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A Nonparametric Stochastic Frontier Approach in the Presence of Fully Efficient 
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Abstract 
 
A common assumption in the banking stochastic performance literature refers to the non-existence of fully efficient 
banks. This paper relaxes this strong assumption and proposes an alternative semiparametric zero-inefficient 
stochastic frontier models. Specifically, we consider a nonparametric specification of the frontier whilst maintaining 
the parametric specification of the probability of fully efficient banks. We suggest an iterative local maximum 
likelihood procedure that achieves the optimal convergence rates of both nonparametric frontier and the parameters 
contain in the probability of fully efficient banks. In an empirical application, and given the implications of not 
counting for fully efficient banks, we apply the proposed model and estimation procedure to a comprehensive global 
banking data set so as to derive new corrected measures of global bank performance and bank productivity growth. 
Overall, the results indicate that over time, in particular after the financial crisis, a shift of densities to lower efficiency 
scores and productivity growth takes primarily place in advanced economies and EU. The results also show that there 
is variability across regions, and the probability of fully efficient banks is mostly affected by bank specific variables 
that are related to bank’s risk-taking, whereas country specific variables, such as inflation, also have an effect.  
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1. Introduction 
 

One of the main assumptions in stochastic frontier analysis (e.g., Aigner, Lovell and Schmid, 

1977; Meeusen and van den Brock, 1977) is that all firms are inefficient and their inefficiency is 

modeled through a continuous density. However, when some firms are fully efficient, a fact that 

cannot preclude on a prior grounds, applying stochastic frontier analysis was shown to have 

serious implications on the inefficiency estimates. Thus, to account for the possibility of fully 

efficient firms, Kumbhakar, Parmeter and Tsionas (2013), Rho and Schmidt (2015) propose a 

special class of two-component mixture model, for which they term “zero-inefficiency stochastic 

frontier model” (ZISF) that allows for the inefficiency term to have certain mass at zero with 

certain probability p  and a continuous distribution with probability 1 p- . They further extend 

model to allow for the probability of fully efficient firm to depend on a set of covariates via a logit 

or a probit function. For a recent review of parametric ZISF models, see for example Parmeter 

and Kumbhkar (2014). Recently, Tran and Tsionas (2016) suggest a semiparametric version of the 

ZISF model by using nonparametric formulation of the probability function, and propose an 

iterative backfitting local maximum likelihood procedure to estimate the frontier parameters and 

the nonparametric function. 

In this paper, we first propose an alternative semiparametric ZISF model, which is different 

from the one suggested by Tran and Tsionas (2016). Specifically, we consider a nonparametric 

specification of the frontier whilst maintaining the parametric specification (e.g., logit or probit 

function) of the probability of fully efficient firms. Unlike Tran and Tsionas (2016), by maintain the 

parametric assumption of the probability of fully efficient firm, there are no need for imposing 

local restrictions so as to ensure the estimated probability lies in the interval [0,1]. To estimate 

the unknown function of the frontier and the parameters of the probability of fully efficient firm, 

we modify the iterative backfitting local maximum likelihood procedure developed in Tran and 

Tsionas (2016), which is fairly simple to compute in practice. We also provide the necessary 

asymptotic properties of the modified proposed estimator.  

Next, we apply the proposed model and estimation procedure to the global banking data 

set, classified per region across the world following IMF’s World Economic Outlook classification 

to examine the productivity growth and efficiency across global banking system. Our application 



 2 

differentiates and contributes to the banking literature in several ways. Firstly, there are vast 

literature on bank productivity and efficiency, see for example, Allen and Rai (1996); Mester 

(1996); and Berger and Mester (2003); DeYoung and Hasan (1998); Feng and Serletis (2010); Fend 

and Zhang (2014) (for US banks); Berg et al. (1992); Alam (2001); Orea (2002); Cahnoto and 

Dermine (2003); Barros et al. (2009); Tortosa-Ausina et al. (2008); Delis et al. (2011) (for other 

countries). However, majority of these application are based on the approach of Data 

Envelopment Analysis (DEA) analysis. Such analysis provides the basis to estimate the Malmquist 

productivity index. When it comes to parametric measurement of productivity through stochastic 

frontier analysis, evidence is scarce (see Kumbhakar et al. (2001); Koutsomanoli et al. (2009); 

Assaf et al. (2011)). Thus, from the methodological and practical stand points, we provide in this 

paper, a novel nonparametric stochastic frontier approach to measure both bank efficiency and 

productivity, allowing for some banks to be fully efficient. Secondly, to the best of our knowledge, 

this is the first study that presents bank productivity and efficiency at a global level, aiming to 

examine cross-country variability, whilst controlling for the impact of various control variables, 

whether bank or country specific. Last but not least, we examine the effect of the credit crunch 

in 2008 and estimate what control variables affect the probability of having a fully efficient bank 

prior and ex-post the crisis. This is of the utmost importance in terms of bank performance, 

particularly over periods of high financial distress that could lead to a shift of the whole frontier. 

Overall, the results indicated that over time, in particular after the financial crisis, a shift 

of densities to lower efficiency scores and productivity growth takes primarily place in advanced 

and EU banks. The results also show that there is variability across other regions, and the 

probability of fully efficiency banks is mostly affected by bank specific variables that are related 

to bank’s risk-taking, whereas country specific variables, such as inflation, also have an effect. In 

addition, our results also indicate that the ‘bad management hypothesis’ (Berger and DeYoung, 

1997), ‘agency cost hypothesis’ (Jensen and Meckling (1979)) and ‘quite life hypothesis’ (Koetter 

and Noth (2013)) are in play with regards to bank efficiency, whereas risk-taking activities appear 

to dominate changes in efficiency and productivity growth in the eve of the credit crunch. 

The rest of the paper is structured as follows. Section 2 develops the model and the estimation 

procedure. Also, in this section, limited Monte Carlo simulations are performed to examine the 
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finite sample performance of the proposed estimators. Section 3 provides an empirical analysis 

of Global banking system. Concluding remarks are given in Section 4. The proofs of the Theorems 

are gathered in Appendix A, whilst extension of the proposed model to a fully localized (or fully 

nonparametric) is given in Appendix B. 

 

2. The Model and Estimation Procedure 

  
2.1 The Model 

 
Suppose that we have a random sample 

i i i
Y X Z i n{( , , ) : 1,..., }=   from the population 

( , , )X Y Z   where 
i

Y Î ¡  is a scalar random variable representing output of firm i , d

i
X Î ¡  is a 

vector of continuous regressors representing inputs of firm i , and r

i
Z Î ¡  is a vector of 

continuous covariates which may or may not have common elements with X . Let x  be a binary 

latent class variable, and assume that for 0, 1c = , x  has a conditional discrete distribution 

P Z z z( 0 | ) ( )x p= = =   and P Z z z( 1 | ) 1 ( )x p= = = - .  A nonparametric version of the 

zero-inefficiency stochastic frontier (NP-ZISF) model proposed by Kumbhakar et al. (2013) can be 

written as  

 

 
( ) with probability ( )

( ) with probability 1 ( )

i i i

i

i i i i

m X v Z
Y

m X v u Z

p

p

ìï +ï= í
ï + - -ïî

 , (1) 

 

where 
i

m X( )  is the frontier function, 
i i v

v X x N x2| (0, ( ))s= :  and 2| (0, ( ))
i i u

u X x N xs= :

. Conditioning on 
i

X x= , the functions 2( ), ( )
v

m x xs  and 
u

x2( )s  are unknown but assumed to be 

smooth. Note that model (1) is special case of a two-component mixture model as well as latent 

class stochastic frontier models (e.g., Greene, 2005) with the (technology) function m x( )  being 

restricted to be the same for both regimes, and the composed error is  
i i i

v u I u(1 { 0})- - =  

where I A{ }  is an indicator function such that I A( ) 1=  if A  holds, and zero otherwise.  Model 

(1) also contains several interesting features. First, when z( ) 1p = , model (1) reduces to a 
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nonparametric regression model. Second, when z( ) 0p = , it becomes a nonparametric stochastic 

frontier model (e.g., Fan, Li and Weesink, (1996) and Kumbhakar et al. (2007)). Third, when m x( )  

is linear in x  and 
u u

2 2(.)s s=  and 
v v

2 2(.)s s= , it becomes a semiparametric ZISF model of Tran 

and Tsionas (2016). Finally, when m x( )  is linear in x  and 2 2(.) , (.)
u u

p p s s= =  and 
v v

2 2(.)s s= , 

model (1) reduces to the parametric ZISF model of Kumbhakar et al. (2013). Consequently, model 

(1) can be viewed as a generalization of semi-parametric partially linear stochastic frontier 

regression models as well as the ZISF models. Thus, model (1) provides a general framework for 

ZISF models.  

