eq. (3) can be generalized to a unique, common formulation
as was done in [2] as follows:

ulj =
vlj
Zl
, (5)

where the free membership vlj = e−||xl−yj ||
2/βj is normalized with some term Zl,

a function of vl = [vl1, vl2, . . . , vcl] but not necessarily equal to ζl =
∑c
j=1 vlj

= |vl|1. This allows us to add a continuum of other, intermediate cases to the
two extreme models just described, respectively characterized by Zl = ζj (prob-
abilistic) and Zl = 1 (possibilistic). Here we use the following formulation:

Zl = ζαl =

 c∑
j=1

vlj

α

, α ∈ [0, 1] ⊂ IR (6)

The parameter α controls the “possibility level”, from a totally probabilistic
(α = 1) to a totally possibilistic (α = 0) model, with all intermediate cases for
0 < α < 1.

4 Outlierness measurement through graded possibilistic
memberships

The nature of membership functions suggests a characterization of outliers sim-
ilar to Davé’s Noise Clustering model that was used in the context of robust
clustering [12]. Given a trained clustering model, i.e., a set of centroids and a set
of cluster widths βj , we exploit the properties of the possibilistic memberships
to evaluate the degree of outlierness. We define outlierness as the membership
of an observation to the concept of “being an outlier” with respect to a given
clustering model. Differently from other approaches based on analyzing pattern-
centroid distances [17], the graded possibilistic model used in this work provides
a direct measure of outlierness. We propose to measure the total mass of mem-
bership to clusters ζl, which, by definition of the graded possibilistic model, does
not necessarily equal 1, and measure whether and how much it is less than 1.
Quantitatively, we define an index Ω as follows:

Ω(xl) = max {1− ζl, 0} . (7)

Outlierness can be modulated by an appropriate choice of α. Low values
correspond to sharper outlier rejection, while higher values imply wider cluster
regions and therefore lower rejection. For α = 1 the model becomes probabilistic
and loses any ability to identify or reject outliers.

We observe that ζl =
∑
j ulj ∈ (0, c). However:

– values ζl > 1 are typical of regions well covered by centroids;
– but ζl � 1 is very unlikely for good clustering solutions without many over-

lapping clusters;
– finally, ζl � 1 characterizes regions not covered by centroids, and any obser-

vation occurring there is an outlier.

The index Ω is defined as the complement to one of ζl, with negative values
clipped out as not interesting.

The outlierness index is a pointwise measure, but it can be integrated to
measure the frequency of outliers. For crisp decision-making, a point could be
labeled as outlier when Ω exceeds some threshold. It is therefore easy to count
the proportion (frequency) of outliers over a given set of probe points S.

However, we take advantage of the fact that Ω expresses a fuzzy concept, and
rather than simply counting the frequency we can measure an outlier density
ρ ∈ [0, 1) defined in one of the following ways.

ρM =
1

|S|
∑
l∈S

Ω(xl) (8)

The density ρM accounts for both frequency and intensity, or degree of
anomaly, of outliers. A high number of borderline outliers is equivalent to a
lower number of stronger outliers, provided their mean value is the same. To
give more emphasis to the case where some observation have a higher outlier-
ness, an alternative definition can be used:

ρRMS =
1

|S|

√∑
l∈S

(Ω(xl))
2

(9)

The definition ρ = ρRMS will be adopted in the experiments.

5 Learning regimes

We distinguish between three different situations, corresponding to three possible
learning regimes.

1. Concept drift. The source is stationary or changing smoothly and slowly
(Ω = 0, density is low). Action to be taken: The model should be incre-
mentally updated to track possible variations. We can call this the baseline
learning regime.

2. Outliers. One or few isolated observations are clearly not explained by the
model, which means that they have outlierness (Ω > 0, density is low).
Action to be taken: Incremental learning should be paused to avoid skewing
clusters with atypical observations (no-learning regime).

3. Concept shift. Several observations have outlierness (Ω > 0, density is high).
Action to be taken: The old clustering model should be replaced by a new
one. This is the re-learning regime.

The learning depends on a parameter θ that balances between stability (θ ≈ 0,
model stays the same) and plasticity (θ ≈ 1, model changes completely), so
it is possible to modulate this parameter as a function of outlier density, so
that the three learning regimes (baseline, no learning and re-learning) can be
implemented.

Since learning regimes are yet another fuzzy concept, rather than splitting
them into clear-cut regions, in our experiments we employed a smooth function
that is controlled by parameters: The user should interactively select their values
to obtain the desired profile. This procedure is similar to defining the membership
function for a linguistic variable. The function we used is the following:

θ = 1 + θ0 exp

(
− ρ

τ1

)
− exp

(
−
(
ρ

τ2

)γ)
(10)

– θ0 is the baseline value of θ, used when new data are well explained by the
current model (baseline learning regime).

