
BIROn - Birkbeck Institutional Research Online

Tian, Z. and Zhang, H. and Chen, Y. and Zhang, Dell (2020) Unsupervised
Hashing based on the Recovery of Subspace Structures. Pattern
Recognition 103 , p. 107261. ISSN 0031-3203. (In Press)

Downloaded from: http://eprints.bbk.ac.uk/id/eprint/30968/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

http://eprints.bbk.ac.uk/id/eprint/30968/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Unsupervised Hashing based on the Recovery of Subspace
Structures

Zhibao Tiana, Hui Zhanga,b, Yong Chenc,∗, Dell Zhangd

aSchool of Computer Science and Engineering, Beihang University, Beijing 100191, P.R. China
bBeijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing

100191, P.R. China
cSchool of Electronics Engineering and Computer Science, Peking University, Beijing 100871, P.R. China

dBirkbeck, University of London, London, the United Kingdom

Abstract

Unsupervised semantic hashing should in principle keep the semantics among samples

consistent with the intrinsic geometric structures of the dataset. In this paper, we propose

a novel multiple stage unsupervised hashing method, named “Unsupervised Hashing

based on the Recovery of Subspace Structures” (RSSH) for image retrieval. Specifically,

we firstly adapt the Low-rank Representation (LRR) model into a new variant which

treats the real-world data as samples drawn from a union of several low-rank subspaces.

Then, the pairwise similarities are represented in a space-and-time saving manner based

on the learned low-rank correlation matrix of the modified LRR. Next, the challenging

discrete graph hashing is employed for binary hashing codes. Notably, we convert

the original graph hashing model into an optimization-friendly formalization, which is

addressed with efficient closed-form solutions for its subproblems. Finally, the devised

linear hash functions are fast achieved for out-of-samples. Retrieval experiments on four

image datasets testify the superiority of RSSH to several state-of-the-art hashing models.

Besides, it’s worth mentioning that RSSH, a shallow model, significantly outperforms

two recently proposed unsupervised deep hashing methods, which further confirms its

effectiveness.

Keywords: Semantic Hashing, Subspace Learning, Low-rank Representation, Discrete

Optimization

∗Corresponding author: alphawolf.chen@gmail.com.

Preprint submitted to Journal of Pattern Recognition Templates January 9, 2020

*Manuscript
Click here to view linked References

http://ees.elsevier.com/pr/viewRCResults.aspx?pdf=1&docID=48253&rev=3&fileID=1465789&msid={6E9C94BA-4AE5-4124-822B-FE5504F24622}

1. Introduction

Owing to the expense of low storage and fast computing, learning to hash has been

widely accepted as an effective and efficient technique for large-scale image retrieval [1,

2, 3]. For example, given a collection of 1 billion images, if we adopt the traditional

real-valued vector sized by 64 × 1 for each image, then the total memory should be

“64 Dimensions/image × 8 Bytes/Dimension × 109 images = 512GB”; Nevertheless, if

we leverage binary codes, then “64 Dimensions/image × 1 bit/Dimension× 109 images

= 8GB” is sufficient. Besides, the hardware-level XOR operations are significantly faster

than the floating-point calculations, which would greatly benefit image search engines.

Such advantages have inspired many researchers to develop various hashing models,

but there still exist great possibilities to devise more practical solutions for real-world

applications.

Generally, hashing methods can be roughly divided into two categories: the super-

vised and unsupervised. The supervised hashing approaches such as Supervised Hashing

with Kernels (KSH) [4], Fast Supervised Hashing with Decision Trees (FastH) [5], Su-

pervised Discrete Hashing (SDH) [6, 7], Column Sampling based Discrete Supervised

Hashing (COSDISH) [8], Fast Scalable Supervised Hashing (FSSH) [9], Semantic-

Aware DIscrete Hashing (SADIH) [10] and Deep Hashing based on Classification and

Quantization errors (DHCQ) [11] usually yield competitive retrieval performance by

utilizing the semantic labels, which in fact are quite difficult to obtain in many real-world

scenarios, where we can only conduct unsupervised hashing. Besides, the performance

of the unsupervised hashing methods is far from practical compared with that of the

supervised ones. On top of these two reasons, we mainly focus on the unsupervised

hashing in this paper.

Many popular unsupervised hashing models such as Spectral Hashing (SH) [12],

Binary Reconstructive Embedding (BRE) [13], Anchor Graph Hashing (AGH) [14],

Discrete Graph Hashing (DGH) [15], and Scalable Graph Hashing (SGH) [16], capture

the complex structures of data by preserving the neighborhood similarities, which is

quite effective because the graph-based learning could well unveil various nonlinear

structures [17]. However, they also have limitations because of their modeling on the

2

local instead of the global structures. Low-rank Representation (LRR) [18, 19, 20]

recognizes that data samples are approximately drawn from a mixture of several low-

rank subspaces and then robustly recovers them by a rank minimization model. In this

paper, we adapt the LRR method in a space-and-time saving fashion for the global

structures preserved semantics. To the best of our knowledge, this hasn’t ever been tried

in hashing.

To maintain the semantics harvested from the recovery of subspace structures by

the modified LRR, we adopt the discrete graph hashing formalization for binary codes.

Note that although this has been proposed in SH [12] and DGH [15], yet the existing

solutions are usually underperformed for image retrieval due to either the continuous

relaxations of binary constraints or not that effective optimizations. In this paper, we

present a different method to solve the complex binary-constrained optimization with

the help of two surrogate variables.

Briefly, we propose an unsupervised hashing method titled “Unsupervised Hashing

based on the Recovery of Subspace Structures” (RSSH for short), which firstly learns

the semantics by recovering the subspace structures of data, and then settles the strongly

constrained semantic hashing by leveraging auxiliary variables. The main contributions

can be listed as follows:

• RSSH adapts the LRR model into a new variant, based on which the learned cor-

relation matrix could be designed into a space-and-time saving formula for data

semantics.

• To tackle the discrete graph hashing, RSSH presents a new learning method, i.e.,

transforms the original optimization problem into three subproblems by means of

surrogate variables, and most importantly each subproblem is addressed with a closed-

form solution, which makes the whole hashing learning converge within dozens of

iterations.

• Experiments on four datasets demonstrate the advantages of RSSH over several state-

of-the-art unsupervised hashing models. Notably, even compared with the recently

proposed unsupervised deep hashing methods (i.e., SADH [21] and DeepBit [22]),

RSSH still outperforms them by an obvious gap.

3

2. Related Work

Our proposed method is an unsupervised semantic hashing, whose semantics be-

tween samples are calculated based on the recovery of subspace structures of the data.

Hence, we relate our work to Unsupervised Hashing and Subspace Learning.

2.1. Unsupervised Hashing

Perhaps, the simplest unsupervised hashing methods belong to the data-independent

Locality Sensitivity Hashing (LSH) and its variants [23, 24], which just employ a

random matrix for projections and then binarize them according to a preset threshold.

Although such approaches are extremely fast efficient, yet they usually exhibit very

limited retrieval performance compared with the data-dependent competitors. Principal

Component Analysis based Hashing (PCAH) [25] seeks an orthogonal subspace in

which the variances of projected data samples could be maximized. However, the

direct binarizations for the continuous embeddings in PCAH would probably lead to

sub-optimal hashing codes due to the mismatch between the orthogonal subspace and

the binary Hamming space. To address such puzzle, Iterative Quantization (ITQ) [25]

finds a rotation of zero-centered data aiming at aligning the continuous space to the

vertices of a zero-centered binary hypercube. Note that methods like PCAH and ITQ

mainly concentrate on the dataset’s global structures with linear projections which

would underperform in nonlinear datasets.

Graph-based hashing models such as Spectral Hashing (SH) [12], Binary Recon-

structive Embedding (BRE) [13], Anchor Graph Hashing (AGH) [14], Discrete Graph

Hashing (DGH) [15], and Scalable Graph Hashing (SGH) [16], all learn the binary

hashing codes under the guidance of pairwise similarities between data samples. Note

that the neighborhood semantics in the graph-based learning can preserve the local

structures hidden in complex datasets. This is a popular learning trick to model the

overall nonlinear structures by keeping the local structures. While deep learning based

hashing methods, such as DH [26], DeepBit [22], UH-BDNN [27], SSDH [28] and

SADH [21], capture the nonlinear relationship of data samples by the hierarchical

nonlinear transformations. It’s commonly recognized that deep hashing models would

4

require an enormous volume of training data and large quantities of computing resources

to learn the numerious network parameters for obtaining competitive retrieval results.

