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Lindblad dissipative dynamics in presence of phase coexistence

Andrea Nava1 and Michele Fabrizio1

1International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
(Dated: May 17, 2019)

We investigate the dissipative dynamics yielded by the Lindblad equation within the coexistence
region around a first order phase transition. In particular, we consider an exactly-solvable fully-
connected quantum Ising model with n-spin exchange (n > 2) – the prototype of quantum first
order phase transitions – and several variants of the Lindblad equations. We show that physically
sound results, including exotic non-equilibrium phenomena like the Mpemba effect, can be obtained
only when the Lindblad equation involves jump operators defined for each of the coexisting phases,
whether stable or metastable.

PACS numbers:

I. INTRODUCTION

Even if it covers 71% of the earth surface and more
than half of human body is made of it, water still
represents a scientific challenge for its fascinating
and intriguing physical properties1,2, among which its
anomalous relaxation time, revealed, e.g., by hot buckets
of water freezing faster than colder ones, both exposed
to the same subzero environment. This counter intuitive
effect, already known by Aristotle, Bacon and Descartes,
was formalized only in 1969 by the high school student
Erasto Batholomeo Mpemba in the attempt to freeze a
hot ice cream mixture3, after him named Mpemba effect.
Although the existence of such phenomenon in water has
been questioned4, it has actually been observed also in
clathrate hydrates5, magneto-resistance alloys6, granular
systems7 and spin glasses8. Several proposals have
been formulated to explain how and when the Mpemba
effect may or not take place, which invoke properties
of the hydrogen bonds9, evaporation10,11, conduction
and convection12, and, eventually, the supercooling
process13,14.
Usually, liquid water cooled down to the freezing tem-
perature 273.15 K starts to crystallize around nucleation
sites. As discovered by D. G. Fahrenheit in 172415,
in pure, i.e, free of impurities, water it is possible to
delay by a proper cooling procedure the formation of
ice nucleators, and thus the freezing, till temperatures
of the order of 231.15 K, the liquid spinodal tempera-
ture. Supercooled water remains trapped in the liquid
metastable state for quite a long time before sponta-
neously crystallising in the stable solid phase, unless
shaken. When supercooling is realized during a fast
process, like a quench, the Newton’s heat law may not
apply and the Mpemba effect occur. Specifically, in the
free-energy landscape corresponding to the solid-liquid
coexistence region, a system cooled down from a lower
temperature could fall in the metastable minimum
with higher probability and remain trapped there for a
longer time than a system cooled down from a higher
temperature.

At low temperature, a faithful description of super-

cooling, and its associated phenomena like, e.g., the
Mpemba effect, can do without proper modelling of
the quantum dissipative dynamics in presence of phase
coexistence. In this work we shall address right this issue
in the prototype quantum first order phase transition
displayed by a fully connected quantum Ising model
with p-spin exchange, where p > 2.
Quantum spin models, besides being paradigmatic
systems for studying quantum phase transitions, also
constitute a good playground to investigate, both
theoretically and experimentally, the driven dissipative
dynamics16–24. We shall model the dissipative dynamics
of our case study in the framework of Markovian dynam-
ics, through the rather general master equation derived
by Lindblad back in 197625,26, but still widely used27–34.
As a matter of fact, metastability in Markovian open
quantum systems turns out to be a non trivial problem35

due to the separation of timescales in the dissipative
dynamics36. Typically, the Lindblad equation is able
to describe the short time dynamics during which the
system relaxes to a metastable state37–39, while it fails
to describe the long time ergodic dynamics that drives
relaxation to the true equilibrium state.
Here, we show how to describe the full dynamics in
terms of an effective Lindblad equation valid in both
regimes. The main idea is to write the master equation
as a sum of competing terms, one for each phase within
the metastable manifold. Within this description both
supercooling and Mpemba effect spontaneously emerges
during the quantum dissipative dynamics.

The paper is organized as follows. In Section II we
introduce the quantum Ising model we shall investigate
and its equilibrium phase diagram. In Section III we
briefly discuss the Lindblad master equation to describe
the Markovian relaxation dynamic, and consider the sim-
ple case of a single spin-1/2 in a static or dynamic mag-
netic field. In Section IV we specialise the Lindblad equa-
tion in the fully connected quantum Ising model, and
show how it can be exploited to recover the equilibrium
phase diagram. In Section V we present a variant of the
Lindblad equation appropriate in case of phase coexis-
tence, and apply it to our quantum Ising model, which
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FIG. 1. Graphic representation of the model: a fully con-
nected graph of N spins (red balls), here shown for N = 6,
each in contact with its own bath (blue boxes).

indeed shows Mpemba effect. Finally, Sec. VI is devoted
to concluding remarks.

