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Critical points of coupled vector-Ising systems. Exact results
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Abstract

We show that scale invariant scattering theory allows to exactly determine the critical points

of two-dimensional systems with coupled O(N) and Ising order pameters. The results are

obtained for N continuous and include criticality of loop gas type. In particular, for N = 1

we exhibit three critical lines intersecting at the Berezinskii-Kosterlitz-Thouless transition

point of the Gaussian model and related to the Z4 symmetry of the isotropic Ashkin-Teller

model. For N = 2 we classify the critical points that can arise in the XY-Ising model and

provide exact answers about the critical exponents of the fully frustrated XY model.

http://arxiv.org/abs/1902.09901v1


When a statistical mechanical system possesses two order parameters, phase transitions

associated with each of them can take place at different points of the phase diagram. It is

possible, however, that the two types of ordering set in at the same point, and that this gives

rise to novel critical behavior with new critical exponents. The example of a vector order

parameter for O(N) symmetry coupled to a scalar (Ising) order parameter for Z2 symmetry is

paradigmatic of the combination of continuous and discrete symmetries and was addressed since

the early days of the perturbative expansion in 4 − ε dimensions [1]. The case N = 2 (XY-

Ising model) [2] has been higly debated in two dimensions also because it shares the ground

state degeneracy of the fully frustrated (FF) XY model [3] describing a Josephson-junction

array in a magnetic field [4]. The problem of whether this case can originate new critical

behavior has been studied numerically for decades, with open questions persisting to this day

(see [5] for a review). A consensus in favor of two transitions occurring at close but distinct

temperatures very slowly emerged for the FFXYmodel (see [6, 7, 8]), but disagreement on critical

exponents remained even in the most extensive simulations (order 106 lattice sites) [8, 9, 10].

For the XY-Ising model, which has a larger parameter space, two transition lines are observed

to approach each other, without that the numerical analysis could so far determine the nature of

the meeting point, although evidence for universal crossover effects in both models [8] suggests

the existence of a multicritical point with simultaneous criticality. The recent realization [11]

with cold atoms of a two-dimensional system with the symmetries of the XY-Ising model opened

the way to experimental investigations of the critical behavior, but also here the required level

of accuracy calls for theoretical benchmarking. On the analytic side, however, the problem

has been considered as intractable, since the distance from the upper critical dimension as well

as the interplay with the Berezinskii-Kosterlitz-Thouless (BKT) physics do not provide small

expansion parameters, while an exactly solvable lattice realization of the coupled symmetries

has never been found (see [12]).

In this paper we show that the critical points of coupled O(N) and Ising order parameters

in two dimensions can be determined in a general and exact way, directly in the continuum

limit. We obtain this result within the framework of scale invariant scattering [13] that allowed,

in particular, to progress with another longstanding problem such as critical quenched disorder

[14, 15]. We determine the lines of renormalization group (RG) fixed points as a function of

the variable N , which can be taken continuous, within a space of universal parameters. In

particular, our results for N = 2 allow us to classify the multicritical points that can arise in

the XY-Ising model, and to draw conclusions about the critical exponents in the FFXY model.

We consider the two-dimensional vector-Ising model with lattice Hamiltonian

H = −
∑

〈i,j〉
[(A+Bσiσj)si · sj + Cσiσj ] , (1)

which is invariant under the rotations of theN -component unit vectors si and the reversal of σi =

±1; the sum is taken over nearest-neighbor sites. We look for the points of simultaneous O(N)

and Z2 criticality, where the correlators 〈si · sj〉 and 〈σiσj〉 behave as |i− j|−2Xs and |i− j|−2Xσ ,

respectively, Xs and Xσ being the scaling dimensions; such points are fixed points of the RG (see
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Figure 1: Scattering processes for a vector particle multiplet (a = 1, 2, . . . , N) and a scalar

(dashed trajectories) at criticality. The amplitudes S1, . . . , S7 are invariant under time (up-

down) and space (right-left) reflections.

e.g. [16]) where scale invariance allows to adopt the continuum description corresponding to a

Euclidean field theory. We exploit the fact that such a theory is the continuation to imaginary

time of a (1 + 1)-dimensional relativistic quantum field theory, which admits a description in

terms of massless particles corresponding to the collective excitation modes. The combination

of relativistic and scale invariance actually leads to conformal invariance [17], which in two

dimensions has infinitely many generators. These yield infinitely many conserved quantities,

and then completely elastic particle scattering: the final state is kinematically identical to the

initial one [13]. This is why the two-particle scattering processes allowed at the RG fixed points

are those depicted in Fig. 1. The vector degrees of freedom correspond to a multiplet of particles

a = 1, 2, . . . , N , while the scalar corresponds to a particle whose trajectories we represent by

dashed lines. The amplitudes S1, . . . , S7 are those allowed by the requirement that the tensor,

vector or scalar character of the initial state is preserved in the final state.

