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Driver fatigue is an important contributor to road accidents, and driver fatigue detection has attracted a
great deal of attentions on account of its significant importance. Numerous methods have been proposed
to fulfill this challenging task, though, the characterization of the fatigue mechanism still, to a large
extent, remains to be investigated. To address this problem, we in this work, develop a novel Multiplex
Limited Penetrable Horizontal Visibility Graph (Multiplex LPHVG) method, which allows not only
detecting fatigue driving but also probing into the brain fatigue behavior. Importantly, we use our
method to construct brain networks from EEG signals recorded from different subjects performing
simulated driving tasks under alert and fatigue driving states. We then employ clustering coefficient,
global efficiency and characteristic path length to characterize the topological structure of the networks
generated from different brain states. In addition, we combine average edge overlap with the network
measures to distinguish alert and mental fatigue states. The high-accurate classification results clearly
demonstrate and validate the efficacy of our multiplex LPHVG method for the fatigue detection from
EEG signals. Furthermore, our findings show a significant increase of the clustering coefficient as the
brain evolves from alert state to mental fatigue state, which yields novel insights into the brain behavior
associated with fatigue driving.

Keywords: Multiplex limited penetrable horizontal visibility graph; EEG; brain network; driver fatigue
detection.

1. Introduction

Mental fatigue refers to suboptimal psychophysio-

logical condition caused by prolonged periods of de-

manding cognitive activity.1 Driver fatigue is a state

of reduced mental alertness, which impairs perfor-

mance of driving, being a major contributing factor

for traffic accidents globally.2 As a consequence, de-

veloping and establishing new technologies to moni-

tor and predict driver’s mental state contribute sig-

nificantly to reduce road accidents and improve the

health of drivers and passengers.

Many countermeasures against driver fatigue

have been proposed, including driver physiological

signals measuring and driver behavior monitoring. It

is difficult to assess the exact mental state only from

the driver behavior monitoring since that the mon-

itoring results may be affected by subjective judg-

ments. The physiological signals show higher capa-

bility of detecting driver fatigue as it solely depends

on the drivers condition. Patel et al.3 presented an

artificial intelligence based system that could de-

tect early onset of fatigue in drivers using heart

rate variability (HRV) as the human physiological

measure. Fu et al.4 investigated noncontact sensi-
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tive measurement of driver fatigue during a contin-

uous driving based on EMG and ECG. Recently, a

number of methods have been reported in literature

for detecting fatigue by using EEG signals, due to

the fact that EEG is closely associated with men-

tal and physical activities. Chai et al.5 presented a

two-class electroencephalography-based method for

classifying driver fatigue from EEG recordings. Ha-

jinoroozi et al.6 proposed a novel channel-wise con-

volutional neural network (CCNN) for prediction of

driver’s cognitive states from EEG signals. Huang

et al.7 used an online closed-loop EEG-based fatigue

detection system to predict driving fatigue based on

EEG power spectra. Wang et al.8 used wavelet en-

tropy with a sliding window and pulse coupled neural

network (PCNN) to detect potential danger during

fatigue driving. Driving fatigue is a complex phe-

nomenon involving many physical behavioral pro-

cesses, in spite of the various methods proposed by

researchers, the mechanisms underlying driving men-

tal fatigue still require further investigation. The

analysis of EEG signals has become an important

topic in recent years. Notably, various EEG-based

analysis have been successfully applied to investi-

gate major depressive disorder,9,10 autism spectrum

disorder,11 and seizure detection,12,13 and fatigue.

Many studies have suggested that the brain can be

viewed as a complex network system.14–30 In this pa-

per, we develop a multiplex LPHVG theory and con-

struct weighted brain networks to investigate how

the topology of the brain functional network is influ-

enced by driving mental fatigue.