II. THE MODEL HAMILTONIAN

We wish to describe the dynamics of an open quan-
tum system, which must be as simple as possible but
still posses a non-trivial phase diagram with metastable
phases. For that purpose, we consider a quantum Ising
model on an N -sites fully connected graph, sketched in
Fig. 1 for N = 6, described by the Hamiltonian

H = −hx
∑
i

σxi −N
m∑
n=2

Jn

(
1

N

∑
i

σzi

)n
, (1)

with integer m ≥ 2. Here σαi , α = x, y, z, are Pauli
matrices on site i = 1, . . . , N , hx a transverse magnetic
field, and Jn n-spin exchange constants.

Hereafter, we shall focus on three reference cases that
are representative of all others. Specifically,

1. J2 6= 0, J4 6= 0, and Jn6=2,4 = 0;

2. J3 6= 0 and Jn 6=3 = 0;

3. J2 6= 0 and Jn 6=2 = 0.

In all three cases the model undergoes a phase transi-
tion increasing either temperature T or transverse field
hx from a phase with finite to one with vanishing expec-
tation value of σzi , ∀ i. This transition is first order in
case 133,40 and 241, but second order in case 331. More-
over, in case 1 and 3 it corresponds to the restoration of
the Z2 symmetry σzi → −σzi , ∀ i, which is spontaneously
broken in the low T and hx phase, while such symmetry
is explicitly broken in case 2.
Because of full connectivity, mean-field approximation
becomes exact for model (4) in the thermodynamic limit
N →∞, since, for i 6= j, and for any α, β = x, y, z,

〈σαi σ
β
j 〉 − 〈σ

α
i 〉 〈σ

β
j 〉 ∝

1

N
−→
N→∞

0 . (2)

FIG. 2. Effective 2-d Bloch sphere for the mean values of the
spin components

It follows that the equilibrium Boltzmann distribution

ρ =
e−βH

Tr
(

e−βH
) −→

N→∞

∏
i

ρi =
∏
i

e−βHi

Tr
(

e−βHi
) , (3)

where β = 1/T and the local mean field Hamiltonian
reads

Hi = −hx σxi − hz
(
m
)
σzi . (4)

The longitudinal field in (4) is defined by

hz
(
m
)

=

m∑
n=2

nJnm
n−1
z , (5)

where m =
(
mx,my,mz

)
is the Bloch vector with com-

ponents

mα ≡
1

N

∑
j

〈
σαj
〉
, α = x, y, z . (6)

The local density matrix ρi in Eq. (3) can be also written
as the 2× 2 matrix

ρi =
1

2

(
1 + m · σi

)
, (7)

where σi =
(
σxi , σ

y
i , σ

z
i

)
, and it is completely determined

by the Bloch vector m. In general |m| ≤ 1, being |m| = 1
only for pure states (see Fig. 2). Assuming the system at
equilibrium with a bath at at temperature T , the expec-
tation values in (7) read

m = tanh
(
βh(m)

) (
cos θ(m) , 0 , sin θ(m)

)
, (8)

where

tan θ
(
m
)

=
hz(m)

hx
,

h(m) =
√
h2x + hz(m)2 .

(9)

Eqs. (8) and (9) self-consistently determine the equilib-
rium state at temperature T , leading to the phase dia-
gram shown in Fig. 3 for the three different cases. In the
figure, F denotes the ferromagnetic phase with mz 6= 0, P
the paramagnetic one with mz = 0, while FP and PF the
coexistence regions, FP with F stable and P metastable
and PF vice versa.
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FIG. 3. Phase diagram of the Hamiltonian (4) in case 1 with
J2 = J4 = 1, panel a), case 2 with J3 = 1, panel b), and case 3
with J2 = 1, panel c). The label F stand for the ferromagnetic
phase with mz 6= 0, P for the paramagnetic one with mz = 0.
FP denotes the coexistence region where the stable phase is
F and the metastable P; the opposite case is denoted as PF.
The first order transition between FP and PF in panels a)
and b) is indicated as a dashed line, while the direct F to P
transition in panel c) is a second order one. The F/FP and
PF/P lines are, respectively, the P and F spinodal lines.