Since the only relativistic invariant – the center of mass energy – is dimensionful, scale

invariance leads to constant amplitudes [13, 18]. Then crossing symmetry [19], which relates the

amplitudes under exchange of space and time directions, takes the simple form

S1 = S∗
3 ≡ ρ1 e

iφ, (2)

S2 = S∗
2 ≡ ρ2, (3)

S4 = S∗
6 ≡ ρ4 e

iθ, (4)

S5 = S∗
5 ≡ ρ5, (5)

S7 = S∗
7 ≡ ρ7, (6)

and allows the parametrization in terms of the variables ρ1 and ρ4 non-negative, and ρ2, ρ5, ρ7,

φ and θ real. Finally, the unitarity of the scattering operator S translates into the equations

ρ21 + ρ22 = 1, (7)

ρ1ρ2 cosφ = 0, (8)

Nρ21 + ρ24 + 2ρ21 cos 2φ = 0, (9)

ρ24 + ρ27 = 1, (10)

Nρ24 + ρ25 = 1, (11)
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Solution N ρ2 cosφ ρ4 cos θ ρ5

D1± R ±1 - 0 - (±)1

D2± [−2, 2] 0 ±1
2

√
2−N 0 - (±)1

D3± 2 ±
√

1− ρ21 0 0 - (±)1

F1 1 0 [−1
2 ,

1
2 ]

√

1− 4 cos2 φ 0 2 cos φ

F2 1 [−1, 1] 0
√

1− ρ22 0 ρ2

F3 1 0 0 1 [−1, 1] 0

L1± [−3, 1] 0 ±1
2

√
1−N 1 (±)12

√
1−N ±

√
1−N

L2± [−3, 1] 0 ±1
2

√
1−N 1 (±)12

√
3 +N ∓

√
1−N

T1± (−∞, 1] ±
√

1−N
2−N

0 1 (±)1√
2

√

1(±) 1√
2−N

(±)
√
1−N

T2± [−3,−2] 0 ±1
√
−2−N 0 ±(N + 1)

Table 1: Solutions of the Eqs. (7)-(13) classifying the RG fixed points of two-dimensional

systems with coupled O(N) and Ising order parameters. One also has ρ1 =
√

1− ρ22 and

ρ7 = (±)
√

1− ρ24. Signs in parenthesis are both allowed.

ρ4ρ7 cos θ = 0, (12)

ρ4
[

ρ2e
−iθ + ρ1e

−i(φ+θ) +Nρ1e
i(φ−θ) + ρ5e

iθ
]

= 0. (13)

For example, (11) follows from 1 = 〈øø|SS†|øø〉 = 〈øø|S [
∑

a |aa〉〈aa| + |øø〉〈øø|] S†|øø〉 = N |S4|2+
|S5|2, where we denoted by ø the scalar particle. Notice that N enters the equations as a param-

eter that can be given real values. Such analytic continuation is well known for the decoupled

O(N) model, where it allows to describe self-avoiding walks for N → 0 [20].

The solutions of the Eqs. (7)-(13) are given in Table 1 and provide the general and exact

classification of the RG fixed points that can arise in the theory (1). Their discussion conveniently

begins with the solutions of type D (Fig. 2). These are characterized by ρ4 = 0, amounting to

decoupling between the vector and the scalar. Indeed, this yields S4 = S6 = 0 and, recalling

also (10) and (11), S5 = S7 = ±1. We recall that scattering in 1 + 1 dimensions involves

position exchange, and mixes statistics with interaction. It follows that S5 = −1 corresponds

for the decoupled scalar sector to Ising criticality, which in two dimensions is described by a

neutral free fermion [17]; on the other hand, S5 = 1 accounts for the trivial fixed point (free

boson). D1± corresponds to free bosons/fermions. In particular, the vector part (amplitudes

