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Abstract

In this thesis, we find the 𝐸-polynomials of a family of parabolic Sp2𝑛-character

varietiesℳ𝜉
𝑛 of Riemann surfaces by constructing a stratification, proving that

each stratum has polynomial count, applying a result of Katz regarding the

counting functions, and finally adding up the resulting 𝐸-polynomials of the

strata. To count the number of F𝑞-points of the strata, we invoke a formula

due to Frobenius. Our calculation make use of a formula for the evaluation of

characters on semisimple elements coming from Deligne-Lusztig theory, applied

to the character theory of Sp(2𝑛,F𝑞), and Möbius inversion on the poset of

set-partitions. We compute the Euler characteristic of the ℳ𝜉
𝑛 with these

polynomials, and show they are connected.
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Chapter 1

Introduction

Let Σ𝑔 be a compact Riemann surface of genus 𝑔 ≥ 0 and let 𝐺 be a complex

reductive group. The 𝐺-character variety of Σ𝑔 is defined as the moduli space

of representations of 𝜋1(Σ𝑔) into 𝐺. Using the standard presentation of 𝜋1(Σ𝑔),

we have the following description of this moduli space as an affine GIT quotient:

ℳ𝐵(𝐺) =

{︃
(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ∈ 𝐺2𝑔 |

𝑔∏︁
𝑖=1

[𝐴𝑖 : 𝐵𝑖] = Id𝐺

}︃
//𝐺

where [𝐴 : 𝐵] := 𝐴𝐵𝐴−1𝐵−1 and 𝐺 acts by simultaneous conjugation. For

complex linear groups 𝐺 = GL(𝑛,C),SL(𝑛,C), the representations of 𝜋1(Σ𝑔)

into 𝐺 can be understood as 𝐺-local systems 𝐸 → Σ𝑔, hence defining a flat

bundle 𝐸 whose degree is zero.

For 𝐺 = GL(𝑛,C),SL(𝑛,C), a natural generalization consists of allowing

bundles 𝐸 of non-zero degree 𝑑. In this case, one considers the space of the

irreducible 𝐺-local systems on Σ𝑔 with prescribed cyclic holonomy around one

puncture, which correspond to representations 𝜌 : 𝜋1(Σ𝑔 ∖ {𝑝0}) → 𝐺, where

𝑝0 ∈ Σ𝑔 is a fixed point, and 𝜌(𝛾) = 𝑒
2𝜋𝑖𝑑
𝑛 Id𝐺, with 𝛾 a loop around 𝑝0, giving

1



CHAPTER 1. INTRODUCTION 2

rise to the moduli space

ℳ𝑑
𝐵(𝐺) =

{︃
(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ∈ 𝐺2𝑔 |

𝑔∏︁
𝑖=1

[𝐴𝑖 : 𝐵𝑖] = 𝑒
2𝜋𝑖𝑑
𝑛 Id𝐺

}︃
//𝐺.

The spaceℳ𝑑
𝐵(𝐺) is known in the literature as the Betti moduli space. These

varieties have a very rich structure and they have been the object of study in a

broad range of area.

In his seminal work [Hi87], after studying the dimensional reduction of the

Yang-Mills equations from four to two dimensions, Hitchin introduced a family

of completely integrable Hamiltonian systems. These equations are known as

Hitchin’s self-duality equations on a rank 𝑛 and degree 𝑑 bundle on the Riemann

surface Σ𝑔.

The moduli space of solutions comes equipped with a hyperkähler manifold

structure on its smooth locus. This hyperkähler structure has two distinguished

complex structures, up to equivalence. One is analytically isomorphic to

ℳ𝑑
𝐷𝑜𝑙(𝐺), a moduli space of 𝐺-Higgs bundles, and the other isℳ𝑑

𝐷𝑅(𝐺), the

space of algebraic flat bundles on Σ𝑔 of degree 𝑑 and rank 𝑛, whose algebraic

connections on Σ𝑔 ∖ {𝑝0} have a logarithmic pole at 𝑝0 with residue 𝑒
2𝜋𝑖𝑑
𝑛 Id.

By Riemann-Hilbert correspondence ([De70], [Si95]), the space ℳ𝑑
𝐷𝑅(𝐺) is

analytically (but not algebraically) isomorphic to ℳ𝑑
𝐵(𝐺) and the theory

of harmonic bundles ([Co88], [Si92]) gives an homeomorphism ℳ𝑑
𝐵(𝐺)

∼=

ℳ𝑑
𝐷𝑜𝑙(𝐺).

When gcd(𝑑, 𝑛) = 1, these moduli spaces are smooth and their cohomology

has been computed in several particular cases, but mostly from the point of

view of the Dolbeaut moduli spaceℳ𝑑
𝐷𝑜𝑙(𝐺).

Hitchin and Gothen computed the Poincaré polynomial for 𝐺 = SL(2,C)
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and 𝐺 = SL(3,C) respectively in [Hi87] and [Go94] and their techniques

have been improved to compute the compactly supported Hodge polynomials

([GHS14]). Recently, Schiffmann, Mozgovoy and Mellit computed the Betti

numbers of ℳ𝑑
𝐷𝑜𝑙(𝐺) for 𝐺 = GL(𝑛,C) respectively in [Sch14], [MS14] and

[Mel17].

Hausel and Thaddeus ([HT03]) gave a new perspective for the topological

study of these varieties giving the first non-trivial example of the Strominger-

Yau-Zaslow Mirror Symmetry ([SYZ96]) using the so called Hitchin system

([Hi87]) for the Dolbeaut space. They conjectured also (and checked for 𝐺 =

SL(2,C), SL(3,C) using the results by Hitchin and Gothen) that a version

of the topological mirror symmetry holds, i.e., some Hodge numbers ℎ𝑝,𝑞 of

ℳ𝑑
𝐷𝑜𝑙(𝐺) andℳ𝑑

𝐷𝑜𝑙

(︀
𝐺𝐿
)︀
, for 𝐺 and Langlands dual 𝐺𝐿, agree. Very recently,

Groechenig, Wyss and Ziegler proved the topological mirror symmetry for

𝐺 = SL(𝑛,C) in [GWZ17].

Contrarily to ℳ𝑑
𝐷𝑅(𝐺) and ℳ𝑑

𝐷𝑜𝑙(𝐺) cases, the cohomology of ℳ𝑑
𝐵(𝐺)

does not have a pure Hodge structure. This fact motivates the study of 𝐸-

polynomials of the 𝐺-character varieties. The 𝐸-polynomial of a variety 𝑋

is

𝐸(𝑋;𝑥, 𝑦) := 𝐻𝑐(𝑋;𝑥, 𝑦,−1)

where

𝐻𝑐(𝑋;𝑥, 𝑦, 𝑡) :=
∑︁

ℎ𝑝,𝑞;𝑗𝑐 (𝑋)𝑥𝑝𝑦𝑞𝑡𝑗

the ℎ𝑝,𝑞;𝑗𝑐 being the mixed Hodge numbers with compact support of 𝑋 ([De71],

[De74]). When the 𝐸-polynomial only depends on 𝑥𝑦, we write 𝐸(𝑋; 𝑞),

meaning

𝐸(𝑋; 𝑞) = 𝐻𝑐(𝑋;
√
𝑞,
√
𝑞,−1).
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Hausel and Rodriguez-Villegas started computing the 𝐸-polynomials of

𝐺-character varieties for 𝐺 = GL(𝑛,C),PGL(𝑛,C) using arithmetic methods

inspired on Weil conjectures. In [HRV08] they obtained the 𝐸-polynomials

of ℳ𝑑
𝐵(GL(𝑛,C)). Following this work, in [Mer15] Mereb computed the 𝐸-

polynomials of ℳ𝑑
𝐵(SL(𝑛,C)). He proved that these polynomials are palin-

dromic and monic.

Another direction of interest is the moduli space of parabolic bundles. If

𝑝1, . . . , 𝑝𝑠 are 𝑠 marked points in a Riemann surface Σ𝑔 of genus 𝑔, and 𝒞𝑖 ⊆ 𝐺

semisimple conjugacy classes for 𝑖 = 1, . . . , 𝑠, the corresponding Betti moduli

space of parabolic representations (or parabolic 𝐺-character variety) is

ℳ𝒞1,...,𝒞𝑠(𝐺) :=

{︂
(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔, 𝐶1, . . . , 𝐶𝑠) ∈ 𝐺2𝑔+𝑠 |

𝑔∏︁
𝑖=1

[𝐴𝑖 : 𝐵𝑖]

𝑠∏︁
𝑗=1

𝐶𝑗 = Id𝐺, 𝐶𝑗 ∈ 𝒞𝑗 , 𝑗 = 1, . . . , 𝑠

}︂
//𝐺.

In [Si90], Simpson proved that this space is analytically isomorphic to the

moduli space of flat logarithmic 𝐺-connections and homeomorphic to a moduli

space of Higgs bundles with parabolic structures at 𝑝1, . . . , 𝑝𝑠.

Hausel, Letellier and Rodriguez-Villegas ([HLRV11]) found formulae for

the 𝐸-polynomials of the parabolic character varieties for 𝐺 = GL(𝑛,C) and

generic semisimple 𝒞1, . . . , 𝒞𝑠.

In this thesis, we consider certain parabolic character varieties for the group

𝐺 = Sp(2𝑛,C). For a semisimple element 𝜉 belonging to a conjugacy class
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𝒞 ⊆ Sp (2𝑛,C), we define

ℳ𝜉
𝑛 : =

{︃
(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ∈ Sp(2𝑛,C)2𝑔 |

𝑔∏︁
𝑖=1

[𝐴𝑖 : 𝐵𝑖] = 𝜉

}︃
//𝐶(𝜉)

=

{︃
(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ∈ Sp(2𝑛,C)2𝑔 |

𝑔∏︁
𝑖=1

[𝐴𝑖 : 𝐵𝑖] ∈ 𝒞

}︃
//Sp(2𝑛,C)

where 𝐶(𝜉) is the centralizer of 𝜉 in Sp(2𝑛,C).

We assume that 𝜉 satisfies the genericity condition 3.1.1 below; in particular,

𝜉 is a regular semisimple element, hence 𝐶(𝜉) = 𝑇 ∼= (C×)𝑛, the maximally

split torus in Sp(2𝑛,C). It turns out that ℳ𝜉
𝑛 is a geometric quotient and

all the stabilisers are finite subgroups of 𝜇𝑛2, the group of diagonal symplectic

involutions.

Our goal is to compute the 𝐸-polynomials of ℳ𝜉
𝑛 for any genus 𝑔 and

dimension 𝑛. This is accomplished by arithmetic methods, following the work

of Hausel and Rodriguez -Villegas in [HRV08] and Mereb in [Mer15]. Our

methods depends on the additive property of the 𝐸-polynomial, which allows

us to compute this polynomial using stratifications (see 4.1.6).

The strategy to compute the 𝐸-polynomials ofℳ𝜉
𝑛 is to construct a strat-

ification ofℳ𝜉
𝑛 and proving that each stratum ̃︁ℳ𝜉

𝑛,𝐻 has polynomial count,

with 𝐻 varying on the set of the subgroups of 𝜇𝑛2 (see Def 3.1.14); i.e., there is

a polynomial 𝐸𝑛,𝐻(𝑞) ∈ Z[𝑞] such that
⃒⃒⃒ ̃︁ℳ𝜉

𝑛,𝐻(F𝑞)
⃒⃒⃒
= 𝐸𝑛,𝐻(𝑞) for sufficiently

many prime powers 𝑞 in the sense described in Section 4.2. According to Katz’s

theorem 4.2.3, the 𝐸-polynomial of ̃︁ℳ𝜉
𝑛,𝐻 agrees with the counting polynomial
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𝐸𝑛,𝐻 . By Theorem 3.2.5 below, one is reduced to count

𝐸𝑛(𝑞) :=
1

(𝑞 − 1)𝑛

⃒⃒⃒⃒
⃒
{︃
(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ∈ Sp(2𝑛,F𝑞)2𝑔 |

𝑔∏︁
𝑖=1

[𝐴𝑖 : 𝐵𝑖] = 𝜉

}︃⃒⃒⃒⃒
⃒

(1.0.1)

with F𝑞 a finite field containing the eigenvalues of 𝜉. The number of solutions

of an equation like 1.0.1 is given by a Frobenius-type formula involving certain

values of the irreducible characters 𝜒 of Sp(2𝑛,F𝑞) (see 2.2.3). Thanks to the

formula 4.3.37 below for the evaluation of irreducible characters of a finite

group of Lie type on a regular semisimple element, the Frobenius formula and

Katz’s theorem, we are able to compute 𝐸𝑛(𝑞), hence the 𝐸𝑛,𝐻(𝑞)’s. Adding

them up, we eventually obtain the following

Theorem. The 𝐸-polynomial of ℳ𝜉
𝑛 satisfies

𝐸
(︁
ℳ𝜉

𝑛; 𝑞
)︁
= 𝐸𝑛(𝑞) =

1

(𝑞 − 1)𝑛
∑︁
𝜏

(𝐻𝜏 (𝑞))
2𝑔−1𝐶𝜏 .

Here, 𝐻𝜏 (𝑞) are polynomials with integer coefficients (see 2.2.64), 𝐶𝜏 are

integer constants and the sum is over a well described set (see 2.2.83). It is

remarkable that the 𝐸-polynomial ofℳ𝜉
𝑛 does not depend on the choice of the

generic element 𝜉. A direct consequence of our calculation and of the fact that

ℳ𝜉
𝑛 is equidimensional is the following

Corollary. The 𝐸-polynomial of ℳ𝜉
𝑛 is palindromic and monic. In particular,

the parabolic character variety ℳ𝜉
𝑛 is connected.

Our formula also implies

Corollary. The Euler characteristic 𝜒
(︁
ℳ𝜉

𝑛

)︁
of ℳ𝜉

𝑛 vanishes for 𝑔 > 1. For
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𝑔 = 1, we have ∑︁
𝑛≥0

𝜒
(︁
ℳ𝜉

𝑛

)︁
2𝑛𝑛!

𝑇𝑛 =
∏︁
𝑘≥1

1

(1− 𝑇 𝑘)3
.

See Theorem 4.3.19 and Corollaries 4.4.1, and 4.4.2 for details.

For 𝑛 = 1, the formula looks like:

𝐸
(︁
ℳ𝜉

1; 𝑞
)︁
=
(︀
𝑞3 − 𝑞

)︀2𝑔−2 (︀
𝑞2 + 𝑞

)︀
+
(︀
𝑞2 − 1

)︀2𝑔−2
(𝑞 + 1)

+
(︀
22𝑔 − 2

)︀ (︀
𝑞2 − 𝑞

)︀2𝑔−2
𝑞.

This result recovers the ones obtained by Logares, Muñoz and Newstead in

[LMN13] for small genus 𝑔 and by Martinez and Muñoz in [MM15] for all

possible 𝑔 because Sp(2,C) ∼= SL(2,C).

The present dissertation is organized as follows: In Chapter 2, we go over the

basics of combinatorics and representation theory that are going to be needed.

In Chapter 3, we study the geometry of the parabolic character varieties to

be studied. In Chapter 4, we perform the computation of the 𝐸-polynomial

ofℳ𝜉
𝑛 and prove the corollaries concerning the topological properties ofℳ𝜉

𝑛

encoded in 𝐸
(︁
ℳ𝜉

𝑛; 𝑞
)︁
.



Chapter 2

Preliminaries

We are going to need some definitions and results from Combinatorics and

Representation Theory of finite groups of Lie type. We follow [GP00] for

basic definitions and notation on partitions and symbols and [St12] for Möbius

Inversion. For the basics on linear algebraic groups we refer to [Bo91], [Ca85]

and [Hu75].

2.1 Combinatorics

2.1.1 Partitions and Symbols

Notation. For a partition 𝜆 = (𝜆1, . . . , 𝜆𝑙), we have 𝜆1 ≥ · · · ≥ 𝜆𝑙 > 0 and

write 𝑙 (𝜆) for its length 𝑙 and |𝜆| for its size
𝑙∑︀

𝑖=1
𝜆𝑖. If 𝜆 is a partition of a

natural number 𝑛, we write 𝜆 ⊢ 𝑛 and we denote by 𝒫𝑛 the set of all partitions

of 𝑛. For the author, the set of natural numbers N does not include 0. To do

this, we use the symbol N0.

We usually regard 𝜆𝑖 = 0 whenever 𝑖 > 𝑙 (𝜆) for the ease of notation in

8
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formulae.

Definition 2.1.1. Let 𝑖 ∈ N, 𝜆 ∈ 𝒫𝑛. The multiplicity of 𝑖 in 𝜆, which denote

by 𝑚𝑖(𝜆), is defined as

𝑚𝑖(𝜆) := |{𝑗 | 𝜆𝑗 = 𝑖}| . (2.1.1)

Let 𝑋 = {𝛽1, . . . , 𝛽𝑠} be a finite subset in N0 with 𝛽1 > · · · > 𝛽𝑠. We call

𝑋 a 𝛽-set. The rank of 𝑋 is defined by rk(𝑋) := 0 if 𝑋 = ∅ and, otherwise, by

rk(𝑋) :=
𝑠∑︁
𝑖=1

𝛽𝑖 −
(︂
𝑠

2

)︂
. (2.1.2)

Definition 2.1.2. Let 𝑡 be a positive integer. If 𝑋 = {𝛽1, . . . , 𝛽𝑠} is a 𝛽-set,

the 𝑡-shift of 𝑋 is the 𝛽-set 𝑋+𝑡 defined by

𝑋+𝑡 := {𝛽1 + 𝑡, . . . , 𝛽𝑠 + 𝑡, 𝑡− 1, . . . , 1, 0} . (2.1.3)

We call the shift operation the procedure that allows us to obtain 𝑋+𝑡 from 𝑋

for any integer 𝑡 ≥ 0.

