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Abstract 

 

This paper examines the rationality of the Energy Information Administration (EIA) of 

the United States Department of Energy’s (DOE) forecasts given a loss function. The 

underlying loss function has some unknown shape parameters that provide information 

regarding the preferences of the forecaster. Even without observing the DOE’s 

forecasting model we examine for asymmetries in preferences. Empirical results show 

the existence of asymmetries in DOE’s loss function, revealing preferences that lean 

towards optimism. In turn, these preferences imply irrationality. 
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1. Introduction 

 

The Energy Information Administration (EIA thereafter) of the United States 

Department of Energy (DOE thereafter) provides official energy statistics to the US 

government. Moreover, DOE publishes every month the Short-Term Energy Outlook 

(STEO) that provides quarterly energy price forecasts. The main aim of DOE is to 

improve market efficiency by providing accurate forecasts and thus enhancing the 

predictability of highly volatile energy prices. Effectively, DOE’s forecasts are of great 

importance as they provide the main source of information for setting a yardstick 

regarding future movements in energy prices for the US market but also world wide 

markets.  

 

DOE opts for a complex forecasting model. Moreover, it employs a large system of 

equations so as to forecast energy prices. DOE produces forecasts for petroleum, natural 

gas, coal, electricity, and other power sectors. Interestingly, DOE’s forecasts 

incorporate some subjective elements, though to a certain degree an adjustment is 

carried out at a regional level (DOE, 2008). This adjustment together with the subjective 

elements could assert an impact on the shape of the DOE’s underlying loss function. 

This paper bridges a gap in the literature by estimating for the first time this shape 

parameter. To this end, the methodology of this paper departs from the standard analysis 

of forecast error in energy prices (for a review see Sanders et al. 2009) and employs 

instead the modelling of the DOE’s loss function as in Elliott et al. (2005). 

 

There have been numerous studies that provide an assessment of DOE’s forecasts. 

Bentzen and Linderoth (2005) show that DOE’s forecasts perform better for shorter 

forecast horizons. Sanders et al. (2008) examine DOE’s energy price forecasts for bias 
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and efficiency. They employ tests for bias, beta efficiency, and rho efficiency to show 

that the DOE forecasts perform well as a group, though natural gas forecasts are biased 

and coal and crude oil forecasts are inefficient. However, over all Sanders et al. (2008) 

argue that DOE’s forecasts perform well in terms of biasedness and efficiency, even if 

they could gain by using all available information. In another study, Sanders et al. 

(2009) show that in most cases the DOE’s energy price forecasts provide incremental 

information even in longer forecast horizons, whereas coal forecasts suffer from 

inefficiency and as a result their performance could substantially improve. 

  

The above studies have done a good job in evaluating the performance of DOE’s energy 

forecasts using a plethora of available tests for multiple horizons. Overall, it is reported 

that DOE’s forecasts perform well with some notable exceptions, i.e. coal prices. 

However, a criticism to the literature concerns the common assumption that DOE’s 

forecasts are based on a symmetric underlying loss function with respect to positive vs.  

negative forecast errors. This paper augments the previous findings of Sanders et al. 

(2009) and Sanders et al. (2008) by providing estimates of the shape parameters of 

DOE’s loss function and thus revealing preferences over rationality. Specifically, this 

paper employs an up to date sample of Sanders et al. (2009) for one to five quarters 

ahead forecasts for crude oil, retail gasoline, retail diesel fuel, coal, natural gas, and 

electricity. Without imposing a specific preference structure in the underlying DOE’s 

loss function we use a model that both symmetric and asymmetric loss functions are 

present as special cases.  

 

Mincer and Zarnowitz (1969) were the first to develop a method to evaluate forecasts 

based on the assumption of a loss function that mirrors symmetric preferences and 
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rational behaviour.1 It is customary to further assume that such forecasts have a Mean 

Square Error (MSE) that is unbiased and does not suffer from serial correlation. Our 

objective in this paper is to empirically test the validity of these hypotheses. To this 

end, we depart from the typical tests developed by Mincer and Zarnowitz (1969) and 

by Diebold and Lopez (1998) and opt instead for the methodology of Elliott et al. (2005) 

that allows testing the joint hypothesis of an asymmetric loss function and rationality. 2   

 

Moreover, the loss function is indexed by a single unknown shape parameter, ‘α’, that 

measure whether the loss function is symmetric or not. Estimating the shape parameter 

‘α’ of the forecast error loss function allows identifying any asymmetries in the 

underlying loss function, whether it takes a linear or a non-linear form. Then, we define 

the null hypothesis of rationality in terms of a symmetric loss function as in Mincer and 

Zarnowitz (1969) that is tested using GMM methodology and a X2-test. To this end, 

this paper provides for the first time estimates of the shape parameter of the DOE’s 

underlying loss function. 

