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The social environment is a pervasive influence on the ecological and evolutionary dynamics of animal
populations. Recently, social network analysis has provided an increasingly powerful and diverse toolset
to enable animal behaviour researchers to quantify the social environment of animals and the impact
that it has on ecological and evolutionary processes. However, there is considerable scope for improving
these methods further. We outline an approach specifically designed to model the formation of network
links, exponential random graph models (ERGMs), which have great potential for modelling animal social
structure. ERGMs are generative models that treat network topology as a response variable. This makes
them ideal for answering questions related directly to how and why social associations or interactions
occur, from the modelling of population level transmission, through within-group behavioural dynamics
to social evolutionary processes. We discuss how ERGMs have been used to study animal behaviour
previously, and how recent developments in the ERGM framework can increase the scope of their use
further. We also highlight the strengths and weaknesses of this approach relative to more conventional
methods, and provide some guidance on the situations and research areas in which they can be used
appropriately. ERGMs have the potential to be an important part of an animal behaviour researcher's
toolkit and fully integrating them into the field should enhance our ability to understand what shapes
animal social interactions, and identify the underlying processes that lead to the social structure of
animal populations.

© 2017 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
Most animals engage in interactions with conspecifics, and
these interactions form the social environment that is fundamental
to ecological and evolutionary processes operating within these
populations (Krause, James, Franks, & Croft, 2014; Kurvers, Krause,
Croft, Wilson, & Wolf, 2014; Pinter-Wollman et al., 2013). For
example, social interactions influence an animal's risk of infection
(Silk, Croft, Delahay, Hodgson, Boots et al., 2017; White, Forester, &
Craft, 2015), modulate the collective behaviour of groups (Bode,
Wood, & Franks, 2011; Farine, et al., 2016; Rosenthal, Twomey,
Hartnett, Wu, & Couzin, 2015; Strandburg-Peshkin et al., 2013;
Sueur et al., 2011) and may form an axis of individual personalities
(Aplin et al., 2013; Croft et al., 2009;Wilson, Krause, Dingemanse,&
Krause, 2013). These interactions are often complex, varying over
space and time, comprising behaviours ranging from affiliative to
agonistic, and showing considerable variation between individuals
(Croft, James, & Krause, 2008).
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Quantifying a complex social environment can represent a
challenge, but can be achieved through the suite of tools available
in social network analysis. A network approach is useful as social
relationships are an emergent property of the interactions of
multiple individuals, and there is increasing evidence that indirect
connections among individuals within animal populations are
important (Brent, 2015). In the last decade social network analysis,
originally developed in the social and physical sciences, has become
a pervasive tool in the study of animal behaviour (Krause et al.,
2014; Pinter-Wollman et al., 2013). As well as directly modelling
social relationships, it can be integral to understanding other
behaviour in the context of its social environment. For instance,
networks have been used in the study of the social and spatial
components of dispersal behaviours (Blumstein, Wey, & Tang,
2009; Fletcher, Acevedo, Reichert, Pias, & Kitchens, 2011).

The statistical analysis of social networks is complicated by the
nonindependence of individuals within a population that results
from linking individuals together within a network (Croft, Madden,
Franks, & James, 2011; Farine & Whitehead, 2015). This confounds
the use of the conventional statistical approaches used in ecology
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such as the linear model and linear mixed model, as these methods
assume independence of the residuals, which is an invalid
assumption for individuals that are linked in a network. In light of
this, numerous statistical methodologies have been developed to
analyse social network structure. Typically, the analysis of animal
social networks has revolved around randomization-based ap-
proaches to significance testing (Croft et al., 2011; Farine &
Whitehead, 2015). The data used to construct networks are
permuted to generate uncertainty around a null hypothesis, with
permutations typically constrained to produce biologically plau-
sible null models. For example, if researchers are studying how
body size relates to social network connections in a population
spread over several sites, they would randomize interactions with
respect to body size, but constrain the randomized network con-
nections according to the site use of that individual.

Randomization-based analyses have many strengths, especially
in animal social network studies in which complex sampling issues
often have to be controlled for (Farine & Whitehead, 2015; Farine,
2017). However, using this approach controls for, rather than
models, the biological processes, such as site use, that generate
network structure. Often these processes can be directly of interest,
yet treating them as a nuisance factor prevents us from more fully
understanding the role they play in shaping animal social systems.
Furthermore, randomization-based approaches generate uncer-
tainty around the null hypothesis, rather than the observations, yet
it is the observations that truly are observed with error. Finally, null
models are often user-defined and system-specific as the validity of
the comparison is sensitive to the way in which null models are
constructed. As a result, they may not always be the best option
available.

There are also several statistical modelling frameworks for so-
cial networks developed within the social sciences, some of which
are now increasingly being employed in studies of animal social
networks. Many of these modelling frameworks are designed
specifically to analyse network data. Further, some are generative
models, with the underlying processes that govern interactions
explicitly modelled, with the local network topology as a response
variable (Cranmer, Leifeld, McClurg, & Rolfe, 2016; Silk, Croft,
Delahay, Hodgson, Weber et al., 2017). This is extremely useful for
researchers specifically aiming to explain the social interactions
that occur among individuals, and the observed structure of the
entire network, a very common topic of research in animal
behaviour (e.g. Best, Dwyer, Seddon, & Goldizen, 2014; Carter,
Brand, Carter, Shorrocks, & Goldizen, 2013; VanderWaal, Atwill,
Isbell, & McCowan, 2014). However, the general applicability of
these approaches to the study of animal social behaviour has not
yet been discussed or assessed.

In this article, we review the use of one of the more highly
developed and flexible of these statistical network approaches,
exponential random graph models (ERGMs; Lusher et al., 2013;
Robins, Pattison, Kalish, & Lusher, 2007). We start by providing a
basic verbal description of the modelling approach, illustrating
some of the key aspects of model fitting with a toy example. We
then describe the previous uses of these models in the study of
animal social behaviour, before going on to discuss their strengths
and weaknesses as a method to model animal social networks and
how these models can be extended to understand more complex
network data sets that are increasingly used to study animal
behaviour (temporally dynamic, bipartite and multilayer net-
works). Finally, we set an agenda for future research: highlighting
the importance of simulation modelling studies to better under-
stand when ERGMs may represent an appropriate tool, and deter-
mining research areas that this method is best suited to. Our aim is
not to displace the use of randomization-based approaches, but to
describe an alternative tool that can be applied in many situations.
This will give animal behaviour researchers awider array of options
than are currently in use.

MODEL DESCRIPTION

ERGMs are models of network topology that enable hypotheses
about the processes driving local network structure and edge for-
mation to be tested (Lusher et al., 2013; Robins et al., 2007). They
model potential edges between individuals as stochastic variables
within an adjacencymatrix. The response variable is the probability
of matching the observed network, with the explanatory variables
representing various possible structural features of the network.
ERGMs fit broadly within the same exponential family of statistical
models as conventional linear and generalized linear modelling
approaches. A mathematical representation of the model is:

PðNÞ ¼ ceq1z1ðNÞþq22z2ðNÞþ/ þqnznznðNÞ

where P(N) is the probability of a given network and each z is a
different network statistic or property of the network. The effect of
each z is weighted by a parameter (q) in a similar manner to a
generalized linear model. In this equation c is a normalizing
constant.