In recent years, a new multidisciplinary method-

ology using complex network has emerged for char-

acterizing complex systems,31–36 especially the com-

plex network analysis of time series has undergone

a dramatic advance.37–47 In particular, Lacasa et al.

proposed the (horizontal) visibility graph39,40 and

the multiplex visibility graph,48 which allow map-

ping a time series into a complex network. The vis-

ibility graph theory has been proved to be com-

putationally efficient and an analytically tractable

method, which allows probing the dynamics under-

lying real complex systems from time series.12,49–51

More recently, we extended the visibility graph the-

ory to develop multiscale limited penetrable hori-

zontal visibility graph (MLPHVG).52 Our proposed

methods have been successfully applied in the anal-

ysis of signals from an electromechanical system in

process industry,53 and EEG signals related to man-

ual acupuncture54 and Alzheimer’s disease.55 De-

spite all these successes, the range of applicability

of visibility methods have been limited to univariate

time series to a large extent, whereas the most widely

existent in science and engineering are multivariate

time series. In this paper, inspired by Lacasa et al.,48

we develop a multiplex limited penetrable horizontal

visibility graph (Multiplex LPHVG) method to an-

alyze multichannel EEG signals recorded from sub-

jects performing simulated driving task. We combine

the average edge overlap and network measures in-

cluding clustering coefficient, global efficiency and

characteristic path length to detect driver fatigue.

The results demonstrate that our method not only

allows the detection of driver fatigue with a high ac-

curacy but also enables to characterize the cognitive

processes during the mental fatigue states.

2. Experiment

2.1. Subjects

Participants for this study are ten right-handed stu-

dents (8 males and 2 females, mean age: 23.3 years;

range: 22∼25 years) recruited from Tianjin Univer-

sity. None of the participants have any psychiatric re-

lated disorders. Subjects are required to refrain from

anti-fatigue drinks or drowsiness causing medications

for two days before the experiment. Concurrently,

they need to keep reasonable rest with sleep dura-

tions of more than 7 hours per night. The exper-

iments are conducted in indoor driving simulators.

As all subjects have no exposure to driving simula-

tors, they are asked to practice driving until skilled.

Subjects are advised to stop driving at any moment

during the experiment when any discomfort appears.

2.2. Experimental protocol

The experiments are conducted in the Laboratory of

Complex Networks and Intelligent Systems at Tian-

jin University. A simple driving simulator is equipped

with a brake pedal, a steering wheel, an accelerator

and a clutch. A monotonous expressway with few

bends, sunny day and a bare roadside scenery is in-

volved during the experiment. Furthermore, we add

a webcam 360D618 and a projector for better visual

perception and a stereo cabinet. The experimental

setup is shown in Fig. 1.
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Figure 1. (Color online) The simulating experimental
setup for obtaining EEG signals of subjects under alert
and fatigue driving states.

For heightening the fatigue sensation of sub-

jects, trials begin during 14:00∼15:30, which is

proved to be an easy-trapped period for fatigue and

each trial lasted approximately 90 minutes. Full-

course scalp EEG signals of subjects are collected

in an isolated and silent room. Besides, we also mon-

itor subjects facial state via a front-facing camera

to verify fatigue levels. According to the 9-point

Karolinska Sleepiness Scale (KSS) that assesses from

1 (extremely alert) to 9 (very sleepy), drivers fatigue

state is divided into alert, mild fatigue and fatigue

for assessing subjective fatigue. Since the experiment

procedure is a little tiresome, repetitive but mental-

engaged, driver fatigue is supposed to increase over

time during studies. The subjective assessment and

actual behavior, which is an important physiological

measurement of driving mental fatigue, reveal that

the participants are alert before the task and are fa-

tigued after the task.

2.3. Data acquisition and preprocessing

As a measurement of drivers fatigue state, their scalp

EEG signals are collected by a 40-channel recording

cap (Neuroscan, America) at a sampling frequency of

1000Hz. The electrodes are arranged in accordance

to the standard international 10/20 system. Before

acquisition, the skin impedance of EEG electrodes is

adjusted below 5kΩ by injecting conductive gel. The

left and right mastoids are defined as reference elec-

trodes. Eye movements and blinking are monitored

by recording the horizontal and vertical EOG. All

subjects are advised to possibly restrict unnecessary

body movement and try to maintain constant speed

and avoid car collision during data collection. After

the EEG signals are collected, the main steps of data

preprocessing are carried out by the EEGLAB soft-

ware. The raw signals are down-sampled to 250Hz

and altered using a band-pass FIR filter of 1-50Hz.

Then the Independent Component Analysis (ICA)56

is applied to remove the eye blinking artifacts from

the datasets by rejecting the highly correlated com-

ponents with EOG.