In this paper, we argue that the underlying complex structures in datasets can be

modeled as a union of several low-rank subspaces [18, 29, 30], based on which an

unsupervised hashing approach is further developed for image retrieval. Note that the

subspace structures preserved similarities between samples are distinctive from the

widely-used neighborhood similarities mentioned above. In addition, we devise a new

learning method to solve the strictly binary-constrained graph hashing proposed in

SH [12], AGH [14] and DGH [15] for obtaining the hashing codes.

2.2. Subspace Learning

Traditional linear learning models such as Principal Component Analysis (PCA) [31],

Linear Discriminative Analysis (LDA) [32], and Non-negative Matrix Factorization

(NMF) [33] have been widely used to embed each high-dimensional data sample into a

compact low-dimensional vector. These methods differ in their noise assumptions, the

use of prior information, and the underlying statistical models, but they all can recover

the linear structure with only one low-rank subspace. To generalize it for capturing more

complex structures, Generalized Principal Component Analysis (GPCA) [34] models

the complex data as samples drawn from a union of multiple subspaces and formalizes

it as a constrained nonlinear least square problem, which, however, is sensitive to

noises/outliers and can be quite time-consuming. Sparse Subspace Clustering (SSC) [35]

utilizes the sparse compressed sensing techniques to unveil the mixture of low-rank

subspaces, but it probably underperforms due to the inaccurate capture of the global

structures when the data is grossly corrupted. Low-rank Representation (LRR) [18, 19]

could robustly recover the global structures by finding the lowest-rank representation of

all data jointly. Note that the learned correlation matrix can be further processed into

the semantic similarities among data samples.

However, the high space and computational complexities of the similarity matrix

(sized by n× n, n is the number of data samples in the dataset) learned in LRR would

hinder its large-scale real-world applications. In this paper, we propose a new variant

of the LRR model that could not only recover the overall subspace structures but also

5

encode the similarity matrix as the multiplications of low-rank matrices, which would

reduce the space and computational complexities in the subsequent hashing learning.

3. Problem Statement

For the sake of formal presentations, we firstly introduce the notations adopted in

this paper. Boldface lowercase letters like a denote vectors. Boldface uppercase letters

like A denote matrices, and Ai,j represents the element at the ith row and the jth

column of A; besides, Ai∗ and A∗j corresponds to the ith row and the jth column of

A respectively. O marks a matrix with all 0-elements. Considering that n is a positive

integer, In denotes an n × n identity matrix, 1n represents an n × 1 vector with all

1-elements, and 0n marks an n× 1 vector with all 0-elements. AT means the transpose

of A, and A−1 indicates the inverse of A. max(·) and min(·) are functions which

return the biggest and smallest element of a matrix or vector. sgn(·) is the element-wise

sign function which returns 1 if the element is positive or −1 otherwise. Besides, | · |

represents an element-wise absolute operator, rank(·) expresses the rank of the input

matrix, � denotes the element-wise product, and ||A||F marks the Frobenius norm of

A.

Given a set of training samples X = [x1,x2, · · · ,xn]T ∈ Rn×d, the goal is to learn

their compact binary codes B = [b1,b2, · · · ,bn]T ∈ {+1,−1}n×q, which should

well preserve the semantics between them. Note that n is the number of samples in

the dataset, d marks the dimension of the vector for each sample, and q represents the

length of the learned binary vector for each sample. By convention, the semantics in the

embedded binary space are usually measured by the Hamming distance. In particular, if

two samples are similar in the original space, then the corresponding embedded vectors

should be within a small Hamming distance; and vice versa. Besides, to vectorize the

out-of-samples, we further learn q hash functions H(·) = [h1(·), h2(·), · · · , hq(·)]T

which could map each new data sample xi into q-bit binary codes, i.e., bi = H(xi) ∈

{+1,−1}q . With the learned binary codes for existing databases and hashing functions

for out-of-samples, relevant results can be efficiently retrieved for a new query via fast

semantic computing.

6

4. The Method

The proposed method is an unsupervised multi-stage hashing model (Fig. 1) in-

cluding: (i) low-rank representation, (ii) similarity matrix construction, (iii) semantics

preserved hashing, (iv) learning hashing functions, and (v) retrieval application, whose

specific details are elaborated as follows.

Stage Ⅰ: Multi-Subspaces Learning (LRR)

Training

Stage

Query image

Hash Function Hash Code

Relevant results

Retrieval

Stage

Stage Ⅳ: Learning Hash Functions

Image Database

Hamming distance

(+1,+1,-1)

(+1,-1,-1)

(+1,+1,+1)

Stage Ⅲ: Semantics Preserved Hashing

C2

C1
C3

3 Groups

(-1,+1,-1)

(-1,-1,+1)

(-1,+1,+1)

(+1,-1,+1)

(-1,-1,-1)

3 Subspaces

S1

S2 S3

Stage Ⅱ: Similarity Matrix Construction

Image Dataset

similar dissimilar

…

Figure 1: The overview framework of RSSH: multi-stage learning and its retrieval application.

4.1. Low-Rank Representation

Given a real-world image dataset X ∈ Rn×d, it usually holds complex structures

which are reasonably modeled as a mixture of several low-rank subspaces. Therefore, to

recover such subspace structures from X, the Low-rank Representation (LRR) [19, 36]

model can be employed as follow:

min
Z,E

rank(Z) + α||E||2F , s.t. X = ZX + E, (1)

where the matrix Z ∈ Rn×n can be treated as the correlation matrix among data sam-

ples; the matrix E represents the gaussian noises (here we adopt the popular gaussian

distribution, instead of the L2,1 or L1 distributions employed in [19], to model the

complex unknown noises under the background of big data); and the positive parameter

7

α is utilized to balance the importance between rank(Z) and ||E||2F . Note that mini-

mizing the objective function in (1) aims to keep as much information as possible and

meanwhile seek the compact/low-rank subspace structures of the dataset.

Based on the correlation matrix Z, the similarity matrix S among data samples are

calculated as S = |Z| + |ZT | in Refs. [35, 18]. However, S in this form needs high

space and time complexity which will hinder the efficiency of subsequent optimizations.

Hence, we develop a new formula1, i.e., S = Z�Z+ZT �ZT to compute the similarity

matrix. Although it looks much more complex than the original computational formula,

yet it could be transformed into a much more efficient form in Eq. (8), i.e., time-

efficiency low-rank matrix multiplications. To achieve this, we can replace the low-rank

matrix Z with the multiplications of two auxiliary matrices U and V (i.e., Z = UVT),

and then approximately convert the optimization (1) into:

min
U,V,E

||E||2F , s.t. X = UVTX + E, (2)

where U ∈ Rn×r and V ∈ Rn×r. Note that r is a parameter that can control the rank of

Z which is based on the fact that rank(Z) = rank(UVT) ≤ min (rank(U), rank(V)) ≤

r (generally r � n). On top of this, the optimization (2) is further simplified as:

min
U,V
||X−UVTX||2F , (3)

which is an unconstrained optimization problem.

4.2. Similarity Matrix Construction

Before computing the above defined similarity matrix S, a theorem is introduced

first.

Theorem 1. Given two matrices U ∈ Rn×r and V ∈ Rn×r, set Ũ = U �U and

Ṽ = V�V; besides, construct matrices Ū ∈ Rn×l and V̄ ∈ Rn×l (l = r×(r−1)/2),

where Ūk,t = Uk,i × Uk,j and V̄k,t = Vk,i × Vk,j . Note that k = 1, 2, · · · , n;

i, j = 1, 2, · · · , r and i < j; t =
∑i−1

g=1(r − g) + j − i. Then, there exists:

Sh ≡ (UVT)� (UVT) = ŨṼT + 2ŪV̄T . (4)

1The difference from the original formula is that the square instead of the absolute value of each element

is leveraged for calculations.