Note that this is for a single network; ERGMs were originally
developed for the analysis of static networks, although recent de-
velopments have made the analysis of dynamic networks possible
(see below). Initially, potential edges (regardless of whether they
exist or not) could only be modelled as binary variables (present or
absent); however, recent generalizations of the ERGM framework
now enable models of weighted edges (Desmarais & Cranmer,
2012; Krivitsky, 2012; Wilson, Denny, Bhamidi, Cranmer, &
Desmarais, 2017). These models for weighted edges are often
likely to be preferred, as edge weights frequently carry most of the
information on social structure in many animal networks, and
filtering networks by threshold edge weights can affect statistical
inference (Farine, 2014; Franks, Ruxton, & James, 2010). Alterna-
tively, researchers can capture repeated interactions through
temporal ERGMs, where the change in the network structure over
time is considered. We discuss these two extensions (and others) of
the basic ERGM below. Ultimately, the decision on whether to use
binary or weighted, static or temporal networks will be question,
and to some extent data, driven (Carter, Lee, & Marshall, 2015).

Network edges are modelled in response to attributes of the
nodes that they connect, and the value of other edges within the
network. The latter possibility means that the ERGM framework
accounts for the fact that edge values can be dependent on the
values of neighbouring edges or some other aspect of network to-
pology, making the network structure locally emergent and
therefore directly dealing with nonindependence related to this
(Lusher et al., 2013). Crucially, unlike randomization-based
methods, this approach directly models the behaviours that lead
to social associations or interactions, and so models social network
structure.

A guide to the types of term that can be included within ERGMs
is provided in Fig. 1. From a practical perspective terms fit into three
broad categories: (1) node-based covariates, (2) dyadic covariates
and (3) structural covariates.

(1) Node-based covariates explain differences in edge values as
outcomes of the attributes of the nodes themselves. Taking the case
of sex-related differences, for example, node-based covariates
could be used tomodel which sex formedmore (or stronger) edges,
and additionally whether intrasex edges were more likely than
intersex ones (i.e. males tending to interact with other males, and
females with females). Node-based covariates for continuous traits
can also include a difference term; for example, are edges more
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Figure 1. A diagrammatic guide to the key terms that can be used in ERGMs. Grey box (top left): basic structural terms estimating the tendency for the number of edges and multi-
edge configurations in a graph. Blue box (middle left): the tendency to form mutual ties, a dyadic structural term specific to directed networks. Orange box (bottom left): dyadic
covariates on the tendency to form edges (i.e. as a result of other relationships between the individuals). Green box (top centre): individual or nodal terms for effects of homophily.
Yellow box (bottom centre): individual or nodal terms for effects on the number of edges formed. Purple box (right): basic triadic effects for undirected (triangle, top) and directed
networks.
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likely when the attributes of two individuals are more similar? This
might be expected in situations such as dominance hierarchies
where interactions are more likely if two individuals are more
closely matched (e.g. Dey & Quinn, 2014).

(2) Dyadic covariates model how other relationships among
individuals in a network affect edge values. For example, with an-
imal social networks, where space use is often an important
component of social structure, a matrix of the distances between
individual home ranges or refuges might be a valuable dyadic co-
variate. Another example might be genetic relatedness, if social
relationships within a group are thought to be influenced by
kinship (e.g. Carter et al., 2013; Godde, Côt�e, & R�eale, 2015; Wolf,
Mawdsley, Trillmich, & James, 2007).

(3) Structural covariates are aspects of network topology that
might be expected to affect edge formation, and can occur at
several levels of complexity (Fig. 1). The most basic structural
term would be a measure of edge density, somewhat equivalent
to having an intercept within a generalized linear model. This
models the general tendency for individuals to be connected to
other individuals, and is typically negative in social networks as
individuals tend not to be connected to all other individuals.
Increasingly complex structural terms can be incorporated, and
these define the dependency structure used within the model to
understand how the presence/absence of edges influences the
presence/absence of nearby edges. For example, this might
include configurations of multiple edges from a node, or mea-
sures of transitivity. The former consists of ‘k-star’ terms which
estimate the frequency of edge configurations from a node with k
completed edges (e.g. 3-star measures the frequency of three
completed edges connected to a node). Measures of transitivity
model how the likelihood or value of an edge between i and j
changes if both i and j are also already connected to k (a
consideration of ‘friends-of-friends’ effects). For directed net-
works these dependencies can include directionality as well; for
example, reciprocity might be hypothesized to be a strong un-
derlying process driving network structure in some social sys-
tems. Similarly, edges completing triads can be either transitive
(i/ j, i / k and j/ k) or cyclical (i/ j, j / k and k/ i), and
these different properties might be integral to the structure of
some networks, such as linear dominance hierarchies where
cyclical triads would be expected to be much less common than
otherwise expected (Shizuka & McDonald, 2012).

The distinction between node-based and dyadic covariates is
somewhat artificial, and, in some cases, a variable could be intui-
tively considered as either. For example, if individuals more similar
in size are expected to interact more, one could fit difference in size
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as a node-based covariate or include it directly as a difference
matrix. Our recommendation here is that dyadic covariates should
be used when the variable only exists as a function of the two in-
dividuals (e.g. their genetic relatedness), while individual cova-
riates should be used when the variable can be considered a trait of
that individual alone (as for the example with size).

Model fitting and selection differs somewhat from the fitting of
generalized linear models. Full models are typically built up in a
stepwise manner from simple models consisting of structural
terms, through to the final models designed to test the hypotheses
of interest. This is because some more complex models may not be
able to be estimated due to combinations of parameters leading to
degeneracy (the model placing most of the probability on only a
few of the complete set of possible networks, often those that are
either completely devoid of edges or completely connected). At
each stage, parameter fitting is achieved by simulating networks
and comparing them with the observed network. Parameter esti-
mation requires the use of Markov chain Monte Carlo (MCMC).
From an initial starting graph, an edge is added or removed at
random (in the case of binary ERGMs). If the new configuration of
the graph is closer to the observed data then the newgraph is taken
as the next graph in the sequence, and if it is not then it is only
taken as the next graph in the sequence with a low, fixed proba-
bility. TheMCMC chain is considered to have convergedwhen it has
settled into a pattern centred around a particular combination of
parameter values. This maximum likelihood estimation of each
parameter is calculated by generating values for all parameters that
centre the distribution of each parameter fitted on the observed
network data (Lusher et al., 2013). Parameter estimation is condi-
tionally dependent on other covariates included in the model
(Lusher et al., 2013). This allows one to assess the importance of
particular variables (e.g. the tendency for reciprocity) while ac-
counting for other variables (e.g. shared space use). Estimated
values for parameters provide an indication of likelihood of that
network configuration, given the other effects in the model (Lusher
et al., 2013).