 

Empirical results show that for most energy prices forecasts the loss function is 

asymmetric. Asymmetry in the loss function reveals that DOE’s preferences lean 

towards optimism and thus irrationality. Specifically, overall DOE’s energy price 

forecasts assign higher loss for the case that the forecast exceeds realization, especially 

for longer time horizons. These empirical findings come in line with Ito (1990) who 

reports the tendency of price forecasts to be optimistic, arguing that market participants 

form what he calls ‘wishful expectations’, i.e. exporters expect currency depreciation. 

 
1 For a recent review of forecast error assessment see Elliott and Timmermann (2008). 
2 For the first forecast rationality test under asymmetric loss see Bachelor and Peel (1998).  
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He further argues that in the presence of ‘wishful expectations’ rationality is 

compromised, in particular in the case of long-term forecasts. Present findings show 

that DOE’s energy price forecasts are based on ‘wishful expectations’ along the lines 

of Ito’s (1990), as they clearly lean towards optimism, associated with a systematic 

under-prediction. As a consequence, DOE’s underlying loss function is not associated 

with rational preferences.  

 

The next section the paper presents an analysis of the track record of DOE’s forecasts. 

Section 3 presents the empirical methodology, while Section 4 provides information 

regarding the data set. Section 5 reports the results and last Section 6 offers some 

concluding statements and policy considerations.  

 

2. The Track Record of DOE’s energy price forecasts  

DOE provides quarterly price forecasts for the main energy commodities and is the 

source of official energy statistics of US government. Moreover, DOE publishes every 

month the Short-Term Energy Outlook (STEO) that provides US monthly projections. 

In addition, DOE publishes quarterly energy price forecasts in the Short-Term Energy 

Outlook (STEO thereafter). The forecasting exercise of STEO is dynamic and highly 

complex.3  

  

 
3The DOE employs a complex forecasting procedure, which includes structural econometric equations 

and time series analysis. Moreover, over 300 forecasting equations and many exogenous variables, such 

as  world crude oil production and usage, U.S. domestic crude oil production, macroeconomic forecasts, 

and weather forecasts are part of DOE’s forecasting modeling (for a comprehensive review see DOE, 

2008 and Sanders et al. 2009). This modelling approach was set at a national level prior to 2005. Since 

then DOE opts for an even more complicated regional short term energy model to improve the accuracy 

of national forecasts in a parallel process of providing regional forecasts. 



 6 

Diagram 1 presents the one quarter ahead forecast errors, defined as realization minus 

forecast, for crude oil, retail gas, diesel, and coal. The time period spans from the second 

quarter in 1997 till the second quarter in 2009. The key underlying common hypothesis 

in the literature (see Sanders et al. 2009 and Sanders et al. 2008) is that DOE forms 

forecasts using a symmetric underlying loss function. This, in turn, implies that forecast 

errors whether positive or negative are equally costly. In terms of diagrammatic 

analysis, symmetry in the loss function could imply that forecast errors hover around 

zero without exhibiting any persistence, especially for positive forecast errors.  

 

However, note that forecast errors exhibit some variation around zero, whilst there exist 

periods when forecast errors largely deviate from zero, in particular later in the sample 

when they take large positive values (see Diagram 1). Positive values in forecast errors 

are of interest as they suggest under-prediction that is the case when the actual, 

realization, of energy price is higher than the forecast. Such forecast errors can hardly 

be viewed as prudent, especially in periods of energy price hikes.4 However, with the 

exception of coal, there is not strong evidence of persistence in positive forecast errors 

over the whole sample period as fluctuations earlier in the sample show that there are 

also quarters with large negative forecast errors, thus implying over-prediction. An 

interesting case appears to be the forecast error of coal, taking positive values since late 

in 2005. This implies that DOE has systematically under-predicted coal as prices turn 

out higher than forecasted. 

 

 
4Note that an ‘over-prudent’ economic agent may exhibit higher aversion to positive forecast errors 

versus negative ones of the same size. This would essentially imply that there might be lower costs 

associated with over-prediction, and thus pessimism, that is the case when the realization is less than the 

forecast, against the case of an equal size under-prediction.  
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Diagram 1. One Quarter -Ahead Forecast Errors for Crude Oil, Retail Gas, 

Retail Diesel, and Coal. 

  

  

Source: DOE Quarterly Energy Prices.  

 

Overall, the above diagrammatic analysis suggests that DOE may form its forecasts 

based on an underlying asymmetric loss function. Of course, one can not draw final 

conclusions using diagrammatic analysis. It is up to the empirical evidence to reveal 

any possible asymmetries in the loss function.  
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3. Empirical Methodology  

Following Mincer and Zarnowitz, (1969) an optimal forecast is defined as both 

unbiased and efficient. An unbiased forecast does not systematically over or under 

estimate the actual value, whilst an efficient forecast takes into account all available 

information, and is also the most accurate forecast in terms of mean squared error.  