3. Method

For a multi-channel EEG signal {xα,i}Ni=1 , α =

1, 2, ...,M containing M channels of EEG signals of

equal length N, the Multiplex LPHVG method can

be implemented by the following three main steps:

Firstly, the limited penetrable horizontal visibil-

ity graph for each EEG channel signal is constructed.

A schematic diagram is shown in Fig. 2 to show how

to infer limited penetrable horizontal visibility graph

from a time series of length 10. The time series is

displayed in the form of vertical bars in Fig.2(a) and

each data point (vertical bar) is regarded as a node

of a complex network. For the horizontal visibility

graph, two nodes y (i) and y (j) are connected if one

can draw a horizontal line joining y (i) and y (j) that

does not intersect any intermediate data height. That

is, a connection between two nodes y (i) and y (j) ex-

ists (black lines in Fig.2(b)) if the following criterion

is fulfilled:

y (i) , y (j) > y (k) ∀i < k < j (1)

The limited penetrable horizontal visibility

graph is a development of the HVG. If we set the

limited penetrable distance to L, a connection be-

tween two nodes exists if the number of in-between

nodes that block the horizontal line is no more than

L. As shown in Fig.2(b), the red lines are the new

established connections when we infer the LPHVG

on the basis of HVG with the limited penetrable dis-

tance being 1.
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(b)

(a)

Figure 2. (Color online) Example of (a) a time series
and (b) its corresponding LPHVG with the limited pen-
etrable distance L being 1, where every node corresponds
to time series data in the same order.

Secondly, we obtain M limited penetrable hor-

izontal visibility graphs {Aα}Mα=1 for multi-channel

EEG signal {xα,i}Ni=1 , α = 1, 2, ...,M .The obtained

M -layer multiplex network on N nodes is defined by

the vector of adjacency matrices, where Aα is the α-

th layer (i.e. layer α) and corresponds to the LPHVG

associated to the EEG channel of {xα,i}Ni=1 . Accord-

ing to Ref. [48], we use the average edge overlap to

calculate the overall coherence of the original mul-

tivariate time series, which can be calculated as fol-

lows:

ω =

∑
i

∑
j>i

∑
α a

[α]
ij

M
∑
i

∑
j>i

(
1− δ

0,
∑
α a

[α]
ij

) (2)

where δ is the Kronecker delta symbol, a
[α]
ij is the

edge between nodes i and j at layer α. This measure

represents the average number of identical edges over

all layers of the multiplex network.ω estimates the

similarity and coherence with averaged existence of

overlapped links from all pairs of nodes between all

layers. ω takes values in [1/M, 1].ω = 1/M if each

edge i, j exists in exactly one layer; ω = 1 only if all

the M layers are identical.

Thirdly, for a M-layer multiplex network

{Aα}Mα=1,we infer the weighted brain network by

quantifying the interlayer correlations between the

degrees of the same node at two different layers.

kαi =

N∑
j=1

aαij (3)

kαi =
∑N
j=1 aij is the degree of node i at layer α.

p (kα) is the degree distribution of the α-th layer,i.e.,

p (kα) is a probability that a node has a degree of kα

at layer α. We characterize the interlayer correlation

between two layers α and β by using the mutual in-

formation of the corresponding degree sequences kαi
and kβi , i = 1, ..., N . We compute the quantities:

p
(
kα, kβ

)
=
Nkα,kβ

N
(4)

where Nkα,kβ is the number of nodes having degree

equal to kα and kβ respectively at layer α and at

layer β. The interlayer correlation of layers α and β

is:48

Iα,β =
∑
kα

∑
kβ

p
(
kα, kβ

)
log

p
(
kα, kβ

)
p (kα) p (kβ)

(5)

We then construct a brain network by regarding each

layer as a node and determining the functional con-

nectivity by calculating the interlayer correlation of

all paired layers.