Once each model has converged, then goodness-of-fit can be
assessed by comparing measures calculated from networks simu-
lated using the fitted model with equivalent measures from the
observed network (Lusher et al., 2013). This typically involves
measures such as the degree distribution (a frequency distribution
of the number of connections that individuals possess), geodesic
distances (the length of paths through the network that link in-
dividuals) and triad censuses (the frequency of triads, groups of
three individuals, with 0,1, 2 and 3 completed edges). However, any
combination of network measures can be used as long as they have
Table 1
A list of the different software packages available to analyse ERGMs, and their respective
they can be used to analyse

Software Platform Capabilities

PNet Windows (Java based) Binary, hierarchical (local depe
structures)

MPNet Windows (Java based) Bipartite, two-layer
ergm R Bipartite

ergm.count R Weighted (positive integers on

GERGM R Weighted

hergm R Hierarchical (local dependency
structures)

tergm R Temporally dynamic

btergm R Temporally dynamic
not been fitted in the model, preferably either those that provide a
good general measure of network structure (such as the three
default goodness-of-fit tests detailed above), or measures chosen
specifically to capture features of interest to the researcher. Asmore
complicated models are fitted it is important to check that
goodness-of-fit improves. Terms that worsen the goodness-of-fit
should not be retained, although terms that do not greatly influ-
ence goodness-of-fit either waymay be retained if they are relevant
to particular hypotheses. More formal testing of hypotheses can
also be conducted. For example, it is possible to perform backwards
stepwise deletion to choose a final model once the full model has
been constructed (e.g. Snijders, Pattison, Robins, & Handcock,
2006), using approximate Wald tests to indicate whether certain
terms in the model are statistically significant (Lusher et al., 2013).
In addition, it is possible to compare fitted models with Aikaike
information criteria (AIC) or Bayesian information criteria (BIC) to
allow themost parsimonious model to be selected. This could allow
the comparison of multiple competing models (assuming conver-
gence) that test different combinations of hypotheses, in a process
akin to multimodel inference. It is also possible to use methods of
Bayesian model selection such as reversible jump MCMC (Caimo &
Friel, 2013).

ERGMs can be implemented within R (R Development Core
Team, 2017) and in the standalone java-based software PNet
(Wang, Robins,& Pattison, 2009). In R there are number of packages
within the statnet (Handcock, Hunter, Butts, Goodreau, & Morris,
2008) and xergm (Leifeld, Cranmer, & Desmarais, 2016) suites of
packages that enable the fitting of ERGMs (see Table 1). Basic
ERGMs, including for bipartite networks, can be fitted using the
package ergm (Handcock et al., 2015; Hunter, Handcock, Butts,
Goodreau, & Morris, 2008). We provide an example demon-
strating the model output, convergence diagnostics and goodness-
of-fit tests of basic ERGM fitted to a toy data set in Fig. 2 (network
depicted in Fig. 2a). In this example, there is homophily according
to the ‘colour’ of individuals (red or blue), and a continuous effect of
a ‘size’ variable (indicated by the white node labels) on the likeli-
hood of forming connections (Fig. 2b). Model estimates in binary
ERGMs are conditional log-odds estimates. In our example model
the (intercept) log-odds estimate for an edge existing is approxi-
mately �2.14. However, for every increase in size by unit 1 this
increases byz0.16, and if the edge links to individuals of the same
colour this increases byz0.94 (withminimal difference for red-red
and blue-blue). Trace plots of each Markov chain and density plots
for each variable (normal distributions centred on the estimate)
show that this basic model converges (Fig. 2c), while the goodness-
of-fit plots show that it matches the observed data well, although it
capabilities i.e. the types of network data (beyond static and binary networks) that

Source

ndency http://www.melnet.org.au/pnet/
Wang et al., 2009
http://www.melnet.org.au/pnet/
https://cran.r-project.org/web/packages/ergm/index.html
Handcock et al., 2015; Hunter et al., 2008

ly) https://cran.r-project.org/web/packages/ergm.count/index.html
Krivitsky, 2015
https://cran.r-project.org/web/packages/GERGM/index.html
Denny et al., 2016
https://cran.r-project.org/web/packages/hergm/index.html
Schweinberger et al., 2016
https://cran.r-project.org/web/packages/tergm/index.html
Krivitsky & Handcock, 2016
https://cran.r-project.org/web/packages/btergm/index.html
Leifeld et al., 2016

http://www.melnet.org.au/pnet/
http://www.melnet.org.au/pnet/
https://cran.r-project.org/web/packages/ergm/index.html
https://cran.r-project.org/web/packages/ergm.count/index.html
https://cran.r-project.org/web/packages/GERGM/index.html
https://cran.r-project.org/web/packages/hergm/index.html
https://cran.r-project.org/web/packages/tergm/index.html
https://cran.r-project.org/web/packages/btergm/index.html
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pattern as the observed network (black line). Full R code is provided in Supplementary material.
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is unable to replicate a high frequency of individuals with a degree
of 10 (Fig. 2d). The R code for this example is provided
in Supplementary material. The package ergm.count (Krivitsky,
2015) permits the fitting of ERGMs to weighted networks, in
which edge weights are integer count values. Additionally, a recent
development has been the extension of ERGM fitting to all
weighted networks with the package GERGM (Denny, Wilson,
Cranmer, Desmarais, & Bhamidi, 2016). In these models, edge
weights are converted to a value between zero and one through a
number of user-selected functions. A further extension to the ERGM
framework is the fitting of hierarchical ERGMs that enable the
incorporation of local rather than global dependency structures, in
the package hergm (Schweinberger, Handcock, & Luna, 2016).
Finally, it is also possible to fit ERGMs to temporally dynamic net-
works in R, using either the package tergm (Krivitsky & Handcock,
2016) or btergm (Leifeld et al., 2016). These allow the ERGM
framework to be used tomodel longitudinal network data arranged
as a set of network snapshots (from a single point in time) or
aggregated static networks (a static depiction of interactions over a
predefined time interval).

HOW HAVE ERGMS BEEN USED BEFORE?

ERGMs have been used previously to answer diverse questions
related to animal social behaviour. Ilany, Barocas, Koren, Kam, and
Geffen (2013) used ERGMs to investigate ‘structural balance’ in
directed networks of rock hyrax, Procavia capensis, interactions.
They found that structural balance, where individuals take on a
similar set of social relationships as their current contacts, was a
feature of these social groups, and that there was a nonsignificant
tendency for more newly arrived individuals to feature in triads
(sets of three individuals) that lacked structural balance. Edelman
and McDonald (2014) used ERGMs to show that cooperative re-
lationships in male long-tailed manakins, Chiroxiphia linearis, tend
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to be transitive and stable over time. They also exploited the ERGM
framework to model the impact of spatial distribution of in-
dividuals, a potentially widely applicable technique which we
discuss below.