8

Proof. For 1 ≤ k, g ≤ n, there holds:

([UVT]k,g)2 = [(UVT)� (UVT)]k,g

= (

r∑
w=1

Uk,wVg,w)2

=

r∑
w=1

(Uk,wVg,w)2 + 2
∑

1≤w<h≤r

(Uk,wVg,w)(Uk,hVg,h)

=

r∑
w=1

(Uk,w)2(Vg,w)2 + 2
∑

1≤w<h≤r

(Uk,wUk,h)(Vg,wVg,h)

= [(U�U)(V �V)T]k,g + 2

l∑
t=1

Ūk,tV̄g,t

= [ŨṼT]k,g + 2[ŪV̄T]k,g,

which means that:

(UVT)� (UVT) = ŨṼT + 2ŪV̄T ;

thus this theorem is proved.

In what follows, we scale each element of Sh to the domain [0, 1] by:

Sh ←
Sh −min(Sh)

max(Sh)−min(Sh)
. (5)

In practice, we could observe that min(Sh) is so close to 0 and max(Sh) is al-

ways among the diagonal elements of Sh, so we use 0 to replace min(Sh) and

M = max(diag(Sh)) to replace max(Sh), where diag(Sh) denotes the vector com-

posed of the diagonal elements of Sh. With the help of Eq. (4), the computational

complexity of max(Sh) is shortened from O(n2) to O(n). Then we reduce Eq. (5) to:

Sh ←
1

M
Sh. (6)

To further prepare the similarity matrix S better for the sequel semantic hashing, we

then center its each element to the value ranging from −1 to +1 as below:

S← S− 11T = Sh + ST
h − 11T . (7)

9

According to Eqs. (4), (6) and (7), we finally construct S as the sum of several

products of low-rank matrices:

S =
1

M
(ŨṼT + 2ŪV̄T + ṼŨT + 2V̄ŪT)− 11T . (8)

Note that S is not actually computed, when using S in the following equations, we

replace S with Eq. (8).

4.3. Semantics Preserved Hashing

Considering a pair of samples (xi,xj) and their binary codes (bi,bj), the similarity

Sij in the original data space should be as close as possible to their semantic2 1
qbT

i bj

in the Hamming space. In this way, we can preserve the semantics among data samples

from the original to the embedded space. Formally, we can build the following graph

hashing model:

min
B

∑
ij

(qSij − bT
i bj)

2 = ||qS−BBT ||2F (9)

s.t. B ∈ {+1,−1}n×q,BTB = nIq,B
T1n = 0q,

where the constraint BTB = nIq makes the q bits mutually uncorrelated, and the

constraint BT1n = 0q is adopted to make half of the bits −1/ + 1, which together

maximize the coding capabilities given fixed code length.

Obviously, the problem (9) is a discrete optimization with complex constraints which

is hard to solve. Traditional strategies are usually to relax the discrete constraints to the

continuous ones for much easier solutions (such as SH [12], BRE [13], and AGH [14]);

however, as the number of bits becomes larger, the quantization errors will increase a

lot, which would lead to suboptimal solutions for image retrieval [37]. To tackle such

limitations, a few recent attempts such as KSH [4], DGH [15], SDH [6], COSDISH [8],

and FSSH [9], using discrete optimization techniques, have shown fast learning and

better performance.

2The semantic between bi and bj can be calculated by their cosine value, i.e., 1
q
bT
i bj ∈ [−1,+1],

which is consistent to Sij at scale.

10

Inspired by such works, we introduce two auxiliary variables A and G, and then

convert the problem (9) into an equivalent one:

min
B,A,G

||qS−AGT ||2F (10)

s.t.


A = B, G = B;

B ∈ {+1,−1}n×q, G ∈ Rn×q;

A ∈ Rn×q, ATA = nIq, AT1n = 0q.

,

where A and G can be viewed as the continuous surrogates of the binary matrix B. In

what follows, we could further relax the complex optimization (10) by dropping the

constraints A = B and G = B as below:

min
B,A,G

||qS−AGT ||2F + β||A−B||2F + λ||G−B||2F (11)

s.t.

 B ∈ {+1,−1}n×q, G ∈ Rn×q;

A ∈ Rn×q,ATA = nIq,A
T1n = 0q.

,

where β and λ are two non-negative hyper-parameters to adjust the closeness between

B and A/G respectively. In practice, it’s common to set them to moderate values for

real-world applications.

4.4. Learning Hash Functions

For fast codings in image retrieval, we design the hash functions in the following:

H(X) = φ(X)P, (12)

where φ(X) = [φ(x1), φ(x2), · · · , φ(xn)]T and P ∈ Rm×q is the projection matrix

which aims to transform φ(X) to the binary codes B. It should be noted that φ(x) is an

m-dimensional vector obtained by the RBF kernel mapping, i.e., φ(x) = [exp(−||x−

a1||2/(2σ2)), · · · , exp(−||x− am||2/(2σ2))], where {ai}m1 are the randomly selected

m anchor samples from the training dataset and σ is the kernel width. These two

hyper-parameters would be tuned to the competitive settings via experiments. In what

follows, to learn the hash functions, an optimization problem is modeled:

min
P
||φ(X)P−B||2F + η||P||2F , (13)

11

where η is a smooth factor, and the optimal P can be calculated with:

P = (φ(X)Tφ(X) + ηI)−1φ(X)TB. (14)

Out-of-Sample Extensions: For new queries denoted by Xnew, their hash codes

could be achieved via:

Bnew = sgn(φ(Xnew)P), (15)

which can be executed in parallel and thus fast-efficient.

Since images could be quickly embedded in hamming space with the help of Eq. (15),

the hashing-based retrieval system then rapidly returns the top-N (e.g., N = 100)

relevant results based on the hamming distances between the given image query and the

candidates in image database (illustrated in Fig. 1).

5. Optimization

5.1. Solution to problem (3)

Regarding the optimization problem (3), we could update U and V iteratively with

the other fixed until convergence.

U Step. With V fixed, the objective function of U is given by:

min
U
O(U) = ||X−UVTX||2F . (16)

Unfold O(U) as follows:

O(U) = tr
(
(X−UVTX)(XT −XTVUT)

)
= tr(XXT − 2XXTVUT + UVTXXTVUT)

∝ tr(UVTXXTVUT − 2XXTVUT).

(17)

Calculate the derivative of U and then set it to O:

∂O(U)

∂U
= 2UVTXXTV − 2XXTV = O, (18)

based on which the closed solution is written as:

U = XXTV(VTXXTV)−1. (19)

12

Algorithm 1: Low-rank Representation
Input: Data matrix X, the parameter r, and the maximum number of iterations

maxIter.

Output: Matrices U and V.

1 Set t = 1 and randomly initialize U(0) and V(0);

2 while t < maxIter do

3 Compute U(t) according to Eq. (19);

4 Compute V(t) according to Eq. (21);

5 t = t+ 1;

6 end

7 Return U(t) and V(t).

V Step. With U fixed, the optimization problem w.r.t. V is simplified as:

min
V
O(V) = ||X−UVTX||2F , (20)

whose solution can be easily obtained:

V = U(UTU)−1. (21)

Based on the above U and V steps, we summarize the solution to problem (3)

in Algorithm 1. Here, it’s worth mentioning that the Eq. (19) and Eq. (21) might be

irreversible in theory; thus, a small smooth item is usually added to avoid irreversibility

in practice [38]. That is, U = XXTV(VTXXTV+δI)−1 and V = U(UTU+δI)
−1,

where δ is set to 1e-6 in our paper.

5.2. Solution to problem (11)

To solve the problem (11), we present an iterative optimization process, in which

each iteration contains three steps, i.e., A Step, G Step and B Step.

A Step. With G and B fixed, the problem (11) is transformed into:

min
A
O(A) = ||qS−AGT ||2F + β||A−B||2F (22)

s.t. A ∈ Rn×q,ATA = nIq,A
T1n = 0q.

13

Unfold Eq. (22) and we can arrive at:

O(A) = tr(q2SST − 2qSTAGT + AGTGAT)

+ βtr(AAT − 2ABT + BBT)

∝− tr((qSG + βB)TA),

(23)

based on which the problem (22) is equivalent to:

max
A

tr(CTA) (24)

s.t. A ∈ Rn×q,ATA = nIq,A
T1n = 0q,

where C = qSG + βB.