III. LINDBLAD EQUATION

The dynamics of open quantum systems is usually
described through a master equation, aimed to repre-
sent the true quantum evolution after integrating out
the bath degrees of freedom. The derivation of such
equation usually relies on the so-called Markovian ap-
proximation, which consists of neglecting memory effects

under the assumption that the bath relaxation-time is
much shorter than the characteristic time-scales of the
system. The Lindblad equation is among the most used
master equations25. It can be derived in various ways
and under different assumptions, like, e.g., the quan-
tum dynamical semigroups formalism, the Ito stochas-
tic calculus42, the projector techniques associated to the
rotating wave approximation43 or the Keldysh diagram-
matic formalism44,45.
If the Born approximation is valid, i.e., if we can safely
neglect system-bath correlations, the system (S) + bath
(B) density matrix can be written as a tensor product

ρS+B (t) ' ρS (t) ⊗ ρB (t) . (10)

The general form of the Lindblad equation consists in a
first-order differential equation for the time evolution of
the system density matrix ρS(t):

ρ̇(t)S = −i
[
HS , ρS(t)

]
+
∑
λ

[
γλ

(
2Lλ ρS L

†
λ −

{
L†λ Lλ , ρS

})]
,

(11)
where HS is the system Hamiltonian and Lλ are the so-
called Lindblad or jump operators, which are determined
by the coupling between the system and the bath, and
span the space of all independent operators within the
system Hilbert space. The first term in the Lindblad
equation (11) is the so-called Liouvillian that describes
the unitary evolution brought by HS , while the second
term, so-called Lindbladian, includes dissipation and de-
coherence in the dynamics. Neglecting pure dephasing
processes, the relaxation dynamics of a system is de-
scribed by non-hermitian jump operators that produce
transitions between the eigenstates |n〉 of HS with eigen-
values En. Specifically, we shall define26

Lλ(m,n) = |m〉 〈n| , En < Em . (12)

Using such definition of Lλ, we can write Eq. (11) as

ρ̇S = −i
[
HS , ρS

]
+
∑
λ

[

γλ

(
2Lλ ρS L

†
λ −

{
L†λ Lλ , ρS

})
+ γ̄λ

(
2L†λ ρS Lλ −

{
LλL

†
λ , ρS

})]
.

(13)

One can readily verify that the Boltzmann distribution
is a stationary solution of (13) if the coupling constants
γλ and γ̄λ are related to each other through

γ̄λ
γλ

= eβ ελ , (14)

where ελ = Em−En > 0 are excitation energies. In what
follows, we shall use the Lindblad equation (13) with the
condition (14).
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A. A single spin-1/2 in a magnetic field

As an example, useful in the next discussion of the
Hamiltonian (4), let us consider the paradigmatic case of
a single spin-1/2 in a magnetic field, with Hamiltonian

HS = −h · σ = −
∣∣h∣∣ v3 · σ , (15)

where v3 ||h is a unit vector, coupled to a dissipative bath
at temperature T . In this simple case, the ground state of
HS satisfies the eigenvalue equation HS | 0〉 = −|h| | 0〉,
and there is a single excited state, |1〉, at energy ε = 2|h|
above. It follows that there is only one jump operator
defined through Eq. (12), namely

L = |1〉〈0 |=
(
v1 − iv2

)
· σ/2 ≡ v− · σ/2 , (16)

with ελ = 2|h|, where v1 and v2 are real orthogonal unit
vectors satisfying v1 ∧ v2 · v3 = 1. Plugging L, and its
hermitian conjugate,

L† = |0〉〈1 |=
(
v1 + iv2

)
· σ/2 ≡ v+ · σ/2 , (17)

into Eq. (13) and computing the expectation values of
the spin operator we obtain the Lindblad equation for
the magnetisation m(t), namely,

ṁ(t) ≡ Tr
(
ρ̇S(t)σ

)
= −2h ∧m(t)

− γ

2

[
4
(
v3 + m(t)

)
− v−

(
v+ ·m(t)

)
− v+

(
v− ·m(t)

)]
+
γ̄

2

[
4
(
v3 −m(t)

)
+ v−

(
v+ ·m(t)

)
+ v+

(
v− ·m(t)

)]
.