Remark 2.1.3. According to the Definition 2.1.2, it is easy to see that rk(𝑋) =

rk
(︀
𝑋+𝑡

)︀
.

Remark 2.1.4. Let 𝑛 ∈ N0. The 𝑡-shift operation generates an equivalence

relation in the infinite collection of 𝛽-sets of rank 𝑛. In particular, any 𝛽-set of

rank 𝑛 can be represented in a unique way by a finite set 𝑋 such that 0 /∈ 𝑋.

Let Φ𝑛 be the set of 𝛽-sets of rank 𝑛 modulo the equivalence relation

generated by the shift operation, 𝑋 ∈ Φ𝑛 with entries 𝛽1 > · · · > 𝛽𝑠  0. Then
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we associate with 𝑋 a partition

𝜆𝑋 := (𝛽1 + 1− 𝑠, 𝛽2 + 2− 𝑠, . . . , 𝛽𝑠) . (2.1.4)

Notice that

|𝜆𝑋 | =
𝑠∑︁
𝑖=1

(𝛽𝑖 − 𝑖+ 𝑠) = rk(𝑋) = 𝑛 (2.1.5)

so the assignment

𝑋 ↦→ 𝜆𝑋 (2.1.6)

defines a bijection between Φ𝑛 and 𝒫𝑛. On the other hand, we denote by 𝑋𝜆

the 𝛽-set in Φ𝑛 associated to the partition 𝜆 ⊢ 𝑛.

Definition 2.1.5. Let 𝑑 ∈ N0. A symbol of defect 𝑑 is an unordered pair of

𝛽-sets Λ = (𝑋,𝑌 ) such that ||𝑋| − |𝑌 || = 𝑑. The rank of Λ is defined as

rk (Λ) := rk (𝑋) + rk (𝑌 ) +

⌊︂
𝑑

2

⌋︂
. (2.1.7)

A symbol of the form (𝑋,𝑋) is said to be special.

The shift operation on 𝛽-sets induces a shift operation on symbols by

Λ = (𝑋,𝑌 ) ↦→ Λ+𝑡 :=
(︀
𝑋+𝑡, 𝑌 +𝑡

)︀
with 𝑡 ∈ N0.

Remark 2.1.6. By Remark 2.1.3, we have that the rank and the defect of

a symbol are invariant under the shift operation. Thus, the shift operation

generates an equivalence relation in the set of symbols of fixed rank 𝑛 and

defect 𝑑. In particular, again from Remark 2.1.3, any equivalence class of a
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symbol has a representative Λ = (𝑋,𝑌 ) such that 0 /∈ 𝑋 ∩ 𝑌 and |𝑋| = |𝑌 |+𝑑.

Such a symbol is said to be reduced.

We denote by Φ𝑛,𝑑 the set of symbols of rank 𝑛 and defect 𝑑 modulo shift.

Let Λ ∈ Φ𝑛,1 represented by a reduced symbol (𝑋,𝑌 ). Then we associate with

Λ the ordered pair of partitions (𝜆𝑋 , 𝜆𝑌 ), where 𝜆𝑋 and 𝜆𝑌 are as in 2.1.4.

Notice that, according to 2.1.5,

|𝜆𝑋 |+ |𝜆𝑌 | = rk(𝑋) + rk(𝑌 ) = rk(Λ).

One can reverse this assignment (for further information, see [Lu77]), so we

have a bijection between Φ𝑛,1 and the set of ordered pairs of partitions (𝜆, 𝜇)

such that |𝜆|+ |𝜇| = 𝑛 given by

Λ = (𝑋,𝑌 ) ↦→ (𝜆𝑋 , 𝜆𝑌 ) (2.1.8)

Now, let Φ̃𝑛,0 be the set of symbol classes of rank 𝑛 and defect 0, in which each

special symbol class is repeated twice. The assignment 2.1.8 gives a bijective

correspondence between Φ̃𝑛,0 and the set of unordered pairs of partitions {𝜆, 𝜇}

such that |𝜆|+ |𝜇| = 𝑛, with pairs of the form {𝜆, 𝜆} repeated twice when 𝑛 is

even (again see [Lu77]). We denote such special pairs by {𝜆,+} and {𝜆,−} for

𝜆 ⊢ 𝑛
2 and the corresponding special symbols by (𝑋,+) and (𝑋,−) for some

𝛽-set 𝑋.

2.1.2 Möbius Inversion formula

Let (𝑃,≤) be a finite poset, i.e., a partially ordered set.
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Definition 2.1.7. To every function 𝑓 : 𝑃 → C we assign

̂︀𝑓 : 𝑃 → C

̂︀𝑓(𝑎) :=∑︁
𝑎≤𝑏

𝑓(𝑏)

the accumulated sum of 𝑓 with respect to 𝑃 .

Remark 2.1.8. We see that 𝑓 ↦→ ̂︀𝑓 is a linear operator in HomC
(︀
C|𝑃 |,C|𝑃 |)︀

whose matrix 𝑀Σ is given by

(𝑀Σ)𝑎,𝑏 =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑎 ≤ 𝑏

0 otherwise

the adjacency matrix of (the digraph induced by) 𝑃 .

Since 𝑃 is a poset, this matrix will be upper triangular with respect to some

total ordering refining that of 𝑃 , and will have only 1’s in its main diagonal.

Therefore, its inverse 𝜇 ∈ HomC
(︀
C|𝑃 |,C|𝑃 |)︀ has only 1’s in the diagonal and

integral entries, for writing 𝑀Σ as Id + 𝐴, with 𝐴 strictly upper triangular

(hence nilpotent), the alternating sum

Id−𝐴+𝐴2 −𝐴3 . . .

for (Id +𝐴)−1 results finite.

Definition 2.1.9. The function 𝜇 (𝑎, 𝑏) given by the entries (𝜇)𝑎,𝑏 of the matrix

𝜇 is called the Möbius function for 𝑃 .
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Remark 2.1.10. By definition of 𝜇, we have the Möbius Inversion formula:

𝑓(𝑎) :=
∑︁
𝑎≤𝑏

𝜇(𝑎, 𝑏) ̂︀𝑓(𝑏). (2.1.9)

for any function 𝑓 : 𝑃 → C.

Example 2.1.11. (Divisors). Let 𝑃 be the set of positive divisors of a fixed 𝑛

with the ordering given by divisibility, more precisely 𝑎 ≤ 𝑏 if and only if 𝑎|𝑏.

The accumulated sums for 𝑓 are ̂︀𝑓(𝑑) := ∑︀
𝑑|𝑚

𝑓(𝑚) and the inversion formula

for this case is the well known

𝑓(𝑑) :=
∑︁
𝑑|𝑚

̂︀𝑓(𝑚)𝜇
(︁𝑚
𝑑

)︁
(2.1.10)

where

𝜇(𝑚) :=

⎧⎪⎪⎨⎪⎪⎩
(−1)#{primes dividing𝑚} if𝑚 is square-free

0 otherwise.

In other words, 𝜇(𝑎, 𝑏) = 𝜇
(︀
𝑏
𝑎

)︀
if 𝑎 divides 𝑏 and 0 if not.

Example 2.1.12. (Finite vector subspaces). Let 𝑛 be a natural number, 𝑞 = 𝑝𝑚

a prime power. Consider 𝑃 the poset of the vector subspaces of F𝑛𝑞 , the 𝑛-

dimensional vector space over the finite field F𝑞, with the ordering given by the

inclusion. If 𝑈, 𝑉 ⊆ F𝑛𝑞 , the Möbius function is

𝜇 (𝑈, 𝑉 ) =

⎧⎪⎪⎨⎪⎪⎩
(−1) 𝑞(

𝑘
2) if 𝑈 ⊆ 𝑉 and dim(𝑉 )− dim(𝑈) = 𝑘

0 otherwise.

(2.1.11)

Example 2.1.13. (Set-partitions). Let us take 𝑃 as the collection Π𝑐 of the

set-partitions of the set [𝑐] := {1, . . . , 𝑐} for a fixed 𝑐 and the order being given
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by refinement, which we denote by ⪯. For instance, in Π4 we have

1|2|3|4 ⪯ 1|2|34 ⪯ 12|34 ⪯ 1234.

Obviously, we can speak of the length of an element 𝜋 in Π𝑐 as in the case of

partitions, and denote it by 𝑙(𝜋) similarly. We now show an application of the

Möbius Inversion formula that we will use in the following.

If 𝑥 ∈ N and ℎ : [𝑐]→ [𝑥], define the kernel of ℎ, and denote it by 𝐾𝑒𝑟(ℎ),

to be the partition of [𝑐] induced by the equivalence relation

𝑎 ≡ 𝑏⇐⇒ ℎ(𝑎) = ℎ(𝑏).

Fix 𝜋 ∈ Π𝑐 and let

Σ′
𝜋 := {ℎ : [𝑐]→ [𝑥] | 𝐾𝑒𝑟(ℎ) = 𝜋} ,

Σ𝜋 := {ℎ : [𝑐]→ [𝑥] | 𝐾𝑒𝑟(ℎ) = 𝜎 for some𝜎 ⪰ 𝜋} .
(2.1.12)

Clearly, |Σ′
𝜋| = (𝑥)(𝑙(𝜋)) := 𝑥 (𝑥− 1) · · · (𝑥− 𝑙 (𝜋) + 1) and |Σ𝜋| = 𝑥𝑙(𝜋). On

the other hand, if 𝑓(𝜋) := |Σ′
𝜋| then ̂︀𝑓(𝜋) = |Σ𝜋|, so by the Möbius Inversion

formula 2.1.9, we have

𝑓(𝜋) =
∑︁
𝜋⪯𝜎

𝜇(𝜋, 𝜎) ̂︀𝑓(𝜎)
that is

(𝑥)𝑙(𝜋) =
∑︁
𝜋⪯𝜎

𝜇(𝜋, 𝜎)𝑥𝑙(𝜎). (2.1.13)

Since 2.2.6 holds for any 𝑥 ∈ N and since both sides of 2.2.6 are polynomials, it
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is a polynomial identity. In particular, if we specialize it at 𝑥 = −1, we obtain

(−1)𝑙(𝜋) (𝑙(𝜋))! =
∑︁
𝜋⪯𝜎

(−1)𝑙(𝜎) 𝜇(𝜋, 𝜎). (2.1.14)

2.2 Representation Theory

In this section, we list and prove some facts on Representation Theory we will

need. For proof and details on the basics on Representation Theory of finite

groups, we refer the reader to [FH91] and [Ser77].

A representation of a finite group 𝐺 is a finite dimensional C-vector space

𝑉 together with a group homomorphism

𝜌 : 𝐺→ AutC(𝑉 ).

Its character 𝜒 = 𝜒𝜌 is the class function obtained from composition with the

trace

𝜒𝜌(𝑔) := tr(𝜌(𝑔)).

Since the character 𝜒𝜌 of a representation 𝜌 determines it uniquely up to

isomorphism, a representation is usually identified with its character.

A representation is said to be irreducible if it does not have nontrivial

invariant subspaces. In such case, its character is also called irreducible.

Similarly, a representation of an algebra 𝐴 over an algebraically closed

field K is a finite dimensional K-vector space 𝑉 together with an algebra

homomorphism

𝜓 : 𝐴→ EndK(𝑉 ).
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The character of a representation of an algebra is defined as in the case of

representations of finite groups.

Notation. For a finite group 𝐺, we note Irr(𝐺) the set of its irreducible

characters. Whenever it is clear from the context, it will also represents the set

of (isomorphism classes of) irreducible representations of 𝐺. We will use the

same notation for the set of irreducible characters of an algebra. Moreover, we

write ̂︀𝐺 to denote Hom(𝐺,C×)

In an irreducible representation (𝑉, 𝜌), Schur’s Lemma says that all the C-

linear endomorphisms in Hom𝜌(𝑉, 𝑉 ), i.e., the set of endomorphisms commuting

with 𝜌, are the scalar multiplication 𝜁Id : 𝑥 ↦→ 𝜁𝑥 with 𝜁 ∈ C.

Remark 2.2.1. By Schur’s Lemma, we have that for 𝐺 abelian, Irr(𝐺) = ̂︀𝐺.

There is a natural inner product ⟨·, ·⟩𝐺 for characters given by

⟨︀
𝜒, 𝜒′⟩︀

𝐺
:=

1

|𝐺|
∑︁
𝑔∈𝐺

𝜒(𝑔)𝜒′(︀𝑔−1
)︀
.

Recall the Orthogonality relations: for 𝜒, 𝜒′ ∈ Irr(𝐺) then

⟨︀
𝜒, 𝜒′⟩︀

𝐺
=

⎧⎪⎪⎨⎪⎪⎩
1 if 𝜒 = 𝜒′

0 otherwise.

(2.2.1)

For 𝑔, ℎ ∈ 𝐺

∑︁
𝜒∈Irr(𝐺)

𝜒(𝑔)𝜒(ℎ) =

⎧⎪⎪⎨⎪⎪⎩
|𝐶𝐺(𝑔)| if 𝑔 andℎ are conjugate

0 otherwise

(2.2.2)

where 𝐶𝐺(𝑔) is the centralizer of 𝑔 in 𝐺.
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Notation. For a general group 𝐺 and elements 𝑥, 𝑔 ∈ 𝐺, sometimes we write

𝑥𝑔 for 𝑔𝑥𝑔−1. We may use the same notation for the conjugate of a group.

Let 𝐻 be a subgroup of a finite group 𝐺, 𝜒 a character of 𝐺, 𝜃 a character

of 𝐻. Define the restriction character Res𝐺𝐻(𝜒) as the character of 𝐻 satisfying

Res𝐺𝐻(𝜒)(ℎ) = 𝜒(ℎ)

for any ℎ ∈ 𝐻 and the induced character Ind𝐺𝐻(𝜃) as the character of 𝐺

satisfying

Ind𝐺𝐻(𝜃)(𝑔) =
1

|𝐻|
∑︁
𝑠∈𝐺
𝑔𝑠∈𝐻

𝜃(𝑔𝑠)

for any 𝑔 ∈ 𝐺. One can give analogous definitions for characters of representa-

tions of an algebra. The following Frobenius reciprocity law holds:

⟨︀
𝜒, Ind𝐺𝐻(𝜃)

⟩︀
𝐺
=
⟨︀
Res𝐺𝐻(𝜒), 𝜃

⟩︀
𝐻
. (2.2.3)

Let 𝐺1 and 𝐺2 be two finite groups, 𝜒1 ∈ Irr(𝐺1) and 𝜒2 ∈ Irr(𝐺2). Then we

can define the character 𝜒1 ⊗ 𝜒2 ∈ Irr(𝐺1 ×𝐺2) by

(𝜒1 ⊗ 𝜒2) ((𝑔1, 𝑔2)) := 𝜒1(𝑔1)𝜒2(𝑔2) (2.2.4)

for any 𝑔1 ∈ 𝐺1 and 𝑔2 ∈ 𝐺2. It turns out that every irreducible character

of the direct product 𝐺1 ×𝐺2 arises uniquely in this way, so Irr(𝐺1 ×𝐺2) =

Irr(𝐺1)× Irr(𝐺2).

2.2.1 Counting solutions of equations in finite groups

Let 𝐺 be a finite group and 𝐴 some abelian group like C or C𝑛×𝑛.
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Definition 2.2.2. For a function 𝑓 : 𝐺→ 𝐴, we note

∫︁
𝐺
𝑓(𝑥)𝑑𝑥 :=

1

|𝐺|
∑︁
𝑥∈𝐺

𝑓(𝑥)

the integral of 𝑓 with respect to the Haar measure of 𝐺.

Our goal now is to prove the following formula due to Frobenius (see [FQ93],

[FS906] or [Med78]). It will be fundamental for our next computations.