 

In addition, and crucially for the purpose of the current paper, an optimal forecast is 

also considered as a rational forecast (Mincer and Zarnowitz, 1969, Diebold and Lopez, 

1998 and Sanders et al., 2009). However, for this statement to be true, one important 

assumption must be valid. An optimal forecast is rational if the forecaster has a 

symmetric underlying loss function. 

 

In the evaluation of DOE’s forecasts (Sanders et al., 2008), examine rationality, and 

thus optimality, using regression techniques of the actual values against the forecasts 

along the lines of Mincer and Zarnowitz, (1969): 

 

Pt+1 = α0 + β0 ft+1 + ut+1        (1) 

 

where Pt+1 are the actual values and ft+1 are the forecasts and ut+1 is the random error 

term. Forecast rationality is tested under the joint null hypothesis that α0=0 and β0 =1. 

If the null is not rejected the forecast is rational, unbiased (α0=0), and efficient (β0 =1).  

 

The above simple regression framework has attracted criticism from Granger and 

Newbold (1986) that show that the joint null is a necessary and a sufficient condition 

for efficiency, but not necessary for unbiasedness. As a result, rejecting the joint null 
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hypothesis may not necessarily imply that forecasts are rational. Sanders et al. (2008) 

in an evaluation of DOE’s forecasts follow the methodology of Pons (2000) focusing 

strictly on forecast errors that deals with the criticism of Granger and Nwebold (1986). 

They argue that that DOE’s energy forecasts have only limited evidence of bias and 

inefficiency. In another paper Sanders et al. (2009) examine forecast rationality in 

multiple k periods ahead forecasts using the methodology similar to Vuchelen and 

Gutierrez (2005). Their evidence shows that DOE’s energy price forecasts contain 

information at multiple horizons and thus are rational, though some variability is also 

observed. One limitation of such analysis is that crucially depends upon the assumption 

that the forecaster has a symmetric underlying loss function and thus unbiasedness and 

efficiency would imply rationality. The present paper tests the validity of this 

assumption. 

 

As in Elliott et al. (2005) ft+1 is the forecast of Pt+1. ft+1 is conditional on the information 

set Ft and takes the form:  

 

ft+1 ≡θ’Wt                     (2) 

where θ is an unknown k-vector of parameters, θ  Θ, with Θ compact in 
k

R , and Wt 

is an h-vector of variables. These variables are part of the information set Ft.  

 

Now, given Pt+1 and Wt, the forecast ft+1 is based on an underlying generalized flexible 

loss function L defined by  

p

tttt
fPfPpL

1111
)](1)21([),(

++++
−−−+                          (3) 
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where p=1 or 2, counting for a linear and non-linear loss function respectively, α (0,1), 

the shape parameter of the loss function, 1 is an indicator and (Pt+1 - ft+1) is the forecast 

error. Herein the forecast error is defined as the actual value, that is the realization, 

minus the forecast.  

 

The above loss function is considered as flexible given that it can take a linear form, 

for p=1, or a non-linear form, for p=2. What is of importance, however, in the present 

analysis is the shape parameter ‘α’ of the loss function. In the case that α=0.5, the loss 

function is symmetric. This is the standard assumption in the literature and goes back 

to Mincer and Zarnowitz (1969). However, if α  0.5 this would imply the existence of 

asymmetric preferences in the loss function and thus behavior that deviates from 

symmetry. Moreover, for α<0.5 the asymmetric loss function implies that the loss 

associated with positive forecast errors, that is the case of under-prediction where the 

realization is higher than the forecast, is lower compared to the loss associated with the 

case where the forecast over-predicts the realization. Thus, an asymmetric loss function 

with α<0.5 reveals preferences that lean towards under-prediction, given that in this 

case the loss is lower than in the case of over-prediction. This, in turn, would imply that 

forecasts are optimistic. Equivalently, for α>0.5 the loss function shows asymmetric 

preferences as the loss for negative forecast errors that is the case of over-prediction is 

lower compared to the case of under-prediction. Thus, in this case the forecaster’s loss 

function leans towards over-prediction. 

 

Diagram 2 draws the non-linear loss function for three different shape parameters. That 

is ‘α’ takes the value of 0.5 for a symmetric loss function and ‘α’ takes the value 0.2 

and 0.8 for an asymmetric loss. Moreover, in the case of α=0.2 the forecaster assigns 
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higher loss to negative forecast errors, that is the case of over-prediction where the 

forecast exceeds actual values, compared to positive forecast errors. In this case, 

forecasts underlying preferences are characterized by optimism. The opposite is true 

for α=0.8.  