Set the centering matrix J = In − 1
n11T and then do singular value decomposition

of JC as JC = UΣVT =
∑q′

k=1 σkukvT
k , where q′ ≤ q is the rank of JC, σ1 ≥

σ2 ≥ · · · ≥ σq′ are the positive singular values, U = [u1,u2, · · ·uq′] and V =

[v1,v2, · · ·vq′]. Next, by employing the Gram-Schmidt process, we can obtain matrices

Ū ∈ Rn×(q−q′) and V̄ ∈ Rq×(q−q′) such that ŪT Ū = Iq−q′ , [U,1]T Ū = O and

V̄T V̄ = Iq−q′ , VT V̄ = O. Here please note that if q′ = q, then Ū and V̄ will be

nothing. In what follows, to solve the optimization (24), we could borrow the following

theorem:

Theorem 2. A =
√
n[U, Ū][V, V̄]T is the optimal solution of the maximization

problem (24).

Proof. please refer to Ref. [15].

G Step. When A and B are fixed, the problem (11) is re-written as:

min
G
O(G) = ||qS−AGT ||2F + λ||G−B||2F , (25)

whose closed solution can be easily achieved:

G =
1

n+ λ
(qSTA + λB). (26)

B Step. Keeping A and G fixed, we can convert the problem (11) as below:

min
B
O(B) = β||A−B||2F + λ||G−B||2F (27)

14

Algorithm 2: Semantics Preserved Hashing
Input: Similarity matrix S, length of hash codes q, hyper-parameters β and λ,

the maximum number of iterations maxIter.

Output: Binary codes B.

1 Set t = 1 and randomly initialize B(0), G(0) and A(0);

2 while t < maxIter do

3 Compute A(t) according to Theorem 2;

4 Compute G(t) according to Eq. (26);

5 Compute B(t) according to Eq. (30);

6 t = t+ 1;

7 end

8 Return B(t), G(t) and A(t).

s.t. B ∈ {−1,+1}n×q.

The following shows the equivalent form of O(B):

O(B) ∝ −tr
(
BT (βA + λG))

)
. (28)

Therefore, the optimization (27) is equivalent to:

max
B

tr
(
BT (βA + λG)

)
s.t. B ∈ {+1,−1}n×q, (29)

whose solution is summarized in:

B = sgn(βA + λG). (30)

The algorithm for learning hash codes is built on the A, G, B steps and further

concluded in Algorithm 2.

To sum up, our proposed method RSSH is a four-stage learning process, i.e., (i) learn

the low rank representation according to the Algorithm 1; (ii) construct the similarity

matrix according to Eq. (8); (iii) Obtain hash codes according to the Algorithm 2; (iv)

learn the hash functions by Eq. (14), illustrated in Algorithm 3.

15

Algorithm 3: RSSH
Input: Data matrix X, the maximum number of iterations for Algorithm 1 and

Algorithm 2 respectively, the parameter r, length of hash codes q,

hyper-parameters β, λ, η, σ and m.

Output: Binary codes B and hash functions P.

1 Learn the low-rank representation matrices U and V according to Algorithm 1;

2 Construct similarity matrix according to Eq. (8);

3 Obtain hash codes according to Algorithm 2;

4 Learn hash functions by Eq. (14);

5 Return B, A, G and P.

5.3. Computational Complexity Analysis

The time spending of the whole Algorithm 3 is mainly concentrated on Algorithm 1,

Algorithm 2 and the learning of hash functions.

For Algorithm 1, two closed-form solutions, i.e., Eq. (19) and Eq. (21), are derived

for the corresponding two subproblems, whose computational complexity are O(ndr +

nr2 + r3) and O(nr2 + r3) respectively for each iteration. Therefore, the whole

computational complexity should beO(n×max(d, r)×r×maxIter), wheremaxIter

is 100.

For Algorithm 2, there are three subproblems. Regarding the A-subproblem, the

main step requiring intensive computation is the singular value decomposition for

a matrix sized by n × q, whose computational complexity is O(nq2). It is easy to

validate that the other steps would need much less time expenditure. Regarding the

G-subproblem, the most time-consuming part is STA. In practice, we replace S with

the right side of Eq. (8), which reduces the computational complexity from O(n2q) to

O(nr2q). Regarding the B-subproblem, the computational complexity of Eq. (30) is

O(nq). Thus, the whole computational complexity should be O(nr2q × maxIter),

where maxIter is configured as 20 here.

For the closed-form solution to learn hash functions P, the computational complexity

of Eq. (14) isO(nm2+m3+nmq), wherem is the number of anchor samples randomly

16

selected from the training data.

Generally, for a large-scale dataset, r, q,m are usually much less than n, and thus

the total computational complexity of the RSSH algorithm is linear to n (the number of

training samples). Note that the whole computational process is mainly based on the

matrix multiplications, which can be computed in parallel for accelerations and hence

reasonably fast-efficient on big data.

6. Experiment

This section will narrates the significant advantages of our proposed method over

several state-of-the-art unsupervised competitors (including two newly designed unsu-

pervised deep hashing approaches) via a series of experiments.

6.1. Datasets

To evaluate the retrieval performances of various representative hashing methods,

four widely-accepted image datasets are selected as below.

USPS3 is a handwritten digit database which contains 11, 000 images of digits from

“0” to “9” [39]. Specifically, each digit has 1,100 images with each in 16× 16 pixels;

therefore, a 256-dimensional vector is coded for representing each image.

Caltech2564 collects 30, 607 images belonging to 256 categories [40]. Each image

is encoded by a 1, 024-dimensional CNN feature vector associated with one category

label. Note that this processed dataset is directly downloaded from https://github.

com/willard-yuan/hashing-baseline-for-image-retrieval.

Fashion-MNIST5 is similar to but a more challenging image dataset than the

handwritten digit set MNIST6 [41]. It covers 70, 000 images of different products from

10 categories. Each category holds 7,000 images with each one in 28× 28 = 784 pixel

resolution.

3https://cs.nyu.edu/˜roweis/data.html
4http://www.vision.caltech.edu/Image_Datasets/Caltech256
5https://github.com/zalandoresearch/fashion-mnist
6http://yann.lecun.com/exdb/mnist

17

https://github.com/willard-yuan/hashing-baseline-for-image-retrieval
https://github.com/willard-yuan/hashing-baseline-for-image-retrieval
https://cs.nyu.edu/~roweis/data.html
http://www.vision.caltech.edu/Image_Datasets/Caltech256
https://github.com/zalandoresearch/fashion-mnist
http://yann.lecun.com/exdb/mnist

NUS-WIDE7 is a real-world web database originally containing 269, 648 images

each associated with multiple textual tags [42]. Following the protocol in Ref. [43], we

use the images that cover the top 10 most frequent semantic concepts and finally obtain

186, 577 images. Each image is converted into a 500-dimensional bag-of-visual-word

features. Note that this dataset is a relatively larger and more challenging dataset for

image retrieval.

For all the above datasets USPS, Caltech256, Fashion-MNIST and NUS-WIDE,

1, 000 samples are randomly chosen as the testing set and the remaining comes to the

training set. Fig. 2 illustrates some sample images from each dataset: USPS talks about

handwritten digits; Fashion-MNIST depicts about clothes; Caltech256 and NUS-WIDE

focus on colorful daily-life scenarios with various styles.

(a) USPS: sample images (b) Fashion-MNIST: sample images

(c) Caltech256: sample images (d) NUS-WIDE: sample images

Figure 2: Illustrations: sample images from USPS, Caltech256, Fashion-MNIST and NUS-WIDE datasets.

7https://scholarbank.nus.edu.sg/handle/10635/40888

18

https://scholarbank.nus.edu.sg/handle/10635/40888

6.2. Evaluation Metrics and Baseline Competitors

For all the retrieval experiments on the above datasets, we utilize several popular

evaluation metrics [44, 45] such as Mean Average Precision (MAP), Precision@topN

and Recall@topN, and PR-curves to assess the performance of various hashing com-

petitors. Note that MAP and PR-curves evaluate the overall performance of the image

retrieval systems, and Precision/Recall@topN measure the precision and recall at fixed

levels of retrieved results.