Proposition 2.2.3. (Frobenius formula). Given 𝑧 ∈ 𝐺, the number of 2𝑔-

tuples (𝑥1, 𝑦1, . . . , 𝑥𝑔, 𝑦𝑔) satisfying
𝑔∏︀
𝑖=1

[𝑥𝑖 : 𝑦𝑖]𝑧 = 1 is:

⃒⃒⃒⃒
⃒
{︃

𝑔∏︁
𝑖=1

[𝑥𝑖 : 𝑦𝑖]𝑧 = 1

}︃⃒⃒⃒⃒
⃒ = ∑︁

𝜒∈Irr(𝐺)

𝜒(𝑧)

(︂
|𝐺|
𝜒(1)

)︂2𝑔−1

. (2.2.5)

Proof. ([Mer15, Proposition 2.2.1]). Given 𝜌 : 𝐺 → Aut (𝑉 ) an irreducible

representation of 𝐺 and 𝜒 its character, let us consider for a fixed 𝑦 ∈ 𝐺 the

average ∫︁
𝐺
𝜌
(︀
𝑥𝑦𝑥−1

)︀
𝑑𝑥. (2.2.6)

Since it commutes with the 𝐺-action, it must be, by Schur’s Lemma, a scalar

map 𝜁Id. By taking the traces we get:

∫︁
𝐺
𝜌
(︀
𝑥𝑦𝑥−1

)︀
𝑑𝑥 = 𝜁Id∫︁

𝐺
tr
(︀
𝜌
(︀
𝑥𝑦𝑥−1

)︀)︀
𝑑𝑥 = 𝜁tr(Id)∫︁

𝐺
𝜒
(︀
𝑥𝑦𝑥−1

)︀
𝑑𝑥 = 𝜁𝜒(1)∫︁

𝐺
𝜒(𝑦)𝑑𝑥 = 𝜁𝜒(1)

𝜒(𝑦)

𝜒(1)
= 𝜁

(2.2.7)
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thus, the average 2.2.6 becomes

∫︁
𝐺
𝜌
(︀
𝑥𝑦𝑥−1

)︀
𝑑𝑥 =

𝜒(𝑦)

𝜒(1)
Id. (2.2.8)

Multiplying by 𝜌
(︀
𝑦−1
)︀
from the right we get:

∫︁
𝐺
𝜌
(︀
𝑥𝑦𝑥−1𝑦−1

)︀
𝑑𝑥 =

𝜒(𝑦)

𝜒(1)
𝜌(𝑦)−1

summing over all 𝑦 ∈ 𝐺 and dividing by |𝐺| again we end up with

∫︁ ∫︁
𝐺2

𝜌([𝑥 : 𝑦])𝑑𝑦𝑑𝑥 =

∫︁
𝐺

𝜒(𝑦)

𝜒(1)
𝜌(1)−1𝑑𝑦. (2.2.9)

Since the left hand side of this equation is invariant under 𝐺-conjugation, it is

also a scalar transformation. taking traces again we conclude

∫︁ ∫︁
𝐺2

tr(𝜌([𝑥 : 𝑦]))𝑑𝑦𝑑𝑥 =

(︃∫︁
𝐺

𝜒(𝑦)𝜒
(︀
𝑦−1
)︀

𝜒(1)2
𝑑𝑥

)︃
Id =

1

𝜒(1)2
Id. (2.2.10)

Raising 2.2.10 to the 𝑔-th power and multiplying by 𝜌(𝑧) from the right, we

will have (︂∫︁ ∫︁
𝐺2

𝜌
(︀
𝑥𝑦𝑥−1𝑦−1

)︀
𝑑𝑦𝑑𝑥

)︂𝑔
𝜌(𝑧) =

1

𝜒(1)2𝑔
𝜌(𝑧)∫︁

𝐺
· · ·
∫︁
𝐺⏟  ⏞  

2𝑔 times

𝜌([𝑥1 : 𝑦1] · · · [𝑥𝑔 : 𝑦𝑔] 𝑧)𝑑𝑥1𝑑𝑦1 . . . 𝑑𝑥𝑔𝑑𝑦𝑔 =
1

𝜒(1)2𝑔
𝜌(𝑧).

(2.2.11)

Taking trace at both sides yet one more time we have

∫︁
𝐺
· · ·
∫︁
𝐺
𝜒([𝑥1 : 𝑦1] · · · [𝑥𝑔 : 𝑦𝑔] 𝑧)𝑑𝑥1𝑑𝑦1 . . . 𝑑𝑥𝑔𝑑𝑦𝑔 =

𝜒(𝑧)

𝜒(1)2𝑔
. (2.2.12)
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Multiplying this by 𝜒(1) and summing over all 𝜒 ∈ Irr(𝐺), we see that the sum

∑︁
𝜒∈Irr(𝐺)

𝜒(𝑧)

𝜒(1)2𝑔−1 (2.2.13)

is equal to

∫︁
𝐺
· · ·
∫︁
𝐺

∑︁
𝜒∈Irr(𝐺)

𝜒(1)𝜒([𝑥1 : 𝑦1] · · · [𝑥𝑔 : 𝑦𝑔] 𝑧)𝑑𝑥1𝑑𝑦1 . . . 𝑑𝑥𝑔𝑑𝑦𝑔 (2.2.14)

and thanks to the orthogonality relation 2.2.2, only those terms with

𝑔∏︁
𝑖=1

[𝑥𝑖 : 𝑦𝑖]𝑧 = 1

survive in 2.2.14, and we get

1

|𝐺|2𝑔−1

⃒⃒⃒⃒
⃒
{︃

𝑔∏︁
𝑖=1

[𝑥𝑖 : 𝑦𝑖]𝑧 = 1

}︃⃒⃒⃒⃒
⃒ = ∑︁

𝜒∈Irr(𝐺)

𝜒(𝑧)

𝜒(1)2𝑔−1 (2.2.15)

from which the proposition follows immediately.

As a particular case of Proposition 2.2.3, for 𝑧 = 1 we recover the following

well known formula (see [FQ93] for instance).

Corollary 2.2.4. Let Σ𝑔 be a compact Riemann surface of genus 𝑔, 𝜋1(Σ𝑔) its

fundamental group and 𝐺 a finite group. Then

1

|𝐺|
|Hom(𝜋1(Σ𝑔), 𝐺)| =

∑︁
𝜒∈Irr(𝐺)

(︂
|𝐺|
𝜒(1)

)︂2𝑔−2

.
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2.2.2 Algebraic groups

In the next sections, we list some basic definitions and facts on the theory of

algebraic groups. In order to do this, we follow [Ca85, Chapter 1]. For more

details, we refer the reader to [Bo91] and [Hu75].

Let K be an algebraically closed field such that char(K) ̸= 2.

Definition 2.2.5. An (affine) algebraic group over K is a set 𝐺 which is an

affine algebraic variety over K and also a group, such that the maps

𝑚 : 𝐺×𝐺→ 𝐺

(𝑥, 𝑦) ↦→ 𝑥𝑦

and
𝑖 : 𝐺→ 𝐺

𝑥 ↦→ 𝑥−1

are morphisms of varieties. If 𝐺 and 𝐺′ are two algebraic groups, a map

𝛼 : 𝐺→ 𝐺′ is called a homomorphism if 𝛼 is both a morphism of varieties and

a homomorphism of groups. If 𝛼 is bijective and 𝛼−1 is a morphism of varieties,

then 𝛼 is an isomorphism of algebraic groups.

Remark 2.2.6. If 𝐻 is a closed subgroup of an algebraic group 𝐺, then it is

an algebraic group. If 𝐺1 and 𝐺2 are algebraic groups over K, then the direct

product 𝐺1 ×𝐺2 will also be an algebraic group.

Example 2.2.7. The additive group G𝑎 := (K,+) and the multiplicative group

G𝑚 := (K×, ·) are algebraic groups over K. These are the only algebraic groups

of dimension 1.

Example 2.2.8. Let 𝑛 be a natural number and let gl(𝑛,K) be the set of 𝑛× 𝑛
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matrices with coefficients in K. The general linear group of nonsingular matrices

GL(𝑛,K) = {𝐴 ∈ gl(𝑛,K) | det(𝐴) ̸= 0}

is an algebraic group over K.

Example 2.2.9. For 𝑛 ∈ N, any closed subgroup of GL(𝑛,K) is an affine algebraic

group. In particular, the special linear group

SL(𝑛,K) = {𝐴 ∈ GL(2𝑛,K) | det(𝐴) = 1}

and the group of symplectic matrices

Sp(2𝑛,K) =
{︀
𝐴 ∈ GL(2𝑛,K) | 𝐴𝑡𝐽𝐴 = 𝐽

}︀
(2.2.16)

are algebraic groups, where

𝐽 =
(︀

0 𝐶
−𝐶 0

)︀
∈ gl(2𝑛,K)

and

𝐶 =

(︂
1

. .
.

1

)︂
∈ gl(𝑛,K)

relatively to a basis {𝑒1, . . . , 𝑒𝑛, 𝑒−𝑛, . . . , 𝑒−1}.

Remark 2.2.10. The converse of the statement in the previous example 2.2.9

holds. Namely, every affine algebraic group over K is isomorphic to a closed

subgroup of GL(𝑛,K) for some 𝑛 ∈ N.

Let 𝐺 be an algebraic group over K and 𝑗 : 𝐺 →˓ GL(𝑛,K) an isomorphism

onto a closed subgroup of GL(𝑛,K), for some 𝑛 ∈ N, provided by Remark
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2.2.10.

Definition 2.2.11. An element 𝑥 ∈ 𝐺 is said to be semisimple if 𝑗(𝑥) is a

diagonalizable matrix. 𝑥 is said to be unipotent if 𝑗(𝑥) is a matrix whose

eigenvalues are all equal to 1.

Remark 2.2.12. The definitions of semisimple and unipotent element of an

algebraic group turn out to be independent from the choice of the closed

embedding into some general linear group GL(𝑛,K).

Remark 2.2.13. The property of being unipotent or semisimple for an element

of an algebraic group 𝐺 is preserved by homomorphisms of algebraic groups.

In particular, the only semisimple and unipotent element of an algebraic group

is the identity of 𝐺.

Definition 2.2.14. An algebraic group 𝐺 is called unipotent if all its elements

are unipotent. An algebraic group 𝐺 is a torus if it is isomorphic to a group of

the form G𝑚 × · · · ×G𝑚.

Example 2.2.15. The group G𝑎 is unipotent. In fact, we have the following

closed embedding:

𝑗 : G𝑎 →˓ GL(2,K)

𝑐 ↦→ 𝑗(𝑐) := ( 1 𝑐0 1 ).

Conversely, all elements of G𝑚 are semisimple, so by Remark 2.2.13, any torus

is made by semisimple elements.

Definition 2.2.16. The unipotent radical 𝑅𝑢 (𝐺) of an algebraic group 𝐺 is

the unique maximal element of the set of closed connected unipotent normal

subgroups of 𝐺. 𝐺 is called reductive if 𝑅𝑢(𝐺) = {1}.
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Example 2.2.17. GL(𝑛,K), SL(𝑛,K) and Sp(2𝑛,K) are all reductive algebraic

groups over K.

We now deal with connected algebraic groups. Recall that a group 𝐺 is

solvable if it has a series of normal subgroups

1 = 𝐺(0) ⊂ 𝐺(1) · · · ⊂ 𝐺(𝑑−1) ⊂ 𝐺(𝑑) = 𝐺

where 𝐺(𝑖+1) :=
[︀
𝐺(𝑖) : 𝐺(𝑖)

]︀
, the commutator of 𝐺𝑖, for each 𝑖.

Definition 2.2.18. A Borel subgroup 𝐵 of an algebraic group 𝐺 over K is a

maximal closed connected solvable subgroup of 𝐺. A maximal torus 𝑇 is a

closed subgroup of 𝐺 that is a torus not properly contained in larger tori.

Remark 2.2.19. All Borel subgroups of an algebraic group 𝐺 are conjugate.

This is true for maximal tori too.

Remark 2.2.20. If 𝑇 is a maximal torus in 𝐺, 𝐵 a Borel subgroup of 𝐺 containing

𝑇 , we have the following decomposition of 𝐵 as a semidirect product:

𝐵 = 𝑇 n 𝑈 (2.2.17)

where 𝑈 = 𝑅𝑢(𝐵).

Example 2.2.21. For 𝐺 = GL(𝑛,K), we may take 𝐵 = 𝑇𝑛(K), the subgroup

of upper-triangular matrices in 𝐺, as a Borel subgroup of 𝐺 and 𝑇 = 𝐷𝑛(K),

the subgroup of diagonal matrices in 𝐺, as a maximal torus of 𝐺. Moreover,

according to 2.2.17, we have

𝑇𝑛(K) = 𝐷𝑛(K)n 𝑈𝑛(K)
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where 𝑈𝑛(K) is the subgroup of upper-unitriangular matrices.

Example 2.2.22. For 𝐺 = Sp(2𝑛,K) ⊂ GL(2𝑛,K), using the notation of the

example 2.2.21, we may take 𝐵 = 𝑇2𝑛(K) ∩𝐺 as a Borel subgroup of 𝐺 and

𝑇 = 𝐷2𝑛(K) ∩𝐺 as a maximal torus of 𝐺, so in particular

𝑇 =
{︀
diag

(︀
𝜆1, . . . , 𝜆𝑛, 𝜆

−1
𝑛 , . . . , 𝜆−1

1

)︀
| 𝜆1, . . . , 𝜆𝑛 ∈ K×}︀ (2.2.18)

hence dim(𝑇 ) = 𝑛.

2.2.3 Roots, coroots and the Weyl group

From now on, we only deal with a connected reductive algebraic group 𝐺.

Definition 2.2.23. Let 𝑇 be a maximal torus of 𝐺. The Weyl group is defined

as 𝑊 := 𝑁𝐺(𝑇 )/𝑇 , where 𝑁𝐺(𝑇 ) is the normalizer of 𝑇 in 𝐺.

Remark 2.2.24. The Weyl group 𝑊 is a finite group and, by Remark 2.2.19, it

is uniquely determined up to isomorphism, i.e., different choices of maximal

tori produce isomorphic Weyl groups.

We now give a more detailed description of the structure of the Weyl group

𝑊 .

Let 𝑇 be a maximal torus of 𝐺 and let 𝑋 := Hom(𝑇,G𝑚) be the set of

algebraic group homomorphism from 𝑇 to G𝑚. 𝑋 can be made into a group

under the operation:

+ : 𝑋 ×𝑋 → 𝑋

defined by

(𝜒1 + 𝜒2)(𝑡) := 𝜒1(𝑡)𝜒2(𝑡)
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for any 𝜒1, 𝜒2 ∈ 𝑋, 𝑡 ∈ 𝑇 .

Definition 2.2.25. 𝑋 equipped with the operation + defined above is called

the character group of 𝑇 .

Remark 2.2.26. Suppose first that dim(𝑇 ) = 1. Then 𝑇 is isomorphic to G𝑚

and we are considering the group Hom(G𝑚,G𝑚). It is easy to see that the only

algebraic homomorphisms from G𝑚 to itself are the maps

G𝑚 → G𝑚

𝜆 ↦→ 𝜆𝑛

where 𝑛 ∈ Z. Thus Hom(G𝑚,G𝑚) ∼= Z. In general, we shall have 𝑇 ∼=

G𝑚 × · · · ×G𝑚⏟  ⏞  
𝑟 times

. Then we have

𝑋 = Hom(𝑇,G𝑚) ∼= Hom

⎛⎝G𝑚 × · · · ×G𝑚⏟  ⏞  
𝑟 times

,G𝑚

⎞⎠ ∼= Z⊕ · · · ⊕ Z⏟  ⏞  
𝑟 times

.

Thus 𝑋 is a free abelian group of rank 𝑟.

Let 𝑌 := Hom(G𝑚, 𝑇 ) be the set of algebraic homomorphism from G𝑚 into

𝑇 . As in the case of characters group 𝑋, 𝑌 can be made into a group under

the operation

+ : 𝑌 × 𝑌 → 𝑌

given by

(𝛾1 + 𝛾2)(𝜆) := 𝛾1(𝜆)𝛾2(𝜆)

for any 𝛾1, 𝛾2 ∈ 𝑌 , 𝜆 ∈ K×.

Definition 2.2.27. 𝑌 equipped with the operation + defined above is called
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the cocharacters group (or one-parameter subgroups) of 𝑇 .

Remark 2.2.28. Analogously to the case of the characters group 𝑋, if dim(𝑇 ) =

𝑟, then we have

𝑌 ∼= Hom

⎛⎝G𝑚,G𝑚 × · · · ×G𝑚⏟  ⏞  
𝑟 times

⎞⎠ ∼= Z⊕ · · · ⊕ Z⏟  ⏞  
𝑟 times

.

Thus 𝑌 is also a free abelian group of rank 𝑟.

We now define a map from 𝑋 × 𝑌 into Z taking (𝜒, 𝛾) to an integer ⟨𝜒, 𝛾⟩.

This integer is defined as follows. Since 𝜒 ∈ 𝑋 and 𝛾 ∈ 𝑌 , 𝜒 ∘ 𝛾 lies in

Hom(G𝑚,G𝑚), hence (𝜒 ∘ 𝛾)(𝜆) = 𝜆𝑛 for some 𝑛 ∈ Z and for all 𝜆 ∈ G𝑚. We

define ⟨𝜒, 𝛾⟩ = 𝑛. The map

𝑋 × 𝑌 → Z

(𝜒, 𝛾) ↦→ ⟨𝜒, 𝛾⟩

is non-degenerate and gives rise to a duality between 𝑋 and 𝑌 . It gives

isomorphisms between 𝑋 and Hom(𝑌,Z) and between 𝑌 and Hom(𝑋,Z).

The Weyl group can be made to act on both 𝑋 and 𝑌 as follows. If 𝑤 ∈𝑊

and 𝜒 ∈ 𝑋, for any 𝑡 ∈ 𝑇 we define 𝑤𝜒 ∈ 𝑋 by

𝑤𝜒(𝑡) := 𝜒(𝑡𝑤).

Then 𝜒→ 𝑤𝜒 is an automorphism of 𝑋 and we have 𝑤′
(𝑤𝜒) = 𝑤′𝑤𝜒. If 𝛾 ∈ 𝑌 ,

for any 𝜆 ∈ G𝑚 we define 𝛾𝑤 by

𝛾𝑤(𝜆) := 𝛾(𝜆)𝑤.
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Then 𝛾 → 𝛾𝑤 is an automorphism of 𝑌 and we have (𝛾𝑤
′
)𝑤 = 𝛾𝑤

′𝑤. The

𝑊 -actions on 𝑋 and 𝑌 are related by the formula

⟨𝜒, 𝛾𝑤⟩ = ⟨𝑤𝜒, 𝛾⟩

for 𝜒 ∈ 𝑋, 𝛾 ∈ 𝑌 and 𝑤 ∈𝑊 .