ERGMs have also been used to calculate tendencies of in-
dividuals to initiate or receive interactions in social groups of
yellow-bellied marmots, Marmota flaviventris, for use in further
analyses that related networks of affiliative interactions to age and
kinship (Wey & Blumstein, 2010). Two further studies have used
ERGMs to model dominance relationships within animal groups.
For example, Dey and Quinn (2014) used ERGMs to demonstrate
that pukekos, Porphyrio melanotusmelanotus, had linear dominance
hierarchies. They also demonstrated that the type of dominance
interactions (display or physical aggression) differed between the
sexes, were driven by differences in status signals (the size of the
bill shield) and showed sexual homophily. Dey et al. (2015) also
investigated dominance hierarchies, and observed that the domi-
nance networks of cooperatively breeding cichlids, Neolamprologus
pulcher, were stable between parental care and nonreproductive
periods.

Finally, two studies have used ERGMs tomodel population social
structure. Fisher, Rodríguez-Mu~noz, and Tregenza (2016) compared
networks of interactions in field crickets, Gryllus campestris, and
demonstrated that social structure remained similar over time.
More specifically, it was possible to predict network structure be-
tween years, especially when the populations were similar in size.
Meanwhile, Reynolds, Hirsch, Gehrt, and Craft (2015) used ERGMs
to simulate racoon, Procyon lotor, contact networks to model the
dynamics of rabies transmission.

These diverse applications demonstrate that ERGMs can be used
to model affiliative and antagonistic networks, to analyse differ-
ences within and between populations, and to understand dyadic
and whole network level processes. Moreover, they can be used in
both free-living and captive animals, and can be applied across a
range of taxa. However, the applicability of the ERGM framework
will very much depend on the questions being addressed and any
constraints of the data being analysed, and we highlight the most
important of these considerations below.

ERGM ADVANTAGES AND DRAWBACKS

Advantages

An important strength of the ERGM framework is that it
explicitly incorporates the dependence structures that are integral
to many animal social networks (Krause et al., 2014; Pinter-
Wollman et al., 2013) and that represent a difficulty with using
conventional linear modelling approaches (Croft et al., 2011; Farine
& Whitehead, 2015). ERGMs are particularly valuable as it is
possible to directly test hypotheses related to the role of emergent
network properties, such as transitivity, in structuring interactions
(Dey & Quinn, 2014; Ilany et al., 2013). Even in other modelling
frameworks designed to be implemented specifically in social
networks, such as latent space models and multiple regression
quadratic assignment procedures, it is not possible for these to be
estimated (Cranmer et al., 2016).

A second advantage of ERGMs is that they model network to-
pology as a response variable, so are ideally suited for questions
related to interactions or social relationships themselves, as well as
any questions for which the structure of the network is of primary
interest. The former could include questions related to homophily
(are within-sex interactions more likely to occur than between-sex
ones?), or alternatively the number of social relationships (do bold
individuals form more interactions than shy individuals?). There is
also an important role for questions about network structure in
studies investigating the emergent group level properties of indi-
vidual social interactions, for example the transitive nature of
dominance interactions (Dey & Quinn, 2014; Shizuka & McDonald,
2012). In randomization-based approaches one would compare an
observedmetric, such as transitivity in the above example, with the
range of values generated by the null model, and conclude that an
observed network is more or less transitive than expected given the
null processes. This, however, makes it difficult to assess to what
extent transitivity is an emergent property of other predictors of
network formation (which may covary with transitivity), rather
than a fundamental process driving network structure (as transi-
tivity and cyclicity may well be in dominance hierarchies). Such
information is available if correctly specified generative models of
network structure such as ERGMs are used.

ERGMs can also be used as generative models of network
structure, which offer great potential as tools in animal social
network analysis. Once parameters for the model have been esti-
mated, new networks can be simulated using these values. This
makes it possible to generate uncertainty around the observed
network structure, and facilitates the comparison of network
structure between different populations. For example, simulating
social network structure for a population using the parameters for
the network structure from a different populationwould allow you
to compare the fundamental network structure between these
populations, controlling for differences in population size or
composition (e.g. Fisher et al., 2016). This might provide a prom-
ising solution to the problems in comparing networks between
populations and species (Faust & Skvoretz, 2002).

Drawbacks

There are, however, also drawbacks in the application of ERGMs
to animal networks, as well as somemore general issues that might
impact on their use in studying animal social behaviour. First,
ERGMs have been developed in the social sciences where there is
greater confidence that edges within a network represent true
social ties. Therefore, the ability to extend them to studying animal
social relationships is uncertain in situations where social re-
lationships are inferred rather than observed, for instance from
spatiotemporal co-occurrences. This applies principally to
association-based networks calculated by converting a bipartite
network of individuals and groups to a social network using the
‘gambit of the group’ assumption (Whitehead & Dufault, 1999),
which has been widely used to construct animal social networks
(Farine & Whitehead, 2015). In general, ERGMs may not be
appropriate for analysing such networks, at least in the absence of
further work to determine the impact that the sampling issues and
data structure imposed by these methods has on model outputs.

One possible solution to this is to use ERGMs to model the
bipartite networks that link individuals and groups directly, and
make inferences about the sociospatial behaviour of individuals in
this manner. In situations where networks have been constructed
for predefined behavioural interactions (e.g. dominance in-
teractions), there is not the same issue with network ties being
inferred. However, care still needs to be taken in incorporating
individuals with differing observation times. One solution may be
to fit nodal covariates for time spent under observation, or dyadic
covariates for time spent jointly under observation, within the
ERGM. Alternatively, social relationships may need to be converted
to rates of interaction (Whitehead, 2008) or generalized affiliation
indices (Whitehead & James, 2015) before being modelled.

A second potential issuewith the application of ERGMs (or other
statistical network models) to studying animal social networks is
related to missing nodes (incomplete sampling of individuals) or
edges (not observing all social interactions). The impact of missing
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nodes and edges on network analysis has received some research
focus in a range of fields (Silk, Jackson, Croft, Colhoun, & Bearhop,
2015; Smith & Moody, 2013; Smith, Moody, & Morgan, 2017),
although much of this has been on the calculation of network
metrics rather than any impacts on hypothesis testing methods
(Silk, Croft, Delahay, Hodgson, Weber et al., 2017). Shalizi and
Rinaldo (2013) suggested that ERGMs would not be able to accu-
rately estimate structural parameter estimates in subsampled
networks; however, they made no comment on their ability to test
hypotheses related to differences in individual behaviour in these
situations. Although the inferences made about individual differ-
ences in behaviour are reliant on relative differences rather than on
being able to precisely parameterize the full network, ERGMs
should be used with caution in systems where high proportions of
individuals or interactions are not recorded.

Finally, there are two disadvantagesmore generally to the ERGM
framework that animal behaviour researchers should be aware of:
computationally intensive parameter estimation and degeneracy.
The former occurs as a result of exact parameter inference typically
being intractable, and therefore relying on Monte Carlo methods.
Practically, this limits the size of networks that ERGMs can be used
on to thosewith tens or a few hundreds of nodes (depending on the
model being fitted), rather than the large networks generated in
some studies of social animals. Degeneracy is a well-established
issue in the fitting of ERGMs (Handcock, Robins, Snijders, Moody,
& Besag, 2003; Lusher et al., 2013), and means that for certain
combinations of parameters the Markov chain Monte Carlo esti-
mation rarely or never converges. In these situations, it can be
difficult to fit models in a stepwise fashion. Structural terms
involving triads (modelling transitivity within the network) are
often especially likely to result in instability and lead to model
degeneracy. One possible solution is to attempt fitting hierarchical
ERGMs (using the R package hergm) with local rather than strong
dependence structures (which restrict dependencies within
particular regions of the network), which can reduce problemswith
model degeneracy, especially in larger networks (Handcock et al.,
2003; Schweinberger & Handcock, 2015; Schweinberger, 2011).