We in this paper develop a multiplex limited

penetrable horizontal visibility graph and construct

brain network from multi-channel EEG signal for de-

tecting driver fatigue. The three main steps of the

method are shown in Fig. 3. The 3D surface visu-

alizations of the weighted brain network is imple-

mented using the Brain Net Viewer.57

For all subjects performing the simulated driv-

ing task, we define two types of mental state within

the 90-min EEG recordings: the first 5 min of the 90-

min virtual driving operation is defined as the alert

state, and the last 5 min of EEG signals of the 90-

min virtual driving operation is defined as the fa-

tigue state. The continuous 5 min EEG signals are

segmented into 5s non-overlapped epochs, and then

we obtain 60 alert epochs and 60 fatigue epochs. 120

multiplex LPHVGs from the alert and fatigue driving

EEG signals are constructed with the limited pene-

trable distance being 1. The average edge overlap is

used to calculate the overall coherence of the original

multivariate time series.

Once we obtain the functional brain network,

a wide range of sparsity (10% ≤ S ≤ 35%) with

an interval of 1% will be applied in all networks to

enable comparison of the network statistical mea-

sures without bias from different number of edges

and also avoid biases associated with using a sin-

gle threshold. Sparsity (S) is defined as the ra-

tio of the number of existing edges to the max-
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Figure 3. (Color online) Schematic procedures of the multiplex limited penetrable horizontal visibility graph method.

imum possible edge number in the network. And

the range of thresholds is selected to ensure that

the brain networks maintain small-worldness char-

acter within the variation range.58,59 We then ex-

plore the dynamic behaviors in terms of network

analysis, which can be quantified via network statis-

tical measures. An individual network measure may

characterize one or several aspects of global and lo-

cal brain connectivity. In this work, we employ the

weighted global efficiency (EW ), weighted clustering

coefficient (CW ), and weighted characteristic path

length (LW ) to characterize the topological struc-

ture of inferred brain networks.60 Specifically, These

network measures can be calculated as follows:{
EW =

∑
i∈N EWi
n

EWi =
∑
j∈N,j 6=i(d

W
ij )
−1

n−1

(6)

CW =
∑
i∈N CWi
n

CWi =
∑
j,k 6=i∈N (wijwkjwik)

1
3

ki(ki−1)

(7)

{
LW =

∑
i∈N LWi
n

LWi =
∑
j 6=i∈N dij

n−1

(8)

where W is short for weighted, since that all the net-

work measures are derived from weighted brain net-

work. N is the set of all nodes in the network, and

n is the number of nodes. EWi is the weighted effi-

ciency of node i. dij is the shortest weighted path

length between nodes i and j, CWi is the weighted

clustering coefficient of node i. ki is the degree of

node i. wij , wih and wjh represent the weight be-

tween node i and j, i and h, j and h, respectively.

LWi is the average weighted distance between node i

and all other nodes.

4. Results and Discussions

The paired t-test is employed to compare the net-

work measures (weighted global efficiency, weighted

clustering coefficient, weighted characteristic path

length, and average edge overlap respectively) be-

tween alert and fatigue driving states of each subject.

The paired t-test returns a test decision for the null

hypothesis that the network measure in alert and fa-

tigue driving states comes from a normal distribution

with mean equal to zero and unknown variance. We

show the results in Fig. 4-7. For different subjects,

the p-values are all much smaller than 0.05 indicating

statistical significance.

We combine the weighted global efficiency,

weighted clustering coefficient, weighted characteris-

tic path length and average edge overlap to generate

a four-dimensional feature vector and then employ

SVM (Support Vector Machine) to realize the classi-

fication of alert and mental fatigue driving states.

In particular, we employ the leave-one-out cross-

validation to estimate the classified results of the fea-
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tures derived from Multiplex LPHVGs and inferred

brain networks. The leave-one-out cross-validation

consists of removing one sample from the dataset

(alert and mental fatigue), constructing the decision

function on the basis only of the remaining dataset

and then testing on the removed sample. In this

way this process is repeated 120 times independently,

with a different sample left out for testing every time.

After 120 cross validations, we obtain the predicted

labels for all samples and measure the fraction of

correctly predicted samples over the total number of

samples in the dataset. The classification accuracy,

sensitivity and specificity of each subject are shown

in Table 1.
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Figure 4. (Color online) The average edge overlap un-
der alert and mental fatigue driving states for different
subjects.
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Figure 5. (Color online) The weighted clustering coef-
ficient under alert and mental fatigue driving states for
different subjects
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Figure 6. (Color online) The weighted global efficiency
under alert and mental fatigue driving states for different
subjects.
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Figure 7. (Color online) The weighted characteristic
path length under alert and mental fatigue driving states
for different subjects

Table 1. Classification Accuracy, Sensitivity and Specificity
of alert and mental fatigue driving states for each subject.