 
2.2 Identification 

 
We now turn our attention to the model identification. Under the standard stochastic frontier 

framework regardless of parametric or nonparametric specification of the frontier, the parameter 

u

2s , the variance of 
i

u  is identified through the moment restrictions on the composed errors 

i i i
v ue = - , when 

i
u  is left unspecified. However, when the inefficiency term, 

i
u  is modelled in 

a flexible manner along with parametric specification the frontier, there are possible identification 

problems between the intercept and the inefficiency term. For more discussion on this 

identification issues, see for example, Griffin and Steel (2004). In the context of model (1), we 

have an additional parameter (.)p , which can be identified only if there are non-zero 

observations in each class. As Kumbhakar et al. (2013) and Rho and Schmidt (2015) point out, 

when 
u

2 0s ® , (.)p  is not identified since the two classes become indistinguishable. Conversely, 

when (.) 1p ®  for a given z ,  
u

2s  is not identified. In fact, when a data set contains little 

inefficiency, one might expect that 
u

2s   and (.)p   to be imprecisely estimated, since it is difficult 

to identify whether little inefficiency is due to (.)p  is close to 1 or 
u

2s  is close to zero. For the 

present discussion, we will assume that 
u

2 0s > , and 0 (.) 1p< <   so that all the parameters in 

model (1) are identified.  
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To complete the specification of the model, first given Z z= , we assume that, z( )p  takes 

a form of logistic function: 

z
z

z

'

'

exp( )
( )

1 exp( )

a
p

a
=

+
 ,       (2) 

 
so as to ensure that z0 ( ) 1p< < . Note that, in our setting, one could model z( )p  non-

parametrically which makes model (1) fully nonparametric. However, as noted by Martins-Filho 

and Yao (2015), the main drawback of this approach is that, since all the parameters are localized, 

the rate of convergence of their estimator becomes slow when the number of conditioning 

variables get large (which frequently encounter in practice) implying that the accuracy of the 

asymptotic approximation can be poor (i.e., the curse of dimensionality problem). Appendix B 

provides a brief discussion as how to estimate model (1) when all the model’s parameters are 

fully localized.  

Next, let f Y x( , ( ))q  denote the conditional density of Y  given X x= , Z z=  where 

' ' '( ) ( , ( ) )x xq a g=  and 2 '( ) ( ( ), ( ), ( ))x m x x xg s l= . Given the distributional assumptions of v  

and u , the conditional pdf of Y given X x=  and Z z=  is 

 

v v

v

z Y m x
f Y x

x x

Y m x x
z Y m x

x x x

( ) ( ))
( | ( ))

( ) ( )

2 ( ) ( )
(1 ( )) ( ( )) ,

( ) ( ) ( )

p
q f

s s

l
p f

s s s

æ ö æ ö-÷ ÷ç ç÷ ÷ç ç= +÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

é ùæ öæ ö- ÷ç÷ê úç ÷÷ ç- F - -ç ÷÷ê úçç ÷÷ç ÷çè ø è øê úë û

                    (3) 

 

where z( )p  is defined in (2), 
u v

x x x2 2 2( ) ( ) ( )s s s= + , 
u v

x x x( ) ( ) / ( )l s s= , (.)f  and (.)F  are the 

probability density (pdf) and cumulative distribution functions (CDF) of a standard normal 

variable, respectively. It follows that the conditional log-likelihood is then given by 

 

 
n

n ii
L x f Y x

1 1
( , ( )) log ( | , ( ))a g a g

=
= å . (4) 

 

2.3 Estimation: Backfitting Local Maximum Likelihood 
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From (4), we note that the vector x( )q  contains both finite dimensional as well as 

nonparametric functions which makes the direct maximization of (4) over x( )q  in an infinite-

dimensional function space intractable and generally suffers from overfitting problem. To make 

(4) tractable in practice, we will employ local linear regression for model (1), albeit one could 

consider higher orders of local polynomials. However, general order of local polynomial fitting 

requires additional notational complexity, but the approach is the same. In local linear fitting, we 

first approximate x( )g  by taking the first-order Taylor series expansion of x( )g  at a given set 

point x
0
. That is, for a given x

0
 and x  in the neighborhood of x

0
, 

 

 x x x x x
0 0 1 0 0

( ) ( ) ( )( )g g» + G - ,      (5) 

 

where x
0 0
( )g  is a (3 1)´  vector and x

1 0
( )G  is a d(3 )´  matrix of the first-order derivatives.  

Next, we define the kernel function: 

 

 
1 1

0 0
( , ) | | ( ( ))

H i i
K X x H K H X x

- -= -
,  (6) 

 
where H  is a bandwidth matrix which we assume to be positive definite and symmetric. In 

practice, in (6) we could use a multivariate product kernel, 

 

         
d

jj
K u k u

1
( ) ( )

=
= Õ , 

 
where k(.)  is a symmetric univariate probability density function. Then the corresponding 

conditional local log-likelihood function for data 
i i i

Y X Z i n{( , , ) : 1, , }= K  can be written as 

  

 
n

n i i H ii
L x x f Y x x X x K X x

2 0 0 1 0 0 0 1 0 0 01
( , ( ), ( )) {log ( ; , ( ) ( )( ))} ( )a g a g

=
G = + G - -å .  (7) 

 

Thus, the conditional local log-likelihood depends on x . Note that however, the global parameter 

a  does not depend on x , and by maximizing (7), a  will be estimated locally and hence it does 

not possess the usual parametric n -consistency. To preserve the n -consistency estimator of 
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a , we use a backfitting approach similar to Tran and Tsionas (2016), which motivated by Huang 

and Yao (2012). To do this, let x m x x x2

0 0 0 0
( ) { ( ), ( ), ( )}g s l= %% % %  and x

0
( )a%  be the maximizer of the 

local log-likelihood function (7), then the initial local linear estimators of x( )g  and x( )a  are given 

by 
0 0 0

( ) ( )x xg g=% %  and 
0

( )xa a=% % . Now given the initial estimator 
0

( )xg% , the parameter vector 

a  can be estimated globally by maximizing the following global log-likelihood function where we 

replace ( )xg  with its initial estimate 
0

( )xg%  in (4): 

 
n

n i i ii
L x f Y x

3 1
( , ( )) log ( | , ( )),a g a g

=
= å% %       (8) 

 
Let â  be the solution of maximizing (8). In section 3 below, we will show that, under certain 

regularity conditions â  will retain its n -consistency property. Given the estimates of â , x( )g  

can be estimated by maximizing the following conditional local log-likelihood function: 

 
n

n i i H ii
L x x f Y x x X x K X x

4 0 0 1 0 0 0 1 0 0 01
ˆ ˆ( , ( ), ( )) {log ( ; , ( ) ( )( ))} ( ),a g a g

=
G = + G - -å    (9) 

 

Let 
0 0
ˆ ( )xg  and x

1 0
ˆ ( )G  be the maximizer of (9), then the local linear estimator of x( )g  is given 

by 
0

ˆ ˆ( ) ( )x xg g= . Finally, â  and xˆ( )g  can be further be improved by iterating until convergence. 

As noted by Tran and Tsionas (2106), convergence is typically fast and requires only two or three 

iterations. The final estimates of â  and xˆ( )g  will be denoted as backfitting local maximum 

likelihood (BLML). The final estimate of ( )zp  can be obtained via 
'

'

ˆexp( )
ˆ( )

ˆ1 exp( )

z
z

z

a
p

a
=

+
. 

We summarize the above estimation procedure with the following computational 

algorithm: 

 

Step 1: For each , 1,...,
i

z i n= , in the sample, maximize the conditional local log-likelihood (7) 

to obtain the estimate of 
i

x( )g% . Note that if the sample size n  is large the maximisation could be 
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performed on a random subsample 
s

N , where 
s

N n< <  so as to reduce the computational 

burden.  

Step 2: From step 1, conditional on 
i

x( )g% , maximize the global log-likelihood function (8) to obtain 

â . 

Step 3: Conditional on â  from step 2, maximize the conditional local log-likelihood function (9) 

to obtain 
i

xˆ( )g . 

Step 4: Using 
i

xˆ( )g  repeat step 2 and then step 3 until the estimate of â  converges. 

 

Note that to implement the estimation algorithm described above, specifications of the 

kernel function K (.)  as well as bandwidth matrix H  are required. For the kernel function, we 

use a product of univariate kernel where Epanechnikov or Gaussian function is a popular choice 

for each kernel. As for the bandwidth selection, we follow Kumbhakar et al. (2007) and use a d -

dimensional vector of bandwidth '

1
( ,..., )

d
h h h=  such that 

b X
h h s n 1/ 5-=  where 

b
h  is a scalar, 

and 
1

'( ,..., )
d

X X X
s s s=  is the vector of empirical standard deviations of the d components of X . 

This choice of bandwidth vector is adjusted for different scales of the regressors and different 

sample sizes. Then data driven methods such as cross-validation (CV) can be used (see for 

example Li and Racine (2007)) to evaluate a grid of values for 
b

h . In our context, we use a 

likelihood version of CV, which is given by 

 

 
n

i i

b i i
i

CV h f Y x x z
n

( ) ( )

1

1
ˆ ˆ( ) log ( ; , ( ) | , )a g

=

= å ,  (10) 

 

where i( )â  and i

i
x( )ˆ ( )g  are the leave-one-out version of the backfitting local MLE described 

above. However, it is important to note that, in semiparametric modeling, undersmoothing 

conditions (see Theorem 1 below) are typically required in order to obtain n - consistency for 

the global parameters. The optimal bandwidth 
b X

h h s n 1/ 5ˆ ˆ -=  selected by CV will be in the order 

of n 1/ 5-  which does not satisfy the required undersmoothing conditions. However, a reasonable 
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adjusted bandwidth, which suggested by Li and Liang (2008) that satisfies the undersmoothing 

condition, can be used, and it is given by 2/ 15 1/ 3ˆ ( )h h n O n- -= ´ =% . We will apply this adjusted 

bandwidth in our simulations and empirical application below. Finally, note that our proposed 

approach above can be easily modified and extended to accommodate other models as well that 

allow for the distribution of  
i

u  to depend on a set of covariate either parametrically or 

nonparametrically without affecting the estimation algorithm. 