When it comes to baseline methods for comparisons, we choose quite a few state-of-

the-art unsupervised shallow methods: LSH8 [1], PCAH9 [25], ITQ10 [25], DGH [15],

SGH11 [16], SpH12 [46], SH13 [12], and SELVE14 [47]. In addition, we also select two

recently proposed deep hashing methods, i.e., DeepBit15 [22] and SADH16 [21]. The

source codes of all the baselines except for DGH are publicly available online. Regarding

DGH, we implemented it in strict accordance with the instructions of Ref. [15]. To

ensure a fair comparison, the inputs of all methods are kept the same. With respect

to the hyper-parameters, we tune them on different datasets for the best performances

according to the corresponding papers’ proposals.

6.3. Experimental Setups

The RSSH’s parameters are elaborated here for the reproduction of the experi-

mental results. Specifically, we set the maximum number of iterations as 100 and 20

for Algorithm 1 and Algorithm 2 respectively. In light of the parameter r which

controls the rank of matrix S, we tune it from 10 to 300 and finally configure it

with 100 for all datasets. Regarding the other hyper-parameters β, λ and η, we

8http://www.cad.zju.edu.cn/home/dengcai/Data/DSH.html
9https://github.com/willard-yuan/hashing-baseline-for-image-retrieval

10https://goo.gl/AGuu86
11http://cs.nju.edu.cn/lwj/code/SGH.rar
12http://sglab.kaist.ac.kr/projects/Spherical_Hashing/static/media/

uploads/Spherical_Hashing_Src_Matlab.zip
13http://www.cs.huji.ac.il/˜yweiss/SpectralHashing/sh.zip
14https://github.com/willard-yuan/hashing-baseline-for-image-retrieval
15https://github.com/kevinlin311tw/cvpr16-deepbit
16https://github.com/xuyan1115/Similarity-Adaptive-Deep-Hashing

19

http://www.cad.zju.edu.cn/home/dengcai/Data/DSH.html
https://github.com/willard-yuan/hashing-baseline-for-image-retrieval
https://goo.gl/AGuu86
http://cs.nju.edu.cn/lwj/code/SGH.rar
http://sglab.kaist.ac.kr/projects/Spherical_Hashing/static/media/uploads/Spherical_Hashing_Src_Matlab.zip
http://sglab.kaist.ac.kr/projects/Spherical_Hashing/static/media/uploads/Spherical_Hashing_Src_Matlab.zip
http://www.cs.huji.ac.il/~yweiss/SpectralHashing/sh.zip
https://github.com/willard-yuan/hashing-baseline-for-image-retrieval
https://github.com/kevinlin311tw/cvpr16-deepbit
https://github.com/xuyan1115/Similarity-Adaptive-Deep-Hashing

Table 1: The MAP scores and training time of different methods on USPS. Note: the best results are in bold

and the second-best are underlined.

Methods
USPS Training time (Seconds)

16bits 32bits 64bits 96bits 16bits 32bits 64bits 96bits

LSH 0.1865 0.2179 0.2803 0.3094 0.001 0.001 0.001 0.002

PCAH 0.1779 0.1900 0.2097 0.2282 0.028 0.037 0.040 0.049

ITQ 0.2814 0.2823 0.3460 0.3660 0.205 0.501 1.028 1.649

DGH 0.2556 0.2652 0.2823 0.3285 13.941 22.569 22.966 32.721

SGH 0.3214 0.3308 0.3395 0.3486 0.949 6.248 22.835 57.361

SpH 0.2516 0.3102 0.3300 0.3601 0.323 0.608 1.318 2.046

SH 0.2345 0.2353 0.2376 0.2439 0.040 0.055 0.083 0.103

SELVE 0.2959 0.3136 0.3305 0.3978 0.985 1.082 1.083 1.176

RSSH 0.4940 0.4990 0.5073 0.5243 8.848 8.933 9.488 10.533

empirically set each of them ranging from 0, 10−7 to 107 with the others fixed,

and then plot their performance curves respectively (Fig. 5b-5d). In the end, we

select one group of parameters under which all experiments can produce competi-

tive results, i.e., (β, λ, η) = (0.1, 10, 10−6). In terms of the RBF kernel mapping:

φ(x) = [exp(−||x−a1||2/(2σ2)), · · · , exp(−||x−am||2)/(2σ2))], we set the number

of anchor pointsm = 2, 000 and the kernel width σ = 0.5 for competitive performances.

Note that the detailed parameter sensitivity analysis are further presented in Section 6.6.

6.4. Results

Table 1,2,3,4 show the MAP values of various competitors on four datasets with

different bits from 16 to 96; Fig. 3 exhibits the precision and recall for the topN returned

results with 64 bits, and Fig. 4 displays the PR curves on different datasets with 64

bits. It’s worth mentioniong that the experimental results (Precision/Recall@topN, PR

curves) with other bits hold the similar trends as those with 64 bits in Figs 3&4. Thus,

we here omit them for saving space.

Clearly, no matter what kind of measurements, i.e., MAP, PR-Curves, Precision@topN

and Recall@topN, RSSH consistently outperforms all the baseline methods on the whole,

20

Table 2: The MAP scores and training time of different methods on Caltech256. Note: the best results are in

bold and the second-best are underlined.

Methods
Caltech256 Training time (Seconds)

16bits 32bits 64bits 96bits 16bits 32bits 64bits 96bits

LSH 0.0354 0.0712 0.1321 0.1926 0.001 0.001 0.018 0.003

PCAH 0.0977 0.1590 0.2037 0.2176 0.474 0.496 0.532 0.575

ITQ 0.1445 0.2326 0.2998 0.3356 1.132 2.041 3.578 5.035

DGH 0.0884 0.1282 0.1606 0.1801 35.337 38.910 59.143 60.352

SGH 0.1331 0.2174 0.2906 0.3256 2.387 3.047 4.867 6.758

SpH 0.0693 0.1308 0.1858 0.2176 2.194 2.647 4.346 6.895

SH 0.1075 0.1783 0.2431 0.2650 0.547 0.555 0.656 0.735

SELVE 0.2210 0.2915 0.3308 0.3677 9.589 9.917 9.943 10.057

RSSH 0.2389 0.3117 0.3784 0.4167 18.589 19.107 19.842 23.120

Table 3: The MAP scores and training time of different methods on Fashion-MNIST. Note: the best results

are in bold and the second-best are underlined.

Methods
Fashion-MNIST Training time (Seconds)

16bits 32bits 64bits 96bits 16bits 32bits 64bits 96bits

LSH 0.2637 0.3119 0.3493 0.3916 0.001 0.012 0.020 0.038

PCAH 0.1934 0.2053 0.2285 0.2856 0.653 0.673 0.715 1.042

ITQ 0.4200 0.4350 0.4351 0.4482 2.064 3.910 6.478 9.948

DGH 0.4364 0.4392 0.4467 0.4541 80.983 89.739 99.222 140.074

SGH 0.3204 0.3240 0.3327 0.3412 4.700 16.691 44.283 71.048

SpH 0.3363 0.3530 0.3828 0.3922 9.796 15.159 24.469 33.740

SH 0.2860 0.2970 0.3037 0.3325 0.804 0.958 1.050 1.153

SELVE 0.2457 0.2746 0.3300 0.3781 18.051 18.849 19.325 19.664

RSSH 0.4925 0.4950 0.4954 0.5077 43.054 43.721 46.27 51.307

21

Table 4: The MAP scores and training time of different methods on NUS-WIDE. Note: the best results are in

bold and the second-best are underlined.