(18)

The stationary solution correctly reproduces the thermal
equilibrium, m·v3 = tanh(β |h|), and m·v1 = m·v2 = 0.
Eq. (18) allows following the system evolution within the
Bloch sphere from an arbitrary initial condition to the
equilibrium stationary state.

Let us consider now the same system Hamiltonian but
now in presence of a time dependent magnetic field

HS

(
h(t)

)
= −h(t) · σ = −

∣∣h(t)
∣∣v3(t) · σ , (19)

where h(t) evolves from an initial value, h(t ≤ 0) = hi, to
a final one, h(t� 1) = hf . A possible choice of the Lind-
blad operator that guarantees relaxation to the equilib-
rium density matrix ρSf of the final Hamiltonian HS

(
hf
)

is the one in Eq. (12) defined through the eigenstates of
the instantaneous Hamiltonian, i.e., from Eq. (16),

L(t) = v−(t) · σ
2
, L†(t) = v+(t) · σ

2
, (20)

where v+(t) = v−(t)∗, which satisfy

v+(t) ∧ v−(t) = 2v3(t) . (21)

The Lindblad equation is the same as in Eq. (18), though
with time dependent v±(t) and ελ(t) = 2

∣∣h(t)
∣∣ in (14).

In reality, the precise time dependence of the Lindblad
operator L(t) is not crucial to guarantee relaxation to
the equilibrium ρSf ; what actually matters is just that
L(t) becomes, for t� 1, the Lindblad operator (16) cor-
responding to the final Hamiltonian Hs(hf ).

IV. DYNAMICS IN THE FULLY CONNECTED
QUANTUM ISING MODEL

Let us consider a generic model in contact with a
bath and subject to a quench of the state variables
or of the Hamiltonian parameters, such that its phase
diagram with the final system parameters comprises
metastable phases besides the stable one. In this case,
the proper choice of the Lindblad operators that could
describe equally well the approach to equilibrium and
non equilibrium phenomena like, e.g., supercooling or
superheating, is not so straightforward. For instance,
the most natural choice of Lindblad operators defined
as in Eq. (12) through the eigenstates of the final
Hamiltonian at the final values of the state variables
does yield relaxation to equilibrium, but cannot produce
trapping in a metastable phase.

We shall tackle precisely this issue in the simple model
Hamiltonian (4). Here, full connectivity ensures that
also the time-dependent density matrix of the system be-
comes factorizable in the thermodynamic limit, N →∞,
namely,

ρS(t) −→
N→∞

∏
i

ρi(t) , (22)

where ρi(t) describes the time evolution of the spin at site
i coupled to a bath at temperature T and in presence of
an effective time dependent magnetic field, exactly like
the Hamiltonian (19). The difference with the latter is
that, through (5), the field

h(t) = h
(
m(t)

)
=

(
hx , 0 ,

m∑
n=2

nJnmz(t)
n−1
)

≡
∣∣∣h(m(t)

)∣∣∣ v3(m(t)
)
,

(23)

with

m(t) =
1

N

∑
i

Tr
(
ρS(t)σi

)
, (24)

is self-consistently determined by the system time evolu-
tion, and thus the Lindblad equation acquires non-linear
terms.
In this case we have several options for choosing the Lind-
blad jump operators. For instance, we may define L(t) by
the eigenstates of the instantaneous system Hamiltonian,
namely using the expression in Eq. (20), where v3(t) in
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Eq. (21) is defined by Eq. (23) and ελ = 2
∣∣h(m(t)

)∣∣.
This is however not the only choice, as there are sev-
eral alternative definitions of the jump operators. We al-
ready showed in Sec. II that the free energy of the model
Hamiltonian (4) has different minima, characterised by

different values m
(a)
z , a = 1, . . . , of mz, and thus each of

them associated with a different effective field

h(a) =

(
hx , 0 ,

m∑
n=2

nJnm
(a)
z

n−1
)
≡
∣∣h(a)

∣∣v(a)3 . (25)

We can thus choose as jump operators those associated
with the free energy minima a = 1, . . . , namely,

L(a) = v(a)− · σ
2
, L(a)† = v(a)+ · σ

2
, (26)

where

v(a)+ ∧ v(a)− ≡
(
v(a)−

)∗ ∧ v(a)− = 2v
(a)
3 , (27)

and Eq. (14) with

ελ = εa = 2
∣∣∣h(a)

∣∣∣ . (28)

In what follows, we analyse strengths and weaknesses
of L(t) defined through the eigenstates of the instanta-
neous Hamiltonian, while in the next section we shall
present an alternative definition based on the jump op-
erators (26) that yields physically more sound dynamics
in presence of metastable phases.