POTENTIAL FUTURE APPLICATIONS

As discussed previously, ERGMs offer a flexible framework for
testing hypotheses related to edge formation and network topol-
ogy. As a result, they could be useful in answering a wide range of
questions related to animal social network analysis. We focus on a
few key areas here, for which ERGMs are likely to be useful but have
rarely been applied.

Generating Uncertainty for Modelling Transmission Processes

As previously highlighted, a major advantage of the ERGM
modelling framework is that it is possible to simulate networks
using the parameters fitted to the originally observed network. This
can be used to generate a set of networks that are similar but not
identical to the original network (e.g. Fig. 3). Almost all animal
social networks are a subsample of the full set of interactions that
occur, and the subsequent simulation of dynamic processes on
these networks may be subject to error. Therefore, being able to
simulate networks fitted with the same set of parameters, which
are important in generating the observed network but without its
exact structure, offers an important route to robust conclusions
when testing hypotheses relating to network topology, such as the
factors influencing information and disease transmission within
animal populations. For example, Reynolds et al. (2015) fitted
ERGMs to contact networks of racoons in different seasons, and
used the generated networks to apply simulation models of rabies
spread to demonstrate seasonality in disease dynamics caused by
changes in contact network structure. The ability to use ERGMs in
this way also facilitates comparison in transmission dynamics be-
tween species by quantifying differences in network structure be-
tween them, and making it possible to simulate dynamic processes
more broadly than on the single observed network. A caveat to this
is that the usefulness of the simulated networks depends on the
goodness-of-fit of the model; poorly fitting models will generate
networks that show transmission dynamics unlike the observed
one.

Hypotheses Related to Social Dominance

One area where ERGMs have been employed particularly suc-
cessfully in studying animal social behaviour is in studies of social
dominance (Dey& Quinn, 2014; Dey et al., 2015). Existingmeasures
of dominance hierarchies seek to estimate the linearity of hierar-
chies (De Vries, Stevens, & Vervaecke, 2006; Douglas, Ngomo, &
Hohmann, 2017), and operate in the absence of other variables.
ERGMs can be used alongside these approaches to provide a useful
quantification of the linearity of hierarchies arising as an emergent
property of network structure. For example, the terms estimating
the importance of transitive and cyclical interactions in an ERGM
provide a direct quantification of how tendencies for transitive and
cyclical triads contribute to the linearity of a hierarchy (Shizuka &
McDonald, 2012). Importantly, these effects can be tested along-
side the influence of phenotypic traits such as body size, age and
sex, as well as dyadic covariates such as relatedness, which may be
expected to play a substantial role in many systems. In addition, the
fact that parameters are estimated with standard error while
controlling for other possible effects facilitates comparisons of hi-
erarchies between different behaviours (e.g. ritualized dominance
behaviours versus agonistic behaviours), or between different
species, and offers a great opportunity for effective cross-species
comparisons.

The use of ERGMs also enables a very natural extension to
considering dominance interactions as temporally dynamic. The
use of temporal ERGMs makes it possible to determine the stability
of hierarchical interactions over time, which is likely to influence
the benefits of hierarchy formation and therefore have important
implications for individuals living in groups. Further, it would
additionally be possible to consider how changes in traits influence
hierarchical interactions, for example whether dominance in-
teractions are more likely to change as individuals get closer in
body weight or condition.

Hypotheses Related to Differences in Network Structure

ERGMs quantify network structure by providing parameter
values that describe the structure of the network. While these
parameters are context specific (i.e. they depend closely on the
other parameters included in the model), they do offer a great
opportunity to test for differences in network structure between
populations or for different types of behavioural interaction within
a population. In particular, comparisons of social networks between
populations are complicated by many network measures being
influenced by the size of the network (Croft et al., 2008). Cross-
species comparisons of network structure using a standardized
approach would allow an improved understanding of the more
general evolutionary processes and constraints shaping animal
sociality. The application of an ERGM framework would enable this
to be done while considering system-specific effects that are
known to be important by researchers. For example, an analysis
exploring the impact of relatedness on the tendency for within-
group behavioural interactions could be completed while
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controlling for differences between species in how males and fe-
males interacted, or the age structure of within-group interactions.
The resulting estimate for the effect of relatedness could then be
compared across populations or species.

Hypotheses Related to Network Stability Over Time

Temporal ERGMs have not been used in animal behaviour
research. There are other methods available to study dynamic
networks (Fisher, Ilany, Silk, & Tregenza, 2017; Silk, Croft, Delahay,
Hodgson, Weber et al., 2017; Tranmer, Marcum, Morton, Croft, & de
Kort, 2015), and the choice of model should be driven by the data
available and questions of interest (Silk, Croft, Delahay, Hodgson,
Weber et al., 2017). Temporal ERGMs are somewhat similar to
stochastic actor-oriented models as both are based on an ERGM-
type framework; however, each takes a different approach to
modelling network change. Temporal ERGMs have the advantage of
being able to accommodate more complex temporal dependencies,
thereby not requiring linear change in network structure over time
(Silk, Croft, Delahay, Hodgson, Weber et al., 2017). Relational event
models in contrast model temporally explicit interaction data, so
are less focused on network structure (focusing instead on the
temporal dynamics of interactions themselves, albeit in a social
context; Tranmer et al., 2015). The stability of animal social in-
teractions or relationships is a topic of great interest (Pinter-
Wollman et al., 2013), and in many species long-term stable asso-
ciations or alliances are likely to be beneficial (Brent et al., 2015;
Gomes, Mundry, & Boesch, 2009; McComb, Moss, Durant, Baker,
& Sayialel, 2001). Temporal ERGMs offer an excellent framework
to test the stability of social relationships within animal groups.
Edelman andMcDonald (2014) used an approach similar to that of a
temporal ERGM, by using the previous year's network as a dyadic
covariate for the current year's network in male long-tailed man-
akins. They found that the previous year's networkwas a significant
predictor of the current network, indicating that cooperative re-
lationships between males persisted over time. Further, it is
possible to use temporal ERGMs to model network change over
time according to a user-specified function, allowing the incorpo-
ration of nonlinear rates of change. Within this, parameters for the
rate of change in social relationships can be linked with dyadic
covariates, so that it is possible to test hypotheses that relationships
between particular types of individuals are likely to change faster
than others.