Let us consider a Borel subgroup 𝐵 of 𝐺 containing 𝑇 . Then 𝐵 = 𝑇 n 𝑈

according to 2.2.17, where 𝑈 = 𝑅𝑢(𝐵). It is true that 𝐺 has a unique Borel

subgroup 𝐵− containing 𝑇 such that 𝐵 ∩ 𝐵− = 𝑇 . 𝐵 and 𝐵− are called

opposite Borel subgroups. Again by 2.2.17, we have that 𝐵− = 𝑇 n 𝑈−, where

𝑈− = 𝑅𝑢(𝐵
−). 𝑈 and 𝑈− are connected unipotent groups normalized by 𝑇

satisfying 𝑈 ∩ 𝑈− = {1} and they are maximal unipotent subgroups of 𝐺.

We consider the minimal proper subgroups of 𝑈 and 𝑈− which are normal-

ized by 𝑇 . They are all connected unipotent groups of dimension 1 as affine

varieties, so the statements in examples 2.2.7 and 2.2.15 tell us that all these

groups are isomorphic to the additive group G𝑎. 𝑇 acts on each of them by

conjugation, giving a homomorphism 𝛼 : 𝑇 → Aut(G𝑎) from 𝑇 to the group of

algebraic automorphisms of G𝑎. However, the only algebraic automorphisms

of G𝑎 are the maps 𝜆 ↦→ 𝜇𝜆 for some 𝜇 ∈ K×. Thus Aut(G𝑎) is isomorphic to

G𝑚. Hence each of our 1-dimensional unipotent groups determines an element

of Hom(𝑇,G𝑚) = 𝑋.

Definition 2.2.29. The elements of 𝑋 arising in the way described above form

the finite set Φ of the roots of 𝐺.

Remark 2.2.30. The roots of 𝐺 are all nonzero elements of 𝑋. Distinct 1-

dimensional unipotent subgroups give rise to distinct roots and the set of roots



CHAPTER 2. PRELIMINARIES 29

Φ is independent of the choice of the Borel subgroup 𝐵 containing 𝑇 .

Definition 2.2.31. For each root 𝛼 ∈ Φ, the 1-dimensional unipotent subgroup

𝑋𝛼 giving rise to it is called a root subgroup of 𝐺.

Remark 2.2.32. The roots arising from root subgroup in 𝑈− are the negatives of

the roots arising from root subgroups in 𝑈 . We also have 𝐺 = ⟨𝑇,𝑋𝛼 | 𝛼 ∈ Φ⟩.

Let 𝛼, −𝛼 be a pair of opposite roots. Then we consider the subgroup

⟨𝑋𝛼, 𝑋−𝛼⟩ of 𝐺 generated by the root subgroups 𝑋𝛼 and 𝑋−𝛼. This subgroup

is a 3-dimensional simple group, i.e., a group that has no proper closed con-

nected normal subgroups, isomorphic to either SL(2,K) or to PGL(2,K) :=

GL(2,K)/ {±𝐼2}. In fact, there is a homomorphism 𝜑𝛼 : SL(2,K)� ⟨𝑋𝛼, 𝑋−𝛼⟩

such that
𝜑𝛼({( 1 *

0 1 )}) = 𝑋𝛼,

𝜑𝛼({( 1 0
* 1 )}) = 𝑋−𝛼.

Definition 2.2.33. Let 𝛼 ∈ Φ. The 1-dimensional torus

𝑇𝛼 := 𝜑𝛼
(︀{︀(︀

𝜆 0
0 𝜆−1

)︀}︀)︀
is called a root torus. The cocharacter 𝛼𝑣 of 𝑇 given by

𝛼𝑣 : G𝑚 → 𝑇𝛼 ⊆ 𝑇

𝜆 ↦→ 𝜑𝛼
(︀(︀

𝜆 0
0 𝜆−1

)︀)︀
is called the coroot corresponding to the root 𝛼.

Remark 2.2.34. A root 𝛼 and its corresponding coroot 𝛼𝑣 are related by the

condition ⟨𝛼, 𝛼𝑣⟩ = 2. Moreover, the coroots form a finite subset of 𝑌 that we

denote by Φ𝑣.
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Remark 2.2.35. If 𝛼 ∈ Φ, one can prove that the root torus 𝑇𝛼 coincides with

𝑇−𝛼.

We now consider in more detail the actions of the Weyl group on 𝑋 and

𝑌 . 𝑊 acts faithfully on both these lattices. Each element of 𝑊 permutes the

set of roots Φ in 𝑋 and the set of coroots Φ𝑣 in 𝑌 . For each root 𝛼 consider

the element 𝜑𝛼
(︀(︀

0 1
−1 0

)︀)︀
∈ ⟨𝑋𝛼, 𝑋−𝛼⟩. This element lies in 𝑁𝐺(𝑇 ), so we can

define the following assignment

Φ→𝑊 = 𝑁𝐺(𝑇 )/𝑇

𝛼 ↦→ 𝑤𝛼 :=
[︀
𝜑𝛼
(︀(︀

0 1
−1 0

)︀)︀]︀
𝑇
.

(2.2.19)

The element 𝑤𝛼 acts on 𝑋 by

𝑤𝛼(𝜒) := 𝜒− ⟨𝜒, 𝛼𝑣⟩𝛼 (2.2.20)

for 𝜒 ∈ 𝑋, and on 𝑌 by

𝑤𝛼(𝛾) := 𝛾 − ⟨𝛼, 𝛾⟩𝛼𝑣 (2.2.21)

for 𝛾 ∈ 𝑌 . We have 𝑤𝛼 = 𝑤−𝛼 and 𝑤2
𝛼 = 1. Moreover, the elements 𝑤𝛼 for all

𝛼 ∈ Φ generate 𝑊 .

Definition 2.2.36. For a connected reductive group𝐺, the quadruple (𝑋,Φ, 𝑌,Φ𝑣)

is called a root datum. This means that 𝑋 and 𝑌 are free abelian groups of

the same finite rank with a nondegenerate map 𝑋 × 𝑌 → Z which puts them

into duality. Φ and Φ𝑣 are finite subsets of 𝑋 and 𝑌 respectively, and there

is a bijection 𝛼 ↦→ 𝛼𝑣 between them satisfying ⟨𝛼, 𝛼𝑣⟩ = 2. Finally, for each

𝛼 ∈ Φ we have maps 𝑤𝛼 : 𝑋 → 𝑋 and 𝑤𝛼 : 𝑌 → 𝑌 defined as in 2.2.20 and
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2.2.21 satisfying 𝑤𝛼(Φ) = Φ, 𝑤𝛼(Φ𝑣) = Φ𝑣.

Remark 2.2.37. The basic classification theorem for connected reductive groups

asserts that, given any root datum, there is a unique connected reductive group

𝐺 over K which gives rise to the root datum in the manner described above.

Definition 2.2.38. Let Φ+ be the set of roots arising from root subgroup of

𝑈 and Φ− be those arising from subgroups of 𝑈−. Roots in Φ+, Φ− are called

positive and negative respectively. Let Δ be the set of positive roots which

cannot be expressed as a sum of two positive roots. Δ is called the set of simple

roots.

Remark 2.2.39. The set Δ of simple roots is linearly independent. If |Δ| = 𝑛

and Δ = {𝛼1, . . . , 𝛼𝑛}, then each root in Φ+ has the form
𝑛∑︀
𝑖=1

𝑛𝑖𝛼𝑖 where

𝑛𝑖 ∈ Z≥0 and each root in Φ− has the form
𝑛∑︀
𝑖=1

𝑛𝑖𝛼𝑖 where 𝑛𝑖 ∈ Z≤0.

Remark 2.2.40. If Δ = {𝛼1, . . . , 𝛼𝑛}, the Weyl group 𝑊 is generated by the

elements 𝑠1, . . . , 𝑠𝑛 corresponding to the simple roots.

Remark 2.2.41. We have 𝑊 (Δ) = Φ, so that each root is the image of some

simple root under an element of the Weyl group 𝑊 . Also, there is a unique

element 𝑤0 ∈𝑊 such that 𝑤0(Φ
+) = Φ−.

We conclude illustrating the situation described in this section in the

following two concrete examples.

Example 2.2.42. Let 𝐺 = GL(𝑛,K). Let us take 𝐵 and 𝑇 as in example 2.2.21.

Then 𝑈 is the subgroup of upper-unitriangular matrices. We also have for

𝐵− the subgroup of lower-triangular matrices and for 𝑈− the subgroup of

lower-unitriangular matrices. For 𝑖 = 1, . . . , 𝑛, define 𝜖𝑖 : 𝑇 → G𝑚 as the
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character of 𝑇 given by

diag(𝜆1, . . . , 𝜆𝑛) ↦→ 𝜆𝑖.

Then the roots of 𝐺 are given by 𝛼𝑖𝑗 := 𝜖𝑖 − 𝜖𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑛 with 𝑖 ̸= 𝑗.

For each root 𝛼𝑖𝑗 , the corresponding root subgroup 𝑋𝛼𝑖𝑗 and root torus 𝑇𝛼𝑖𝑗

are given by

𝑋𝛼𝑖𝑗 = {𝐼𝑛 + 𝜆𝐸𝑖𝑗 | 𝜆 ∈ K} ,

𝑇𝛼𝑖𝑗 =

⎧⎪⎨⎪⎩diag

⎛⎜⎝1, . . . , 1,

𝑖⏞ ⏟ 
𝜆 , 1, . . . , 1,

𝑗⏞ ⏟ 
𝜆−1 , 1, . . . , 1

⎞⎟⎠ | 𝜆 ∈ K×

⎫⎪⎬⎪⎭
where 𝐸𝑖𝑗 is the elementary matrix with 1 in the (𝑖, 𝑗) position and zeroes

elsewhere, while the corresponding coroot 𝛼𝑣𝑖𝑗 : G𝑚 → 𝑇 is given by

𝜆 ↦→ diag

⎛⎜⎝1, . . . , 1,

𝑖⏞ ⏟ 
𝜆 , 1, . . . , 1,

𝑗⏞ ⏟ 
𝜆−1 , 1, . . . , 1

⎞⎟⎠
We observe that the root 𝛼𝑖𝑗 maps this matrix into 𝜆2, so that

⟨
𝛼𝑖𝑗 , 𝛼

𝑣
𝑖𝑗

⟩
= 2.

The Weyl group 𝑊 is isomorphic to the symmetric group 𝑆𝑛. For each

root 𝛼𝑖𝑗 , the corresponding element 𝑤𝛼𝑖𝑗 ∈ 𝑊 is the permutation which

transposes 𝑖 and 𝑗 and fixes the remaining symbols. The set of positive

roots is Φ+ = {𝛼𝑖𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}. On the other hand, the set of negative

roots is Φ− = {𝛼𝑖𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛}. The set Δ of simple roots is given by

Δ = {𝛼12, 𝛼23, . . . , 𝛼𝑛,𝑛−1}.

Example 2.2.43. (See [DM91, Chapter 15]). Let 𝐺 = Sp(2𝑛,K). Let us take 𝐵

and 𝑇 as in example 2.2.22. Then 𝑈 is the subgroup of upper-unitriangular
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symplectic matrices. We also have for 𝐵− the subgroup of lower-triangular

symplectic matrices and for 𝑈− the subgroup of lower-unitriangular symplectic

matrices. Similarly to what we have done in the previous example 2.2.42, for

𝑖 = 1, . . . , 𝑛 define 𝜖𝑖 : 𝑇 → G𝑚 as the character of 𝑇 given by

diag
(︀
𝜆1, . . . , 𝜆𝑛, 𝜆

−1
𝑛 , . . . , 𝜆−1

1

)︀
↦→ 𝜆𝑖.

Then the set of roots of 𝐺 is given by

Φ = {±𝜖𝑖 ± 𝜖𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}∪

{±2𝜖𝑖 | 1 ≤ 𝑖 ≤ 𝑛} .
(2.2.22)

In particular

Φ+ = {𝜖𝑖 − 𝜖𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}∪

{𝜖𝑖 + 𝜖𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}∪

{2𝜖𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ,

Φ− = {−𝜖𝑖 + 𝜖𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}∪

{−𝜖𝑖 − 𝜖𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}∪

{−2𝜖𝑖 | 1 ≤ 𝑖 ≤ 𝑛} .

The corresponding root subgroups are the following

𝑋𝜖𝑖−𝜖𝑗 = {1 + 𝑡 (𝐸𝑖,𝑗 − 𝐸−𝑗,−𝑖) | 𝑡 ∈ K} ,

𝑋−𝜖𝑖+𝜖𝑗 = {1 + 𝑡 (𝐸−𝑖,−𝑗 − 𝐸𝑗,𝑖) | 𝑡 ∈ K} ;
(2.2.23)

𝑋𝜖𝑖+𝜖𝑗 = {1 + 𝑡 (𝐸𝑖,−𝑗 + 𝐸𝑗,−𝑖) | 𝑡 ∈ K} ,

𝑋−𝜖𝑖−𝜖𝑗 = {1 + 𝑡 (−𝐸−𝑖,𝑗 − 𝐸−𝑗,𝑖) | 𝑡 ∈ K} ;
(2.2.24)
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𝑋2𝜖𝑖 = {1 + 𝑡𝐸𝑖,−𝑖 | 𝑡 ∈ K} ,

𝑋−2𝜖𝑖 = {1 + 𝑡𝐸−𝑖,𝑖 | 𝑡 ∈ K} ;
(2.2.25)

while the corresponding root tori are given by

𝑇𝜖𝑖−𝜖𝑗 =

{︂
diag

(︂
1, . . . , 1,

𝑖⏞ ⏟ 
𝜆 , . . . ,

𝑗⏞ ⏟ 
𝜆−1 , 1, . . .

. . . , 1,

−𝑗⏞ ⏟ 
𝜆 , . . . ,

−𝑖⏞ ⏟ 
𝜆−1 , 1, . . . , 1

)︂
| 𝜆 ∈ K×

}︂
;

(2.2.26)

𝑇𝜖𝑖+𝜖𝑗 =

{︂
diag

(︂
1, . . . , 1,

𝑖⏞ ⏟ 
𝜆 , . . . ,

𝑗⏞ ⏟ 
𝜆 , 1, . . .

. . . , 1,

−𝑗⏞ ⏟ 
𝜆−1 , . . . ,

−𝑖⏞ ⏟ 
𝜆−1 , 1, . . . , 1

)︂
| 𝜆 ∈ K×

}︂
;

(2.2.27)

𝑇2𝜖𝑖 =

{︂
diag

(︂
1, . . . , 1,

𝑖⏞ ⏟ 
𝜆 , . . . ,

−𝑖⏞ ⏟ 
𝜆−1 , 1, . . . , 1

)︂
| 𝜆 ∈ K×

}︂
. (2.2.28)

For any root 𝛼 ∈ Φ, the group ⟨𝑋𝛼, 𝑋−𝛼⟩ is isomorphic to SL(2,K).

The Weyl group 𝑊 is isomorphic to the semidirect product 𝑆𝑛 n𝜇𝑛2, where

𝜇2 := {±1}. For each root of the form 𝜖𝑖 − 𝜖𝑗 , the corresponding element

𝑤𝜖𝑖−𝜖𝑗 ∈ 𝑊 is the permutation of the set {1, . . . , 𝑛,−𝑛, . . . ,−1} which trans-

poses 𝑖 and 𝑗 and also −𝑖 and −𝑗 and fixes the remaining symbols. For each root

of the form 𝜖𝑖 + 𝜖𝑗 , 𝑤𝜖𝑖+𝜖𝑗 is the permutation of the set {1, . . . , 𝑛,−𝑛, . . . ,−1}

which transposes 𝑖 and −𝑗 and also −𝑖 and 𝑗 and fixes the remaining sym-

bols. Finally, for each root of the form 2𝜖𝑖, 𝑤2𝜖𝑖 is the permutation of the set

{1, . . . , 𝑛,−𝑛, . . . ,−1} which transposes 𝑖 and −𝑖 and fixes the remaining sym-

bols. The set Δ of simple roots is given by Δ = {𝜖1 − 𝜖2, . . . , 𝜖𝑛−1 − 𝜖𝑛, 2𝜖𝑛}.



CHAPTER 2. PRELIMINARIES 35

2.2.4 Coxeter groups and generic degrees

Now we make a digression on Representation theory of Coxeter groups. We

refer the reader to [GP00].

Definition 2.2.44. A finite group 𝑊 is a Coxeter group if it is presented as

an abstract group by the following system of generators and relations:

𝑊 =
⟨︀
𝑠1, . . . , 𝑠𝑛 | 𝑠2𝑖 = 1, (𝑠𝑖𝑠𝑗)

𝑚𝑖𝑗 = 1 if 𝑖 ̸= 𝑗
⟩︀
. (2.2.29)

If 𝑆 = {𝑠1, . . . , 𝑠𝑛} is the set of generators of 𝑊 as a Coxeter group, the pair

(𝑊,𝑆) is said to be a Coxeter system. The symmetric matrix 𝑀 defined as

(𝑀)𝑖𝑗 := 𝑚𝑖𝑗 is called the Coxeter matrix of 𝑊 .

Remark 2.2.45. The direct product 𝑊1 ×𝑊2 of two Coxeter groups 𝑊1 and

𝑊2 is a Coxeter group.