 

                                             <<Diagram 2 about here>> 

 

From the above discussion it becomes clear the importance of accurately estimating the 

parameter of asymmetry, α. As in Elliott et al. (2005) we use a simple linear GMM 

Instrumental Variable estimator by observing the sequence of forecasts {ft+1}, τ≤t<T+τ  

to estimate ‘α’ as follows: 
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where 
^

 T  is the estimate of α, vt is a dx1 vector of instruments which is a subset of the 

information set used to generate f .5 

 

Now from equation (4) one can not fail to notice that we need the estimate of 
^

S . As in 

Elliott et al. (2005) 
^

S  is given by: 

 
5Following Elliott et al. (2005) we use three instruments in the empirical application. In particular, we 

use a constant and lagged forecast error as well as the lagged actual data. 
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Given that 
^

S  depends on αT in the estimation we use a series of iterations. Moreover, 

as in Elliott et al. (2005) in the first iteration it is assumed that that 
^

S =I. Thus, we 

estimate αT until convergence is achieved. Elliott et al. (2005) show that the estimator 

of αT is asymptotically normal. 

 

Elliott et al. (2005) also employ a J-statistic which under the joint null hypothesis of 

rationality and flexible loss function is distributed as a X²(d-1) variable for d>1 and 

takes the form: 
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Given the above analysis the parameter estimate of ‘α’, whether exhibiting a 

symmetric or an asymmetric loss function, reveals the preferences of the 

forecaster rather than model biases. This point is of importance as model bias 

could impair our analysis. Elliott et al. (2005) clearly demonstrate that the general loss 

function of equation (3) reflects actual preferences. Moreover, they show that the loss 
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function analysis does not extract the underlying model of the forecaster as it is based 

on the following general linear model:  

 

( )
tt

Waf
'

1
Θ=

+
     (7) 

 

where Θ is a Kx1 vector of parameters, an implicit function of the loss asymmetry 

parameter (a), Wt is the full set of information.  

 

Given the generalised loss function of equation (3), 
1+t

f  is a rational forecast if and 

only if the first order forecast optimality condition holds: 

 

( )  0
1

11)0(
11

=−−
−

++−
++

p

ttfPt
fPaWE

tt

1
    (8) 

 

Given the values of the shape parameter, ‘a’, and both for the linear and non-linear case, 

the forecaster uses the first order optimisation condition to forecast ft+1. Elliott et al 

(2005) proves that this first order condition leads to a unique solution. Moreover, given 

ft+1 they use the first order condition to uniquely estimate the parameter of interest ‘a’.  

 

An interesting case that it may emerge is the one of model misspecification. Elliott et 

al (2005) demonstrate this case by assuming that the forecaster observes only Vt, which 

is a sub-vector of the full information set at period t, Wt. Then, the forecast is based on 

the following general linear model: 

 

( )
tt

Vaf
'

1
Θ
~

=
+

.                                     (9) 
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The first order forecast optimality condition is: 
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tt
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Elliott et al. (2005) show that this first order condition is sufficient to estimate ‘a’.6 This 

is strong result and shows that model misspecification may not be a concern in 

identifying the shape parameter, ‘a’.  In this paper we opt for the GMM estimator of 

Elliott et al. (2005) to estimate the unique shape parameter, ‘a’, of the generalised loss 

function in equation (4) that minimises the variation of the first order condition also 

under model misspecification. To this end, possible model misspecification may not be 

of concern here. 

 

3. Data 

We use an update sample of Sanders et al. (2009). Moreover, DOE energy price 

forecasts for crude oil, retail gasoline, diesel, coal, natural gas, and electricity are 

included in the current sample. As in Sanders et al. (2009) crude oil prices are measured 

in dollars and represent the refiner acquisition cost (RAC) of imported crude oil. The 

retail gasoline and diesel fuel prices are in dollars per gallon. The coal and natural gas 

prices represent dollars per million British thermal units (BTU). These data are 

collected from the STEO, published monthly. Each monthly report contains quarterly 

forecasts for one to five quarters ahead.  

 

This paper uses forecasts for one-quarter ahead, two-quarters ahead, three-quarters 

ahead, four-quarters ahead as in Sanders et al. (2009). To account also for longer 

forecast horizons we also include in the analysis forecasts for five-quarters ahead. The 

 
6 Proposition 1 and Lemma 2 in Elliott et al. (2005) proves this point.    
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actual or realized prices are taken from subsequent releases of the STEO reports. The 

sample period is from the second quarter of 1997 (1997.2) to the second quarter of 2009 

(2009.2), resulting in 49 observations of one to five quarters ahead forecasts and 

realized values.  