OUTSTANDING ISSUES

The use of ERGMs in animal behaviour research would benefit
from simulation-modelling studies that can provide greater evi-
dence for when their use (and the use of other similar models) is
likely to be appropriate. In particular, exploring the impact of
subsampling network interactions on hypothesis testing in net-
works will be especially useful (Silk, Croft, Delahay, Hodgson,
Weber et al., 2017). This is ideally suited to simulation modelling
approaches in which ‘real’ scenarios (e.g. realistic levels of missing
data) can be generated and then sampled. Theoretical work has
suggested that parameter estimates for structural terms are un-
likely to accurately reflect the true properties of the unsampled
network in these cases (Shalizi & Rinaldo, 2013); however,



M. J. Silk, D. N. Fisher / Animal Behaviour 132 (2017) 137e146 145
hypothesis testing may still be appropriate when relative differ-
ences are important. A simulation-modelling approach could also
reveal whether it is appropriate to apply ERGMs to association-
based networks of animals, and if so how this might be achieved.
Two possibilities seem most likely here: (1) using ERGMs of
bipartite networks linking individuals and groups, and (2)
including terms that can control for biases introduced by the
method of data collection (e.g. effects of gregariousness, number of
times observed etc.) and ensuring that this can result in accurate
parameter estimation and low statistical error rate.

Conclusions

Exponential random graph models have received relatively
limited use for studying animal behaviour, but have provided some
interesting insights. This is despite animal behaviour researchers
only exploiting some of the more basic approaches within this
flexible network modelling framework. We have provided an
outline of the strengths and weaknesses of using ERGMs to study
animal behaviour, and have used this to highlight some research
areas both where they offer real potential and where further
simulation modelling work is required to examine their appropri-
ateness in testing hypotheses about animal network structure.
Together, this information should provide an important guide to
researchers hoping to extend the application of ERGMs in the study
of animal social networks, and contribute to developing our un-
derstanding of the underlying processes driving animal social
relationships.

Acknowledgments

M.J.S. is funded by a NERC grant NE/M004546/1. D.N.F. is funded
by the Natural Sciences and Engineering Research Council of Can-
ada. We thank Jared Wilson-Aggarwal for helpful discussions and
two anonymous referees for constructive comments that improved
the article.

Supplementary material

Supplementary material related to this article can be found at
http://dx.doi.org/10.1016/j.anbehav.2017.08.005.

References

Aplin, L. M., Farine, D. R., Morand-Ferron, J., Cole, E. F., Cockburn, A., & Sheldon, B. C.
(2013). Individual personalities predict social behaviour in wild networks of
great tits (Parus major). Ecology Letters, 16, 1365e1372.

Best, E. C., Dwyer, R. G., Seddon, J. M., & Goldizen, A. W. (2014). Associations are
more strongly correlated with space use than kinship in female eastern grey
kangaroos. Animal Behaviour, 89, 1e10.

Blumstein, D. T., Wey, T. W., & Tang, K. (2009). A test of the social cohesion hy-
pothesis: Interactive female marmots remain at home. Proceedings of the Royal
Society of London B: Biological Sciences, 276, 3007e3012.

Bode, N. W. F., Wood, A. J., & Franks, D. W. (2011). The impact of social networks on
animal collective motion. Animal Behaviour, 82, 29e38.

Brent, L. J. N. (2015). Friends of friends: Are indirect connections in social networks
important to animal behaviour? Animal Behaviour, 103, 211e222.

Brent, L. J. N., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., & Croft, D. P.
(2015). Ecological knowledge, leadership, and the evolution of menopause in
killer whales. Current Biology, 25, 746e750.

Caimo, A., & Friel, N. (2013). Bayesian model selection for exponential random
graph models. Social Networks, 35, 11e24.

Carter, K. D., Brand, R., Carter, J. K., Shorrocks, B., & Goldizen, A. W. (2013). Social
networks, long-term associations and age-related sociability of wild giraffes.
Animal Behaviour, 86, 901e910.

Carter, A. J., Lee, A. E. G., & Marshall, H. H. (2015). Research questions should drive
edge definitions in social network studies. Animal Behaviour, 104, e7ee11.

Cranmer, S. J., Leifeld, P., McClurg, S. D., & Rolfe, M. (2016). Navigating the range of
statistical tools for inferential network analysis. American Journal of Political
Science, 61, 237e251.
Croft, D. P., James, R., & Krause, J. (2008). Exploring animal social networks. Princeton:
Princeton University Press.

Croft, D. P., Krause, J., Darden, S. K., Ramnarine, I. W., Faria, J. J., & James, R. (2009).
Behavioural trait assortment in a social network: Patterns and implications.
Behavioral Ecology and Sociobiology, 63, 1495e1503.

Croft, D. P., Madden, J. R., Franks, D. W., & James, R. (2011). Hypothesis testing in
animal social networks. Trends in Ecology & Evolution, 26, 502e507.

De Vries, H., Stevens, J. M. G., & Vervaecke, H. (2006). Measuring and testing the
steepness of dominance hierarchies. Animal Behaviour, 71, 585e592.

Denny, M. J., Wilson, J. D., Cranmer, S. J., Desmarais, B. A., & Bhamidi, S. (2016).
GERGM: Estimation and fit diagnostics for generalized exponential random graph
models. R package version 0.10.0. https://cran.r-project.org/package¼GERGM.

Desmarais, B. A., & Cranmer, S. J. (2012). Statistical inference for valued-edge net-
works: The generalized exponential random graph model. PloS One, 7, e30136.

Dey, C. J., & Quinn, J. S. (2014). Individual attributes and self-organizational pro-
cesses affect dominance network structure in pukeko. Behavioral Ecology, 25,
1402e1408.

Dey, C. J., Tan, Q. Y. J., O'Connor, C. M., Reddon, A. R., Caldwell, J. R., & Balshine, S.
(2015). Dominance network structure across reproductive contexts in the
cooperatively breeding cichlid fish Neolamprologus pulcher. Current Zoology, 61,
45e54.

Douglas, P. H., Ngomo, A.-C. N., & Hohmann, G. (2017). A novel approach for
dominance assessment in gregarious species: ADAGIO. Animal Behaviour, 123,
21e32.

Edelman, A. J., & McDonald, D. B. (2014). Structure of male cooperation networks at
long-tailed manakin leks. Animal Behaviour, 97, 125e133.

Farine, D. R. (2014). Measuring phenotypic assortment in animal social networks:
Weighted associations are more robust than binary edges. Animal Behaviour, 89,
141e153.

Farine, D. R. (2017). A guide to null models for animal social network analysis.
Methods in Ecology and Evolution. http://dx.doi.org/10.1111/2041-210X.12772/
full (in press), http://onlinelibrary.wiley.com/.

Farine, D. R., Strandburg-Peshkin, A., Berger-Wolf, T., Ziebart, B., Brugere, I., Li, J.,
et al. (2016). Both nearest neighbours and long-term affiliates predict individual
locations during collective movement in wild baboons. Scientific Reports, 6,
27704.

Farine, D. R., & Whitehead, H. (2015). Constructing, conducting and interpreting
animal social network analysis. Journal of Animal Ecology, 84, 1144e1163.

Faust, K., & Skvoretz, J. (2002). 8. Comparing networks across space and time, size
and species. Sociological Methodology, 32, 267e299.