S1, S2, S3) of D1+ also describes [15] the asymptotically free zero-temperature critical point of

the O(N > 2) ferromagnet (see e.g. [16]); hence, for ρ5 = 1 the full solution D1+ describes the

zero-temperature critical point of the O(N + 1) model. The vector part of the solution D2±
corresponds to nonintersecting trajectories (S2 = 0) and was shown in [13, 15] to describe the

critical lines of the gas of nonintersecting planar loops with fugacity N (self-avoiding walks for

N → 0) in its dilute (D2−) and dense (D2+) regimes. This loop gas is known from its lattice

solution (see [21]) to be critical for N ∈ [−2, 2]; the correspondence between particle trajectories
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Figure 2: Solutions of type D in the parameter space of the vector sector. This is decoupled from

the scalar sector and describes, in particular, the critical lines of the dilute (D2−) and dense

(D2+) regimes of the gas of nonintersecting loops, the BKT phase of the XY model (D3+), and

the zero-temperature critical point of the O(N > 2) ferromagnet (D1+).

and loop paths was originally noted in the study of the off-critical case [22].

The solution D3± is defined for N = 2 and contains ρ1 as a free parameter. Its vector part

then corresponds to the line of fixed points that accounts for the BKT transition [23] in the XY

model. We recall that this line is described by the Gaussian field theory with action

AGauss =
1

4π

∫

d2x (∇ϕ)2 , (14)

and energy density field ε(x) = cos 2bϕ(x) with scaling dimension Xε = 2b2; b2 provides the

coordinate along the line, with the BKT transition point corresponding to b2 = 1, where ε

becomes marginal. Introducing the Euclidean complex coordinates x± = x1 ± ix2, the equation

of motion ∂+∂−ϕ = 0 yields the decomposition ϕ(x) = φ+(x+) + φ−(x−). The fields

Um(x) = ei
m

2b
[φ+(x+)−φ

−
(x

−
)] , m ∈ Z , (15)

with scaling dimension m2/8b2, satisfy the condition that 〈· · · ε(x)Um(0) · · · 〉 is single valued in

x (see e.g. [18]). (φ+ − φ−)/2b is the O(2) angular variable, and the vector field s = (s1, s2)

corresponds to s1 ± is2 = U±1. The mapping on the solution D3± is provided by ρ1 = sin π
2b2

[13, 18], so that the BKT phase corresponds to D3+: it goes from the BKT transition point

b2 = 1 (contact point with D2± in Fig. 2) to the zero-temperature point b2 = ∞ (contact point

with D1+).

With this understanding, we can continue the discussion of the results of Table 1. The

solutions of type F are all defined for N = 1 and correspond to fixed points of two coupled Ising
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Figure 3: Critical lines at N = 1 due to the solutions of type F. They meet at the BKT transition

point.

order parameters; the Hamiltonian (1) becomes that of the Ashkin-Teller (AT) model [24]. The

“isotropic” (A = C) AT model is known to possess a line of fixed points that also maps on the

theory (14), with continuously varying Xε = 2b2, fixed Xs = Xσ = 1/8, and b2 nonuniversally

related to the four-spin coupling B [25, 26, 27]. In fact, all solutions of type F possess a free

parameter and describe three critical lines sharing a common point (Fig. 3). The identification

of this point with the BKT transition point b2 = 1 follows from the observation that F2 has

S1, S2, S3 equal to S4, S5, S6, respectively, so that it reconstructs the vector part of D3; then we

know that S2 = 0 corresponds to b2 = 1. Further insight is obtained considering the theory with

action

AGauss +

∫

d2x {λ ε(x) + λ̃ [U4(x) + U−4(x)]} . (16)

Since we saw that U±1 define the components of a O(2) vector, the terms U±4 in (16) break O(2)

symmetry down to Z4. The scaling dimensions that we specified above imply that at b2 = 1 all

the fields in the integral in (16) are marginal. The RG equations around b2 − 1 = λ = λ̃ = 0

where studied at leading order in [28] and give three lines of fixed points: λ = λ̃ = 0 and

b2 = 1, λ = ±λ̃. It was then conjectured in [29] that these lines may persist to all orders. Our

exact result of Fig. 3 shows that this is indeed the case. The isotropic AT model does possess

Z4 symmetry: for A = C the Hamiltonian (1), which contains the Ising variables s and σ, is

invariant under rotations of the vector (s, σ) by angles multiples of π/2. The maximal value of

b2 realized in the square lattice AT model is 3/4 [26], and only the line with varying b2 plays a

role.