Definition 2.2.46. If (𝑊,𝑆) is a Coxeter system with 𝑆 = {𝑠1, . . . , 𝑠𝑛}, define

the sign character of 𝑊 as the linear character 𝜀 of 𝑊 such that 𝜀(𝑠𝑖) = −1

for any 𝑖 = 1, . . . , 𝑛.

Definition 2.2.47. Let 𝑊 be a Coxeter group, 𝑆 = {𝑠1, . . . , 𝑠𝑛} its set of

generators and 𝑀 its Coxeter matrix. 𝑊 is said to be of type 𝐴𝑛−1, and we

denote it by 𝑊𝐴𝑛−1 , if, for any 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, 𝑀 satisfies

(𝑀)𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
3 if 𝑗 − 𝑖 = 1

2 otherwise.

𝑊 is said to be of type 𝐵𝑛 and we denote it by 𝑊𝐵𝑛 , if, for any 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,
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𝑀 satisfies

(𝑀)𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
3 if 𝑗 − 𝑖 = 1and 𝑖 ̸= 𝑛− 1

4 if 𝑖 = 𝑛− 1, 𝑗 = 𝑛

2 otherwise.

𝑊 is said to be of type 𝐷𝑛, and we denote it by 𝑊𝐷𝑛 , if, for any 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,

𝑀 satisfies

(𝑀)𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
3 if (𝑗 − 𝑖 = 1and 𝑖 ≤ 𝑛− 2) or (𝑖 = 𝑛− 2, 𝑗 = 𝑛)

2 otherwise.

Notation. If 𝑊1 and 𝑊2 are Coxeter groups of type 𝑋1 and 𝑋2 respectively,

then we say that 𝑊1 ×𝑊2 is of type 𝑋1 ×𝑋2.

Example 2.2.48. If 𝐺 is a connected reductive algebraic group, then its Weyl

group 𝑊 is a Coxeter group. The generators of 𝑊 are the elements 𝑠1, . . . , 𝑠𝑛

corresponding to the simple roots 𝛼1, . . . .𝛼𝑛.

Remark 2.2.49. From Examples 2.2.42 and 2.2.43, it is easy to see by Definition

2.2.47 and Remark 2.2.40 that the Weyl groups of GL(𝑛,K) and Sp(2𝑛,K)

are Coxeter groups of type 𝐴𝑛−1 and 𝐵𝑛 respectively. Thus 𝑊𝐴𝑛−1
∼= 𝑆𝑛 and

𝑊𝐵𝑛
∼= 𝑆𝑛 n 𝜇𝑛2.

Remark 2.2.50. The Coxeter group 𝑊𝐷𝑛 is a subgroup of 𝑊𝐵𝑛
∼= 𝑆𝑛 n 𝜇𝑛2 of

index two. Namely,

𝑊𝐷𝑛 =

{︃
(𝜎, (𝑥1, . . . , 𝑥𝑛)) ∈ 𝑆𝑛 n 𝜇𝑛2 |

𝑛∏︁
𝑖=1

𝑥𝑖 = 1

}︃
. (2.2.30)

Definition 2.2.51. The Poincaré polynomials of 𝑊𝐴𝑛−1 , 𝑊𝐵𝑛 and 𝑊𝐷𝑛 are
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polynomials with integral coefficients defined as follows:

𝑃𝐴𝑛−1(𝑢) :=

𝑛∏︁
𝑖=1

(︂
𝑢𝑖 − 1

𝑢− 1

)︂
,

𝑃𝐵𝑛(𝑢) := 𝑃𝐴𝑛−1(𝑢)
𝑛∏︁
𝑖=1

(︀
1 + 𝑢𝑖

)︀
,

𝑃𝐷𝑛(𝑢) := 𝑃𝐴𝑛−1(𝑢)
𝑛−1∏︁
𝑖=1

(︀
1 + 𝑢𝑖

)︀
.

(2.2.31)

Remark 2.2.52. Actually, there is a definition of Poincaré polynomial for general

Coxeter groups (see for instance [GP00, Section 8.1.8] or also [Ki69]), but

we only need this notion in the case of Coxeter groups of type 𝐴, 𝐵 and 𝐷.

Nevertheless, we will use the following general property for Poincaré polynomials:

if 𝑊 is a Coxeter group and 𝑈 is a subgroup of 𝑊 that is Coxeter, then the

Poincaré polynomial 𝑃𝑈 of 𝑈 divides the Poincaré polynomial 𝑃𝑊 of 𝑊 .

Notation. Sometimes we denote the Poincaré polynomial of a Coxeter group

𝑊 by 𝑃𝑊 as in the previous Remark 2.2.52.

Remark 2.2.53. The Poincaré polynomial is multiplicative with respect to the

direct product, that is, if 𝑊 =𝑊1 ×𝑊2 is of type 𝑋1 ×𝑋2 then 𝑃𝑋1×𝑋2(𝑢) =

𝑃𝑋1(𝑢)𝑃𝑋2(𝑢)

Remark 2.2.54. It is easy to see that

1. 𝑃𝐴𝑛−1(1) = 𝑛! =
⃒⃒
𝑊𝐴𝑛−1

⃒⃒
.

2. 𝑃𝐵𝑛(1) = 2𝑛𝑛! = |𝑊𝐵𝑛 |.

3. 𝑃𝐷𝑛(1) = 2𝑛−1𝑛! = |𝑊𝐷𝑛 |.

The following bijective correspondences are well known (see for instance

[Lu77, 2.2, 2.3, 2.5]):
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1. Irr
(︀
𝑊𝐴𝑛−1

)︀ 1:1←→ 𝒫𝑛.

2. Irr(𝑊𝐵𝑛)
1:1←→

⋃︀
𝑘+𝑙=𝑛

𝒫𝑘 × 𝒫𝑙

3. Irr(𝑊𝐷𝑛)
1:1←→ {{𝜆, 𝜇} | |𝜆|+ |𝜇| = 𝑛} ∪

{︀
{𝜆,±} | 𝜆 ⊢ 𝑛

2

}︀
.

Thus using the assignments 2.1.6 and 2.1.8 and referring to the notations used

in 2.1.1, we have:

Irr
(︀
𝑊𝐴𝑛−1

)︀ 1:1←→ Φ𝑛, (2.2.32)

Irr(𝑊𝐵𝑛)
1:1←→ Φ𝑛,1, (2.2.33)

Irr(𝑊𝐷𝑛)
1:1←→ Φ̃𝑛,0. (2.2.34)

We conclude this section by defining generic degrees for irreducible characters

of Coxeter groups of type 𝐴𝑛−1, 𝐵𝑛 and 𝐷𝑛. In order to do this, it will be

convenient to introduce the following notation.

Let 𝑢 be an indeterminate. For any integer 𝑚 ≥ 1, we set

[𝑚](𝑢) :=
𝑢𝑚 − 1

𝑢− 1
.

Moreover, we set [𝑚](𝑢)! := [1](𝑢)[2](𝑢) · · · [𝑚](𝑢) and [0](𝑢) := 1. Finally, let

Δ(𝑍, 𝑢) :=
∏︁
𝑘,𝑙∈𝑍
𝑘𝑙

(︁
𝑢𝑘 − 𝑢𝑙

)︁

for any 𝛽-set 𝑍.

Definition 2.2.55. (Theorem 10.5.2, 10.5.3 in [GP00]). Let 𝑋 ∈ Φ𝑛 such

that |𝑋| = 𝑏. The generic degree of the corresponding irreducible character of
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𝑊𝐴𝑛−1 is given by

𝑑𝑋(𝑢) :=
(𝑢− 1)𝑛 [𝑛](𝑢)!Δ(𝑋,𝑢)

𝑢𝑏(𝑏−1)(𝑏−2)/2

(︂ ∏︀
𝑘∈𝑋

(𝑢− 1)𝑘 [𝑘](𝑢)!

)︂ . (2.2.35)

Let Λ = (𝑋,𝑌 ) ∈ Φ𝑛,1 such that |𝑋| = 𝑏+ 1, |𝑌 | = 𝑏. The generic degree of

the corresponding irreducible character of 𝑊𝐵𝑛 is given by

𝑑Λ(𝑢) :=

𝑢𝑏(𝑏+1)/2 (𝑢− 1)𝑛 𝑃𝐵𝑛(𝑢)Δ(𝑋,𝑢)Δ(𝑌, 𝑢)
∏︀

(𝑘,𝑙)∈𝑋×𝑌

(︀
𝑢𝑘 + 𝑢𝑙

)︀
2𝑏𝑢𝑏(2𝑏−1)(𝑏+2)/3

(︂ ∏︀
𝑘∈𝑋

(𝑢− 1)𝑘 𝑃𝐵𝑘
(𝑢)

)︂(︂∏︀
𝑙∈𝑌

(𝑢− 1)𝑙 𝑃𝐵𝑙
(𝑢)

)︂ .
(2.2.36)

Let Λ′ = (𝑋,𝑌 ) ∈ Φ̃𝑛,0 such that |𝑋| = |𝑌 | = 𝑏. The generic degree of the

corresponding irreducible character of 𝑊𝐷𝑛 is given by

𝑑Λ′(𝑢) :=

(𝑢− 1)𝑛 𝑃𝐷𝑛(𝑢)Δ(𝑋,𝑢)Δ(𝑌, 𝑢)
∏︀

(𝑘,𝑙)∈𝑋×𝑌

(︀
𝑢𝑘 + 𝑢𝑙

)︀
2𝑐𝑢𝑏(𝑏−1)(4𝑏−5)/6

(︂ ∏︀
𝑘∈𝑋

𝑘∏︀
ℎ=1

(𝑢2ℎ − 1)

)︂(︂∏︀
𝑙∈𝑌

𝑙∏︀
ℎ=1

(𝑢2ℎ − 1)

)︂ (2.2.37)

where 𝑐 = 𝑏 if Λ′ = (𝑋,±) is a special symbol for some 𝛽-set 𝑋 and 𝑐 = 𝑏− 1

otherwise.

Notation. If 𝜒 is an irreducible character of a Coxeter group 𝑊 of type 𝐴𝑛−1,

𝐵𝑛 or 𝐷𝑛 for some 𝑛 ∈ N, sometimes we denote its generic degree by 𝑑𝜒.

Remark 2.2.56. Let𝑊 a Coxeter group of type 𝐴𝑛−1, 𝐵𝑛 or 𝐷𝑛 for some 𝑛 ∈ N.

If 𝜒 ∈ Irr(𝑊 ), it is true that 𝑑𝜒(1) = 𝜒(1) ([CIK72, Theorem 5.7]).

Remark 2.2.57. Let 𝜒 be an irreducible character of a Coxeter group 𝑊 of type

𝐴, 𝐵 or 𝐷, 𝑑𝜒 its generic degree. Then 𝑑𝜒 = 1
𝑐𝜒
𝑓𝜒, where 𝑓𝜒 ∈ Z[𝑢] is a monic

polynomial and 𝑐𝜒 ∈ N, both depending on 𝜒 ([GP00, Corollary 9.3.6]).
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Remark 2.2.58. As in the case of Poincaré polynomials, the generic degree can

be defined for a general Coxeter group in such a way that it is multiplicative with

respect to the direct product, that is, if𝑊 =𝑊1×𝑊2 and 𝜒 = 𝜒1⊗𝜒2 ∈ Irr(𝑊 )

with 𝜒1 ∈ Irr(𝑊1) and 𝜒2 ∈ Irr(𝑊2), then 𝑑𝜒 = 𝑑𝜒1 · 𝑑𝜒2 .

We conclude this section by stating the following

Proposition 2.2.59. Let 𝑊 be a Coxeter group, 𝑃𝑊 its Poincaré polynomial,

𝜒 ∈ Irr(𝑊 ) and 𝑑𝜒 the corresponding generic degree. Then

𝑃𝑊
(︀
𝑢−1

)︀
𝑑𝜒(𝑢−1)

=
𝑃𝑊 (𝑢)

𝑑𝜖𝜒(𝑢)
(2.2.38)

where 𝜖 is the sign character of 𝑊 as defined in Definition 2.2.46.

Proof. The statement is a direct consequence of [Ca85, Lemma 11.3.2].

2.2.5 Principal series representations of Sp(2𝑛,F𝑞)

We now develop part of the theory of principal series representations for the

finite symplectic group that we will need in the following. In particular, we show

the results contained in [DL76] and [HK80] adapted to the case of Sp(2𝑛,F𝑞)

where F𝑞 is a finite field of odd prime characteristic 𝑝, 𝑞 = 𝑝𝑚 for some 𝑚 ∈ N.

Throughout this section, let 𝐺 = Sp
(︀
2𝑛,F𝑞

)︀
, 𝐵, 𝑈 and 𝑇 again as in the

example 2.2.22. In this setting, we also have the standard Frobenius map

𝐹 : 𝐺→ 𝐺

(𝑎𝑖𝑗) ↦→
(︁
𝑎𝑞𝑖𝑗

)︁
.

This is a bijective homomorphism of algebraic groups and 𝐵, 𝑇 and 𝑈 are

𝐹 -stable subgroups of 𝐺. If 𝐻 is any 𝐹 -stable algebraic group, let us denote
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by 𝐻𝐹 the finite group of points in 𝐻 fixed by 𝐹 . Then

𝐺𝐹 = Sp(2𝑛,F𝑞), 𝐵𝐹 = 𝐵2𝑛(F𝑞) ∩ Sp(2𝑛,F𝑞),

𝑇𝐹 = 𝐷2𝑛(F𝑞) ∩ Sp(2𝑛,F𝑞), 𝑈𝐹 = 𝑈2𝑛(F𝑞) ∩ Sp(2𝑛,F𝑞).

Consequently, 𝐵𝐹 = 𝑇𝐹 n 𝑈𝐹 with

𝑇𝐹 =
{︀
diag

(︀
𝜆1, . . . , 𝜆𝑛, 𝜆

−1
𝑛 , . . . , 𝜆−1

1

)︀
| 𝜆1, . . . , 𝜆𝑛 ∈ F×𝑞

}︀
(2.2.39)

and the normalizer 𝑁𝐺(𝑇 ) is 𝐹 -stable. Fix a group homomorphism

𝑓 : F×𝑞 → C× (2.2.40)

such that if F×𝑞 = ⟨𝛾⟩, then 𝑓(𝛾) generates a cyclic subgroup in C× of order

𝑞 − 1. If 𝜃 ∈ ̂︁𝑇𝐹 and

𝑡 = diag
(︀
𝜆1, . . . , 𝜆𝑛, 𝜆

−1
𝑛 , . . . , 𝜆−1

1

)︀
is an element of 𝑇𝐹 , then 𝜃 is a map of the following form

𝜃 : 𝑇𝐹 → C×

𝑡 ↦→ 𝜃(𝑡) :=

𝑛∏︁
𝑖=1

𝑓(𝜆𝑖)
𝑚𝑖 .

(2.2.41)

with 𝑚𝑖 ∈ Z𝑞−1 for each 𝑖 = 1, . . . , 𝑛, so

(︁̂︁𝑇𝐹 , ·)︁ ∼= (︀Z𝑛𝑞−1,+
)︀
.

The Frobenius map 𝐹 induces the identity map on the Weyl group 𝑊 =𝑊𝐵𝑛
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of 𝐺.

Notation. From now on, we denote in the same way an element in F×𝑞 and its

image via the homomorphism 𝑓 defined in 2.2.40.

Definition 2.2.60. Let 𝜃 ∈ ̂︁𝑇𝐹 . The corresponding Deligne-Lusztig character

is given by

𝑅𝐺𝑇 (𝜃) := Ind𝐺
𝐹

𝐵𝐹

(︁̃︀𝜃)︁ (2.2.42)

where ̃︀𝜃 := 𝜃 ∘𝑝1 ∈̂︂𝐵𝐹 and 𝑝1 : 𝐵𝐹 = 𝑇𝐹 n𝑈𝐹 � 𝑇𝐹 is the natural projection

onto 𝑇𝐹 . The irreducible components of 𝑅𝐺𝑇 (𝜃) are called the principal series

of 𝜃.

Notation. In the following, sometimes we may use the symbol 𝑅𝐺𝑇 (𝜃) also to

denote both the associated representation and the set of principal series of 𝜃.

So if 𝜒 is in the principal series of 𝜃, we write 𝜒 ∈ 𝑅𝐺𝑇 (𝜃).

Now recall the following formula concerning the inner product between

Deligne-Lusztig characters.

Proposition 2.2.61. ([DL76, Theorem 6.8]).Let 𝜃, 𝜃′ ∈ ̂︁𝑇𝐹 . Then

⟨︀
𝑅𝐺𝑇 (𝜃), 𝑅

𝐺
𝑇

(︀
𝜃′
)︀⟩︀
𝐺𝐹 =

⃒⃒⃒{︁
𝑛 ∈ 𝑁𝐺(𝑇 )

𝐹 | 𝜃𝑛 = 𝜃′
}︁⃒⃒⃒

|𝑇𝐹 |
(2.2.43)

where 𝜃𝑛 (𝑡) := 𝜃 (𝑡𝑛) for every 𝑡 ∈ 𝑇𝐹 . Moreover, there are only two possibili-

ties:

1.
⟨︀
𝑅𝐺𝑇 (𝜃), 𝑅

𝐺
𝑇 (𝜃

′)
⟩︀
𝐺𝐹 = 0;

2. 𝑅𝐺𝑇 (𝜃) = 𝑅𝐺𝑇 (𝜃
′).
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Remark 2.2.62. The finite normalizer 𝑁𝐺(𝑇 )
𝐹 acts on ̂︁𝑇𝐹 by conjugation,

namely we have

𝜙 : 𝑁𝐺(𝑇 )
𝐹 × ̂︁𝑇𝐹 → ̂︁𝑇𝐹
(𝑛, 𝜃) ↦→ 𝜃𝑛.