 

2.4 Estimation of Bank -Specific Inefficiency: 

Follow the discussion of Kumbhakar et al. (2013), we can similarly consider several 

approaches to estimate firm-specific inefficiency. The first approach is based on the popular 

estimator of Jondrow et al. (1982) where under our setting, the conditional density of  u  given 

x( )e  is 

 

2

* *

0 with probability ( )
( | ( )) ,

( ( ), ( )) with probability (1 ( ))

z
f u x

N x x z

p
e

m s p
+

ìïïï= í
ï -ïïî

 

 

Where N (.)
+

 denotes the truncated normal, 
u

x x x x2 2

*
( ) ( ) ( ) / ( )m e s s= -  and 

u v
x x x x2 2 2 2

*
( ) ( ) ( ) / ( )s s s s= . Thus, the conditional mean of  u  given x Y m x( ) ( )e = -  is: 

 

 
x x x x x x x

E u x z
x x x xx2

( ) ( ) ( ( ) ( ) / ( )) ( ) ( )
( | ( )) (1 ( ))

( ( ) ( ) / ( )) ( )1 ( )

s l f l e s l e
e p

l e s sl

é ù
ê ú= - -
ê úF -+ ë û

. (11) 

 
A point estimator of individual inefficiency score could be obtained by replacing the unknown 

parameters in (7) by their estimates discussed above, and x( )e  by x Y m xˆ ˆ( ) ( )e = - .  

Another approach is to construct the posterior estimates of inefficiency 
i

u%. To do this, let 
i

*p   

denotes the “posterior” estimate of the probability of being fully efficient where 

 

v i v

i

v i v i i

z x x x

z x x x z x x x x x

*
ˆˆ ˆ ˆ( ( ) / ( )) ( ( ) / ( ))

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( ) / ( ))( ( ( ) / ( )) (1 ( ))(2 / ( )) ( ( ) / ( )) ( ( ) / ( ))

p s f e s
p

p s f e s p s f e s e s
=

+ - F -
 (12) 
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Then the “posterior” estimate of inefficiency can be defined as 
i i i

u u* ˆ(1 )p= -%  where 
i

û  is the 

estimate of inefficiency based on (11).  

 

2.5 Asymptotic Theory  

In this section, we derive the sampling property of the proposed backfitting local MLE â   and 

x x x x' 2 'ˆ ˆˆ ˆ( ) ( ( ), ( ), ( ))g b s l= . In particular, we will show that the backfitting estimator â  is n -

consistent and follows an asymptotic normal distribution. In addition, we also provide the 

asymptotic bias and variance of the estimator xˆ( )g , and show that asymptotically, it has smaller 

variance compared to x( )g% . To this end, let us define the following additional notations. 

 Let ' '( ) ( , ( ))x zq a g=  and x z y f y x z( ( ), , ) log ( | ( ), )q q=l . Define 
x z y

q x z y
( ( ), , )

( ( ), , )
q

q
q

q

¶
=

¶

l
,  

2

'

( ( ), , )
( ( ), , )

x z y
q x z y

qq

q
q

q q

¶
=

¶ ¶

l
 and the terms , , ,q q q q

a g aa ag
 and q

gg
 can be defined similarly. In 

addition, let w x E q x z y x w( | ) [ ( ( ), , ) | ]
g

qY = = ,  

  
( ) ( )

( ) [ ( ( ), , ) | ]
( ) ( )

I x I x
I x E q x z y x

I x I x

a a a g

qq qq

a g gg

q
é ù
ê ú= - = ê ú
ê úë û

 

where 

 I x E q x z y x( ) [ ( ( ), , ) | ]
aa aa

q= -    

 I x E q x z y x( ) [ ( ( ), , ) | ]
gg gg

q= -    

 I x E q x z y x( ) [ ( ( ), , ) | ]
ag ag

q= -    

 

Finally, let ( ( ) )j

j d
u K u du Im = ò , 2( ( ) )j

j d
u K u du Ik = ò  and 

d
H h h h

1 2
| | ...= . We make the 

following assumptions: 
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Assumption 1: The sample 
i i i

X Y Z i n{( , , ), 1,..., }=  is independently and identically distributed 

from the joint density f x y z( , , ) , which has continuous first derivative and positive in is support. 

The support for X , denoted by c  , is a compact subset of d¡  and f X( ) 0>   for all X cÎ  . 

Assumption 2: The unknown functions x m x x x2 '( ) ( ( ), ( ), ( ))g s l=  are twice partially 

continuously differentiable in its argument.  

Assumption 3: The matrixes I x( )
qq

 and I
aa

 are positive definite. 

Assumption 4: The kernel density function K (.)  is symmetric, continuous and has bounded 

support. 

Assumption 5: For some 1 2 11 , | |r n Hzz - -< - ® ¥  and 2( )rE X < ¥ . 

 
All the above assumptions are relatively mild and have been used in the mixture models and local 

likelihood estimation literature. Given the above assumptions, we now ready to state our main 

results in the following theorems. 

 

Theorem 1: Under Assumptions 1-5 and in addition, n H 4| | 0®  and n H H2 1| | log(| | )- ® ¥

, we have 

Dn N A A1 1ˆ( ) (0, )a a - -- ¾ ¾® S  , 

where A E I x{ ( )}
aa

=  and 
x z y

Var I x d x y z
( , ( ), , )

( ) ( , , )
ag

a q

a

ì üï ï¶ï ïS = -í ý
ï ï¶ï ïî þ

l
 with ( , , )d x y z  is the first 

( )r r´  sub-matrix of I x q x z y1( ) ( ( ), , )
qq q

q-  . 

 

Theorem 2: Under Assumptions 1-5 and in addition, as n H, | | 0® ¥ ® , and n H| | ® ¥  we 

have 

1/ 2 2 1 1

01
ˆ( | |) { ( ) ( ) ( ) ( )} {0, ( ) }

d D

p ii
n H x x B x O h N f x I

gg
g g k - -

=
- - + ¾ ¾®å  ,  

where B x H I z x x2 1 ''

2

1
( ) | | ( ) ( | )

2 gg
m -= Y  . 
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The proofs of Theorems 1 and 2 are given in Appendix A. The proofs are straightforward extension 

of the proofs of Theorems 1 and 2 in Tran and Tsionas (2016) to the multivariate case, and 

therefore we only provide the key steps of the proofs. Note that, the result from Theorem 2 shows 

that, as for common semiparametric model, the estimate of a  has no effect on the first-order 

asymptotic since the rate of convergence of xˆ( )g  is slower than that of n . Consequently, it is 

fairly straightforward to see that xˆ( )g  is more efficient than the initial estimate of x( )g% . 

 

2.6 Monte-Carlo Simulations 

 

In this section, we conduct some simulations to study the finite sample performance of the 

proposed estimator. To this end, we consider the following data generating process (DGP) for the 

specification of 
i

m x( ) , 
u

x2( )s   and 
v

x2( )s : 

 

  m x x x x x x x x2 2

1 2 1 2 1 2 1 2
( , ) 1 0.5 0.5= + + + + + , 

  
v

x x x x2

1 2 1 2
( , ) 0.5exp(0.2 0.5 )s = + , 

  
u

x x x x2

1 2 1 2
( , ) 0.5exp(0.5 0.2 )s = + , 

z z z( ) exp(0.5 ) / [1 exp(0.5 )]p = +   

 

The covariates x x x
1 2

( , )=   and z  are generated in dependently from uniform distribution on 

[0,1].  The random error term v  is generated as 2(0, ( ))
v

N xs   and the one-sided error u  is 

generated as 2(0, ( )
u

N xs  . For all our simulations, we set (1, 2.5, 5}l = , and let the sample sizes 

vary over 1000n =  and 2000n = . For each experimental design, 1000 replications are 

performed.  

For our approach, we use the Gaussian kernel function and the bandwidth is chosen 

according to h h n 1/ 5ˆ -= ´%   where ĥ  is the optimal bandwidth based on CV approach discussed 

earlier in Section 2.3. To assess the performance of the estimators of the unknown functions 
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i
m x( ) , 

v
x2( )s , and 

u
x2( )s , we consider the mean average square errors (MASE) for each 

experimental design: 

  
1000

2

1 1

1 1 ˆ[ ( ) ( )]
1000

n

r j r j
r j

MASE x x
n

x x
= =

ì üï ïï ï= -í ý
ï ïï ïî þ

å å  , 

where  mˆ ˆ(.) (.)x = , 
v

2ˆ (.)s  or 
u

2ˆ (.)s , and 
ji

x j i N{ : 1,2; 1,..., }= =  are the set of evenly space 

grid points distributed on the support of x x x
1 2

( , )= .  

To assess the performance of the estimator of the unknown parameter in the probability function, 

we use the means squared errors (MSE): 

  
1000

2

1

1
ˆ( )

1000 r
r

MSE a a
=

= -å
 

 

We use a bootstrap procedure to estimate the standard errors, and construct pointwise 

confidence intervals for the unknown functions as well as the unknown parameters of the 

probability function. To do this, for a given 
i

x  and 
i

z , generate the bootstrap sample, 
i

Y *  from a 

given distribution of Y specified in (1) with 
v u

m 2 2{ (.), (.), (.), }s s a  are replaced by their estimates. 

By applying or propose estimation procedure for each of the bootstrap samples, we obtain the 

standard errors and confidence intervals.  

Finally, in addition to the assessment of the above properties, we also examine the average 

biases, standard deviations and MSEs of technical inefficiency and returns to scale measures. For 

comparison purposes, we also include these results for the parametric ZISF model of Kumbhakar 

et al. (2013) in which the frontier is estimated by: 

m x x x x
1 2 0 1 1 2 2

( , ) b b b= + + . 