Methods
NUS-WIDE Training time (Seconds)

16bits 32bits 64bits 96bits 16bits 32bits 64bits 96bits

LSH 0.3481 0.3525 0.3585 0.3616 0.001 0.001 0.016 0.019

PCAH 0.3537 0.3569 0.3620 0.3678 0.934 0.968 0.972 1.009

ITQ 0.3795 0.3836 0.3873 0.3911 5.293 10.100 19.416 30.653

DGH 0.3389 0.3389 0.3619 0.3642 248.618 268.98 342.031 612.283

SGH 0.3418 0.3422 0.3432 0.3449 12.286 35.167 69.828 101.084

SpH 0.3706 0.3738 0.3773 0.3787 15.972 24.368 39.726 56.682

SH 0.3422 0.3721 0.3746 0.3752 1.272 1.425 1.867 2.281

SELVE 0.3589 0.3607 0.3681 0.3771 25.756 35.098 43.612 48.836

RSSH 0.3965 0.3982 0.4140 0.4173 322.742 433.324 778.636 996.642

which testifies the effectiveness of our proposed approach. By the way, we also collected

the training time of all the competitors17; although RSSH is not the most efficient, yet

the time cost is acceptable (even on the largest dataset NUS-WIDE, RSSH can finish

learning to hashing within twenty minutes on a commonly configured PC). Therefore,

the satisfactory image retrieval performance and fast efficiency reveal its potentials in

real-world applications.

6.5. RSSH v.s. Deep Hashing Methods

Apart from the above competitions among shallow models, we further conducted

experiments on USPS, Caltech256 and Fashion-MNIST18 with two deep hashing

methods, i.e., DeepBit [22] and SADH [21], as well as our RSSH. Here, in this section’s

experiments, the color images of Caltech256 are cropped into 64× 64 grayscale ones;

then the inputs for these methods can be all the same with grayscale pixels. Specifically,

the grayscale images are firstly scaled into the same sizes as the inputs of deep architec-

17Compared with the time spendings in the training stage, the time costs in the testing phase are quite

small and could be ignored; thus, in this paper, we only recorded the training time for comparisons.
18Note that the NUS-WIDE dataset is not invited here because its original images are not available online.

22

The number of retrieved samples
0 100 200 300 400 500 600 700 800 900 1000

P
re

ci
si

on
 @

 6
4

bi
ts

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
USPS

RSSH
LSH
PCAH
ITQ
DGH
SGH
SpH
SH
SELVE

(a)

The number of retrieved samples
0 100 200 300 400 500 600 700 800 900 1000

R
ec

al
l @

 6
4

bi
ts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
USPS

RSSH
LSH
PCAH
ITQ
DGH
SGH
SpH
SH
SELVE

(b)

The number of retrieved samples
0 100 200 300 400 500 600 700 800 900 1000

P
re

ci
si

on
 @

 6
4

bi
ts

0

0.1

0.2

0.3

0.4

0.5

0.6
Caltech256

RSSH
LSH
PCAH
ITQ
DGH
SGH
SpH
SH
SELVE

(c)

The number of retrieved samples
0 100 200 300 400 500 600 700 800 900 1000

R
ec

al
l @

 6
4

bi
ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Caltech256

RSSH
LSH
PCAH
ITQ
DGH
SGH
SpH
SH
SELVE

(d)

The number of retrieved samples
0 100 200 300 400 500 600 700 800 900 1000

P
re

ci
si

on
 @

 6
4

bi
ts

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
Fashion-MNIST

RSSH
LSH
PCAH
ITQ
DGH
SGH
SpH
SH
SELVE

(e)

The number of retrieved samples
0 100 200 300 400 500 600 700 800 900 1000

R
ec

al
l @

 6
4

bi
ts

0

0.02

0.04

0.06

0.08

0.1

0.12
Fashion-MNIST

RSSH
LSH
PCAH
ITQ
DGH
SGH
SpH
SH
SELVE

(f) (g) (h)

Figure 3: Precision and recall for the topN retrieved results on the selected datasets with 64 bits.

tures DeepBit15 and SADH16, and then they can be the direct inputs of these two deep

hashings; while for RSSH, the grayscale images are vectorized as the inputs. In what

follows, the MAP results are collected in Table 5.

Obviously, we could find that RSSH needs much less time than the other two deep

approaches in learning to hash; this is quite natural that deep hashings are significantly

complex with much more parameters as well as time-consuming iterative BP algorithms;

while RSSH is a shallow model with fast designed iterative algorithms. What’s surprising

is that RSSH yields higher MAP values than DeepBit and SADH on these image datasets.

Noticeably, RSSH is not an end-to-end deep hashing model, but it shows much better

performance than these state-of-the-art unsupervised deep hashing competitors, which

further confirms the effectiveness of our multi-stage learning for hashing.

6.6. Parameter Sensitivity Analysis

There are several hyper-parameters, i.e., r, β, λ, η, σ and m designed in RSSH, and

we conduct their sensitivity analysis on all the datasets with 64 bits. Particularly, we run

a series of experiments by varying the value of one parameter while keeping the others

23

Recall @ 64 bits
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
USPS

RSSH
LSH
PCAH
ITQ
DGH
SGH
SpH
SH
SELVE

(a)

Recall @ 64 bits
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Caltech256

RSSH
LSH
PCAH
ITQ
DGH
SGH
SpH
SH
SELVE

(b)

Recall @ 64 bits
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fashion-MNIST

RSSH
LSH
PCAH
ITQ
DGH
SGH
SpH
SH
SELVE

(c)

NUS-WIDE
0.9

0.

c

。

－� 0.6

!......

0.

0.3

0

＋
十
＋

工
＋
＋
十
＋

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall @ 64 bits

(d)

Figure 4: PR curves on the selected datasets with 64 bits.

Table 5: Competitions between RSSH and two deep hashing models on three benchmark datasets.

Datasets/Methods
16bits 32bits 64bits

MAP Training time MAP Training time MAP Training time

USPS

DeepBit 0.2886 743.105 0.3215 913.565 0.3495 1024.374

SADH 0.3109 1052.381 0.3896 1291.459 0.4215 1355.465

RSSH 0.4940 8.848 0.4990 8.933 0.5073 9.488

Caltech256

DeepBit 0.1527 3360.172 0.2452 4896.909 0.2878 6942.376

SADH 0.2187 4665.901 0.3094 6401.665 0.3576 8066.064

RSSH 0.2332 115.269 0.3344 154.402 0.3781 229.232

Fashion-MNIST

DeepBit 0.4182 5398.629 0.4371 7550.568 0.4409 9490.672

SADH 0.4309 8729.452 0.4649 9420.622 0.4687 11026.246

RSSH 0.4925 43.054 0.4950 43.721 0.4954 46.270

fixed. Note that the benchmark parameters are (r = 100, β = 0.1, λ = 1, η = 1e− 3,

σ = 0.4 and m = 2, 000). Finally, the experimental results (MAP values) are collected

and drawn in Fig. 5.

In regard to r, it’s observed from Fig. 5a that the general trend of MAP values is

to rise first and then fall down on the selected image collections. Recall that r controls

the rank of the similarity matrix S; therefore, when r is small, the rank of S is small

but the loss of Eq. (3) would be large; however, when r is too large, the subspace

structures of datasets couldn’t be well revealed and the retrieval performance can be

quite poor. Besides, the computational complexity of RSSH would go up when r rises.

Hence, we finally set r = 100 for the experiments on all datasets due to the fact that

it can contribute to not only competitive retrieval performance but also an acceptable

24

computational complexity.

Fig. 5b and Fig. 5c tell us that RSSH can achieve good performances with a large

wide range of values w.r.t. parameters β and λ, and then we set them to 0.1 and 10

respectively. Seen from Fig. 5d, the MAP value at η = 0 is almost the same with those

at 0 < η < 1. This is because that there doesn’t exist the phenomenon of overfitting

and irreversibility in the selected datasets. However, we here set η=1e-6 instead of zero

for generalizations to other datasets.

(a) (b) (c)

(d) (e) (f)

Figure 5: Parameter analysis (r, β, λ, η, σ and m) on different datasets with 64 bits.

Parameters σ and m correspond to the kernel width and the number of anchors re-

spectively in the RBF kernel mapping: φ(x) = [exp(−||x−a1||2/(2σ2)), · · · , exp(−||x−

am||2/(2σ2))]. As can been seen from Fig. 5e, the MAP values on different image

collections are with similar trends, i.e., RSSH yields good performances when σ is

between 0.4 and 0.7. Thus, we set σ = 0.5 in this paper. From Fig. 5f, we can find that

with the increasing of m, the MAP values are getting larger and larger on all the image

collections. This is reasonable that it usually needs more basic vectors to well represent

complex samples in large-scale dataset. However, the trend of growth is getting smaller

and smaller with the increase of m, which probably tells us that we just need partial

25

samples as anchors for achieving satisfactory results. Hence, we configure m as 2, 000

for competitive performance.

