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Abstract—Real time traffic forecasting is a necessary require-
ment for traffic management in order to be able to evaluate the
effects of different available strategies or policies. This paper
focuses on short-term traffic flow forecasting by taking into
consideration both spatial (road links) and temporal (lag or past
traffic flow values) information. We propose a Layered Ensemble
Model (LEM) which combines Artificial Neural Networks and
Graded Possibilistic Clustering obtaining an accurate forecast
of the traffic flow rates with outlier detection. Experimentation
has been carried out on two different data sets. The former was
obtained from real UK motorway and the later was obtained from
simulated traffic flow on a street network in Genoa (Italy). The
proposed LEM model for short-term traffic forecasting provides
promising results and given the ability for outlier detection,
accuracy, robustness of the proposed approach, it can be fruitful
integrated in traffic flow management systems.

I. INTRODUCTION

Traffic flow forecasting is one of the fundamental compo-
nents in Intelligent Transportation Systems (ITS). There are
mainly three approaches to solve problem of traffic forecasting
in urban and network scale areas: Parametric models ([1], [2],
[3]); Machine Learning and Computational Intelligence meth-
ods (non-parametric models) ([4], [5], [6]); Hybrid approaches
which combine the features and capabilities of parametric and
non-parametric models as in ([7], [8], [9]). Since the eighties,
short term traffic forecasting has been part of most intelligent
transportation systems. Many traffic forecasting approaches
focus on the problem of freeway traffic forecasting in which
the state of the road traffic is almost stable. In contrast, traffic
forecasting in urban and network-scale areas is more complex
because of the rapid change of traffic behavior and limited
availability of sensors that can cover the whole network.

Many researches have developed approaches bases on non-
parametric models, such as multilayer perceptron with a learn-
ing rule based on a Kalman filter [10], wavelet-based neural
network [11], fuzzy-neural model [12], ARIMA model [13],
graphical-lasso neural network [14], multi-task neural net-
work [15], multi-task ensemble neural network [16], k-nearest
neighbor non-parametric regression [17]. A good survey on
the current literature is given in In [18].

In this paper we present a robust model for short-term traffic
forecasting with online outlier detection combining clustering
and Neural Network (NN).

II. METHODOLOGY

The proposed method consists of an ensemble of Neural
Networks (NN), each specialized on a region of the data space.
The first layer provides this local specialization, as well as
providing a measure of pattern outlierness that is used to
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Fig. 1. Flow chart of training stage in the proposed model

estimate the expected quality of the forecast. In the following
we outline the methods used for clustering and forecasting.

A. LEM model

The Layered Ensemble Model (LEM) consists of 2 layers
as shown in Figure 1. In the first layer we employ a clustering
process called Graded Possibilistic c Means (GPCM) [19]
that is able to adapt to the changes in the traffic flow, by
implementing a continuous learning that exploits the input
patterns as they arrive. So the first layer has two tasks: 1)
Group patterns into K groups where pattern in the same group
have similar behavior. 2) Measure outlierness degree of each
pattern. The measure of outlierness will be used to assess
and improve the accuracy of the second layer (forecaster). In
the second layer we have an ensemble method based on base
learners (in our case multilayer perceptron neural networks);
each of them is trained on traffic flow patterns belonging to a
different cluster.

B. Data preprocessing

For any forecaster model there are some issues that affect
its performance:

• Lag period: As shown in Figure 1 the first issue is the
proper selection of the lag period which is crucial because
it affects the correct representation of the traffic flow
in time. If the lag period is chosen to be smaller than
needed, then we will not be able to distinguish between
the time-lag vectors in the vector space (redundancy)
[20]; hence, the prediction process will be practically
impossible because data doesn’t carry enough valuable
information. If the lag period is chosen to be larger than
needed, the vectors in the vector space will be almost
uncorrelated (irrelevance) [21]. In [22] they proposed an
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Fig. 2. Flow chart of the test stage in the proposed model

approach to tackle this problem by using the time-lag
mutual information as a tool to determine a reasonable
value of the lag period.

• Historical period: This refer to the number of observa-
tion patterns that will be used to train the forecasters.

• Traffic flow patterns and outliers: Learning patterns
with a different behavior together in a Large data set
tends to reduce the models performance. As a solution
to this problem, we employ a clustering process called
GPCM that is able to group patterns into K groups, where
patterns in the same group have similar behavior as shown
in Figure 3, and measures the degree of outlierness of
each pattern. This measures will be used to improve the
forecaster accuracy.

C. The Graded Possibilistic c Means Model

In central clustering data objects are points or vectors in
data space, and c clusters are represented by means of their
“central” points or centroids yj . The Graded Possibilistic
model is a soft central clustering method, implying that cluster
membership can be partial. This is usually represented by
means of cluster indicators (or membership functions) which
are real-valued rather than integer.

In many cases methods are derived as the iterative optimiza-
tion of a constrained objective function [23], usually the mean
squared distortion:
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Fig. 3. First five traffic flow patterns (UK motorway Site 30012533
(AL2989A) 2009) in (a) cluster 1; (b) cluster 2; (c) cluster 3.