Table 1 displays the simulation results for the estimated MASE of 
j

xˆ( )x  and the estimated 

MSE of â  for various values of l . From Table 1, first we observe that as the sample size increases, 

both the estimated MSE for parameter estimates â , and MASE reduces. Second, we also observe 

that as the sample size doubles, the estimated MSE of â  reduces to about half of the original 

values; this is consistent with the fact that the back-fitting local ML estimator of â  is n -

consistent as predicted by Theorem 1.  
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Table 1: MASE of 
v u

m x x x2 2ˆ ˆ ˆ( ( ), ( ), ( ))s s  and MSE of â   

 1000
1

n
l

=
=

  
2000
1

n
l

=
=  

1000
2.5

n
l

=
=  

2000
2.5

n
l

=
=  

1000
5

n
l

=
=  

2000
5

n
l

=
=

 

            MASE MASE MASE MASE MASE MASE 

m(.)   

 

0.150 0.129 0.135 0.118 0.085 0.071 

v

2(.)s   

  

0.140 0.114 0.144 0.100 0.093 0.074 

u

2(.)s   0.129 0.097 0.155 0.104 0.044 0.035 

          MSE MSE MSE MSE MSE MSE 

a   0.009 0.008 0.008 0.007 0.005 0.003 

Note: Authors’ estimations. Mean square error (MSE), mean average square errors (MASE). 

 
 

We next examine the accuracy of the standard error estimation via a bootstrap approach. 

Table 2 summarizes the performance of the bootstrap approach for standard errors of the 

estimated functions 
v u

m x x x2 2ˆ ˆ ˆ( ( ), ( ), ( ))s s  evaluated at x {0.1, 0.2,..., 0.9}= , for two different 

samples and two different bandwidths which correspond to under-smoothing h h n 2/ 15ˆ -= ´%  and 

appropriate amount ĥ . In the table, the standard deviation of 1000 estimates are denoted by 

STD which can be viewed as the true standard errors, whilst the average bootstrap standard errors 

are denoted SE along with their standard deviations are given the parentheses. The SEs are 

calculated as the average of 1000 estimated standard errors. The coverage probabilities for all the 

parameters are given the last column and they are obtained based on the estimated standard 

errors. The results from the table 3 show that the suggested bootstrap procedure approximates 

the true standard deviations quite well and the coverage probabilities are close to the nominal 

levels for almost all cases. 

 

Table 2: Bootstrap Standard Errors, Standard Deviations and Coverage Probabilities. 

 
Parameter STD SE(STD) 95% Coverage 

1000, 0.08n h= =   
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a   0.024 0.026(0.005) 94.8 

1000, 0.16n h= =  

a   0.029 0.028(0.006) 93.9 

2000, 0.07n h= =  

a   0.016 0.017(0.003) 94.9 

2000, 0.14n h= =  

a   0.018 0.019(0.004) 94.5 

 
Note: Estimations based on 1000 estimated standard errors using bootstrap. STD = standard deviations of 
estimated parameters; SE = estimated standard errors using bootstrap procedure. 
 

 

Note that the bootstrap procedure also allows us to compute the point-wise coverage 

probabilities for the probability functions. Table 3 provides the 95% coverage probabilities of 

2(.), (.)
v

m s  and 
2(.)
u

s  for a set of evenly space grid points distributed on the support of x . In 

the table, the row labeled with 2

ˆ ˆ( ) ( )
( ), ( )

v
m x x

a a
s  and 2

ˆ( )
( )

u
x

a
s  gives the results using the proposed 

approach, whilst 2

( ) ( )
( ), ( )

v
m x x

a a
s  and 2

( )
( )

u
x

a
s  gives the results assuming a  were known. For 

most cases, the coverage probabilities are close to the nominal level. However, the coverage 

levels are slightly low for points 0.1, 0.2  and 0.3  when right amount smoothing is used. This is 

consistent with the expectation that under-smoothing is required. 
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Table 3: The Pointwise Coverage Probabilities for 
v u

m x x x2 2{ ( ), ( ), ( )}s s    

x   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1000, 0.16n h= =  

ˆ( )
( )m x

a
  0.90 0.92 0.92 0.94 0.95 0.96 0.95 0.94 0.94 

( )
( )m x

a
  0.92 0.93 0.93 0.95 0.95 0.96 0.95 0.95 0.94 

2

ˆ( )
( )

v
x

a
s   0.89 0.89 0.91 0.92 0.94 0.95 0.95 0.95 0.93 

2

( )
( )

v
x

a
s   0.91 0.92 0.92 0.95 0.95 0.95 0.97 0.95 0.96 

2

ˆ( )
( )

u
x

a
s   0.84 0.88 0.90 0.91 0.94 0.95 0.95 0.95 0.95 

2

( )
( )

u
x

a
s   0.89 0.91 0.93 0.95 0.95 0.95 0.95 0.94 0.92 

n h2000, 0.08= =   

ˆ( )
( )m x

a
  0.91 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.95 

( )
( )m x

a
  0.93 0.94 0.95 0.95 0.95 0.96 0.96 0.95 0.95 

2

ˆ( )
( )

v
x

a
s   0.90 0.92 0.92 0.92 0.93 0.94 0.95 0.95 0.94 

2

( )
( )

v
x

a
s   0.92 0.94 0.93 0.95 0.95 0.95 0.95 0.95 0.95 

2

ˆ( )
( )

u
x

a
s   0.93 0.93 0.93 0.94 0.94 0.93 0.93 0.94 0.94 

2

( )
( )

u
x

a
s   0.93 0.94 0.95 0.95 0.95 0.95 0.96 0.95 0.95 

Note: 
ˆ( )

( )m x
a

: when â  is estimated and 
( )

( )m x
a

: when a  is assumed to be known. 
2

(.)
( )

v
xs  and 

2

(.)
( )

u
xs  are 

defined similarly. 

 

3. Global Banking Analysis 
 
3.1. The data set 

To empirically test our proposed methodology, we opt for a global bank sample, so as to 

provide comprehensive bank efficiency measures in presence of variability across economies. 

After removing errors and inconsistencies, we end up with an unbalanced dataset that includes 

17399 observations for 31 advanced countries, 7130 observations for 35 emerging countries, and 

2471 observations for 40 developing countries. The classification of country-groups is based on 

IMF World Economic Outlook April 2015. All the bank-specific financial variables are obtained 



 17 

from Bankscope database, and represent values in thousand euros.1 Data for country-level 

variables are collected from the World Bank Indicators database. This sample represents the 

majority of financial institutions at a global scale.  

Moreover, we opt for a bank cost function as: 

 

( , , ) with probablity ( )

( , , ) with probability 1 ( )

it it it it it

it

it it it it it it

f P Y N v Z
T C

f P Y N v u Z

p

p

ìï +ï= í
ï + + -ïî

,   (13) 

 

where 
it

TC  the total cost for firm (bank) i  at year t , 
it

P  is a vector of input prices, 
it

Y  is a vector 

of outputs of the bank, 
it

N  a vector of fixed netputs while 
it

Z  is a vector of country-specific 

environmental variables, 
it

v   represents random errors that are assumed to be i.i.d. and  have 

v
N 2(0, )s  while 

it
u  represents non-negative inefficiency effects that are assumed to be  

independently but not identically distributed.                                                               

Inputs, input prices and outputs are chosen using the intermediation approach and follow 

Koutsomanoli-Filippaki and Mamatzakis (2009) and Tanna et al. (2011).  Based on intermediation 

banks transform deposits to loans and securities or other earning assets. To this end, the cost 

function includes two outputs: net loans and other earning assets. The inputs are financial capital 

(deposits and short-term funding), labour (personnel expenses) and physical capital (fixed assets). 

The price of financial capital is the interest expenses on deposits divided by total interest bearing 

borrowed funds, the price of labour is the ratio of personnel expenses over total assets, while the 

price of physical capital is the ratio of overhead expenses (excluding personnel expenses) to fixed 

assets. Total bank cost is then calculated as the sum of overheads, such as personnel and 

administrative expenses, interest, fee and commission expenses. Furthermore, we include equity 

as a quasi-fixed net put (Berger and Mester, 2003, Koutsomanoli-Filippaki and Mamatzakis, 2009). 

This is so because we would like to capture the impact from an alternative source of funding on 

the bank cost structure.  If such impacts are ignored then this might cause bias in measuring 

efficiency, in particular for banks with high equity capital. More equity capital would take into 

 
1 We exclude banks for which: (i) we had less than three observations over time; (ii) we had no information on the 

country-level control variables; (iii) we had no information of nonperforming loans.  
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account that bank management leans towards risk aversion. In addition, we include 

nonperforming loans (NPL) as a negative quasi-fixed input (Hughes and Mester, 2010) to consider 

risk-taking activities. Note that we also include bank fixed assets to account for physical capital 

(Berger and Mester 2003). 

The summary statistics of these variables are provided in Table 4 for each country-group 

according to the classification of IMF World Economic Outlook. Interestingly, we notice that the 

average amount of nonperforming loans in advanced economies’ banking industries is almost 

twice that in emerging economies and eight times that in developing economies.  

 
Table 4. Descriptive statistics of bank variables. 