The solutions of type L correspond to nonintersecting trajectories1 (S2 = S7 = 0) and are

defined for N ∈ [−3, 1] (Fig. 4). Hence, they reproduce the critical lines of the nonintersecting

1Notice that S5 cannot distinguish between intersection and nonintersection.
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Figure 4: The solutions L1 and L2 (continuous and dotted curves, respectively). As the vector

part of D2 (dashed), they correspond to critical lines of the gas of nonintersecting loops.

loop gas (vector part of solution D2) through a mechanism in which the scalar provides the

second component of the vector. Finally, the solutions of type T cannot be traced back to the

decoupled O(N) case, and necessarily correspond to new universality classes.

Let us now focus on the theory (1) with N = 2, i.e. on the XY-Ising model. We see from

Table 1 that the only allowed RG fixed points are those of type D. We have already seen how the

vector sector of D3 is related to the Gaussian theory (14) and its parameter b2; the scalar sector

describes a trivial or Ising fixed point depending on the sign of ρ5, with order parameter scaling

dimension Xσ equal to 0 or 1/8, respectively. The case b2 = ∞, ρ5 = 1, with Xs = Xσ = 0,

describes the O(3) zero-temperature critical point. Fig. 2 shows that for N = 2 the solution D3

includes as particular cases D1± (b2 = ∞ and 1/2) and D2± (b2 = 1).

Besides the points of simultaneous O(2) and Z2 criticality, which we can call multicritical,

the XY-Ising model possesses points where only one of the order parameters is critical. Even

considering those, it follows from our results that the only possible values for Xσ at N = 2 are

0 and 1/8, while Xs can vary continuously. However, since continuous symmetries do not break

spontaneously in two dimensions [30], a vector “ordering” transition can only occur at b2 = 1

through the BKT mechanism; hence, only the usual value ηs = 2Xs = 1/4 can arise at a vector

transition point.

There will be in the parameter space of the XY-Ising model phase transition lines bifurcating

from a multicritical point and ending in an Ising critical point on one side and a BKT transition

point on the other side. The O(3) fixed point is a natural candidate for a zero-temperature mul-

ticritical point. The FFXY model can be defined on the square lattice through the Hamiltonian

−∑

〈i,j〉 Ji,jsi · sj (Ji,j = ±J), with ferromagnetic horizontal rows and alternating ferromag-

netic and antiferromagnetic columns. The model has the same ground state degeneracy of the
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XY-Ising model [3], but possesses only the parameter J . On universality grounds, it then corre-

sponds to a line within the parameter space of the XY-Ising model. Our classification of allowed

critical behaviors at N = 2 implies that the exponents 0.2 . ησ = 2Xσ . 0.4, 0.8 . νσ . 1

measured over the years (see the survey in [8]) for the FFXY model are only consistent with

the Ising universality class (ησ = 1/4, νσ = 1). Slow nonmonotonic approach to Ising exponents

was observed in [8] for increasing system size. We have also shown that at the vector transition

only the BKT transition value ηs = 1/4 is allowed. A check consistent with the BKT univer-

sality class was performed in [8], although ηs was not measured. The value ηs ≃ 0.2 found in

[10] is instead not compatible with our results. Our conclusions on the FFXY exponents do

not depend on simultaneous or separate transitions. The now accepted two-transition scenario

suggests that the FFXY line intercepts the bifurcation originating from a multicritical point in

XY-Ising parameter space.

Summarizing, we have shown how scale invariant scattering theory yields the exact solution

to the longstanding problem of determining the RG fixed points for two-dimensional systems

with coupled O(N) and Ising order parameters. For N = 2 this enabled us to classify the

multicritical points allowed in the XY-Ising model and to provide exact answers about the

FFXY exponents. At N = 1 we have exhibited three lines of fixed points intersecting at the

BKT transition point of the Gaussian theory and related to the Z4 symmetry of the isotropic AT

model. For N ≤ 1 new universality classes appear that can be relevant for gases of intersecting

loops.
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