– τ1 is a scale constant, analogue to a time constant in linear dynamical system
eigenfunctions, that determines the range of values for which the baseline
learning regime should hold.

– τ2 is a scale constant that determines the range of values for which the
re-learning regime should hold.

– γ is an exponential gain that controls how quick the relearning regime should
go to saturation, i.e., to θ ≈ 1.

In the transition between baseline learning and re-learning, this function has
a valley that brings the value of θ close to zero, implementing the no-learning
regime.

6 Learning possibilistic stream clustering

In the algorithms proposed in this section, the degree of possibility α is assumed
to be fixed. This quantity incorporates the a-priori knowledge about the amount
of outlier sensitivity desired by the user.

In batch learning, at each time t we train the clustering model on a training
set (window) Wt of size w and evaluate ρ on the next s < w observations (set St).
Then we compute Wt+1 for the next step by removing the s oldest observations
and adding St, so that the training set size remains constant. Finally, the amount
of learning required is estimated by computing θ(ρ) according to (10).

From an optimization or learning perspective, we are estimating the true
(expected) objective function on the basis of a set W of w observations, that we
use to compute a sample average. The batch process is initialized by taking a
first sample W0 and performing a complete deterministic annealing optimization
on it with an annealing schedule B = {β1, . . . , βb}. In subsequent optimizations,
the annealing schedule is shortened proportionally to the computed value of
θ(ρ) ∈ [0, 1]: When θ = 1 the complete B is used (|B| = b optimization steps);
when θ = 0 no training is performed (0 steps); when 0 ≤ θ ≤ 1 a corresponding

fraction Bθ of the schedule B is used, starting from step number db · θe up to
βb (that is, bb · (1− θ)c steps in total). The updating rule for a generic centroid
(non-stationary data streams) is the following:

yj(t+ 1) = yj(t) + η

∑w
l=1 ulj (xl − yj(t))∑w

l=1 ulj
(11)

= (1− η)yj(t) + η

∑w
l=1 uljxl∑w
l=1 ulj

(12)

For stationary data streams the distribution of any sample W (t) is constant w.r.t.

t, and therefore its weighted mean
∑w
l=1 uljxl∑w
l=1 ulj

is also constant. In this case

yj(t→∞)→
∑w
l=1 uljxl∑w
l=1 ulj

. (13)

With fixed η, Eq. (11) computes an exponentially discounted moving average.
In summary, for the batch case we use θ to modulate the number of annealing

steps and, consequently, the scale parameter β. The optimization is longer, and
starts with a higher coverage (higher β), in the re-learning regime; it is shorter
and more localized in the baseline learning regime; it does not occur at all (zero
steps) in the no-learning regime. Figure 1 outlines the batch learning algorithm.

init: Select α, B = {β1, . . . , βb}, θ = θ(ρ)

Read first w observations into W0

Learn clustering model from W0 using annealing schedule B

loop: (for each time t : 1, . . . ,∞)

Read next s observations into St

Use (7) to compute Ω for all observations in St

Use (9) to compute ρ

Use (10) to compute θ

Discard s oldest observations from Wt−1

Update Wt ← [Wt−1 S]

Learn clustering model from Wt using annealing schedule Bθ

Fig. 1. Batch possibilistic stream clustering

Now for real time learning we provide an online learning method. This case
can be modeled as a limit case of the batch method. At each time t we train the
clustering model on a training set Wt of size 1, i.e., one observation, and evaluate
ρ on the next s = 1 observation forming the “set” St. Then we compute Wt+1 for
the next step by replacing the single observation with that in St. The amount of
learning required is estimated by computing θ(ρ) according to (10). In this case
the updates are incremental and therefore for ρ as well we propose an incremental

computation according to the following discounted average formula:

ρt = λΩt + (1− λ)ρt−1 . (14)

In this case as well, the process is initialized by taking a first sample W0

and performing a complete deterministic annealing optimization on it with an
annealing schedule B = {β1, . . . , βb}.

However, after the initial phase w = 1, and the estimate of the objective
function cannot be obtained by approximating an expectation with an average.
So we resort to a stochastic approximation procedure [18]. This results in the
following iterative update equations:

yj(t+ 1) = yj(t) + ηtulj(xl − yj) (15)

for each centroid, j = 1, . . . , c, with learning step size ηt The update equation
for the memberships is still given by Eqs. (5) and (6).