  

Advanced 
economies 

Emerging 
economies 

Developing 
economies 

Variables Mean Mean Mean 

Bank outputs and input prices 

Total assets 17951329 9659393 1255046 
Total costs 644465 441730 82203 
Net loans 9036183 5152601 626854 
Other earning assets 7354650 3796769 449156 
Price of fund 2.4624 8.9291 5.7072 
Price of physical capital 201.4653 415.9367 140.6929 
Price of labour 1.1191 2.5210 2.1607 
Nonperforming loans 336033 179375 48030 
Equity 1032482 754589 133758 

Banks specific and control variables 

Z-score 0.6965 0.8081 0.8443 
Capital ratio 8.3162 14.7165 13.0949 
Fees  0.4040 1.1228 1.2440 
Liquidity ratio 15.1238 26.3849 23.4960 
Securities 30.0283 40.3673 32.3383 
GDP per capita 10.5394 8.3914 7.6975 
Inflation 1.2208 10.4568 7.6531 
Population density 242.0769 93.6112 226.5159 
Market size 28.5054 25.5037 19.4081 

Notes: The Table reports the average values of variables used for estimation in each group of economies. 
Total assets; total costs = total interest expenses + overheads; net loans = gross loans – nonperforming loans; 
other earning assets; nonperforming loans; equity are reported in thousand USD. Price of fund = total 
interest expenses/total customer deposits; price of physical capital = other operating expenses/fixed assets; 
price of labour = personnel expenses/total assets. Z-score= (1+ROE)/ (Standard Deviation of ROE); Size= 
natural logarithm of total assets; Capital ratio = equity over total assets; Liquidity ratio= liquid assets over 
total assets; Investment Banking Fees= net fees, commission and trading income over total assets; 
Securities/TA= total securities over total asset.  As country variables we employ: GDP per capita; Inflation; 



 19 

Population density is the number of people per square kilometer; Market size= value of total shares traded 
on the stock market exchange. The grouping of advanced, emerging and developing economies follow the 
IMF, World Economic Outlook, 2014.  

 

In Table 4 and the analysis thereafter we employ some bank specific control variables. Given 

that during the period of our sample there have been episodes of high risk, we take into bank-

specific risk in the estimation of the efficiency scores. To this end, we opt for the z-score as a bank 

specific measure insolvency risk. This is defined as 
ROE

z score ROE(1 ) / s- = + , where ROE is 

the return on equity and 
ROE

s  is the estimate of standard deviation of ROE (as in Koutsomanoli-

Filippaki and Mamatzakis, 2009; Delis and Staikouras, 2011, Staikouras et al., 2008). In addition, 

to take into account of liquidity risk we employ the ratio of liquid assets over total assets.2 Lastly, 

we also use the ratio of equity over total assets to take into account capital risk (Koutsomanoli-

Filippaki and Mamatzakis, 2009). High capital ratio would imply low capital risk, i.e. equity is a 

buffer against financial instability. Table 4 includes some descriptive statistics of the three 

measures of bank risk employed in our analysis. Perhaps not surprisingly, given the financial crisis 

in 2008, banks in the advanced economies, as z-score at 0.69, face higher risk compared to 

emerging and developing, 0.8081 and 0.8443 respectively. Descriptive statistics also show that 

banks in emerging and developing countries are more capitalized and have more liquidity than 

banks in advanced economies. In addition, we take macroeconomic environment account, opting 

for GDP per capita and inflation as proxies for the dynamism and the macroeconomic stability of 

each country. We also include population density and market size to capture size effects of the 

banking industry.  

 

3.2 Bank efficiency in the presence of fully efficient banks 

Table 5 reports bank efficiency for each country-group. There is some variability in efficiency 

across the world, notably in Middle East and Sub-Sahara Africa. Surprisingly, there is also 

variability in bank performance as measured by bank efficiency among economies in EU. This is 

so despite the mandatory convergence process, including in financial markets that economies 

 
2 Liquid assets are the sum of trading assets, loans and advances with maturity less than three months (Altunbas and 

Marques (2008)). Liquidity ratio reports bank’s liquid assets. If the ratio takes low values would imply high liquidity 

risk. 
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have to go through prior to their accession to the EU. Clearly when it comes to bank efficiency we 

do not observe convergence in EU. However, regarding the economies that form the euro zone, 

there variability in efficiency is less pronounced, whilst for some economies, i.e. Greece, Slovakia, 

there is low level of bank efficiency. Economies in Latin America and the Caribbean show a rather 

low level of efficiency at 0.74, as well as economies in Sub-Sahara Africa at 0.72. Economies in 

Asia/Pacific and Common Wealth and Independent States report efficiency scores of around 0.78, 

whereas for the former countries there is some variability. 
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Table 5: Global bank efficiency in the presence of fully efficiency banks. 
Advanced Economies outside Europe 

Australia 0.80 Japan 0.87 Singapore 0.82 
Canada 0.84 Korea 0.77 Switzerland 0.92 
Hong Kong 0.83 New Zealand 0.76 Taiwan 0.87 
Iceland 0.77 Norway 0.82 USA 0.85 
Israel 0.85 San Marino 0.76   

Average    0.82 

EU      

Austria 0.91 Germany 0.84 Poland 0.75 
Belgium 0.81 Greece 0.70 Portugal 0.79 
Bulgaria 0.78 Hungary 0.81 Romania 0.72 
Cyprus 0.80 Ireland 0.83 Slovakia 0.70 
Czech 0.80 Italy 0.88 Slovenia 0.74 
Denmark 0.88 Lithuania 0.73 Latvia 0.76 
Estonia 0.75 Luxembourg 0.70 Sweden 0.83 
Finland 0.77 Malta 0.75 Spain 0.82 
France 0.82 Netherlands 0.81 UK 0.87 

Average  0.79 

Europe, except EU      

Albania 0.78 Croatia 0.83 Serbia 0.77 
Andorra 0.80 FYROM 0.79 Turkey 0.82 
Bosnia and Herzegovina 0.77     
Average 0.79     

Latin America and the Caribbean 

Argentina 0.78 Colombia 0.79 Jamaica 0.77 
Bahamas 0.75 Costa Rica 0.75 Panama 0.70 
Bermuda 0.80 Dominican Rep. 0.72 Peru 0.74 
Bolivia 0.71 Ecuador 0.72 Trinidad & Tobago 0.71 
Brazil 0.75 El Salvador 0.76 Uruguay 0.74 
Chile 0.81 Honduras 0.74 Venezuela 0.71 

Average 0.74 

Asia/Pacific     

Bangladesh 0.72 Malaysia 0.84 Taiwan 0.84 
Cambodia 0.70 Nepal 0.73 Thailand 0.80 
China 0.75 Pakistan 0.80 Vietnam 0.76 
India 0.83 Philippines 0.83   
Indonesia 0.84 Sri Lanka 0.80   

Average 0.78 

Middle East, North Africa 

Bahrain 0.75 Kuwait 0.80 Qatar 0.73 
Egypt 0.65 Lebanon 0.81 Saudi Arabia 0.73 
Jordan 0.77 Oman 0.76 UAE  0.78 

Average 0.75 

Commonwealth of Independent States 

Armenia 0.75 Georgia 0.77 Russian  0.81 
Azerbaijan 0.79 Kazakhstan 0.83 Ukraine 0.84 
Belarus 0.82 Moldova Rep. 0.73   

Average 0.79 

Sub-Saharan Africa     
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Angola 0.75 Mauritius 0.77 South Africa 0.85 
Benin 0.74 Mozambique 0.77 Swaziland 0.72 
Botswana 0.70 Namibia 0.70 Tanzania  0.68 
Ethiopia 0.71 Nigeria 0.79 Uganda 0.75 
Ghana 0.65 Senegal 0.71 Zambia 0.64 
Kenya 0.75 Senegal 0.77 Zambia 0.85 

Average 0.72 
Note: The Table reports average bank efficiency for each country according to geographic region. The classification is based on 
IMF World Economic Outlook April 2014.  

  
3.3 Densities of bank efficiency.  

One of the advantages of the proposed methodology is that it allows deriving information for 

the density function of bank efficiency whilst taking into account that there is the possibility of 

having a fully efficient bank presence. In the previous section, we report that there is considerable 

variation in efficiency scores across the world, but also within selected group of countries, most 

notably the EU. One could consider many underlying reasons for such variability; given the 

extended time period of our sample we shall highlight the importance of the financial crisis in 

2008. It is undoubtedly the case that bank efficiency changes over time due to the impact of the 

financial crisis. We capture this in the present analysis, by presenting densities of bank efficiency 

over time that is prior to and ex post the crisis. Figure 1 presents density of bank efficiency before 

and after the crisis for all the country groups we identify in the previous section. To facilitate the 

presentation, we present densities of bank efficiency for two wider groups at a time; first group 

presents banks in Advanced, EU, Europe and Latina America; whilst the second groups includes 

banks in Asia Pacific, Middle East and North Africa, Common Wealth and Independent States, and 

last Sub-Sahara Africa.  

Figure 1 shows that efficiency scores have some presence to one (see Advanced and EU 

countries after the crisis), indicating that indeed there are some fully efficient banks in the sample. 

A standard stochastic frontier analysis would miss this point. Before the crisis, for the group 

countries in Advanced and EU efficiency scores take values from 0.7 to 1 with an average to 0.8, 

though there is evidence of a bipolar density for both groups with a long right. These results are 

of interest as it proves that the common assumption, in the literature of bank efficiency, of half 

normal distribution in efficiency is very restrictive, as it does not represent the true density. They 

also show that despite average efficiency is around 0.8, there are fully efficient banks. Alas, this 

picture dramatically changes after the crisis where the values spread from 0.55 to 1 and average 
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efficiency is around 0.65. Also, it is worth noting that in EU the density after the crisis becomes 

more platycurtic in comparison to before the crisis, whereas for the advance economies the 

density of efficiency displays higher kurtosis. Banks in Europe (except EU countries) and Latin 

America exhibit high kurtosis in both periods, but there is a shift in densities to the left towards 

lower efficiency scores and in addition banks in Latin America overpass the efficiency scores of 

banks located in Europe. Interestingly, Figure 1 (see second line of diagrams) show that the crisis 

has not harm bank efficiency in countries in Asia Pacific, Middle East and North Africa and last 

Sub-Sahara Africa. In fact, densities for those countries shift to higher efficiency scores. For the 

banks Common Wealth and Independent States though there is slight deterioration in efficiency 

after the crisis.  
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Figure 1. Technical efficiency distributions; prior and ex post the credit crisis. 