Fisher, D. N., Ilany, A., Silk, M. J., & Tregenza, T. (2017). Analysing animal social
network dynamics: The potential of stochastic actor-oriented models. Journal of
Animal Ecology, 86, 202e212.

Fisher, D. N., Rodríguez-Mu~noz, R., & Tregenza, T. (2016). Wild cricket social net-
works show stability across generations. BMC Evolutionary Biology, 16, 151.

Fletcher, R. J., Acevedo, M. A., Reichert, B. E., Pias, K. E., & Kitchens, W. M. (2011).
Social network models predict movement and connectivity in ecological
landscapes. Proceedings of the National Academy of Sciences, 108, 19282e19287.

Franks, D. W., Ruxton, G. D., & James, R. (2010). Sampling animal association net-
works with the gambit of the group. Behavioral Ecology and Sociobiology, 64,
493e503.

Godde, S., Côt�e, S. D., & R�eale, D. (2015). Female mountain goats, Oreamnos amer-
icanus, associate according to kinship and reproductive status. Animal Behav-
iour, 108, 101e107.

Gomes, C. M., Mundry, R., & Boesch, C. (2009). Long-term reciprocation of grooming
in wild West African chimpanzees. Proceedings of the Royal Society of London B:
Biological Sciences, 276, 699e706.

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., Krivitsky, P. N., &
Morris, M. (2015). ergm: Fit, simulate and diagnose exponential-family models
for networks. The Statnet Project. http://cran.r-project.org/package¼ergm.

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., & Morris, M. (2008).
statnet: Software tools for the representation, visualization, analysis and
simulation of network data. Journal of Statistical Software, 24, 1548.

Handcock, M. S., Robins, G., Snijders, T. A. B., Moody, J., & Besag, J. (2003). Assessing
degeneracy in statistical models of social networks. Journal of the American
Statistical Association, 76, 33e50.

Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., & Morris, M. (2008).
ergm: A package to fit, simulate and diagnose exponential-family models for
networks. Journal of Statistical Software, 24. nihpa54860.

Ilany, A., Barocas, A., Koren, L., Kam, M., & Geffen, E. (2013). Structural balance in the
social networks of a wild mammal. Animal Behaviour, 85, 1397e1405.

Krause, J., James, R., Franks, D. W., & Croft, D. P. (2014). Animal social networks.
Oxford, U.K.: Oxford University Press.

Krivitsky, P. N. (2012). Exponential-family random graph models for valued net-
works. Electronic Journal of Statistics, 6, 1100.

Krivitsky, P. N. (2015). ergm.count: Fit, simulate and diagnose exponential-family
models for networks with count edges. http://cran.r-project.org/package¼ergm.
count.

Krivitsky, P. N., & Handcock, M. S. (2016). tergm: Fit, Simulate and diagnose models for
network evolution based on exponential-family random graph models. The Statnet
Project. R package version 3.4.0. http://www.statnet.org http://cran.r-project.
org/package¼tergm.

Kurvers, R. H. J. M., Krause, J., Croft, D. P., Wilson, A. D. M., & Wolf, M. (2014). The
evolutionary and ecological consequences of animal social networks: Emerging
issues. Trends in Ecology & Evolution, 29, 326e335.

http://dx.doi.org/10.1016/j.anbehav.2017.08.005
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref1
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref1
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref1
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref1
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref2
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref2
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref2
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref2
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref3
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref3
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref3
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref3
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref4
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref4
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref4
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref5
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref5
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref5
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref6
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref6
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref6
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref6
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref7
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref7
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref7
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref8
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref8
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref8
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref8
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref9
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref9
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref9
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref10
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref10
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref10
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref10
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref11
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref11
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref12
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref12
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref12
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref12
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref13
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref13
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref13
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref13
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref14
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref14
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref14
https://cran.r-project.org/package=GERGM
https://cran.r-project.org/package=GERGM
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref16
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref16
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref17
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref17
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref17
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref17
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref18
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref18
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref18
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref18
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref18
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref19
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref19
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref19
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref19
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref20
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref20
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref20
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref21
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref21
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref21
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref21
http://dx.doi.org/10.1111/2041-210X.12772/full
http://dx.doi.org/10.1111/2041-210X.12772/full
http://onlinelibrary.wiley.com/
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref23
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref23
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref23
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref23
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref24
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref24
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref24
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref25
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref25
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref25
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref26
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref26
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref26
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref26
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref27
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref27
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref27
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref28
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref28
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref28
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref28
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref29
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref29
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref29
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref29
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref30
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref30
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref30
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref30
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref30
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref30
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref30
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref31
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref31
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref31
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref31
http://cran.r-project.org/package=ergm
http://cran.r-project.org/package=ergm
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref33
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref33
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref33
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref34
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref34
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref34
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref34
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref35
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref35
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref35
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref36
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref36
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref36
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref37
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref37
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref38
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref38
http://cran.r-project.org/package=ergm.count
http://cran.r-project.org/package=ergm.count
http://cran.r-project.org/package=ergm.count
http://www.statnet.org
http://cran.r-project.org/package=tergm
http://cran.r-project.org/package=tergm
http://cran.r-project.org/package=tergm
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref41
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref41
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref41
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref41
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref41


M. J. Silk, D. N. Fisher / Animal Behaviour 132 (2017) 137e146146
Leifeld, P., Cranmer, S. J., & Desmarais, B. A. (2016). xergm. Extensions for exponential
random graph models. R package version 1.7.0. https://cran.r-project.org/web/
packages/xergm/index.html.

Lusher, D., Koskinen, J., Robins, G., Lusher, D., Koskinen, J., & Robins, G. (2013).
Exponential random graph models for social networks. Structural analysis in the
social sciences. New York, NY: Cambridge University Press.

McComb, K., Moss, C., Durant, S. M., Baker, L., & Sayialel, S. (2001). Matriarchs as
repositories of social knowledge in African elephants. Science, 292, 491e494.

Pinter-Wollman, N., Hobson, E. A., Smith, J. E., Edelman, A. J., Shizuka, D., de Silva, S.,
et al. (2013). The dynamics of animal social networks: Analytical, conceptual,
and theoretical advances. Behavioral Ecology, 25, 242e255.

R Development Core Team. (2017). R: A language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing. http://
dx.doi.org/10.1007/978-3-540-74686-7.

Reynolds, J. J. H., Hirsch, B. T., Gehrt, S. D., & Craft, M. E. (2015). Raccoon contact
networks predict seasonal susceptibility to rabies outbreaks and limitations of
vaccination. Journal of Animal Ecology, 84, 1720e1731.

Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential
random graph (p*) models for social networks. Social Networks, 29, 173e191.

Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S., & Couzin, I. D. (2015).
Revealing the hidden networks of interaction in mobile animal groups allows
prediction of complex behavioral contagion. Proceedings of the National Acad-
emy of Sciences, 112, 4690e4695.