A. Jump operator defined through the
instantaneous Hamiltonian

We study first the dynamical evolution with the jump
operator L(t) defined through the equations (20), (23)
and (21). The Lindblad equation for the average mag-
netisation m(t) is the same as in Eq. (18), with time
dependent h

(
m(t)

)
and v±

(
m(t)

)
. One readily realises

that the stationary solutions of that equation, including
or not the Liouvillian, i.e., the first term on the r.h.s. of
Eq. (18), correspond to the extrema of the free energy.
The magnetisation m(t) thus flows towards one of those
extrema depending on the initial conditions. More rig-
orously, m(t) flows towards one of the minima, unless
it is initially right on a saddle point. We can therefore
integrate numerically Eq. (18) starting from any initial
condition and, by doing so, map out all basins of attrac-
tion within the Bloch sphere, which is actually the same
as calculating the phase diagram.

In Figs. 4 and 5 we show the basins of attraction of
Eq. (18) discarding and including, respectively, the Liou-
villian, at very small T and in the three cases of interest.
Considering for instance case 1, we note at small hx two
basins of attraction at finite and opposite values of mz,
which signal the Z2 symmetry broken phase. The three
basins for intermediate values of hx indicate instead the

FIG. 4. Basins of attraction of the Lindblad equation ne-
glecting the Liouvillian for the magnetisation m(t) within the
Bloch sphere projected onto the my = 0 plane and for T → 0.
Top panel: case 1 with J2 = J4 = 1. Middle panel: case 2
with J3 = 1. Bottom panel: case 3 with J2 = 1. The colours
indicate the stationary value of the longitudinal magnetisa-
tion mz; specifically, red means mz > 0, blue mz < 0 and
white mz = 0.

FIG. 5. Same as Fig. 4 including the Liouvillian. Note that
apparently disconnected regions with the same colour are ac-
tually connected along the y-direction.

coexistence regions, FP or PF. Finally, at large hx there
is only one basin with mz = 0. Repeating the above anal-
ysis at any temperature, we can obtain the same phase
diagrams of Fig. 3.

We end noting that, while the Lindblad jump opera-
tor defined through the eigenstates of the instantaneous
Hamiltonian provides an alternative and efficient way to
calculate the phase diagram, it fails to produce relax-
ation to equilibrium. Indeed, when the system starts in
the basin of attraction of a metastable phase, it will re-
main trapped there forever, at least in our simple model
(4).
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V. LINDBLAD OPERATORS IN PRESENCE OF
PHASE COEXISTENCE

The unsatisfying results in Sec. IV A call for a different
definition of jump operators able to describe the expected
relaxation to equilibrium even in presence of metastable
phases. For that, we observe that the Hilbert space of a
system that undergoes phase transitions comprises sev-
eral disconnected subspaces. The thermodynamic prop-
erties at given temperature and Hamiltonian parameters
is determined just by one of those subspaces at a time.
Let us consider, as an example, a system whose phase dia-
gram looks like panel c) in Fig. 3, which displays a second
order transition into a broken symmetry phase. In this
case the Hilbert space in the thermodynamic limit de-
composes into two subspaces; one that includes the sym-
metry invariant eigenstates, and the other the symmetry
variant ones. The latter is in turn further decomposed
into sub subspaces, also disconnected in the thermody-
namic limit, and related one to the other by the gen-
erators of the symmetry that is spontaneously broken.
A similar decomposition holds also when the transition
is first order, like in cases 1 and 2 of the Hamiltonian
(4), whose phase diagrams are shown in panels a) and
b), respectively, of Fig. 3. The difference here is that
the disconnected subspaces overlap in energy, thus the
coexistence regions.

In all these situations it is rather natural to introduce
jump operators of the form in Eq. (12) within each sub-
space, since different subspaces are disconnected from
each other. In a dissipative environment, each subspace
will act as a basin of attraction of the dynamics, which
implies that the Lindblad equation would generally in-
clude jump operators of all subspaces, namely

ρ̇S = −i
[
HS , ρS

]
+
∑
a

αa(t)
∑
λ

[

γ
(a)
λ

(
2L

(a)
λ ρS L

(a)
λ
† −

{
L
(a)
λ
† L

(a)
λ , ρS

})
+ γ̄

(a)
λ

(
2L

(a)
λ
† ρS L

(a)
λ −

{
L
(a)
λ L

(a)
λ
† , ρS

})]
.