 

Note: To facilitate the presentation we present densities for two sets of countries; namely Advanced, EU, Europe 
(except EU) and Latin America (Lat. America); whilst the second set includes banks in Asia Pacific, Middle East and 
North Africa, (MENA), Common Wealth and Independent States (CIS), and last Sub-Sahara Africa. 
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To enrich the information regarding the density of efficiency when fully efficient banks are 

present we present next the density of changes in efficiency that captures the underlying 

dynamics around the financial crisis. As expected there is some variability of changes in efficiency 

before and after the crisis. During the second period, bank efficiency changes for Advanced and 

EU countries shows higher kurtosis towards zero.  One of the main concerns that have been raised 

since the credit crunch is the low degree of alertness of financial systems prior to the crisis (Allen 

and Carletti (2010), Brunnermeier (2009), Covitz et al. (2013)). Following our modeling, our 

results show that signs of the crisis could have been identified well in advance and thereby 

allowing a better response to. In terms of the second grouping of countries, changes in bank 

efficiency in banks in Middle East and North Africa appear to move towards negative values after 

the crisis. To some extend similar pattern is observed for banks in Asia and Pacific.  

These results clearly emphasize that there is striking heterogeneity across most of regions. This 

disparity in changes of efficiency testifies the complexity of financial world, so much so after the 

financial crisis.  
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Figure 2. Technical efficiency change distributions; prior and ex post the credit crisis. 

 

Note: To facilitate the presentation we present densities for two sets of countries; namely Advanced, EU, Europe 
(except EU) and Latin America (Lat. America); whilst the second set includes banks in Asia Pacific, Middle East and 
North Africa, (MENA), Common Wealth and Independent States (CIS), and last Sub-Sahara Africa. 
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3.4 Densities of productivity growth.  

The flexibility of our modeling allows deriving the density, in addition to efficiency change 

presented in the previous, of efficiency change. This in turn, would allow to estimate the density 

of productivity growth, which is technical change plus efficiency change. This is the first time that 

bank productivity growth is estimated at global level, having accommodated of presence of fully 

efficient bank.3 Figure 3 presents the density of productivity growth for the regions we identify as 

above. The Figure 3 clearly shows that the financial crisis has been very detrimental for bank 

productivity growth across the world, but the sub-Sahara Africa, as it noticeably shifts to the left 

hand side towards lower productivity growth level. This shift is as dramatic as in the case of 

efficiency, but even more so. Moreover, prior to the crisis productivity growth of banks in 

Advanced, EU, Europe and Latin America countries exhibit lower kurtosis compared to after the 

financial crisis when it appears to converge to lower level of productivity growth whilst densities 

are leptokurtic. The crisis clearly has changed the steady state of banks productivity growth to 

lower levels than before the crisis, though variability is also lower.  Similar pattern, but less 

dramatic, is observed for bank productivity growth in countries in Asia Pacific, Middle East and 

North Africa and Common Wealth and Independent States. Banks in Sub-Sahara Africa register 

an improvement in their productivity growth towards zero after the crisis, compared to negative 

values prior to the crisis.  

  

 

3 Some bank productivity studies exist, but focus mostly on a single country, e.g. (Koetter and Noth, 2013; Kumbhakar 

and Sarkar, 2003; Martín-Oliver et al., 2013; Barros et al. 2009; and Assaf et al. 2011) or for a certain group of 

countries, i.e. in EU (Koutsomanoli and Mamatzakis, 2009; Delis et al., 2011; Fiordelisi and Molyneux, 2010). 
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Figure 3. Productivity growth distributions; prior and ex post the credit crisis. 

 

Note: To facilitate the presentation we present densities for two sets of countries; namely Advanced, EU, Europe 
(except EU) and Latin America (Lat. America); whilst the second set includes banks in Asia Pacific, Middle East and 
North Africa, (MENA), Common Wealth and Independent States (CIS), and last Sub-Sahara Africa. 
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3.5 Probability functions of global bank efficiency.  

Our modeling allows estimating probability function of full efficient bank. Figure 4 presents 

the density functions of such probability functions at 100 points between 0 and 1. Once more 

results are acutely revealing of the impact of financial crisis on bank efficiency worldwide, and in 

particular in Advanced and EU countries. Prior to the crisis banks in advanced economies exhibit 

the higher probability of full efficiency around 20%, followed by banks in EU, Europe (excluding 

EU countries) and last by Latin America. Alas, since the crisis the probability of full efficiency 

collapses to zero for all banks in this group of countries. This is also true for banks in Common 

Wealth and Independent States (CIS), and Sub-Sahara Africa. For banks located in Asia Pacific and 

Middle East and North Africa countries the probability of fully efficient banks appears to hold but 

at very low levels and close to zero. Overall, these density functions demonstrate dramatically 

that the financial crisis has substantially reduced the probability of a bank, worldwide, to achieve 

full efficiency. It is the first time that such result comes to light as most studies focus on the level 

of bank efficiency post the crisis. Herein we argue that focusing on the level of bank efficiency is 

rather myopic as the main aftermath of the financial crisis has fundamentally shifted bank 

performance away from fully efficiency frontier. We observe a shift of the frontier to lower levels 

than a movement along the frontier as it is frequently quoted. 

 
 
 
 
 
 
 
 
Figure 4. Probability functions of full efficiency; prior and ex post the credit crisis. 
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Note: To facilitate the presentation we present densities for two sets of countries; namely Advanced, EU, Europe 
(except EU) and Latin America (Lat. America); whilst the second set includes banks in Asia Pacific, Middle East and 
North Africa, (MENA), Common Wealth and Independent States (CIS), and last Sub-Sahara Africa. 

 

3.6 The impact of control variables on global bank efficiency.  
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Having derived bank efficiency, taking into account full efficient banks, at country and global 

level would be of interest to examine their underlying association with key bank and country 

specific covariates. Table 5 presents marginal effect on bank efficiency for some key bank and 

country specific variables.  As expected there exists a negative relationship between bank 

efficiency and Z-score that is in line with “bad management hypothesis” (Berger and DeYoung 

1997, Koutsomanoli and Mamatzakis 2009). Berger and DeYoung, (1997) and  Koutsomanoli and 

Mamatzakis, (2009) argue that the higher z-score, lower default risk, comes at a cost as it would 

result to divert disproportionally more resources from day-to-day activities to screening and 

monitoring operations. Our results show that this would eventually lead to lower efficiency. 

Liquidity ratio also negatively affects bank efficiency similarly to the impact of impact to that of 

Z-score. This has been particularly true during credit crunch in 2008 given conditions of low 

liquidity and depletion of capital that saw banks with lower liquidity to outperformed banks 

higher liquidity. Along these lines it is hardly surprising that capital ratio asserts a statistically 

significant negative impact on bank efficiency. This results bring into light a somewhat forgotten 

hypothesis the “agency cost hypothesis” (Jensen and Meckling (1979)), arguing that an increase 

in equity over total assets would raise agency costs for shareholders. Under certain conditions 

bank managers might increase the risk-taking activities as banks increase their debt through 

capital injections (Grossman and Hart (1982); Williams (1987)). Such practices would harm bank 

efficiency.  

The fee ratio (see Table 5) negatively affects banks efficiency across all countries in the global 

sample. It appears that raising non-interest income would result to lower efficiency as the former 

is more volatile, and as such more risky, than interest income (Demirguc-Kunt and Huizinga 

(2010)). Diversification related to benefits from bank income generating appears not to be 

present in contrast to Merciera et al. (2007). On the other hand, the impact of securities over 

total assets ratio on efficiency is positive for all banks in the sample.  

 

Table 5: Marginal effects of efficiency. 
 Adv. EU EUR LAT.AM. As-P. MENA CIS s.-SA 

Z-score 
-0.27** 
(0.012) 

-0.23** 
(0.014) 

-0.35** 
(0.010) 

-0.55** 
(0.022) 

-0.29*** 
(0.017) 

-0.71** 
(0.032) 

-0.87** 
(0.044) 

-0.92** 
(0.017) 

Capital 
ratio 

-0.224** 
(0.023) 

-0.201** 
(0.017) 

-0.167** 
(0.022) 

-0.445** 
(0.013) 

-0.442** 
(0.032) 

-0.680** 
(0.012) 

-0.717** 
(0.022) 

-0.886** 
(0.002) 
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Fees  
-0.054** 
(0.017) 

-0.061** 
(0.012) 

-0.044 
(0.023) 

-0.078** 
(0.001) 

-0.068** 
(0.027) 

-0.077** 
(0.016) 

-0.44** 
(0.003) 

-0.76** 
(0.005) 

Liquidity 
ratio 

-0.185** 
(0.015) 

-0.173** 
(0.017) 

-0.221** 
(0.011) 

-0.477** 
(0.022) 

-0.551** 
(0.021) 

-0.354** 
(0.004) 

-0.653** 
(0.002) 

-0.880** 
(0.001) 

Securities 
-0.242** 
(0.026) 

-0.250** 
(0.025) 

-0.273** 
(0.014) 

-0.551** 
(0.015) 

-0.396** 
(0.016) 

-0.448** 
(0.003) 

-0.715** 
(0.003) 

-0.897** 
(0.002) 

GDP per 
capita 

-0.017 
(0.022) 

-0.016 
(0.013) 

-0.022* 
(0.010) 

-0.033* 
(0.015) 

-0.044** 
(0.005) 

-0.022 
(0.017) 

-0.553** 
(0.005) 

-0.847** 
(0.012) 

Inflation 
0.012** 
(0.006) 

0.009** 
(0.002) 

0.013** 
(0.004) 