Centroids are obtained by imposing ∇D = 0:

yj =

∑n
l=1 uljxl∑n
l=1 ulj

. (2)

Usually constraints are placed on the sum ζl =
∑c
j=1 ulj

of all memberships for any given observation xl. The value ζl
can be interpreted as the total membership mass of observation
xl. We now survey from this perspective two related soft
clustering method.

The Maximum Entropy (ME) approach [24] imposes ζl = 1,
so we are in the “probabilistic” case, where memberships are
formally equivalent to probabilities.

The objective JME includes an entropic penalty with weight
β, and ∇JME = 0 yields

ulj =
e−dlj/β

ζl
. (3)

On the other end of the spectrum, the Possibilistic c-Means
in its second formulation (PCM-II) [25] does not impose any
constraint on ζl, so memberships are not formally equivalent
to probabilities; they represent degrees of typicality.



The objective JPCM−II includes an individual parameter βj
for each cluster, and ∇JPCM−II = 0 yields

ulj = e−dlj/βj . (4)

Note that eq. (4) is a special case of eq. (3) with ζl replaced
by 1 ∀ l, whereas eq. (3) is a special case of eq. (4) with
βj = β ∀ j. In other words, both can be generalized to a
unique formulation. This was done in [19] as follows:

ulj =
vlj
Zl
, (5)

where the free membership vlj = e−dlj/βj is normalized with
some term Zl, a function of (but not necessarily equal to)
ζl. This allows us to add a continuum of other, intermediate
cases to the two extreme models just described, respectively
characterized by Zl = ζj =

∑c
j=1 vlj (probabilistic) and Zl =

1 (possibilistic). Here we use the following formulation:

Zl = ζαl =

 c∑
j=1

vlj

α

, α ∈ [0, 1] ⊂ IR (6)

The parameter α controls the “possibility level”, from a
totally probabilistic (α = 1) to a totally possibilistic (α = 0)
model, with all intermediate cases for 0 < α < 1.

D. Ensemble forecast model

As shown in Figure 1, for each cluster a forecaster with
architecture shown in Table I is trained and ζl is obtained
which is a vector of size size m where m is number of traffic
patterns in the training data set.

After training stage, we start online test stage as shown
in Figure 2 where patterns comes as a streams and for each
upcoming test patterni ζi is computed and compared to a
threshold. In the proposed model we use min(ζl) as a threshold
where ζi < min(ζl) means that the test pattern is an extreme
outlier and will be dropped. The drop rate of the test pattens
depend on the value of α which controls the sensitivity of the
model to outliers. A high value if α means less sensitivity to
outlier and a lower drop rate.

The final output of the LEM is computed as a weighted sum
of the individual base learner forecasts, as follows:

yi =

c∑
j=1

yjuj/ζi (7)

In eq. (7) we see that the output of each forecaster is
weighted by uj , which is the membership degree of each
pattern to each cluster so that uj will have high value for
the most suitable forecaster(s) and low to the others.

III. EXPERIMENTS AND RESULTS

A. Data sets

UK road network: Multiple data sets are obtained from
different road links in the United Kingdom (UK) [26]. This
data series provides traffic flow information for 15-minute
periods since 2009 on most of road links in UK. The data
sets are obtined from different loop sensors but we selected

TABLE I
LEM MODEL PARAMETERS

UK data set Genoa dataset

Lag period 1day (96 observations) 25 min
(5 observations from 3 road links)

Observation period 15 min 5 min
Historical period for training 9 months 6 hours
Test period (forecasting period) 3 months 3 hours
Validation 10-fold cross validation 10-fold cross validation
Forecaster Artificial Neural Network Artificial Neural Network
Number of layers 3 (input,hidden,output) 3
Neural Network architecture 95-10-1 4-10-1
Number of clusters 5 5
α 0 < α < 1 0 < α < 1
β .1 .01

the loop sensor id AL2989A (TMU Site 30012533) to obtain
traffic flow as done in [27].

Genoa Data set: The data were obtained as follows. An
urban area of the city of Genoa, in the north-west of Italy,
was mapped with the aid of Open Street Map data. Traffic
parameters were obtained from actual observations and several
days of traffic were estimated by using the SUMO open source
traffic simulator [28]. The simulation yielded observations at
time intervals of five minutes. in this data set we obtain traffic
flow not only from main link but also from the adjacent links
to forecast the future.

B. Experiments parameters and Results

The results in Figure 4 show on the top the scatter plot
of the forecasted traffic flow in UK, and on the bottom the
forecasted traffic flow in Genoa both with zero drop rate. In
Figure 5 we show the effect of α on the accuracy (Mean square
error) of the LEM model. The selected range of alpha values
are .93 ≤ α ≤ 1 and the drop rate is computed as follow:

drop rate = 1−
(

Number of output patterns
Number of target patterns

)
(8)

IV. CONCLUSION

The experiments show that the proposed method offers the
ability to deal with typical patterns, tuning the forecaster in the
most appropriate manner, while detecting atypical patterns.

In future work, the method will be expanded by using the
outlierness information to estimate the presence of concept
drift in the data.
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