Classification Accuracy Sensitivity Specificity

Subject 1 100% 100% 100%
Subject 2 99.17% 98.33% 100%
Subject 3 100% 100% 100%
Subject 4 100% 100% 100%
Subject 5 96.7% 98.28% 95.16%
Subject 6 98.33% 98.33% 98.33%
Subject 7 100% 100% 100%
Subject 8 97.5% 100% 95.24%
Subject 9 100% 100% 100%
Subject 10 99.17% 100% 98.33%
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Figure 8. (Color online) The joint distributions of weighted clustering coefficient and average edge overlap for classifying
between alert and fatigue driving states of different subjects.

In Fig. 8, we illustrate the joint distributions

of weighted clustering coefficient and average edge

overlap derived from the 120 epochs (60 alert epochs

and 60 fatigue epochs for each subject) of different

subjects under alert and fatigue driving states. These

measures clearly enable to classify alert and fatigue

driving states.

Many EEG-based studies have been performed

to detect driver mental fatigue. For example, Wali

et al.61 obtained 79.21% accuracy based on fusion of

discrete wavelet packet transform (DWPT) and Fast

Fourier Transform (FFT). Chai et al.5 combined au-

toregressive (AR) modeling and Bayesian neural net-

work classifier to achieve an accuracy of 88.2%. Cor-

rea et al.62 got 87.4% accuracy using a Neural Net-

work classifier. Li et al.63 achieved a classification

accuracy of 92.3% based on Grey Relational Anal-

ysis and Kernel Principle Component Analysis. Fu

et al.64 proposed a dynamic fatigue detection model

based on Hidden Markov Model (HMM) to reach a

highest accuracy of 95.4%. Min et al.65 presented a

multiple entropy fusion method to detect a drivers

fatigue state by an accuracy of 98.3%. Our proposed

multiplex LPHVG method yields an average classifi-

cation accuracy of 99.09% over the ten subjects. Ex-

cept for the high classification accuracy of alert and

mental fatigue driving states for different subjects,

from Fig. 5 and Fig. 6, we find that the subjects

under mental fatigue state had significantly higher

clustering coefficients and higher weighted global ef-

ficiency. Higher clustering of brain networks is asso-

ciated with lower wiring cost66 and we can infer that

conservation of wiring cost may have been an impor-

tant selection factor in the evolution of drivers men-

tal state in the simulated driving experiment. Actu-

ally, the clustering coefficient has a connection with

the local efficiency of information transfer. The men-

tal fatigue can lead to an increase of brain regional

synchronous activities, which can be reflected by the

increased clustering coefficient. These also account

for the reason why the clustering coefficients increase

as the brain evolves from alert state to mental fatigue

state.67 Sengupta et al.68 have indicated that an in-

creasing trend in the clustering coefficient is indica-

tive of tight coupling between the corresponding elec-

trode regions that increases in successive stages with
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an increase in fatigue. These existing results support

well our interesting findings in the characterization

of driving fatigue. In this regard, our method has a

capability to explore the variety of brain dynamical

properties from alert state to mental fatigue state in

the driving process.

5. Conclusions

In summary, we have articulated a multiplex limited

penetrable horizontal visibility graph strategy for de-

tecting fatigue driving from EEG signals. The pro-

posed method enriches the theories for identifying

and characterizing EEG signals recorded from dif-

ferent brain states. The basic procedure are in two

parts: First, we construct multiplex limited penetra-

ble horizontal visibility graphs and then extract the

average edge overlap. Second, we exploit mutual in-

formation theory to infer brain network, where each

EEG channel signal is deemed as a node and the edge

is determined in terms of interlayer mutual infor-

mation between the corresponding degree sequences.

Combining average edge overlap and network statis-

tical measures, including clustering coefficient and

global efficiency, we efficiently classify EEG data

recorded from alert and fatigue driving states. In

addition, we characterize fatigue behavior from the

perspective of complex network, which plays an im-

portant role in understanding mental fatigue mecha-

nisms. The results from this study provide means for

the development of driver fatigue detection method

that could be employed in a real driving context.
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