 

4. Results 

In what follows we report the parameter estimates of ‘α’ and accompanied J-stats for 

testing rationality of the DOE’s energy commodities prices. Moreover, we estimate 

equations (3) and (4) for both the linear (p=1) and non-linear case (p=2) using three 

instruments, in particular a constant and lagged forecast error as well as the lagged 

realization.7 

 

The reporting results concern energy prices for: crude oil, retail gas, retail diesel, coal, 

natural gas and electricity up to five quarters (see Tables 1 to 5).8 In detail, Table 1 

reports results for energy price forecasts one quarter ahead. Our estimated loss function 

parameters are all statistically different from zero, but coal in the linear case and 

electricity in the non-linear case. It is striking that only for crude oil the parameter ‘α’ 

is centred around symmetry, indicating neutral and thus rational preferences in terms 

of the typical forecasting testing of Mincer and Zarnowitz, 1969. Interestingly, for all 

the rest energy price forecasts the shape parameter, ‘α’, of the underlying loss function 

 
7 All estimations were carried out employing standard programming code for estimating both equations 

(3) and (4) with standard GMM. Also, for a comprehensive analysis of applying GMM estimation 

techniques on rational expectations models see Hansen and Singleton (1982). 
8In this paper we deal with multiple k periods ahead forecasts along the lines of Sanders et al. (2009) who 

argue that DOE’s energy forecasts at multiple horizons are rational, but there is some variability. Thus, 

in examining the shape parameter ‘α’ we ought to take into account that at different horizons there might 

exist differences in the information set that could affect preferences and thus the shape of the loss 

function. 
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that reflects preferences of DOE takes values less than 0.5, indicating optimistic 

preferences both in the linear and the non-linear case.  

 

Moreover, for α<0.5 the loss function is asymmetric as the loss associated with negative 

forecast errors, that is the case of over-prediction where actual values are lower than 

forecast, is higher compared to forecasts that under-predict actual values. Thus, an 

asymmetric loss function with α<0.5 reveals preferences that lean towards under-

prediction. This would imply that DOE’s forecasts are not rational even for short time 

horizons of one quarter ahead. Instead, the loss function asymmetry reveals preferences 

towards optimism. In terms of the analysis of Ito (1990), present results appear to 

confirm what he calls ‘wishful expectations’, and thus a clear violation of rationality in 

energy forecasts of DOE.  

 

Note that for the non-linear case estimates of the asymmetry parameter ‘α’ shows 

optimism also for crude oil. These results reconfirms the ones for the linear loss 

function and demonstrate that DOE’s energy price forecasts assign higher loss for over-

prediction compared to under-prediction, implying irrationality.  

 

Table 2 presents parameter estimates for ‘α’ for two quarters ahead. Note that as the 

forecast horizon increases the parameter ‘α’ gains in terms of statistical significance, 

presenting evidence also of higher degree of asymmetry in the underlying loss function. 

At two quarter forecasts ahead crude oil, also in the linear case, shows an asymmetric 

loss function that leans towards optimism.  

 

<<Tables 1-2 about here>> 
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Given the evidence of asymmetry in the underlying loss function of DOE’s forecasts, 

we perform J-statistics for three null hypotheses, aaH ˆ:
0

=  (from the estimation), 

α=0.2, and α=0.8, the latter two representing optimistic and pessimistic preferences 

respectively. Under both linear and non-linear loss functions it is shown that for alphas 

which are statistically different from 0.5 the likelihood to reject the null of 0.5 or 0.8 is 

higher. Moreover, we find strong evidence against the hypothesis of pessimism that is 

the hypothesis of assigning higher loss in under-prediction of energy prices as the 

asymmetric J-stat of the null of α=0.8 is rejected in all cases. This is not case for 

optimistic preferences that is α=0.2. 

 

Note that in one particular case, that of coal, it is striking that the parameter ‘α’ is close 

to zero, indicating large deviations from rational behaviour. Moreover, coal forecasts 

are generated based on an asymmetric underlying loss function that assigns very large 

loss for over-prediction, which is the case when forecast is higher than actual data. This 

in turn implies the existence of extreme optimism. Previous research highlighted the 

special case of coal. Sanders et al. (2008) and Sanders et al. (2008) argue that coal 

forecasts do not incorporate all information available in an efficient way. They show 

that forecast errors in the case of coal are negatively related to the forecast and are 

inefficient. This implies that inefficient forecasts exhibit the tendency to repeat errors. 

In terms of our findings, DOE appears to present very optimistic coal forecasts and thus 

irrational forecasts based on ‘wishful expectations’ (see Ito, 1990).  

 

Note that assigning higher cost to under-prediction compared to over-prediction implies 

that the forecaster could serve the market to be better prepared to deal with energy price 

hikes. Therefore, a pessimistic loss function could be considered, certainly in periods 
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of price hikes, to reflect prudent preferences whereas the underlying loss function is not 

symmetric. Alas, on the other hand, over-prediction could do little to easy price hikes 

and could prolong speculative spells. Thus, as there is no one size fits all case and 

preferences reflect behaviour that only ex-post can be evaluated, judgement on what is 

prudent forecast away from a symmetric loss function must be applied with extreme 

caution. Note, however, that persistent asymmetric preferences highlight deviation 

from rationality.  