(29)

where a = 1, . . . labels the subspaces, and the coefficient
αa(t) weighs the attraction strength of subspace a.
Physically, we expect that αa(t) is (1) smaller for
subspaces that correspond to metastable phases than
for those corresponding to stable ones; and (2) smaller
the closer the system instantaneously is to the basin
of attraction of another subspace. These two features
guarantee that the system does flow to the equilibrium
stable phase, unless it happens to be deep in the basin
of attraction of a metastable phase, and thus remedy the
drawbacks of the infinite lifetimes of metastable phases
highlighted in Sec. IV A, without spoiling supercooling
or superheating. Incidentally, we note that choosing
αa(t) = 1 and αb6=a = 0 in Eq. (29) brings to a steady
state trapped into the subspace a, even if it not the

equilibrium one.

In the simple case of the mean-field Hamiltonian (4),
the different subspaces actually corresponds to the dif-
ferent minima of the free energy that we have discussed
in Sec. IV. Moreover, the above requirements (1) and (2)
can be easily implemented. For instance, we may assume
for the coefficients αa(t) in Eq. (29) the expression

αa(t) = Γ e−βfa
∏
b 6=a

(
1− v3

(
m(t)

)
· v(b)3

)
. (30)

Here Γ determines the overall strength of the coupling

with the bath, while v3
(
m(t)

)
and v

(a)
3 are defined in

equations (23) and (25), respectively, and implement the
condition (1). Finally, e−βfa is an Arrhenius term that
involves the free energy per site fa of the minimum a,
and enforces the condition (2).

A. Mpemba effect

The Lindblad equation (29), with αa(t) defined in
Eq. (30), yields a physically sound dissipative dynam-
ics of the Hamiltonian (4), including also the Mpbemba
effect discussed in the Introduction. For that, let us con-
sider the Hamiltonian (4) in case 1 with J2 = J4 = 1 and
hx = 2.5, see panel a) in Fig. 3. We assume two copies,
one initially at equilibrium with a bath at temperature
Ti,1, and the other at temperature Ti,2, with Ti,1 < Ti,2
and both above the F spinodal point TsF ' 2.4. There-
fore, at first both copies are in the P phase, panel a) in
Fig. 3. We then quench both systems to the same final
temperature Tf that falls into the FP coexistence region,
with the ferromagnetic phase stable and the paramag-
netic one metastable. In order to seed nucleation of the
F phase within the P one, we assume initially a tiny but
finite mz = 0.05.

In Fig. 6 we show the time evolution obtained by in-
tegrating the Lindblad equation of the longitudinal mag-
netisation mz, top panel, and transverse magnetisation
mx, bottom panel, both for the initially hotter (red lines)
and colder (blue lines) copies. We observe a quite long
transient where both copies remain trapped into the P
phase they started from, metastable at the final temper-
ature, which can thus be viewed as a supercooled P phase.
However, the hotter copy gets out of the metastable P
phase, and fast reaches thermalisation, earlier than the
colder one; this is just the Mpemba effect.

VI. CONCLUSIONS

In this work we have studied several variants of the
Lindblad equation to describe the dissipative dynam-
ics in presence of phase coexistence. In particular
we have considered the exactly-solvable fully-connected
quantum Ising model with two and four spin-exchange,
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FIG. 6. Dissipative dynamics of the Hamiltonian (4) in case
1 with J2 = J4 = 1 and hx = 2.5, see phase diagram in panel
a) Fig. 3, after a sudden quench of temperature from Ti to
Tf = 0.002� Ti. Blue and red lines refer to Ti = 2.5 and Ti =
5, respectively. Top panel: longitudinal magnetisation mz.
Bottom panel: transverse magnetisation mx. We observe that
the initially hotter system (red lines) reaches the equilibrium
value of magnetisation faster than the colder one (blue lines).

whose phase diagram is the prototype of a symmetry-
breaking quantum first order transition. We have found
that a sound dissipative dynamics is recovered only
when the Lindblad equation involves jump operators de-
fined in each of the coexisting phases, whether stable
or metastable. Applying such equation to the fully-
connected quantum Ising model, we are able to de-
scribe also intriguing non-equilibrium phenomena, like
the Mpemba effect.
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