0.171** 
(0.007) 

0.025** 
(0.005) 

0.018** 
(0.006) 

0.165** 
(0.004) 

0.014 
(0.028) 

Population 
density 

-0.024** 
(0.002) 

-0.016** 
(0.005) 

-0.020** 
(0.007) 

-0.018** 
(0.003) 

-0.0031 
(0.0044) 

0.0044 
(0.0151) 

-0.091** 
(0.001) 

-0.465** 
(0.004) 

Market size 
-0.017** 
(0.003) 

-0.022** 
(0.004) 

-0.032** 
(0.001) 

-0.067** 
(0.014) 

-0.044** 
(0.012) 

-0.065** 
(0.019) 

-0.155** 
(0.012) 

-0.853** 
(0.032) 

Trend  
-0.0012 
(0.0014) 

-0.0020 
(0.0013) 

-0.0017 
(0.0022) 

0.0022 
(0.0034) 

-0.005 
(0.003) 

0.004 
(0.015) 

-0.017** 
(0.002) 

-0.0012 
(0.0156) 

Notes: The table provides the marginal effects of efficiency with respect to the bank and country specific control 
variables. Standard errors are reported in parentheses. Z-score= (1+ROE)/(Standard Deviation of ROE); Capital ratio 
= equity over total assets; Liquidity ratio= liquid assets over total assets; Fees= net fees, commission and trading 
income over total assets; Securities= total securities over total assets.  Country specific variables: GDP per capita; 
Inflation; Population density is the number of people per square klm; Market size= value of total shares traded on 
the stock market exchange. Trend captures time. Adv refers to Advanced countries, EU, EUR to Europe (except EU), 
LATAM to Latin America, As-P to Asia Pacific, MENA to Middle East and North Africa, CIS to Common Wealth and 
Independent States, and last s.-SA to Sub-Sahara Africa. ** refers to significance at 1%, * refers to significance to 5%. 

With respect to the country-level control variables, we find that GDP per capita assert a 

positive and significant impact on bank efficiency in all country-groups, insinuating that increases 

of GDP per capita could improve efficiency as operating expenses improve (Dietsch and Lozano-

Vivas (2000)). Inflation, on the other hand, has a negative impact on bank efficiency as it would 

increase uncertainty related to i.e. salaries and wages and thus increase operating costs and as 

such reduce bank efficiency Molyneux and Thornton (1992). Population density and market size 

increases bank efficiency as both would result to cost savings in operations (Dietsch et al. (2000)). 

Lastly it is striking that the trend has negative impact on bank efficiency, but it is hardly significant 

across all regions. 

Table 6 presents average elastiticities of probability of full efficiency, ( )zp , with respect to 

the bank and country specific control variables. Results are broadly in line with results in Table 5 

in the extent that bank specific but also country specific variables are reported to be of 

importance for the probability of full efficiency. Note that all variables, apart from inflation and 

trend, increase the probability of full efficiency with economic and statistical significance to be 

higher for the bank specific variables, in particular those variables that are related to risk such as 
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z-score and liquidity ratio. Improving the bank specific risk profile appears to increase the 

probability of fully bank efficiency. Alas, country specific uncertainty, such as inflation, would 

reduce the probability of fully efficiency. 
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Table 6: Marginal effects of probability of full efficiency, ( )zp
.
 

 Adv. EU EUR Lat.Am. As-Pac. MENA CIS s.-SA 

Z-score 
0.154** 
(0.065) 

0.132** 
(0.003) 

0.043* 
(0.021) 

0.055** 
(0.012) 

0.043** 
(0.006) 

0.252** 
(0.012) 

0.414** 
(0.021) 

0.551** 
(0.002) 

Capital 
ratio 

0.085 
(0.122) 

0.043** 
(0.003) 

0.035** 
(0.005) 

0.043** 
(0.017) 

0.022** 
(0.005) 

0.173 
(0.125) 

0.276** 
(0.015) 

0.445** 
(0.003) 

Fees  
0.044 
(0.057) 

0.017** 
(0.003) 

0.022 
(0.016) 

0.032** 
(0.007) 

0.018** 
(0.003) 

0.022 
(0.036) 

0.155** 
(0.005) 

0.327** 
(0.005) 

Liquidity 
ratio 

0.032* 
(0.015) 

0.022** 
(0.001) 

0.016** 
(0.002) 

0.017** 
(0.002) 

0.015** 
(0.005) 

0.027 
(0.019) 

0.128** 
(0.021) 

0.225** 
(0.004) 

Securities 
0.025 
(0.017) 

0.017 
(0.015) 

0.025** 
(0.004) 

0.014** 
(0.004) 

0.010** 
(0.004) 

0.022 
(0.032) 

0.120** 
(0.015) 

0.128** 
(0.004) 

GDP per 
capita 

0.017** 
(0.005) 

0.020 
(0.031) 

0.017 
(0.025) 

0.005 
(0.031) 

0.022 
(0.019) 

0.014** 
(0.005) 

0.224** 
(0.005) 

0.205 
(0.016) 

Inflation 
-0.005** 
(0.001) 

-0.017 
(0.033) 

-0.032 
(0.044) 

-0.055** 
(0.017) 

-0.044** 
(0.005) 

-0.024 
(0.015) 

-0.045** 
(0.007) 

-0.032 
(0.027) 

Population 
density 

0.0015 
(0.022) 

0.003 
(0.005) 

0.0017 
(0.025) 

0.007 
(0.006) 

0.017 
(0.014) 

0.014 
(0.022) 

0.0071 
(0.0013) 

0.227** 
(0.015) 

Market size 
0.022** 
(0.003) 

0.004 
(0.007) 

0.003 
(0.002) 

0.004 
(0.022) 

0.016** 
(0.006) 

0.005 
(0.007) 

0.0110** 
(0.002) 

0.322** 
(0.013) 

Trend  
-0.0014 
(0.0022) 

-0.0012 
(0.0044) 

-0.0013 
(0.0032) 

-0.0016 
(0.0155) 

-0.0022* 
(0.0010) 

-0.0017 
(0.0232) 

-0.035** 
(0.01) 

-0.018** 
(0.001) 

Notes: The table provides the average elastiticities of probability of full efficiency, ( )zp , with respect to the bank 

and country specific control variables. Standard errors are reported in parentheses. Z-score= (1+ROE)/(Standard 
Deviation of ROE); Capital ratio = equity over total assets; Liquidity ratio= liquid assets over total assets; Fees= net 
fees, commission and trading income over total assets; Securities= total securities over total assets.  Country specific 
variables: GDP per capita; Inflation; Population density is the number of people per square klm; Market size= value 
of total shares traded on the stock market exchange. Trend captures time. Adv refers to Advanced countries, EU, EUR 
to Europe (except EU), LAT.AM. to Latin America, As-P. to Asia Pacific, MENA to Middle East and North Africa, CIS to 
Common Wealth and Independent States, and last s.-SA to Sub-Sahara Africa. 
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4. Conclusions  
 

This paper first provides an alternative semiparametric approach for estimating the ZISF 

model by allowing for the frontier to have an unknown smooth function of explanatory variables 

whilst maintaining the parametric assumption on the probability of fully efficient firms. In 

particular, we suggest a modified version of the iterative backfitting local maximum likelihood 

estimation developed in Tran and Tsionas (2016). We show that the proposed estimator achieves 

the optimal convergence rates for both parameters of the probability of fully efficient firm and 

the nonparametric function of the frontier. We provide asymptotic properties of the proposed 

estimator. The finite sample performances of the proposed estimator are examined via Monte 

Carlo simulations.  

Next, we use the proposed method to examine the productivity growth and efficiency of 

the global banking system. Overall, our analysis demonstrate that the financial crisis has 

substantially reduced the probability of a bank, worldwide, to achieve full efficiency. It is the first 

time that such result comes to light as most studies focus on the level of bank efficiency post the 

crisis. As such previous literature focusing on the level of bank efficiency rather than the change 

of efficiency in the presence of fully efficient banks is rather myopic. We argue that the main 

aftermath of the financial crisis is that bank performance has shifted away from fully efficiency 

frontier, whilst also productivity growth shifted to lower values. This is a downward shift of the 

whole frontier rather than movement along the frontier. As policy implication we suggest that 

improving bank’s risk profile would increase the probability of fully bank efficiency, as reducing 

macroeconomic uncertainty, such as inflation, would also do. 

Finally, we did not consider hypothesis testing of parametric vs. nonparametric frontier 

and/or whether all banks are fully inefficient/efficient in this paper because they are beyond the 

scope of this paper. However, these topics are of interest in their own rights and deserve attention 

for future research. 
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Appendix A: Proofs of the theorems 
 

Let m 2 '(.) { (.), (.), (.)}g s l= %% % % . Also let 2 '(.) { (.), (.), (.)}mg s l=  and a  denote the true 

values.  

 
Proof of Theorem 1: The proof of this theorem follows similarly to the proof of Theorem 

1 of Tran and Tsionas (2016) and Huang and Yao (2012). Thus, we only outline the key steps of the 

proof.  