  

Tables 3-4 present parameter estimates for ‘α’ for three and four quarters ahead. Once 

more, in long forecast horizon the parameter ‘α’ gains in terms of statistical significance 

whilst presenting evidence of high degree of asymmetry in the underlying loss function. 

However, in the linear case it is striking that for crude oil and four quarters ahead a 

symmetric loss function is reported, insinuating the existence of rationality. Also note 

that for four quarters ahead the loss function for electricity reports that ‘α’ equals to 

0.54, though the J-stat shows that ‘α’ is not significantly different from 0.5. These 

results insinuate that symmetric preferences are at play, implying that for these 

particular cases the forecast could be viewed as rational as it assigns equal loss to both 

the case of over and under-prediction.  

                                             <<Tables 3-4 about here>> 

 

Thus, it appears that at four quarters ahead and for two cases, crude oil and electricity, 

a correction towards rationality in the shape parameter of the loss function is reported. 

However, these two exemptions can hardly reverse the domination of smaller than 0.5 

values of ‘alphas’ across forecast horizons. These results are complemented with the J-

statistic for the joint null of rationality and flexible loss function. Once more, we find 
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strong evidence against pessimism, which means rejection of the null α=0.8, in favour 

of optimism.                                    

 

<<Tables 5 about here>> 

 

Finally, Table 5 presents parameter estimates for ‘α’ for five quarters ahead. For this 

long forecast horizon case the parameter ‘α’ present even higher, than in shorter time 

horizons, degree of asymmetry towards optimism. Moreover, for five quarters crude oil 

presents a case of an asymmetric underlying loss function, insinuating the existence of 

optimism. In fact, at longer forecast horizons it appears that alphas decline providing 

further evidence of an asymmetric loss that assigns higher loss to over-prediction 

compared to under-prediction thus implying optimism. In addition, J-statistics under 

both linear and quadratic loss functions reject the null of alphas taking the values of 0.5 

and 0.8. This presents strong evidence against the hypothesis of pessimism that is the 

hypothesis of assigning higher loss in under-prediction of future energy prices.  

 

To reveal a comprehensive picture of the shape parameters Diagram 2 presents the 

histogram of the ‘alphas’ for the DOE’s energy price forecasts. It appears that the 

average shape parameter of the loss function, ‘α’,  takes a value around 0.34 that is 

associated with an asymmetric loss that clearly leans towards optimism, and thus it is 

more costly to over-predict compared to under-predict. This apparent asymmetry casts 

in doubt the perception of a symmetric loss function in DOE’s energy price forecasts 

assumed in the literature (see Sanders et al. 2009 and 2008, and Bentzen and Linderoth, 

2005) across various forecast horizons.  

 



 20 

These results provide a useful source of information as understanding DOE’s 

underlying preferences is a crucial component of economic policy decision making 

(Artis, 1996 and Elliott and Timmermann, 2008). The role of the DOE is to provide 

high-quality energy price information to government, industry and the public that in 

turn would promote sound policymaking and overall market efficiency, as well as raise 

agents’ understanding of the functioning of energy markets (Caruso, 2005). 

Specifically, energy price forecasts are often used to guide private investment projects 

(Taal et al., 2003), whilst they also play an important role in the budgeting and planning 

process of government. Therefore, it is imperative that both the government and market 

participants are aware of the shape parameters of the loss function of the forecaster so 

as to apply better judgment in their decision making whether it concerns budgeting, 

planning, investment or the efficient allocation of resources.   

 

In terms of economic policy advice, a clear message emerges; forecasts must not 

persistently under-predict energy prices. DOE’s underlying loss function is 

asymmetric, leans towards optimism and thus not rational. Persistency in assigning high 

losses to negative forecast errors, which is the case when the forecast is higher than 

actual data, would not seem appropriate to facilitate markets and smooth out price 

variations. Moreover, the underlying optimism in DOE’s energy price forecasts, to the 

extent that it is anticipated by the markets, could do little to reduce uncertainty. 

 

4. Conclusion 

In this paper we examine the structure of loss preferences and the rationality of DOE’s 

energy forecast prices in the context of asymmetric flexible loss functions. We follow 
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Elliott et al (2005) and present estimates for the asymmetry parameter of the DOE’s 

loss function.  

 

Moreover, this paper provides empirical estimates of the shape parameter of the 

underlying DOE’s loss function for crude oil, retail gas, retail diesel, coal, natural gas, 

and electricity up to five quarters. Results show that in all cases, but crude oil and 

electricity for four quarters ahead, there is evidence of high degree of asymmetry in the 

loss function, and thus irrationality. DOE appears to assert preferences that lean towards 

optimism. Optimism in the DOE’s preferences may hardly be seen as applying prudent 

behavior. Systematic under-prediction in energy prices across short and long time 

forecasting horizons could essentially enhance uncertainty and forfeit rationality.  