Differently from the batch case, after the initialization step a deterministic
annealing schedule is not needed; rather, we have a stochastic annealing step
size ηt. There are well-known conditions on ηt for convergence in the stationary
case [18]:

∞∑
t=1

ηt =∞ and

∞∑
t=1

η2t <∞ (16)

However, these conditions obviously do not hold in the nonstationary case,
and this topic has not been thoroughly studied in the literature because the
conclusions depend on the specific problem setting.

The strategy adopted in this work is to have the step size η be directly
proportional to ρ = Ω, i.e., η = η0 ·ρ for a user-selected constant η0. An averaging
effect is obtained through the stochastic iterative updates. In this way, after
initialization, the intensity of updates depends on the degree of outlierness of
the current observation.

To avoid premature convergence, the possibility degree α is also made depen-
dent on ρ, so as to increase centroid coverage when outliers are detected. The
formula used is:

α = αmin + ρ(1− αmin) (17)

Figure 2 sketches the online learning algorithm.

7 Experimental results

Synthetic data sets containing concept drift (we select the Gaussian and electric-
ity data sets) were generated using the Matlab program ConceptDriftData.m4

[19]. We also Integrated our model in a traffic flow management system [20].
The proposed work was used as a generative model to asses and improve the
accuracy of a short term traffic flow forecasting model.

4 Available under GPL at https://github.com/gditzler/ConceptDriftData.

init: Select α, B = {β1, . . . , βb}, θ = θ(ρ), η0

Read first w observations into W0

Learn clustering model from W0 using annealing schedule B

loop: (for each time t : 1, . . . ,∞)

Read next observation

Use (7) to compute Ω for current observation

Use (10) to compute θ with ρ = Ω

Learn clustering model from current observation using Eq. (15) with learning step ηt = eta0 · θ

Fig. 2. Online possibilistic stream clustering

The Gaussian data set already include concept drift, so outliers and concept
shift were added by removing a number of observations in two parts of the
data sequence. Discontinuities in the sequence are therefore introduced at 50%
and 75% of the streams. In addition, the final 25% was shifted by adding an
offset to all the data. Results are here shown for the Gaussians dataset. This
includes four two-dimensional, evolving Gaussian with equal and known centers
and spreads. After introducing discontinuities and shift, the data were remapped
into [0, 1]× [0, 1]. This procedure ensures that a ground truth is available at all
times.

The data set contains 2500 observations. The parameters used for the exper-
iments are listed in Table 1.

Table 1. Parameters used in the experiments

Parameter Symbol Batch Online Note

Training window size w 200 —
Probe window size s 30 —
Possibility degree α 0.7 0.7 (1)
Num. annealing steps b 20 —
β schedule linear linear (2)
Starting value for annealing β1 0.05 0.05 (2)
Ending value for annealing βb 0.002 0.002 (2)
Density estimation function ρ(Ω) ρRMS Ω
Coefficient for discounted avg. λ — 0.01

Parameters for computing θ

θ0 0.3 0.3
τ1 0.01 0.01
τ2 0.5 0.5
γ 2 2

(1) For online: minimum value, maximum is 1.
(2) For online: only in the batch initialization phase.

Fig. 3. Outlier density ρ with concept drift and shift. The true model is continuously
evolving. The vertical lines mark points where the stream has been cut to create a
discontinuity (concept shift). Samples of the training are shown below the graph.

Figure 3 shows the graphs of outlier density ρ in the batch (upper plot) and
online (middle plot) cases. For reference, plots of the data taken at various stages
are displayed in the bottom. The upper (batch) plot shows ρ = ρRMS computed
on the probe set S at each iteration. The middle (online) plot shows ρ = Ω.
During training this is evaluated at each pattern. For clearer display, average
over the past few iterations, rather than instantaneous value, is shown in the
figure. In both plots, vertical lines indicate discontinuities (concept shift).

The graphs show the effectiveness of the proposed indexes in indicating the
conditions occurring in the stream at each point in time. From the bottom plots
it is evident that the first discontinuity occurs between similar configurations,
so there is no actual concept shift; in fact, the graph in the batch case highlights
that after the discontinuity clusters are closer to each other, so the concentration
of data is higher, the clustering task is easier, and the outlier density decreases.

The second discontinuity produces instead a relevant change in centroid con-
figuration, and this is evident in both graphs. However the online version is much
quicker to respond to the variation, as indicated by the more steeply increasing
plot around the second discontinuity.