(2.2.44)

As 𝑇𝐹 acts trivially, this action induces an action 𝜙 of the Weyl group 𝑊 =

𝑁𝐺(𝑇 )
𝐹 /𝑇𝐹 on ̂︁𝑇𝐹 .

Remark 2.2.63. Let 𝜃, 𝜃′ ∈ ̂︁𝑇𝐹 . Since 𝑅𝐺𝑇 (𝜃) and 𝑅𝐺𝑇 (𝜃
′) are characters of

representations of 𝐺𝐹 , we deduce from 2.2.43 that either the principal series of

𝜃 and 𝜃′ coincide or they are disjoint. So we have that 𝑅𝐺𝑇 (𝜃) ∩𝑅𝐺𝑇 (𝜃′) ≠ ∅ if

and only if there exists 𝑤 ∈𝑊 such that 𝜃𝑤 = 𝜃′.

Let us look more closely at the action 𝜙 induced by 𝜙 as in 2.2.44. Because

of 2.2.41, we can describe the action of 𝑊𝑛 = 𝑆𝑛 n 𝜇𝑛2 on ̂︁𝑇𝐹 = Z𝑛𝑞−1 in the

following way:

𝜙 : (𝑆𝑛 n 𝜇𝑛2)× Z𝑛𝑞−1 → Z𝑛𝑞−1

((𝜎, (𝜀1, . . . , 𝜀𝑛)) , (𝑘1, . . . , 𝑘𝑛)) ↦→
(︀
𝜀1𝑘𝜎(1), . . . , 𝜀𝑛𝑘𝜎(𝑛)

)︀
.

(2.2.45)

By this description of the action of 𝜙, we deduce the following

Proposition 2.2.64. Every 𝑊 -orbit in ̂︁𝑇𝐹 is uniquely represented by a char-

acter of the form

𝜃 ∼

⎛⎜⎝ 𝜆1⏞  ⏟  
𝑘1, . . . , 𝑘1,

𝜆2⏞  ⏟  
𝑘2, . . . , 𝑘2, . . . ,

𝜆𝑙⏞  ⏟  
𝑘𝑙, . . . , 𝑘𝑙,

𝛼1⏞  ⏟  
0, . . . , 0,

𝛼𝜖⏞  ⏟  
𝑞 − 1

2
, . . . ,

𝑞 − 1

2

⎞⎟⎠
(2.2.46)

where

1. 𝜆 = (𝜆1 ≥ . . . ≥ 𝜆𝑙) ⊢ 𝑐 for some natural number 𝑐 ≤ 𝑛;
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2. 𝑐+ 𝛼1 + 𝛼𝜖 = 𝑛;

3. 𝑘𝑖 ∈ 𝑄 :=
{︁
1, . . . , 𝑞−3

2

}︁
;

4. for all 𝑖, 𝑗 = 1, . . . , 𝑙, 𝑘𝑖 ̸= 𝑘𝑗 and 𝑘𝑖 < 𝑘𝑗 if 𝜆𝑖 = 𝜆𝑗.

Remark 2.2.65. Let 𝜃 ∈ ̂︁𝑇𝐹 of the form 2.2.46 and 𝑆𝜃 the stabilizer of 𝜃

with respect to the action of 𝑊𝑛 on ̂︁𝑇𝐹 . Then it is easy to see that 𝑆𝜃 =

𝑆𝜆,𝛼1,𝛼𝜖 :=

(︂
𝑙∏︀

𝑖=1
𝑊𝐴𝜆𝑖−1

)︂
× 𝑊𝐵𝛼1

×𝑊𝐵𝛼𝜖
, thus 𝑆𝜃 is a Coxeter group of type

𝐴𝜆1−1 × · · · ×𝐴𝜆𝑙−1 ×𝐵𝛼1 ×𝐵𝛼𝜖 .

Our next goal is to collect the principal series representations of 𝐺𝐹 in

families such that:

1. The number of families only depends on 𝑛.

2. Members of the same family have the same degree.

In order to do this, we need to recall some definitions and results that can be

found in [HK80]. We refer to the notations used in the section 2.2.3.

Let 𝜃 ∈ ̂︁𝑇𝐹 of the form 2.2.46 and 𝛼 ∈ Φ.

Definition 2.2.66. Let 𝑐𝛼(𝜃) be a natural number equal to 1 if 𝜃|𝑇𝐹
𝛼

is the

trivial character of 𝑇𝐹𝛼 and 0 otherwise. The 𝑞-parameter 𝑞𝛼(𝜃) is defined as

𝑞𝑐𝛼(𝜃).

Remark 2.2.67. Actually, we are giving an ad hoc definition of 𝑞-parameters for

the sake of simplicity. For a more general definition of these parameters, we

refer to [HK80, Lemma 2.6]. In [HK80, Section 4] it is also proved that this

general definition is equivalent to our one.



CHAPTER 2. PRELIMINARIES 45

Now define the set

Γ := {𝛽 ∈ Φ | 𝑞𝛽(𝜃) ̸= 1} (2.2.47)

and let 𝑊𝑆𝜃
be the group generated by the reflections corresponding to roots

in Γ. Thus, Γ is the root system of the reflection group 𝑊𝑆𝜃
(for definitions

and further information on root systems, see [Hu75, Appendix]). Let

𝐷 :=
{︀
𝑤 ∈ 𝑆𝜃 | 𝑤(𝛼) ∈ Φ+, ∀𝛼 ∈ Γ+

}︀
. (2.2.48)

where Γ+ is the set of the positive roots in Γ.

Proposition 2.2.68. [HK80, Lemma 2.9]. 𝐷 is a subgroup of 𝑆𝜃, which

normalizes 𝑊𝑆𝜃
, such that 𝑆𝜃 = 𝐷 n𝑊𝑆𝜃

.

Proposition 2.2.69. The group 𝑊𝑆𝜃
is equal to

(︂
𝑙∏︀
𝑖=𝑖
𝑊𝐴𝜆𝑖−1

)︂
×𝑊𝐵𝛼1

×𝑊𝐷𝛼𝜖
.

In particular,

𝑆𝜃 =

⎧⎪⎪⎨⎪⎪⎩
𝑊𝑆𝜃

if 𝛼𝜖 = 0

𝜇2 n𝑊𝑆𝜃
if 𝛼𝜖 ̸= 0.

(2.2.49)

Proof. From the definition of 𝑊𝑆𝜃
, it is sufficient to compute the set Γ defined

as in 2.2.47. By Definition 2.2.66 of the parameters 𝑞𝛼(𝜃) and the structure of

the root system and of the root tori of 𝐺 as described in 2.2.22, 2.2.26, 2.2.27

and 2.2.28, it is easy to see that Γ = 𝐴 ∪𝐵 ∪ 𝐶, where

𝐴 :=

{︃
± (𝜖𝑖 − 𝜖𝑖+1) | 𝑖 ̸= 𝜆1, 𝜆1 + 𝜆2, . . . ,

𝑙∑︁
𝑖=1

𝜆𝑖,

𝑙∑︁
𝑖=1

𝜆𝑖 + 𝜇1

}︃
,

𝐵 := {±2𝜖𝑖 | 𝑚+ 1 ≤ 𝑖 ≤ 𝑚+ 𝛼1} ,

𝐶 := {± (𝜖𝑖 + 𝜖𝑖+1) | 𝑚+ 1 ≤ 𝑖 ≤ 𝑛− 1, 𝑖 ̸= 𝑚+ 𝛼1} .

(2.2.50)
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Thus the claim easily follows from the fact that 𝑊𝑆𝜃
is generated by the

reflections corresponding to the roots in Γ.

Remark 2.2.70. From the proof of the previous Proposition 2.2.69, we see that

the set Γ only depends on the triple (𝜆, 𝛼1, 𝛼𝜖) associated to a character 𝜃 ∈ ̂︁𝑇𝐹
of the form 2.2.46.

Let Σ be the set of simple roots of Γ consisting of roots that are positive in

Φ.

Definition 2.2.71. The generic algebra 𝒜(𝑢) is the algebra over C[𝑢] with basis

{𝑎𝑤 | 𝑤 ∈ 𝑆𝜃} such that, if 𝑤 ∈ 𝑆, 𝑑 ∈ 𝐷 and 𝑠 is the reflection corresponding

to the root 𝛽 ∈ Σ, the following relations hold:

1. 𝑎𝑑𝑎𝑤 = 𝑎𝑑𝑤, 𝑎𝑤𝑎𝑑 = 𝑎𝑤𝑑.

2. 𝑎𝑤𝑎𝑠 = 𝑎𝑤𝑠 if 𝑤(𝛽) ∈ Γ+.

3. 𝑎𝑤𝑎𝑠 = 𝑢𝛽(𝜃)𝑎𝑤𝑠 + (𝑢𝛽(𝜃)− 1) 𝑎𝑤 if 𝑤(𝛽) ∈ Γ−.

Let𝐾 := C(𝑢) and write𝒜(𝑢)𝐾 = 𝒜(𝑢)⊗C[𝑢]𝐾. An algebra homomorphism

𝑓 : C[𝑢]→ C makes C into a (C,C[𝑢])-bimodule via (𝑎, 𝑝) · 𝑐 := 𝑎𝑐𝑓(𝑝).

Definition 2.2.72. If 𝑓(𝑢) = 𝑏, the specialization 𝒜(𝑏) := 𝒜(𝑢) ⊗𝑓 C is an

algebra over C with basis {𝑎𝑤 ⊗ 1 | 𝑤 ∈ 𝑆𝜃} whose members satisfy relations 1,

2 and 3 after replacing 𝑢 with 𝑏.

Before stating the next theorem, recall the definitions of separable algebra

and numerical invariants.

An algebra 𝒜 over 𝐾 is said to be semisimple if it is isomorphic as an

algebra to a finite direct product of matrix algebras over 𝐾. If 𝒜 ∼=
𝑛∏︀
𝑖=1

gl(𝑑𝑖,𝐾)
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is semisimple, the numbers 𝑑1, . . . , 𝑑𝑛, 𝑛 are uniquely determined and are called

the numerical invariants of 𝒜. An algebra 𝒜 over 𝐾 is said to be separable if

𝒜⊗𝐾 𝐿 is semisimple for every field extension 𝐿 of 𝐾.

Theorem 2.2.73. (Tits, [CIK72, Theorem 1.11]). 𝒜(𝑢)𝐾 is a separable K-

algebra and for each 𝑏 ∈ C such that 𝒜(𝑏) is separable, the algebras 𝒜(𝑢)𝐾 and

𝒜(𝑏) have the same numerical invariants.

Corollary 2.2.74. End𝐺𝐹

(︀
𝑅𝐺𝑇 (𝜃)

)︀ ∼= C𝑆𝜃 as C-algebras.

Proof. By [CIK72, Theorem 2.17, 2.18], we have that

𝒜(𝑞) ∼= End𝐺𝐹

(︀
𝑅𝐺𝑇 (𝜃)

)︀
,

𝒜(1) ∼= C𝑆𝜃

and since both End𝐺𝐹

(︀
𝑅𝐺𝑇 (𝜃)

)︀
and C𝑆𝜃 are semisimple, they have the same

numerical invariants by Theorem 2.2.73 and so are isomorphic.

From Corollary 2.2.74, we deduce the following fundamental result.

Corollary 2.2.75. There exists a bijecitve correspondence between the set

𝑅𝐺𝑇 (𝜃) of principal series of 𝜃 and the set Irr(𝑆𝜃) of the irreducible characters

of 𝑆𝜃.

The correspondence established in Corollary 2.2.75 can be stated more

precisely by the following

Proposition 2.2.76. [HK80, Lemma 3.4]). Let 𝜒 be an irreducible character

of 𝒜(𝑢)𝐾 . Then for all 𝑤 ∈ 𝑆𝜃, 𝜒(𝑎𝑤) is in the integral closure of C[𝑢] in 𝐾.

Let 𝑓 : C[𝑢]→ C be a homomorphism such that 𝑓(𝑢) = 𝑏 and 𝒜(𝑏) is separable,

and let 𝑓* be an extension of 𝑓 to the integral closure of C[𝑢]. Then the linear
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map 𝜒𝑓 : 𝒜(𝑏)→ C defined by 𝜒𝑓 (𝑎𝑤 ⊗ 1) := 𝑓*(𝜒(𝑎𝑤)), for all 𝑤 ∈ 𝑆𝜃, is an

irreducible character of 𝒜(𝑏). For a fixed extension 𝑓* of 𝑓 , the map 𝜒 ↦−→ 𝜒𝑓

is a bijection between the irreducible characters of 𝒜(𝑢)𝐾 and those of 𝒜(𝑏).

Remark 2.2.77. If 𝜃, 𝜃′ ∈ ̂︁𝑇𝐹 are of the form 2.2.46 with the same associated

triple (𝜆, 𝛼1, 𝛼𝜖), then by Proposition 2.2.69 and Definition 2.2.71, we obtain

the same generic algebra 𝒜(𝑢) starting from 𝜃 or 𝜃′. Thus, by Proposition

2.2.76, we have the same correspondence between the irreducible characters of

𝒜(𝑢)𝐾 and those of 𝑆𝜃 = 𝑆𝜃′ = 𝑆𝜆,𝛼1,𝛼𝜖 .

From [McG82, Theorem A], we deduce this important result on the multi-

plicities of the principal series representations.

Proposition 2.2.78. If 𝜒 ∈ 𝑅𝐺𝑇 (𝜃) corresponding to 𝛽 ∈ Irr(𝑆𝜃), then

⟨︀
𝜒,𝑅𝐺𝑇 (𝜃)

⟩︀
𝐺𝐹 = 𝛽(1). (2.2.51)

Let 𝛽 ∈ Irr
(︁
𝒜(𝑢)𝐾

)︁
, 𝛽 the corresponding character of 𝑆𝜃 given by Proposi-

tion 2.2.76. Define

𝐷𝛽(𝑢) :=
𝛽(1)𝑃𝑊 (𝑢)∑︀

𝑤∈𝑆𝜃

𝑢𝑤(𝜃)
−1𝛽(𝑎𝑤−1)𝛽(𝑎𝑤)

(2.2.52)

where 𝑢𝑤(𝜃) :=
∏︀

𝛼∈Γ+

𝑤(𝛼)∈Γ−

𝑢𝛼(𝜃) and 𝑃𝑊 is the Poincaré polynomial of 𝑊 . Then

we have

Proposition 2.2.79. [HK80, pag. 567, (3.5)]. If 𝜒 ∈ 𝑅𝐺𝑇 (𝜃) is the principal

series corresponding to 𝛽 ∈ Irr(𝑆𝜃), then 𝐷𝛽(𝑞) = 𝜒(1).

Let ℬ(𝑢) be the subalgebra of 𝒜(𝑢) generated by {𝑎𝑤 | 𝑤 ∈𝑊𝑆𝜃
}. Then

ℬ(𝑢) is the generic algebra corresponding to the Coxeter group 𝑊𝑆𝜃
and by
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Proposition 2.2.76, there is a bijection between Irr
(︁
ℬ(𝑢)𝐾

)︁
and Irr(𝑊𝑆𝜃

). The

group 𝐷, defined in 2.2.48, acts as a group of automorphisms of ℬ(𝑢)𝐾 via

𝑎𝑤 ↦→ 𝑎𝑑𝑤𝑑−1 for 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊𝑆𝜃
. Thus, for each 𝑑 ∈ 𝐷, if 𝜙 ∈ Irr

(︁
ℬ(𝑢)𝐾

)︁
,

the character 𝜙𝑑 of ℬ(𝑢)𝐾 determined by 𝜙𝑑(𝑎𝑤) := 𝜙(𝑎𝑑𝑤𝑑−1) is irreducible

too.

Proposition 2.2.80. ([HK80, Theorem 3.13]). Let 𝛽 ∈ Irr
(︁
𝒜(𝑢)𝐾

)︁
, 𝛽 the

corresponding character in 𝑆𝜃, 𝜙 an irreducible component of Res𝒜(𝑢)𝐾

ℬ(𝑢)𝐾
(︀
𝛽
)︀
, 𝜙

the corresponding character of 𝑊𝑆𝜃
. If 𝐶 :=

{︀
𝑑 ∈ 𝐷 | 𝜙𝑑 = 𝜙

}︀
and 𝑑𝜙 is the

generic degree of 𝜙, then

𝐷𝛽(𝑢) =
𝑃𝑊 (𝑢)

𝑃𝑊𝑆𝜃
(𝑢) |𝐶|

𝑑𝜙(𝑢). (2.2.53)

Remark 2.2.81. By Proposition 2.2.69, 𝑊𝑆𝜃
=

(︂
𝑙∏︀
𝑖=𝑖
𝑊𝐴𝜆𝑖−1

)︂
×𝑊𝐵𝛼1

×𝑊𝐷𝛼𝜖
,

so if 𝛽, 𝜙, 𝛽 and 𝜙 are as in Proposition 2.2.80, then 𝜙 =

(︂
𝑙⨂︀

𝑖=1
𝜙𝑖

)︂
⊗𝜙𝛼1 ⊗𝜙𝛼𝜖 ,

with 𝜙𝑖 ∈ Irr
(︁
𝑊𝐴𝜆𝑖−1

)︁
for 𝑖 = 1, . . . , 𝑙, 𝜙𝛼1 ∈ Irr

(︀
𝑊𝐵𝛼1

)︀
and 𝜙𝛼𝜖 ∈ Irr

(︀
𝑊𝐷𝛼𝜖

)︀
.