Schweinberger, M. (2011). Instability, sensitivity, and degeneracy of discrete
exponential families. Journal of the American Statistical Association,106,1361e1370.

Schweinberger, M., & Handcock, M. S. (2015). Local dependence in random graph
models: Characterization, properties and statistical inference. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 77, 647e676.

Schweinberger, M., Handcock, M. S., & Luna, P. (2016). hergm: Hierarchical
exponential-family random graph models with local dependence. R package
version 3.1-0. https://cran.r-project.org/web/packages/hergm/index.html.

Shalizi, C. R., & Rinaldo, A. (2013). Consistency under sampling of exponential
random graph models. Annals of Statistics, 41, 508.

Shizuka, D., & McDonald, D. B. (2012). A social network perspective on measure-
ments of dominance hierarchies. Animal Behaviour, 83, 925e934.

Silk, M. J., Croft, D. P., Delahay, R. J., Hodgson, D. J., Boots, M., Weber, N., et al. (2017).
Using social network measures in wildlife disease ecology, epidemiology, and
management. BioScience, 67, 245e257.

Silk, M. J., Croft, D. P., Delahay, R. J., Hodgson, D. J., Weber, N., Boots, M., et al. (2017).
The application of statistical network models in disease research. Methods in
Ecology and Evolution. http://dx.doi.org/10.1111/2041-210X.12770/full (in press),
http://onlinelibrary.wiley.com/.

Silk, M. J., Jackson, A. L., Croft, D. P., Colhoun, K., & Bearhop, S. (2015). The conse-
quences of unidentifiable individuals for the analysis of an animal social
network. Animal Behaviour, 104, 1e11.
Smith, J. A., & Moody, J. (2013). Structural effects of network sampling coverage I:
Nodes missing at random. Social Networks, 35, 652e668.

Smith, J. A., Moody, J., & Morgan, J. H. (2017). Network sampling coverage II: The
effect of non-random missing data on network measurement. Social Networks,
48, 78e99.

Snijders, T. A. B., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New spec-
ifications for exponential random graph models. Sociological Methodology, 36,
99e153.

Strandburg-Peshkin, A., Twomey, C. R., Bode, N. W. F., Kao, A. B., Katz, Y.,
Ioannou, C. C., et al. (2013). Visual sensory networks and effective information
transfer in animal groups. Current Biology, 23, R709eR711.

Sueur, C., King, A. J., Conradt, L., Kerth, G., Lusseau, D., Mettke-Hofmann, C., et al.
(2011). Collective decision-making and fissionefusion dynamics: A conceptual
framework. Oikos, 120, 1608e1617.

Tranmer, M., Marcum, C. S., Morton, F. B., Croft, D. P., & de Kort, S. R. (2015). Using
the relational event model (REM) to investigate the temporal dynamics of an-
imal social networks. Animal Behaviour, 101, 99e105.

VanderWaal, K. L., Atwill, E. R., Isbell, L., & McCowan, B. (2014). Linking social and
pathogen transmission networks using microbial genetics in giraffe (Giraffa
camelopardalis). Journal of Animal Ecology, 83, 406e414.

Wang, P., Robins, G., & Pattison, P. (2009). PNet: program for the simulation and
estimation of exponential random graph models. Melbourne, Australia: University
of Melbourne.

Wey, T. W., & Blumstein, D. T. (2010). Social cohesion in yellow-bellied marmots is
established through age and kin structuring. Animal Behaviour, 79(6),
1343e1352.

White, L. A., Forester, J. D., & Craft, M. E. (2015). Using contact networks to explore
mechanisms of parasite transmission in wildlife. Biological Reviews, 92,
389e409.

Whitehead, H. (2008). Analyzing animal societies: Quantitative methods for vertebrate
social analysis. Chicago, IL: University of Chicago Press.

Whitehead, H., & Dufault, S. (1999). Techniques for analyzing vertebrate social
structure using identified individuals: Review and recommendations. Advances
in the Study of Behavior, 28, 33e74.

Whitehead, H., & James, R. (2015). Generalized affiliation indices extract affiliations
from social network data. Methods in Ecology and Evolution, 6, 836e844.

Wilson, A. D. M., Krause, S., Dingemanse, N. J., & Krause, J. (2013). Network position:
A key component in the characterization of social personality types. Behavioral
Ecology and Sociobiology, 67, 163e173.

Wilson, J. D., Denny, M. J., Bhamidi, S., Cranmer, S. J., & Desmarais, B. A. (2017).
Stochastic weighted graphs: Flexible model specification and simulation. Social
Networks, 49, 37e47.

Wolf, J. B. W., Mawdsley, D., Trillmich, F., & James, R. (2007). Social structure in a
colonial mammal: Unravelling hidden structural layers and their foundations
by network analysis. Animal Behaviour, 74, 1293e1302.

https://cran.r-project.org/web/packages/xergm/index.html
https://cran.r-project.org/web/packages/xergm/index.html
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref43
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref43
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref43
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref44
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref44
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref44
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref45
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref45
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref45
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref45
http://dx.doi.org/10.1007/978-3-540-74686-7
http://dx.doi.org/10.1007/978-3-540-74686-7
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref47
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref47
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref47
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref47
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref48
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref48
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref48
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref49
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref49
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref49
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref49
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref49
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref50
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref50
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref50
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref51
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref51
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref51
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref51
https://cran.r-project.org/web/packages/hergm/index.html
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref53
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref53
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref54
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref54
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref54
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref55
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref55
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref55
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref55
http://dx.doi.org/10.1111/2041-210X.12770/full
http://onlinelibrary.wiley.com/
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref57
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref57
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref57
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref57
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref58
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref58
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref58
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref59
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref59
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref59
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref59
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref60
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref60
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref60
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref60
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref61
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref61
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref61
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref61
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref62
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref62
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref62
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref62
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref62
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref63
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref63
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref63
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref63
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref64
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref64
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref64
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref64
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref65
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref65
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref65
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref66
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref66
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref66
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref66
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref67
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref67
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref67
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref67
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref68
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref68
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref69
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref69
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref69
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref69
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref70
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref70
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref70
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref72
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref72
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref72
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref72
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref71
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref71
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref71
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref71
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref73
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref73
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref73
http://refhub.elsevier.com/S0003-3472(17)30254-3/sref73

	Understanding animal social structure: exponential random graph models in animal behaviour research
	Model description
	How have ERGMs been used before?
	ERGM advantages and drawbacks
	Advantages
	Drawbacks

	Potential future applications
	Generating Uncertainty for Modelling Transmission Processes
	Hypotheses Related to Social Dominance
	Hypotheses Related to Differences in Network Structure
	Hypotheses Related to Network Stability Over Time

	Outstanding issues
	Conclusions

	Acknowledgments
	Supplementary material
	References