A comparative study was performed with two other methods. The first, used
as a baseline, is a simple non-tracking k-means, trained once and used without

Fig. 4. Tracking error. Absolute difference between distortion w.r.t. true centroids
and distortion w.r.t. learned centroids. Top left: batch. Top right: online. Bottom left:
TRAC-STREAMS. Bottom right: k means, statically trained.

updates. The second comparison is with a method with similar goals, called
TRAC-STREAMS [13], which performs a weighted PCM-like clustering while
updating by pattern.

To perform a comparative analysis, for each method we measured tracking
performance by computing the distortion (mean squared error) with respect to
the learned centroids and to the true centroids, that we have available since
the data set is synthetic. Figure 4 shows the tracking performance, obtained
by plotting the absolute difference of distortions computed for the “true” and
learned models. Apart from the abrupt discontinuity, quickly recovered in both
the batch and online cases, the difference is extremely limited, and superior to
the other two methods considered.

8 Conclusions

We have presented a method that exploits fuzzy outlier analysis to provide
good learning and tracking abilities in both concept shift and concept drift.
The method builds upon a possibilistic clustering model that naturally offers a
fuzzy outlierness measure.

The proposed method is currently being deployed in several applications,
ranging from urban traffic forecasting to ambient assisted living. Several aspects
are being investigated. Future work will include improvements in automatic set-
ting of model parameters, as well as in the optimization process.

References

1. C. C. Aggarwal, Data streams: models and algorithms. Springer Science & Business
Media, 2007, vol. 31.

2. F. Masulli and S. Rovetta, “Soft transition from probabilistic to possibilistic fuzzy
clustering,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 4, pp. 516–527,
August 2006.

3. R. Krishnapuram and J. M. Keller, “The possibilistic C-Means algorithm: insights
and recommendations,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 3, pp.
385–393, August 1996.

4. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. Nor-
well, MA, USA: Kluwer Academic Publishers, 1981.

5. K. Rose, E. Gurewitz, and G. Fox, “A deterministic annealing approach to clus-
tering,” Pattern Recognition Letters, vol. 11, pp. 589–594, 1990.

6. V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

7. D. M. Hawkins, Identification of outliers. Springer, 1980, vol. 11.
8. E. M. Knorr and R. T. Ng, “Finding intensional knowledge of distance-based out-

liers,” in VLDB, vol. 99, 1999, pp. 211–222.
9. P. J. Huber, Robust Statistics. New York: John Wiley and Sons, 1981.

10. V. Balasubramanian, S.-S. Ho, and V. Vovk, Conformal Prediction for Reliable
Machine Learning: Theory, Adaptations and Applications. Newnes, 2014.

11. A. Keller, “Fuzzy clustering with outliers,” in Fuzzy Information Processing Soci-
ety, 2000. NAFIPS. 19th International Conference of the North American, 2000,
pp. 143–147.

12. R. N. Davé and R. Krishnapuram, “Robust clustering methods: a unified view,”
IEEE Transactions on Fuzzy Systems, vol. 5, no. 2, pp. 270–293, 1997.

13. O. Nasraoui and C. Rojas, “Robust clustering for tracking noisy evolving data
streams.” in Proceedings of the 2006 SIAM International Conference on Data Min-
ing. SIAM, 2006, pp. 619–623.

14. T. Martinetz, S. Berkovich, and K. Schulten, “‘Neural gas’ network for vector
quantization and its application to time-series prediction,” IEEE Transactions on
Neural Networks, vol. 4, no. 4, pp. 558–569, 1993.

15. H. Kushner and G. Yin, Stochastic Approximation and Recursive Algorithms and
Applications, ser. Stochastic Modelling and Applied Probability. Springer New
York, 2003.

16. S. Ridella, S. Rovetta, and R. Zunino, “Plastic algorithm for adaptive vector quan-
tization,” Neural Computing and Applications, vol. 7, no. 1, pp. 37–51, 1998.

17. K.-A. Yoon, O.-S. Kwon, and D.-H. Bae, “An approach to outlier detection of
software measurement data using the k-means clustering method,” in Empirical
Software Engineering and Measurement, 2007. ESEM 2007. First International
Symposium on. IEEE, 2007, pp. 443–445.

18. H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math.
Statist., vol. 22, no. 3, pp. 400–407, 09 1951.

19. G. Ditzler and R. Polikar, “Incremental learning of concept drift from stream-
ing imbalanced data,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 25, no. 10, pp. 2283–2301, 2013.

20. A. Abdullatif, F. Masulli, S. Rovetta, “Layered ensemble model for short-term traf-
fic flow forecasting with outlier detection,” 2016 IEEE 2nd International Forum on
Research and Technologies for Society and Industry Leveraging a better tomorrow
(RTSI) (IEEE RTSI 2016), pp. 1–6, 2016.