 

The provided evidence of the existence of asymmetry in DOE’s loss function is of quite 

importance for market participant and policy makers alike. The existence of an 

asymmetric loss function with preferences that lean towards under-prediction insinuate 

that forecasts are not rational even for short time horizons of one quarter ahead. Instead, 

the loss function asymmetry reveals preferences towards optimism. Ito (1990) argue 

that price forecasts are often based on ‘wishful expectations’. We provide evidence that 

‘wishful expectations’ are present in energy forecasts of DOE.  

 

In terms of economic policy, DOE’s energy price forecasts could benefit by the 

knowledge that its underlying loss function is indeed asymmetric. Thus, less optimism 

in the loss preference structure could enhance rationality, also in view of recent 

incidents of intense hikes in energy prices. 
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Diagram 1: Symmetry (‘α’=0.5, green line) and asymmetry (‘α’=0.2 blue line and 

‘α’=0.8 red line) for the quadratic loss functions. 

L (p=2, α) 

 

 

-∞                                 0                 +∞ 

Note: horizontal axis shows ‘forecast error = actual data– forecast’, whilst vertical axis 

is the quadratic loss function, L(p=2,α). For ‘α’=0.5 (green line) there is symmetry, 

whilst for ‘α’=0.2 (blue line) and ‘α’=0.8 (red line) there is asymmetry.  
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TABLE 1: DOE’s energy prices under asymmetric loss function, 1 quarter ahead 

forecast. 

Linear case 

 â  SE a
J

ˆ
 

2.0=J  5.0=J  8.0=J  

Crude Oil   0.500 0.072 1.256 13.075 1.256 12.852 

Retail Gas 0.474 0.072 4.726 12.912 4.605 14.535 

Retail Diesel  0.405 0.071 3.032 8.791 4.006 18.338 

Coal 0.035 0.027 11.101 18.527 19.914 30.063 

Natural Gas 0.394 0.071 0.487 6.756 2.619 19.568 

Electricity 0.321 0.067 1.699 4.543 6.535 23.842 

 

Non-Linear case 

 â  SE a
J

ˆ
 

2.0=J  5.0=J  8.0=J  

Crude Oil   0.4753 0.1149 2.116 4.4336 2.0189 7.4408 

Retail Gas 0.4215 0.0978 2.7148 5.5184 3.1646 8.238 

Retail Diesel  0.1783 0.0742 8.3822 7.9092 5.9362 13.9501 

Coal 0.0064 0.0069 9.2794 9.3679 16.1995 22.5651 

Natural Gas 0.3499 0.0851 1.3439 3.8989 3.8757 11.2114 

Electricity 0.0286 0.0182 9.0292 4.167 6.0192 8.2653 

Estimates are based on D=3 instruments.  

J-statistics are distributed as X2(D-1) or
a
J

ˆ
and  X 2(D) for   the remaining J.  

 

TABLE 2: DOE’s energy prices under asymmetric linear loss function, 2 

quarters ahead forecast. 

Linear case 

 â  SE a
J

ˆ
 

2.0=J  5.0=J  8.0=J  

Crude Oil   0.4789 0.0721 0.2879 11.4945 0.3646 14.052 

Retail Gas 0.4354 0.0716 0.7724 9.1594 1.4761 16.7861 

Retail Diesel  0.3803 0.0701 3.1201 7.7755 4.7426 19.7107 

Coal 0.0946 0.0423 6.7314 8.4341 19.8518 32.7962 

Natural Gas 0.4365 0.0716 0.3963 9.0339 1.1551 16.7659 

Electricity 0.3481 0.0688 4.2507 7.4035 6.5904 21.2201 

 

Non-Linear case 

 â  SE a
J

ˆ
 

2.0=J  5.0=J  8.0=J  

Crude Oil   0.4556 0.1051 1.112 4.684 1.1081 8.41 

Retail Gas 0.4477 0.0946 0.7538 5.8089 1.0278 10.2935 

Retail Diesel  0.2425 0.0681 4.468 5.6723 6.4605 14.4043 

Coal 0.0124 0.0115 6.8736 7.9571 16.3756 21.8458 

Natural Gas 0.3793 0.0837 2.6328 5.5663 3.9883 11.4359 

Electricity 0.2559 0.0745 4.5873 5.6683 5.3477 12.0661 

Estimates are based on D=3 instruments.  

J-statistics are distributed as X 2(D-1) or
a
J

ˆ
and  X 2(D) for   the remaining J.  
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TABLE 3: DOE’s energy prices under asymmetric linear loss function, 3 

quarters ahead forecast. 