6.7. Convergence Investigation

To investigate the convergence of our designed Algorithm 2, we further plotted

its loss curves with 64 bits19 on the four datasets in Fig. 6. Specifically, the y-axis is

the normalized objective function value20 and the x-axis denotes the iteration number.

Clearly, we can see that Algorithm 2 can smoothly converge within 20 iterations, which

is reasonably fast.

Figure 6: Convergence curves of RSSH on different datasets with 64 bits.

6.8. Ablation Study

Recall that our main characteristics are twofold: (1) LRR-based pairwise similarities

which come from the intrinsic global structures of datasets; (2) a different optimization

method which solves the classic challenging discrete graph hashing. Hence, RSSH is

similar to DGH [15], which utilizes the anchor graph based pairwise similarities and its

own optimization. With the aim to study the effectiveness of the above two properties,

we replace the anchor-graph-based similarities with the LRR-based similarities in

DGH and coin a new combination, termed as “LRR+DGH”. Besides, we could also

interchange the anchor-graph-based similarities in DGH and the LRR-based similarities

in RSSH with the original feature-based cosine similarities, dubbed “Cosine+DGH”

19The loss curves with other bits hold similar trends as Fig. 6.
20Each iteration’s value is divided by the one at the first iteration.

26

Table 6: The effectiveness of LRR-based pairwise similarities and our optimizaitons for hashing.

Methods/Datasets

USPS Caltech256

32bits 64bits 32bits 64bits

MAP Training time MAP Training time MAP Training time MAP Training time

DGH 0.2652 22.569 0.2823 22.966 0.1282 38.910 0.1606 59.143

LRR+DGH 0.3841 21.029 0.4291 23.670 0.2150 82.567 0.2701 86.731

Cosine+DGH 0.2617 17.207 0.2776 21.393 0.1536 26.139 0.2172 38.747

Cosine+RSSH 0.3458 1.809 0.3671 3.372 0.2467 2.244 0.2738 4.693

RSSH 0.4990 8.933 0.5073 9.499 0.3117 19.107 0.3784 19.842

Methods/Datasets

Fashion-MNIST NUS-WIDE

32bits 64bits 32bits 64bits

MAP Training time MAP Training time MAP Training time MAP Training time

DGH 0.4392 89.739 0.4467 99.222 0.3389 268.980 0.3619 342.031

LRR+DGH 0.4715 126.661 0.4808 186.777 0.3447 603.118 0.3751 893.930

Cosine+DGH 0.3386 77.251 0.3748 91.097 0.3364 230.299 0.3407 314.016

Cosine+RSSH 0.3575 16.896 0.3902 27.878 0.3415 39.171 0.3689 65.772

RSSH 0.4950 43.721 0.4954 46.270 0.3982 433.324 0.4140 778.636

and “Cosine+RSSH” respectively. Further extensive experiments on the selected image

datasets are conducted and the results are collected in Table 6.

Firstly, by comparing DGH and LRR+DGH, we can conclude that LRR-based

similarities contribute more to the hashing retrieval than the anchor-based similarities

because the MAP scores of LRR+DGH are always higher than those of DGH on all the

image datasets. Similarly, by comparing Cosine+RSSH and RSSH, we could still find

that RSSH performs much better than Cosine+RSSH in terms of MAP values, which

actually indicates that LRR-based similarities contribute more to the hashing retrieval

than the cosine similarities.

Secondly, taking the RSSH and LRR+DGH into considerations, we could achieve

that our designed optimization approaches further drive up the retrieval performance

against the optimization method in DGH. Likewise, taking the Cosine+DGH and Co-

sine+RSSH into account, the same result as above could also be summarized.

Finally, we could also discover that the designed algorithm in RSSH runs much faster

than that in DGH by comparing the training time of Cosine+DGH and Cosine+RSSH,

as well as LRR+DGH and RSSH. Here one may argue that Cosine+RSSH is the most

efficient (also due to its low-rank representation of the similarity matrix) among these

27

adapted models, but the cosine similarities are inferior to the LRR-based similarities in

achieving high retrieval precisions.

Overall, the well-designed experiments exhibit not only the effectiveness of LRR-

based pairwise similarities, but also the further performance gain of our RSSH’s algo-

rithm in image retrieval tasks.

7. A Retrieval Case on Caltech256

Fig. 8 shows the top-20 image retrieval results for three randomly chosen queries —

T-shirt (Fig. 7a), airplane (Fig. 7b) and electric-guitar (Fig. 7c) — on Caltech256, using

the above-mentioned competitive unsupervised hashing methods. The green bordered

images indicate the relevant search results w.r.t. the queries; and the red bordered ones

represent the opposite. Obviously, RSSH achieves the highest accuracies in regard to

different queries, i.e., 20/20, 19/20 and 16/20 corresponding to T-shirt, airplane and

electric guitar, which intuitively exhibits its clear advantages over other competitors.

(a) Query: T-shirt (b) Query: airplane (c) Query: electric guitar

Figure 7: Randomly selected image queries from Caltech256 dataset.

To be more specific, probably because T-shirt’s appearance is simple, several baseline

methods (e.g., ITQ, SGH, SELVE) could also generate good reteieval results; however,

they still sometimes make some errors, e.g., ITQ/SGH both mistake the 18-th image

(indeed, they are somewhat similar in appearance with T-shirt) for the given query. For

the other two more challenging queries, the differences between various approaches’

retrieved results are more sharp, e.g., methods like ITQ (the 17-th image in Fig. 8b), and

SELVE (the 1st/4-th images in Fig. 8c) are more easily influenced by multi-objects in

one image; nevertheless, RSSH could differentiate them because of its multi-subspace

learning with LRR. In a word, the global-structure preserved similarities are beneficial

28

RSSH:
20/20

LSH:
1/20

PCAH:
11/20

ITQ:
19/20

DGH:
8/20

SGH:
19/20

SpH:
8/20

SH:
14/20

SELVE:
20/20

(a) Retrieval results: T-shirt

RSSH:
19/20

LSH:
7/20

PCAH:
10/20

ITQ:
15/20

DGH:
8/20

SGH:
15/20

SpH:
9/20

SH:
10/20

SELVE:
15/20

(b) Retrieval results: airplane

RSSH:
16/20

LSH:
1/20

PCAH:
2/20

ITQ:
13/20

DGH:
1/20

SGH:
5/20

SpH:
2/20

SH:
4/20

SELVE:
14/20

(c) Retrieval results: electric guitar

Figure 8: The retrieval results corresponding to the image queries in Fig. 7. Note that the bounding boxes are

green for correct results and red for wrong ones.

29

for dealing with complex images, which makes RSSH competitive in hashing-based

reteieval tasks.

8. Conclusion

This paper presents a novel unsupervised hashing method, RSSH for short. It

firstly recovers the subspace structures of data by a new variant of the LRR model, and

then constructs the similarity matrix in a time-and-space saving form of the learned

correlation matrix. In what follows, RSSH solves the strongly binary-constrained

graph hashing with the help of two surrogate variables, i.e., it converts the original

discrete optimization problem into three subproblems with each addressed by a closed-

form solution, which greatly render the whole learning converge quickly. Extensive

competitions on four image datasets exhibit the obvious superiority of RSSH to quite a

few state-of-the-art baseline hashing methods. Besides, what deserves further attention

is that RSSH, a shallow model, defeated two recently proposed deep hashing models,

which probably reveals that the potential of unsupervised deep hashing still remains

to be tapped21. Specifically, the adversarial [48] and “self-supervised” [49, 50] deep

hashing from unlabeled datasets are quite promising research directions.

In addition, although RSSH has shown the great benefits of global structure preserved

similarities for hashing, yet it couldn’t handle streaming data samples which would be

the future challenging work for more practical large-scale image retrieval systems with

images increasing online.

9. Acknowledgment

This work is supported in part by the National Key Research and Development

Program of China (under grant No. 2017YFB1400200) and China Postdoctoral Science

Foundation. We also thank the Network Information Center of Beihang University for

providing high-performance servers.