Remember that 𝑊 =𝑊𝐵𝑛 , we can rewrite 2.2.53 as follows:

𝐷𝛽(𝑢) =
𝑃𝐵𝑛(𝑢)

|𝐶|

(︃
𝑙∏︁

𝑖=1

𝑑𝜙𝑖(𝑢)

𝑃𝐴𝜆𝑖−1
(𝑢)

)︃
𝑑𝜙𝛼1

(𝑢)

𝑃𝐵𝛼1
(𝑢)

𝑑𝜙𝛼𝜖
(𝑢)

𝑃𝐷𝛼𝜖
(𝑢)

(2.2.54)

where the 𝑑𝜙𝑖 ’s, 𝑑𝜙𝛼1
and 𝑑𝜙𝛼𝜖

are generic degrees as defined in 2.2.35, 2.2.36

and 2.2.37 respectively.

Remark 2.2.82. One can show that, if 𝛽, 𝜙, 𝛽 and 𝜙 are as in Proposition

2.2.80, then Res
𝒜(𝑢)𝐾

ℬ(𝑢)𝐾
(︀
𝛽
)︀
= 1

|𝐶|
∑︀
𝑑∈𝐷

𝜙𝑑 ([HK80, proof of Theorem 3.13]). Thus,
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by Proposition 2.2.76, we have that

Res𝑆𝜃
𝑊𝑆𝜃

(𝛽) =
1

|𝐶|
∑︁
𝑑∈𝐷

𝜙𝑑. (2.2.55)

In particular,

𝛽(1) =
|𝐷|
|𝐶|

𝜙(1). (2.2.56)

Therefore using Proposition 2.2.80 together with Remark 2.2.54 and 2.2.56, we

obtain from 2.2.54

𝐷𝛽(1) = [𝑊 : 𝑆𝜃]𝛽(1). (2.2.57)

Let 𝜒 ∈ 𝑅𝐺𝑇 (𝜃) with 𝜃 of the form 2.2.46.

Definition 2.2.83. If 𝛽 is the irreducible character of 𝑆𝜃 corresponding to 𝜒,

define the 4-tuple

𝜏 := (𝜆, 𝛼1, 𝛼𝜖, 𝛽) (2.2.58)

as the type of 𝜒. If 𝜏 = (𝜆, 𝛼1, 𝛼𝜖, 𝛽) and 𝜀 is the sign character of 𝑆𝜃 = 𝑆𝜆,𝛼1,𝛼𝜖

as defined in 2.2.46, define the type dual to 𝜏 as

𝜏 ′ := (𝜆, 𝛼1, 𝛼𝜖, 𝜀𝛽) (2.2.59)

Notation. We write 𝜏(𝜒) for the type of the principal series 𝜒 and 𝜒𝜏 to

denote a principal series of a fixed type 𝜏 .

Proposition 2.2.84. If 𝜒 ∈ 𝑅𝐺𝑇 (𝜃) with 𝜃 of the form 2.2.46, then 𝜒(1) only

depends on 𝜏(𝜒) = (𝜆, 𝛼1, 𝛼𝜖, 𝛽).

Proof. By Proposition 2.2.79 and 2.2.80, it is sufficient to prove that 𝑊𝑆𝜃
and

the corresponding character 𝛽 ∈ 𝒜(𝑢)𝐾 only depend on 𝜏 . But the generating
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set Γ of 𝑊𝑆𝜃
only depend on the triple (𝜆, 𝛼1, 𝛼𝜖) for the proof of Proposition

2.2.69, hence 𝑊𝑆𝜃
too. Moreover, because of this fact, it follows from Remark

2.2.77 that the character 𝛽 is invariant with respect to the type 𝜏 , so we are

done.

Remark 2.2.85. Let 𝜒𝜏 be a principal series of 𝜃 ∈ ̂︁𝑇𝐹 such that 𝜏 = (𝜆, 𝛼1, 𝛼𝜖, 𝛽)

with 𝛽 ∈ 𝑆𝜆,𝛼1,𝛼𝜖 = 𝑆𝜃.

If 𝛼𝜖 = 0, then 𝑆𝜃 =𝑊𝑆𝜃
by 2.2.49. Thus, 𝐷 is the trivial group and 𝛽 = 𝜙

where 𝜙 is as in Remark 2.2.81. Thus, specializing 2.2.54 at 𝑢 = 𝑞, we have

that

𝜒𝜏 (1) = 𝑃𝐵𝑛(𝑞)

(︃
𝑙∏︁

𝑖=1

𝑑𝜙𝑖(𝑞)

𝑃𝐴𝜆𝑖−1
(𝑞)

)︃
𝑑𝜙𝛼1

(𝑞)

𝑃𝐵𝛼1
(𝑞)

𝑑𝜙𝛼𝜖
(𝑞)

𝑃𝐷𝛼𝜖
(𝑞)

(2.2.60)

If 𝛼𝜖 ̸= 0, then again by 2.2.49, 𝑆𝜃 = 𝜇2 n𝑊𝑆𝜃
, so 𝐷 = 𝜇2 and we have to

distinguish two different cases.

If Res𝑆𝜃
𝑊𝑆𝜃

(𝛽) = 𝜙, then |𝐶| = 2 and we obtain that

𝜒𝜏 (1) =
𝑃𝐵𝑛(𝑞)

2

(︃
𝑙∏︁

𝑖=1

𝑑𝜙𝑖(𝑞)

𝑃𝐴𝜆𝑖−1
(𝑞)

)︃
𝑑𝜙𝛼1

(𝑞)

𝑃𝐵𝛼1
(𝑞)

𝑑𝜙𝛼𝜖
(𝑞)

𝑃𝐷𝛼𝜖
(𝑞)

(2.2.61)

otherwise, we have again the formula 2.2.60 for the degree of 𝜒𝜏 .

Remark 2.2.86. Since Poincaré polynomials of Coxeter groups are always monic,

as one can see from formulas 2.2.31, by 2.2.60, 2.2.61 and Remark 2.2.57 we

have that 𝜒𝜏 (1) = 1
𝑐𝜒𝜏

𝑓𝜒𝜏 with 𝑓𝜒𝜏 ∈ Z[𝑞] monic and 𝑐𝜒𝜏 ∈ N.

Remark 2.2.87. For odd 𝑞 ≥ 3, since 𝐺𝐹 = Sp (2𝑛,F𝑞) is a perfect group, unless

𝑛 = 1 and 𝑞 = 3, by previous Remark 2.2.86 and by looking at the table 4.1

below, we have that 𝜒𝜏 (1) is independent from 𝑞 if and only if 𝜒𝜏 = 1Sp(2𝑛,F𝑞).

Finally, we have constructed the decomposition of the set ℛ of principal
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series representations satisfying conditions 1 and 2 in pag. 44. Namely, we have

ℛ =
∐︁
𝜏

ℛ𝜏 (2.2.62)

where

ℛ𝜏 := {𝜒 ∈ ℛ | 𝜏(𝜒) = 𝜏} . (2.2.63)

Remark 2.2.88. Let 𝜃1, 𝜃2 ∈ ̂︁𝑇𝐹 of the same form 2.2.46. If 𝜒1 and 𝜒2

are irreducible constituents of 𝑅𝐺𝑇 (𝜃1) and 𝑅𝐺𝑇 (𝜃2) respectively such that

𝜏(𝜒1) = 𝜏(𝜒2) = (𝜆, 𝛼1, 𝛼𝜖, 𝛽), then by Proposition 2.2.78 we have that⟨︀
𝜒1, 𝑅

𝐺
𝑇 (𝜃1)

⟩︀
𝐺𝐹 =

⟨︀
𝜒2, 𝑅

𝐺
𝑇 (𝜃2)

⟩︀
𝐺𝐹 = 𝛽(1).

Now let us give the following

Definition 2.2.89. For any possible type 𝜏 , define

𝐻𝜏 (𝑞) :=
|Sp(2𝑛,F𝑞)|

𝜒𝜏 (1)
(2.2.64)

Remark 2.2.90. Since |Sp(2𝑛,F𝑞)| is a monic integral polynomial in 𝑞, by

Remark 2.2.86, we get that 𝐻𝜏 (𝑞) ∈ Z[𝑞].

Remark 2.2.91. If 𝜏 = (𝜆, 𝛼1, 𝛼𝜖, 𝛽), combining Proposition 2.2.79 and 2.2.57

we have that gcd(𝜒𝜏 (1), 𝑞 − 1) = 1, considering 𝜒𝜏 (1) as an element of Z[𝑞].

Thus, since

|Sp(2𝑛,F𝑞)| = 𝑞𝑛
2
(𝑞 − 1)𝑛 𝑃𝐵𝑛(𝑞) (2.2.65)

we obtain that 1
(𝑞−1)𝑛

𝐻𝜏 (𝑞) ∈ Z[𝑞].

Proposition 2.2.92. For any possible type 𝜏 , we have

𝐻𝜏

(︀
𝑞−1
)︀
=

(−1)𝑛

𝑞𝑛(2𝑛+1)
𝐻𝜏 ′(𝑞). (2.2.66)
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Proof. Let 𝜃 ∈ ̂︁𝑇𝐹 of the form 2.2.46, 𝜏 = (𝜆, 𝛼1, 𝛼𝜖, 𝛽) with 𝛽 ∈ 𝑆𝜃. Then the

dual type 𝜏 ′ of 𝜏 is given by (𝜆, 𝛼1, 𝛼𝜖, 𝜖𝛽) where 𝜖 is the sign character of 𝑆𝜃.

If 𝜙 ∈ Irr(𝑊𝑆𝜃
) as in Proposition 2.2.80, then the corresponding character of

𝑊𝑆𝜃
to 𝜖𝛽 is 𝜖𝜙 (abusing of notation, we denote the sign characters of 𝑆𝜃 and

𝑊𝑆𝜃
by the same symbol 𝜖). Using formula 2.2.53 and 2.2.65, we have

𝐻𝜏 (𝑞) =
𝑞𝑛

2
(𝑞 − 1)𝑛 𝑃𝑊𝑆𝜃

(𝑞) |𝐶|
𝑑𝜙(𝑞)

.

Thus we obtain that

𝐻𝜏

(︀
𝑞−1
)︀
=
𝑞−𝑛

2 (︀
𝑞−1 − 1

)︀𝑛
𝑃𝑊𝑆𝜃

(︀
𝑞−1
)︀
|𝐶|

𝑑𝜙(𝑞−1)

2.2.38
=

(−1)𝑛

𝑞𝑛(2𝑛+1)

𝑞𝑛
2
(𝑞 − 1)𝑛 𝑃𝑊𝑆𝜃

(𝑞) |𝐶|
𝑑𝜖𝜙(𝑞)

=
(−1)𝑛

𝑞𝑛(2𝑛+1)
𝐻𝜏 ′(𝑞)

and so we are done.



Chapter 3

Geometry of ℳ𝜉
𝑛

Throughout this chapter, we consider a presentation of the symplectic group

different from 2.2.16 to make computations below simpler. So, if K is an

algebraically closed field, 𝑛 a positive integer, then

𝐺 = Sp(2𝑛,K) :=
{︀
𝐴 ∈ gl(2𝑛,K) | 𝐴𝑡𝐽𝐴 = 𝐴

}︀
with 𝐽 :=

(︀
0 𝐼𝑛

−𝐼𝑛 0

)︀
. In particular, the maximal torus 𝑇 of the diagonal

symplectic matrices is given by

𝑇 =
{︀
diag

(︀
𝜆1, . . . , 𝜆𝑛, 𝜆

−1
1 , . . . , 𝜆−1

𝑛

)︀
| 𝜆𝑖 ∈ K⋆, 𝑖 = 1, . . . , 𝑛

}︀

3.1 Parabolic Sp2𝑛-character varieties

3.1.1 Basic definitions and facts

Let 𝑔 > 0, 𝑛 > 0 be integers. Let K be an algebraically closed field with

char (K) ̸= 2, possessing a primitive 𝑚-th root of unity 𝜙, for which there

54
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exist natural numbers 𝑚1, . . . ,𝑚𝑛 such that 𝜙𝑚1 , . . . , 𝜙𝑚𝑛 satisfy the following

non-equalities, for every disjoint sets of indices 𝐽 and 𝐿, not simultaneously

empty, and every index 𝑖 in [𝑛]:

∏︁
𝑗∈𝐽

𝜙𝑚𝑗 ̸=
∏︁
𝑙∈𝐿

𝜙𝑚𝑙 ,

𝜙2𝑚𝑖 ̸= 1.

(3.1.1)

Remark 3.1.1. Specializing 3.1.1 for 𝐽 = {𝑗} and 𝐿 = {𝑙} or 𝐽 = {𝑗, 𝑙}

and 𝐿 = ∅, we have that 𝜙𝑚𝑗 ̸= 𝜙𝑚𝑙 and 𝜙𝑚𝑗 ̸= 𝜙−𝑚𝑙 respectively, so

𝜙𝑚1 , . . . , 𝜙𝑚𝑛 , 𝜙−𝑚1 , . . . , 𝜙−𝑚𝑛 have to be all different. In particular, 𝑚 > 𝑛.

Remark 3.1.2. It is evident from the definition of the conditions 3.1.1 that the

elements of any subset of {𝜙𝑚1 , . . . , 𝜙𝑚𝑛} satisfy 3.1.1 too.

Example 3.1.3. Let 𝜙 be a primitive (2𝑛 + 1)-th root of unity, then the elements

𝜙,𝜙2, . . . , 𝜙2𝑛−1 satisfy 3.1.1. In fact, let 𝐽 , 𝐿 two disjoint sets in [𝑛] not

simultaneously empty. It is evident that the second inequality in 3.1.1 is

trivially satisfied. Define 𝑘 as the index such that 2𝑘−1 = max
𝑠∈𝐽∩𝐿

{︀
2𝑠−1

}︀
and

suppose that 𝑘 ∈ 𝐽 . Then

∑︁
𝑗∈𝐽

2𝑗−1 ≥ 2𝑘−1 >
∑︁
𝑙∈𝐿

2𝑙−1. (3.1.2)

Moreover, ∑︁
𝑗∈𝐽

2𝑗−1 ≤
𝑛∑︁
𝑗=1

2𝑗−1 = 2𝑛 − 1 < 2𝑛 + 1 (3.1.3)

thus the second inequality in 3.1.1 must be satisfied, otherwise, because of 3.1.3,∑︀
𝑗∈𝐽

2𝑗−1 has to be equal to
∑︀
𝑙∈𝐿

2𝑙−1, contradicting 3.1.2.
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Definition 3.1.4. A diagonal symplectic matrix

𝜉 = diag
(︀
𝜙𝑚1 , . . . , 𝜙𝑚𝑛 , 𝜙−𝑚1 , . . . , 𝜙−𝑚𝑛

)︀
(3.1.4)

such that 𝜙𝑚1 , . . . , 𝜙𝑚𝑛 satisfy conditions 3.1.1 is said to be a generic element.

Remark 3.1.5. By Definition 3.1.4 and Remark 3.1.1, it is easy to see that in

particular, 𝜉 is a regular diagonal matrix of finite order.

Consider the following algebraic variety over K:

𝒰𝜉𝑛 :=

{︃
(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ∈ Sp(2𝑛,K)2𝑔 |

𝑔∏︁
𝑖=1

[𝐴𝑖 : 𝐵𝑖] = 𝜉

}︃
= 𝜇−1(𝜉)

(3.1.5)

where 𝜇 : Sp(2𝑛,K)2𝑔 → Sp(2𝑛,K) is given by

𝜇 (𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) :=

𝑔∏︁
𝑖=1

[𝐴𝑖 : 𝐵𝑖] (3.1.6)

and 𝜉 is a generic element according to Definition 3.1.4. If 𝑛 = 0, we will

assume that 𝒰𝜉𝑛 = {⋆}. By Remark 3.1.5, the centralizer of 𝜉 in Sp(2𝑛,K) is

the maximal torus 𝑇 and acts by pointwise conjugation on 𝒰𝜉𝑛:

𝜎 : 𝑇 × 𝒰𝜉𝑛 → 𝒰𝜉𝑛

(𝑍, (𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔)) ↦→
(︀
𝐴𝑍1 , 𝐵

𝑍
1 , . . . , 𝐴

𝑍
𝑔 , 𝐵

𝑍
𝑔

)︀
.

(3.1.7)

As the center of 𝑍(𝐺) = {±𝐼2𝑛} of 𝐺 acts trivially, this action induces an

action

�̄� : 𝑇/𝑍(𝐺)× 𝒰𝜉𝑛 → 𝒰𝜉𝑛.

Notation. Let 𝑋 ∈ 𝒰𝜉𝑛, 𝑍 ∈ 𝑇 . We write 𝑋𝑍 instead of 𝜎(𝑍,𝑋) or 𝜎(𝑍,𝑋).
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Moreover, we denote by 𝑇𝑋 the stabilizer Stab𝜎(𝑋).

Consider the subgroup of the involution matrices in 𝑇 . This is given by the

following set

{diag(𝜖1, . . . , 𝜖𝑛, 𝜖1, . . . , 𝜖𝑛) | 𝜖𝑖 ∈ {±1} , 𝑖 = 1, . . . , 𝑛} .

Since it is isomorphic to 𝜇𝑛2, we denote it in the same way. In the following, it

will be clear from the context which group we refer to by this symbol.