Linear case 

 â  SE a
J

ˆ
 

2.0=J  5.0=J  8.0=J  

Crude Oil   0.4545 0.0719 2.0093 10.7581 2.2186 15.5596 

Retail Gas 0.4782 0.0721 1.0745 11.6553 1.142 14.1586 

Retail Diesel  0.329 0.0678 6.4587 8.2245 8.61 21.3844 

Coal 0.1962 0.0573 2.6043 2.6058 15.8136 31.2166 

Natural Gas 0.4151 0.0711 0.4401 7.8943 1.7488 18.1301 

Electricity 0.4432 0.0717 6.3887 11.9004 6.5167 16.1745 

 

Non-Linear case 

 â  SE a
J

ˆ
 

2.0=J  5.0=J  8.0=J  

Crude Oil   0.4177 0.0955 0.4247 4.6997 0.9772 11.0278 

Retail Gas 0.4049 0.0873 0.1078 5.1867 1.1302 11.2586 

Retail Diesel  0.2556 0.0688 2.6208 3.8986 6.9392 15.2806 

Coal 0.0554 0.0283 5.6834 6.3236 14.8734 21.3304 

Natural Gas 0.3581 0.0826 1.4491 4.4083 3.1923 11.7322 

Electricity 0.3621 0.0847 3.5859 6.4339 4.1161 10.971 

Estimates are based on D=3 instruments.  

J-statistics are distributed as X 2(D-1) or
a
J

ˆ
and  X 2(D) for   the remaining J.  

 

TABLE 4: DOE’s energy prices under asymmetric linear loss function, 4 

quarters ahead forecast. 

Linear case 

 â  SE a
J

ˆ
 

2.0=J  5.0=J  8.0=J  

Crude Oil   0.5 0.0722 3.6572 13.6746 3.6572 13.2525 

Retail Gas 0.4581 0.0719 0.1553 10.1984 0.4914 15.3761 

Retail Diesel  0.3695 0.0697 1.0122 5.8595 4.062 21.0084 

Coal 0.1753 0.0549 3.9811 4.1071 16.8167 31.2741 

Natural Gas 0.5 0.0722 1.5442 12.9219 1.5442 13.0409 

Electricity 0.5419 0.0719 0.1059 15.3861 0.4491 10.1849 

 

Non-Linear case 

 â  SE a
J

ˆ
 

2.0=J  5.0=J  8.0=J  

Crude Oil   0.3937 0.0903 0.091 4.4958 1.3635 12.542 

Retail Gas 0.3695 0.0887 0.4166 3.7004 1.9707 11.2264 

Retail Diesel  0.246 0.0688 2.5863 3.4095 7.1983 15.9145 

Coal 0.065 0.033 4.9434 5.8481 17.0698 23.3604 

Natural Gas 0.3877 0.0879 1.1724 5.1597 2.0782 9.7042 

Electricity 0.3443 0.0846 3.0204 6.3159 3.9865 9.2434 

Estimates are based on D=3 instruments.  

J-statistics are distributed as X 2(D-1) or
a
J

ˆ
and  X 2(D) for   the remaining J.  
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TABLE 5: DOE’s energy prices under asymmetric linear loss function, 5 

quarters ahead forecast. 

Linear case 

 â  SE a
J

ˆ
 

2.0=J  5.0=J  8.0=J  

Crude Oil   0.4489 0.0718 4.4428 11.896 4.4635 15.8611 

Retail Gas 0.4545 0.0719 1.9982 10.6244 2.3194 15.6438 

Retail Diesel  0.3028 0.0663 11.3223 11.3786 12.8416 20.6443 

Coal 0.1156 0.0461 4.4899 6.4313 21.2336 34.2446 

Natural Gas 0.4088 0.071 2.0679 8.2179 3.6393 18.4582 

Electricity 0.3942 0.0705 0.3813 6.8786 2.3491 19.4984 

Non-Linear case 

 â  SE a
J

ˆ
 

2.0=J  5.0=J  8.0=J  

Crude Oil   0.381 0.0912 0.3776 4.6444 1.9572 13.4355 

Retail Gas 0.3881 0.0876 0.5589 4.5557 1.8795 13.967 

Retail Diesel  0.2489 0.0713 3.2123 4.0785 7.1337 15.5053 

Coal 0.0293 0.0196 6.5534 6.8908 19.2458 24.7073 

Natural Gas 0.3791 0.0882 3.5324 5.4639 4.3756 11.5501 

Electricity 0.1797 0.0709 3.4279 3.1406 4.3692 7.6793 

Estimates are based on D=3 instruments.  

J-statistics are distributed as X 2(D-1) or
a
J

ˆ
and  X 2(D) for   the remaining J.  
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Diagram 2: Histogram of ‘α’ shape parameters of the DOE’s forecast loss 

function. 

 

 

 