21As is generally believed that deep neural network based hashing approaches would perform better than

shallow hashing methods in terms of image retrieval tasks.

30

References

[1] A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via hashing,

VLDB (1999) 518–529.

[2] F. Cakir, S. Sclaroff, Adaptive hashing for fast similarity search, ICCV (2015)

1044–1052.

[3] Y. Guo, G. Ding, L. Liu, J. Han, L. Shao, Learning to hash with optimized anchor

embedding for scalable retrieval, IEEE Trans. Image Processing 26 (2017) 1344–

1354.

[4] W. Liu, J. Wang, R. Ji, Y. Jiang, S. Chang, Supervised hashing with kernels, CVPR

(2012) 2074–2081.

[5] G. Lin, C. Shen, Q. Shi, A. van den Hengel, D. Suter, Fast supervised hashing with

decision trees for high-dimensional data, CVPR (2014) 1971–1978.

[6] F. Shen, C. Shen, W. Liu, H. T. Shen, Supervised discrete hashing, CVPR (2015)

37–45.

[7] Q. Ma, C. Bai, J. Zhang, Z. Liu, S. Chen, Supervised learning based discrete

hashing for image retrieval, Pattern Recognition 92 (2019) 156–164.

[8] W. Kang, W. Li, Z. Zhou, Column sampling based discrete supervised hashing,

AAAI (2016) 1230–1236.

[9] X. Luo, L. Nie, X. He, Y. Wu, Z.-D. Chen, X.-S. Xu, Fast scalable supervised

hashing, SIGIR (2018) 735–744.

[10] Z. Zhang, G.-S. Xie, Y. Li, S. Li, Z. Huang, Sadih: Semantic-aware discrete

hashing, AAAI (2019) 5853–5860.

[11] J. Tang, Z. Li, X. Zhu, Supervised deep hashing for scalable face image retrieval,

Pattern Recognition 75 (2018) 25–32.

[12] Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, NIPS (2009) 1753–1760.

31

[13] B. Kulis, T. Darrell, Learning to hash with binary reconstructive embeddings,

NIPS (2009) 1042–1050.

[14] W. Liu, J. Wang, S. Kumar, S. Chang, Hashing with graphs, ICML (2011) 1–8.

[15] W. Liu, C. Mu, S. Kumar, S. Chang, Discrete graph hashing, NIPS (2014) 3419–

3427.

[16] Q. Jiang, W. Li, Scalable graph hashing with feature transformation, IJCAI (2015)

2248–2254.

[17] A. Y. Ng, M. I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm,

NIPS (2001) 849–856.

[18] G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation,

ICML (2010) 663–670.

[19] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, Y. Ma, Robust recovery of subspace structures

by low-rank representation, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013)

171–184.

[20] Y. N. Li, P. Wang, Robust image hashing based on low-rank and sparse decompo-

sition, ICASSP (2016) 2154–2158.

[21] F. Shen, Y. Xu, L. Liu, Y. Yang, Z. Huang, H. T. Shen, Unsupervised deep hashing

with similarity-adaptive and discrete optimization, IEEE Trans. Pattern Anal. Mach.

Intell. 40 (2018) 3034–3044.

[22] K. Lin, J. Lu, C. Chen, J. Zhou, Learning compact binary descriptors with unsu-

pervised deep neural networks, CVPR (2016) 1183–1192.

[23] M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni, Locality-sensitive hashing

scheme based on p-stable distributions, Symposium on Computational Geometry

(2004) 253–262.

[24] B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scalable image

search, ICCV (2009) 2130–2137.

32

[25] Y. Gong, S. Lazebnik, A. Gordo, F. Perronnin, Iterative quantization: A procrustean

approach to learning binary codes for large-scale image retrieval, IEEE Trans.

Pattern Anal. Mach. Intell. 35 (2013) 2916–2929.

[26] V. E. Liong, J. Lu, G. Wang, P. Moulin, J. Zhou, Deep hashing for compact binary

codes learning, CVPR (2015) 2475–2483.

[27] T. Do, A. Doan, N. Cheung, Learning to hash with binary deep neural network,

ECCV (2016) 219–234.

[28] E. Yang, C. Deng, T. Liu, W. Liu, D. Tao, Semantic structure-based unsupervised

deep hashing, IJCAI (2018) 1064–1070.

[29] C. Li, L. Lin, W. Zuo, W. Wang, J. Tang, An approach to streaming video segmen-

tation with sub-optimal low-rank decomposition, IEEE Trans. Image Processing

25(5) (2016) 1947–1960.

[30] S. R. Rao, R. Tron, R. Vidal, Y. Ma, Motion segmentation in the presence of

outlying, incomplete, or corrupted trajectories, IEEE Trans. Pattern Anal. Mach.

Intell. 32 (2010) 1832–1845.

[31] L. Chen, S. Chang, An adaptive learning algorithm for principal component

analysis, IEEE Trans. Neural Networks 6 (1995) 1255–1263.

[32] D. Keysers, H. Ney, Linear discriminant analysis and discriminative log-linear

modeling, ICPR (2004) 156–159.

[33] D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix

factorization, Nature 401 (1999) 788–791.

[34] R. Vidal, Y. Ma, S. Sastry, Generalized principal component analysis (GPCA),

IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005) 1945–1959.

[35] E. Elhamifar, R. Vidal, Sparse subspace clustering: Algorithm, theory, and appli-

cations, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013) 2765–2781.

33

[36] S. Li, Y. Fu, Learning robust and discriminative subspace with low-rank constraints,

IEEE Trans. Neural Netw. Learning Syst. 27(11) (2016) 2160–2173.

[37] T.-T. Do, A.-D. Doan, N.-M. Cheung, Learning to hash with binary deep neural

network, ECCV (2016) 219–234.

[38] C. Li, L. Lin, W. Zuo, J. Tang, M.-H. Yang, Visual tracking via dynamic graph

learning, IEEE trans. Pattern Anal. Mach. Intell. (2018) 1–15.

[39] X. Zhu, Z. Huang, H. Cheng, J. Cui, H. T. Shen, Sparse hashing for fast multimedia

search, ACM Trans. Inf. Syst. 31 (2013) 9.

[40] G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset, California

Institute of Technology.

[41] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for bench-

marking machine learning algorithms, CoRR (2017) 1–6.

[42] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, NUS-WIDE: A real-world

web image database from National University of Singapore, CIVR (2009) 1–9.

[43] Z. Lin, G. Ding, M. Hu, J. Wang, Semantics-preserving hashing for cross-view

retrieval, CVPR (2015) 3864–3872.

[44] Z. Jin, Y. Hu, Y. Lin, D. Zhang, S. Lin, D. Cai, X. Li, Complementary projection

hashing, ICCV (2013) 257–264.

[45] P. Zhang, W. Zhang, W. Li, M. Guo, Supervised hashing with latent factor models,

SIGIR (2014) 173–182.

[46] J. Heo, Y. Lee, J. He, S. Chang, S. Yoon, Spherical hashing, CVPR (2012) 2957–

2964.

[47] X. Zhu, L. Zhang, Z. Huang, A sparse embedding and least variance encoding

approach to hashing, IEEE Trans. Image Processing 23 (2014) 3737–3750.

[48] K. Wang, Adversarial machine learning with double oracle, IJCAI (2019) 6472–

6473.

34

[49] X. Liu, J. van de Weijer, A. D. Bagdanov, Exploiting unlabeled data in cnns by

self-supervised learning to rank, IEEE Trans. Pattern Anal. Mach. Intell. 41(8)

(2019) 1862–1878.

[50] Z. Feng, C. Xu, D. Tao, Self-supervised representation learning by rotation feature

decoupling, CVPR (2019) 10364–10374.

Zhibao Tian received B.Sc. degree from computer science and

technology, China University of Geosciences, Beijing, China, in 2017. Now he is a

master student in the State Key Lab of Software Development Environment, School

of Computer Science and Engineering, Beihang University, Beijing, China. He won

gold award at the 40th ACM/ICPC International College Student Programming Contest,

Asia Changchun Station during his undergraduate period. His main research interests

include machine learning, data mining, and big data, especially information retrieval

and recommender system for large-scale S&T resources.

35

dell
Rectangle