To derive the asymptotic properties of â , we first let 

*ˆ ˆ( )na a a= - , 

( ( ), , , ) log ( | ( ), , )
i i i i i i

X Z Y f Y X Zg a g a=% %l  
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By using a Taylor series expansion and after some calculation, yields 
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Next we evaluate the terms 
n

A  and 
n

B . First, expanding 
n

A  around ( )
i

Xg , we obtain 
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 where the definition of 
1n

D  should be apparent. Following Tran and Tsionas (2016), it can be 

shown that 

   1/ 2

1

( ( ), , , )
( ) ( , , ) (1)

n

i i i

n i i i i p
i

X Z Y
A n I X d X Y Z o

ag

g a

a

-

=

ì üï ï¶ï ï= - +í ý
ï ï¶ï ïî þ

å
l

   (A.3) 

where ( , , )d X Y Z  is the first r r´  submatrix of 1( ) ( ( ), , )I X q X Z Y
qq q

q- . Similarly, for 
n

B , it can be 

shown that  

  [ ( )] (1) (1)
n p p

B E I X o B o
aa

= - + = +       (A.4) 

Thus, from (A.2) in conjunction with (A.4) and an application of quadratic approximation 

lemma (see for example Fan and Gijbel (1996, p. 210)), leads to 

    
n p

B A o* 1ˆ (1)a -= +                 (A.5) 

if 
n

A  is a sequence of stochastically bounded vectors. Consequently, the asymptotic normality of 

*â  follows from that of 
n

A . Note that since 
n

A  is the sum of i.i.d. random vectors, it suffices to 

compute the mean and covariance matrix of 
n

A  and evoke the Central Limit Theorem. To this 

end, from (A.3), we have 

1/ 2 ( ( ), , , )
( ) ( ) ( , , )

n

X Z Y
E A n E I X d X Y Z

ag

g a

a

ì üï ï¶ï ï= -í ý
ï ï¶ï ïî þ

l
    (A.6) 

The expectation of each element of the first term on the right hand side can be shown to 

be equal to 0 and further calculation shows that { }( ) ( , , ) 0E I X d X Y Z
ag

= . Thus ( ) 0
n

E A = . The 

variance of 
n

A  is 
( ( ), , , )

( ) ( ) ( , , )
n

x Z y
Var A Var I X d X Y Z

ag

g a

a

ì üï ï¶ï ï= - = Sí ý
ï ï¶ï ïî þ

l
. By the Central 

Limit Theorem, we obtain the desired result.    
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Proof of Theorem 2: Recall that, given the estimate of â , ˆ( )xg  maximizes (7). By redefining 

appropriate notations: 

0 0 0 1 0 0
( , ) ( ) ( )( )x X x x X xh g= + G -  ,  

* 1/ 2 ' '

0 0 1 0
( ) { ( ), ( ( ))}n H x H xg g g g= - - G  ,  

then the proof follows directly from the proof of theorem 2 of Tran and Tsionas (2016). Thus, we 

omit it here for brevity.  

 

Appendix B: Fully Localised Model 
 

The discussion in Section 2 has been limited to the case where the probability of fully 

efficient firm ( )zp  is assumed to have a logistic function. In this Appendix, we extend the model 

to allow for nonparametric function ( )zp . We will consider two cases. In the first case, we assume 

that Z X=  and show how to estimate this model as well as discuss the asymptotic properties 

of the local MLE. In the second case where in general Z X¹ , we will briefly discuss only the 

estimation procedure but not the asymptotic properties since they are more complicated and 

beyond the scope of this paper. 

 

Case 1: When Z X=   

In this case, we first redefine the vector function ' '( ) ( ( ), ( ) )x x xq p g=  and for a given set point 

0
x  and x  in the neighbourhood of x , we approximate the function ( )xq  by a linear function 

similar to (5), 

   
0 0 0 1 0 0

( ) ( ) ( )( )x x x x xq q» + Q - , 

 

where 
0 0
( )xq  is a (4 1)´  vector and 

1 0
( )xF  is a (4 )d´  matrix of the first-order derivatives. Then 

the conditional local log-likelihood function is: 

  



 43 

5 0 0 1 0 0 0 1 0 0 01
( ( ), ( )) {log ( ; ( ) ( )( ))} ( )

n

n i i H ii
L x x f Y x x X x K X xq q

=
Q = + Q - -å ,          (B.1) 

 

where the kernel function 
0

( )
H i

K X x-  is defined as before. Let 
0 0
ˆ ( )xq  denote the local 

maximizer of (B.1). Then the local MLE of ( )xq  is given by 
0 0

ˆ ˆ( ) ( )x xq q= . To obtain the asymptotic 

property of ˆ(.)q , we modify the following notations: 

 

2 '

1 5 2 5

2 1

( ( ), ) ( ( ), ) / , ( ( ), ) ( ( ), ) / ,

( ) { ( ( ), ) | }, and ( | ) ( ( ), ) ( | ( ))

Y

q x Y L x Y q x Y L x Y

I x E q X Y X x u x q x Y f Y u dY

q q q q q q q

q q q

= ¶ ¶ = ¶ ¶ ¶

= - = Y = ò

  

Assumptions: 

B1: The support for X , denoted by X , is compact subset of  d¡ . Furthermore, the marginal 

density ( )f x  of X  is twice continuously differentiable and positive for x Î X . 

B2: The unknown function ( )xq  have continuous second derivatives and in addition, 2( ) 0xs >  

and 0 ( ) 1xp< <  hold for all x Î X . 

B3: There exists a function ( ),yM  with [ ( )]E y < ¥M  such that for all Y , and all 

 of ( )nbhd xq qÎ , 
5

| ( , ) / | ( ).
j k l

L Y yq q q q¶ ¶ ¶ ¶ < M   

B4: The following conditions hold for all i  and j : 

 3 2 2

5 5
{| ( ( ), ) / | } , {( ( ( ), ) / ) }

j i j
E L x Y E L x Yq q q q q¶ ¶ < ¥ ¶ ¶ ¶ < ¥ . 

B5: The kernel function (.)K  has bounded support and satisfies: 

 

2

2 3

( ( ) ) 1, ( ( ) ) 0, ( ( ) ) ,

( ( ) ) , ( | ( ) | ) .

d d d

d d

K u du I uK u du I u K u du I

K u du I K u du I

= = < ¥

< ¥ < ¥

ò ò ò

ò ò

  

B6: 5| | 0, | | ,  and | | (1) as .H n H n H O n® ® ¥ = ® ¥   

 

Proposition 1: Suppose that conditions (B1)-(B6) hold. Then it follows that 
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 1/ 2 2 1 1

0
ˆ( | |) { ( ) ( ) ( ) (| | } (0, ( ) )Dn H x x x o H N f x I

qq
q q k - -- - + ¾ ¾®B , 

where 2 1 ''

2

1
( ) | | ( ) ( | )

2
x H I z x x

qq
m -= YB  with 

0
k  and 

2
m  are defined as in Section 2. 

 

The proof of Proposition 1 is a straightforward extension of the proof of Theorem 2 in 

Huang, Li and Wang (2013) to the multivariate case, and hence will be omitted. 

  

Case 2: When Z X¹   

For this case the local MLE estimation is similar to case 1, albeit it is more complicated. To see 

this, let us once again redefine the vector function ' '( , ) ( ( ), ( ) )z x z xq p g= , then for a given set 

points 
0

z  and 
0

x , approximate ( , )z xq  linearly as before. Also, define the kernel function for z  as 

1 1

0 0
( , ) | | ( ( ))

A i i
W Z z A W A Z z

- -= -  where 
1

( ) ( )
r

jj
W v w v

=
= Õ  with (.)w  is a univariate 

probability function, A  is a bandwidth matrix and 
1 2

| | ...
r

A a a a= . Then the modified conditional 

local log-likelihood function can be written as: 

 

1 1

6 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 01

( ( , ), ( , ))

{log ( ; ( , ) ( , )( )( ))} ( ) ( ),

n

n

i i i A i H ii

L z x z x

f Y z x z x Z z X x W Z z K X x

q

q
=

Q =

+ Q - - - -å
         (B.2) 

 

Let *

0 0
( , )z xq  be the maximizer of (14) where * * ' '

0 0 0 0 0 0
( , ) ( ( , ), ( , ) )z x z x z xq p g= , then the 

local MLE of ' '(., .) ( (., .), (., .) )q p g=  is given by *( , ) (., .)z xp p=%  and *( , ) (., .)z xg g=% . Note that 

however, since the ( )zp  do not depend on x  and ( )xg  do not depend on z , the improved 

estimators of ( )zp  and ( )xg  can be obtained using integrated backfitting approach. Thus, given 

the estimates ( , )z xp%  and ( , )z xg% , the initial estimates of ( )zp  and ( )xg  (up to additive constants) 

are given by 
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( ) ( , ) ( )

( ) ( , ) ( )

X

Z

z z x f x dx

x z x f z dz

p p

g g

=

=

ò

ò

% %

% %

 ,  

 

where ( )
X

f x  and ( )
Z
f z  are marginal densities of X  and Z , respectively. Now given the initial 

estimator of ( )zp% , For every fixed set points 
0

x  within the closed support of X , the improved 

estimator of 
0

( )xg  is defined as 
0 0 0 0

ˆ ˆ ˆ( ) ( )x xg g g= =  where 
0

ĝ  is the first minimizer of the 

following plug-in conditional local log-likelihood function: 

 

2
7 0 0 1 0 0 0 1 0 0 01

( ( ), ( ), ( )) {log ( ; ( ), ( ) ( )( ))} ( )
n

n i i i i H ii
L z x x f Y z x x X x K X xp g p g

=
G = + G - -å% % . 

(B.3) 

 
Given the estimates of ˆ( )

i
xg , we can obtain the improved estimator of ( )

i
zp , denote by 

0 0 0 0
ˆ ˆ ˆ( ) ( )z zp p p= =  where 

0
p̂  is the first maximizer the following plug-in conditional local log-

likelihood function: 

 

2
8 0 0 0 1 0 0 01

ˆ ˆ( ( ), ( )) {log ( ; ( ), ( ) ( )( ))} ( )
n

n i i i i A ii
L z x f Y x z z Z z W Z zp g g p

=
= + P - -å .     (B.4) 

 

 