Proposition 3.1.6. Let 𝑋 = (𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) be an element of 𝒰𝜉𝑛. Then

𝑇𝑋 ⊆ 𝜇𝑛2.

Proof. Let 𝑍 be an element of 𝑇𝑋 . Then

𝑍𝐴𝑖 = 𝐴𝑖𝑍,

𝑍𝐵𝑖 = 𝐵𝑖𝑍

(3.1.8)

for every 𝑖 = 1, . . . , 𝑔. If 𝑍 /∈ 𝜇𝑛2, then 𝑍 has an eigenvalue 𝛼 different from

±1. Permute the eigenvalues of 𝑍 in order to collect them in groups such that

all the elements in the same group are equal. By a further permutation, we

can assume that the first group of eigenvalues of 𝑍 is made by the 𝛼’s. This

is equivalent to the action of a permutation matrix 𝜋 by conjugation on 𝑍. It

follows from 3.1.8 that
𝑍𝜋𝐴𝜋𝑖 = 𝐴𝜋𝑖 𝑍

𝜋,

𝑍𝜋𝐵𝜋
𝑖 = 𝐵𝜋

𝑖 𝑍
𝜋

(3.1.9)

for all 𝑖 = 1, . . . , 𝑔, and

𝑔∏︁
𝑖=1

[𝐴𝜋𝑖 : 𝐵𝜋
𝑖 ] =

𝑔∏︁
𝑖=1

[𝐴𝑖 : 𝐵𝑖]
𝜋 = 𝜉𝜋. (3.1.10)



CHAPTER 3. GEOMETRY OFℳ𝜉
𝑁 58

Now, by 3.1.9, we have that

𝐴𝜋𝑖 = diag
(︁
𝐴1
𝑖 , . . . , 𝐴

𝑘
𝑖

)︁
𝐵𝜋
𝑖 = diag

(︁
𝐵1
𝑖 , . . . , 𝐵

𝑘
𝑖

)︁
for every 𝑖 = 1, . . . , 𝑔, where 𝑘 is the number of different eigenvalues of 𝑍 and the

𝐴ℎ𝑖 ’s and 𝐵
ℎ
𝑖 are square matrices whose sizes are equal to the multiplicity of the

ℎ-th eigenvalue of 𝑍, ℎ = 1, . . . , 𝑘. From 3.1.10, writing 𝜉𝜋 = diag
(︀
𝐷1, . . . , 𝐷𝑘

)︀
,

it follows that

diag

(︃
𝑔∏︁
𝑖=1

[︀
𝐴1
𝑖 : 𝐵

1
𝑖

]︀
, . . . ,

𝑔∏︁
𝑖=1

[︁
𝐴𝑘𝑖 : 𝐵

𝑘
𝑖

]︁)︃
= diag

(︁
𝐷1, . . . , 𝐷𝑘

)︁
.

As the determinant of a commutator is 1, the determinant of 𝐷ℎ’s has to be 1

for every ℎ = 1, . . . , 𝑘. In particular, det
(︀
𝐷1
)︀
= 1. But since 𝛼 ̸= 𝛼−1, there

is a 𝜙𝑚𝑗 , for some 𝑗, that is an eigenvalue of 𝐷1, but not 𝜙−𝑚𝑗 , so det
(︀
𝐷1
)︀

cannot be equal to 1, because 𝜙𝑚1 , . . . , 𝜙𝑚𝑛 satisfy the inequalities 3.1.1, and

this is a contradiction.

Definition 3.1.7. Fix a subgroup 𝐻 of 𝜇𝑛2 containing 𝑍(𝐺). Define the

following subsets of 𝒰𝜉𝑛:

̃︀𝒰𝜉𝑛,𝐻 :=
{︁
𝑋 ∈ 𝒰𝜉𝑛 | 𝐻 = 𝑇𝑋

}︁
(3.1.11)

𝒰𝜉𝑛,𝐻 :=
{︁
𝑋 ∈ 𝒰𝜉𝑛 | 𝐻 ⊆ 𝑇𝑋

}︁
. (3.1.12)

Remark 3.1.8. It is evident from the previous Definition 3.1.7 that ̃︀𝒰𝜉𝑛,𝐻 is an
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open subset of the closed affine variety 𝒰𝜉𝑛,𝐻 . In particular,

{︁̃︀𝒰𝜉𝑛,𝐻}︁
𝑍(𝐺)≤𝐻≤𝜇𝑛

2

(3.1.13)

is a stratification of 𝒰𝜉𝑛. Moreover, 𝒰𝜉𝑛,𝑍(𝐺) = 𝒰
𝜉
𝑛, so ̃︀𝒰𝜉𝑛,𝑍(𝐺) is an open subset

of 𝒰𝜉𝑛

Proposition 3.1.9. ̃︀𝒰𝜉𝑛,𝐻 and 𝒰𝜉𝑛,𝐻 are stable under the action 𝜎 of 𝑇 .

Proof. Let 𝑋 = (𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) be an element of 𝒰𝜉𝑛,𝐻 and 𝑍 ∈ 𝐻. Then

𝐴𝑖𝑍 = 𝑍𝐴𝑖,

𝐵𝑖𝑍 = 𝑍𝐵𝑖

for all 𝑖 = 1, . . . , 𝑔. It follows that, if 𝜔 ∈ 𝑇 , 𝑋 ∈ 𝒰𝜉𝑛,𝐻 if and only if𝑋𝜔 ∈ 𝒰𝜉𝑛,𝐻𝜔 .

But since 𝑇 is abelian, 𝐻𝜔 = 𝐻 so 𝒰𝜉𝑛,𝐻 is 𝑇 -stable. The proof for ̃︀𝒰𝜉𝑛,𝐻 is

completely analogous.

Remark 3.1.10. Let 𝑍 be an element of 𝜇𝑛2. Define

𝒰𝑍 :=
{︁
𝑋 ∈ 𝒰𝜉𝑛 | 𝑋𝑍 = 𝑋

}︁
.

Then, if 𝑍(𝐺) ≤ 𝐻 ≤ 𝜇𝑛2, we have that

̃︀𝒰𝜉𝑛,𝐻 = 𝒰𝜉𝑛,𝐻 ∩

⎛⎝ ⋂︁
𝑍∈𝜇𝑛

2∖𝐻

𝒰{𝑍

⎞⎠ (3.1.14)

where 𝒰{𝑍 := 𝒰𝜉𝑛 ∖ 𝒰𝑍 . If 𝑋 = (𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ∈ 𝒰𝜉𝑛, for ℎ, 𝑘 = 1, . . . , 2𝑛
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and 𝑖 = 1, . . . , 𝑔, define the following subsets

𝒜𝑖,𝑍 :=
{︁
𝑋 ∈ 𝒰𝜉𝑛 | 𝐴𝑍𝑖 ̸= 𝐴𝑖

}︁
ℬ𝑖,𝑍 :=

{︁
𝑋 ∈ 𝒰𝜉𝑛 | 𝐵𝑍

𝑖 ̸= 𝐵𝑖

}︁ (3.1.15)

𝒜ℎ,𝑘𝑖,𝑍 :=
{︁
𝑋 ∈ 𝒰𝜉𝑛 |

(︀
𝐴𝑍𝑖
)︀
ℎ,𝑘
̸= (𝐴𝑖)ℎ,𝑘

}︁
ℬℎ,𝑘𝑖,𝑍 :=

{︁
𝑋 ∈ 𝒰𝜉𝑛 |

(︀
𝐵𝑍
𝑖

)︀
ℎ,𝑘
̸= (𝐵𝑖)ℎ,𝑘

}︁
.

(3.1.16)

Then

𝒜𝑖,𝑍 =
2𝑛⋃︁

ℎ,𝑘=1

𝒜ℎ,𝑘𝑖,𝑍

ℬ𝑖,𝑍 =

2𝑛⋃︁
ℎ,𝑘=1

ℬℎ,𝑘𝑖,𝑍

𝒰{𝑍 =

𝑔⋃︁
𝑖=1

(𝒜𝑖,𝑍 ∪ ℬ𝑖,𝑍)

(3.1.17)

Thus if 𝑚 = |𝜇𝑛2 ∖𝐻|, plugging 3.1.17 in 3.1.14, we obtain that

̃︀𝒰𝜉𝑛,𝐻 =

𝑚
𝑔
2𝑛⋃︁

ℎ1,...,ℎ𝑚;
𝑘1,...,𝑘𝑚=1
𝑖1,...,𝑖𝑚=1

𝑠=0

𝒰ℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 (3.1.18)

where

𝒰ℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋂︁

ℎ∈{ℎ1,...,ℎ𝑠}
𝑘∈{𝑘1,...,𝑘𝑠}
𝑖∈{𝑖1,...,𝑖𝑠}
𝑍∈𝜇𝑛

2∖𝐻

𝒜ℎ,𝑘𝑖,𝑍

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋂︁

ℎ∈{ℎ𝑠+1,...,ℎ𝑚}
𝑘∈{𝑘𝑠+1,...,𝑘𝑚}
𝑖∈{𝑖𝑠+1,...,𝑖𝑚}
𝑍∈𝜇𝑛

2∖𝐻

ℬℎ,𝑘𝑖,𝑍

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.1.19)
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So we have constructed the finite open covering

{︁
𝒰ℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠

}︁
(3.1.20)

of ̃︀𝒰𝜉𝑛,𝐻 . It is easy to check that this open covering is made by affine 𝑇 -stable

subsets.

Definition 3.1.11. A parabolic Sp(2𝑛,K)-character variety of a closed Rie-

mann surface of genus 𝑔 is the categorical quotient

ℳ𝜉
𝑛 := 𝒰𝜉𝑛//𝑇 = Spec

(︂
K
[︁
𝒰𝜉𝑛
]︁𝑇)︂

. (3.1.21)

More generally, define the categorical quotient

ℳ𝜉
𝑛,𝐻 := 𝒰𝜉𝑛,𝐻//𝑇 = Spec

(︂
K
[︁
𝒰𝜉𝑛,𝐻

]︁𝑇)︂
. (3.1.22)

Remark 3.1.12. Since 𝐻 acts trivially on 𝒰𝜉𝑛,𝐻 , we can define ℳ𝜉
𝑛,𝐻 as the

categorical quotient 𝒰𝜉𝑛,𝐻// (𝑇/𝐻).

Proposition 3.1.13. ℳ𝜉
𝑛,𝐻 are geometric quotients for every 𝑍(𝐺) ≤ 𝐻 ≤

𝜇𝑛2.

Proof. Sinceℳ𝜉
𝑛,𝐻 is a categorical quotient of an affine variety by the action

of an affine reductive algebraic group, it is a good quotient (for a definition

of a good quotient see [Ho12, Definition 2.36]), so by [Ho12, Corollary 2.39

ii)], it is sufficient to prove that all the orbits are closed. By 3.1.6, for every

𝑋 ∈ 𝒰𝜉𝑛,𝐻 , dim(𝑇𝑋) = 0. It follows, denoting the orbit of 𝑋 by 𝑇𝑋, that

dim(𝑇𝑋) = dim(𝑇 ) from the Orbit-Stabiliser Theorem.

Now, suppose that there exists a non closed orbit. Then, by [Hu75, Propo-
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sition in 8.3], its boundary is not empty and it is a union of orbits of strictly

smaller dimension. But this contradicts the fact that all the orbits have the

same dimension.

By Proposition 3.1.9, together with the properties of geometric quotients,

we can give the following

Definition 3.1.14. For every 𝑍(𝐺) ≤ 𝐻 ≤ 𝜇𝑛2, define the geometric quotient

̃︁ℳ𝜉
𝑛,𝐻 := ̃︀𝒰𝜉𝑛,𝐻/𝑇.

Remark 3.1.15. Sinceℳ𝑛 is a geometric quotient because of Proposition 3.1.13,

it has the quotient topology, hence, by Proposition 3.1.9 and Remark 3.1.8,

ℳ𝜉
𝑛,𝐻 is a closed affine variety and ̃︁ℳ𝜉

𝑛,𝐻 is an open subset of it. In particular,

{︁̃︁ℳ𝜉
𝑛,𝐻

}︁
𝑍(𝐺)≤𝐻≤𝜇𝑛

2

(3.1.23)

is a stratification ofℳ𝑔
𝑛 and ̃︁ℳ𝜉

𝑛,𝑍(𝐺) is an open subset of the character variety

ℳ𝜉
𝑛.

Remark 3.1.16. As in Remark 3.1.12, we can realize ̃︁ℳ𝜉
𝑛,𝐻 as the geometric

quotient of ̃︀𝒰𝜉𝑛,𝐻 by the free action of the affine algebraic group 𝑇/𝐻.

Remark 3.1.17. Thanks to Remark 3.1.10, we get a finite open affine cover of̃︁ℳ𝜉
𝑛,𝐻 given by {︁

ℳℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠

}︁
(3.1.24)

where

ℳℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 := 𝒰ℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚

𝑖1,...,𝑖𝑚;𝑠 /𝑇 (3.1.25)

and 𝒰ℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 is defined as in 3.1.19.
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3.1.2 Regularity and dimension

Now we prove the following

Proposition 3.1.18. The variety 𝒰𝜉𝑛 is non singular and equidimensional. The

dimension of each connected component of 𝒰𝜉𝑛 is given by

dim
(︁
𝒰𝜉𝑛
)︁
= (2𝑔 − 1)𝑛 (2𝑛+ 1) . (3.1.26)

Proof. We follow the strategy of [HRV08, Theorem 2.2.5], with slight vari-

ations. Assume that 𝑔 > 0. It is enough to show that at a solution 𝑠 =

(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ∈ Sp(2𝑛,K)2𝑔 of the equation

[𝐴1 : 𝐵1] · · · [𝐴𝑔 : 𝐵𝑔] = 𝜉 (3.1.27)

the derivative of 𝜇 on the tangent spaces

𝑑𝜇𝑠 : 𝑇𝑠(Sp(2𝑛,K))2𝑔 → 𝑇𝜉(Sp(2𝑛,K))

is surjective. So take (𝑋1, 𝑌1, . . . , 𝑋𝑔, 𝑌𝑔) ∈ 𝑇𝑠(Sp(2𝑛,K))2𝑔. Then differentiate

𝜇 to get:
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𝑑𝜇𝑠(𝑋1, 𝑌1, . . . , 𝑋𝑔, 𝑌𝑔) =

𝑔∑︁
𝑖=1

[𝐴1 : 𝐵1]· · ·[𝐴𝑖−1 : 𝐵𝑖−1]𝑋𝑖𝐵𝑖𝐴
−1
𝑖 𝐵−1

𝑖 [𝐴𝑖+1 : 𝐵𝑖+1]· · ·[𝐴𝑔 : 𝐵𝑔]

+

𝑔∑︁
𝑖=1

[𝐴1 : 𝐵1]· · ·[𝐴𝑖−1 : 𝐵𝑖−1]𝐴𝑖𝑌𝑖𝐴
−1
𝑖 𝐵−1

𝑖 [𝐴𝑖+1 : 𝐵𝑖+1]· · ·[𝐴𝑔 : 𝐵𝑔]

−
𝑔∑︁
𝑖=1

[𝐴1 : 𝐵1]· · ·[𝐴𝑖−1 : 𝐵𝑖−1]𝐴𝑖𝐵𝑖𝐴
−1
𝑖 𝑋𝑖𝐴

−1
𝑖 𝐵−1

𝑖 [𝐴𝑖+1 : 𝐵𝑖+1]· · ·[𝐴𝑔 : 𝐵𝑔]

−
𝑔∑︁
𝑖=1

[𝐴1 : 𝐵1]· · ·[𝐴𝑖−1 : 𝐵𝑖−1]𝐴𝑖𝐵𝑖𝐴
−1
𝑖 𝐵−1

𝑖 𝑌𝑖𝐵
−1
𝑖 [𝐴𝑖+1 : 𝐵𝑖+1]· · ·[𝐴𝑔 : 𝐵𝑔]

(3.1.28)

and using 3.1.27, for each of the four terms, we get:

𝑑𝜇𝑠(𝑋1, 𝑌1, . . . , 𝑋𝑔, 𝑌𝑔) =

𝑔∑︁
𝑖=1

𝑓𝑖(𝑋𝑖) + 𝑔𝑖(𝑌𝑖), (3.1.29)

where we define linear maps

𝑓𝑖 : 𝑇𝐴𝑖(Sp(2𝑛,K))→ gl(2𝑛,K)

𝑔𝑖 : 𝑇𝐵𝑖(Sp(2𝑛,K))→ gl(2𝑛,K)

by 𝑓𝑖(𝑋) :=

𝑖−1∏︁
𝑗=1

[𝐴𝑗 : 𝐵𝑗 ]
(︀
𝑋𝐴−1

𝑖 −𝐴𝑖𝐵𝑖𝐴
−1
𝑖 𝑋𝐵−1

𝑖 𝐴−1
𝑖

)︀𝑖−1∏︁
𝑗=1

[𝐵𝑖−𝑗 : 𝐴𝑖−𝑗 ]𝜉

and 𝑔𝑖(𝑌 ) :=

𝑖−1∏︁
𝑗=1

[𝐴𝑗 : 𝐵𝑗 ]
(︀
𝐴𝑖𝑌 𝐵

−1
𝑖 𝐴−1

𝑖 −𝐴𝑖𝐵𝑖𝐴
−1
𝑖 𝐵−1

𝑖 𝑌 𝐴𝑖𝐵
−1
𝑖 𝐴−1

𝑖

)︀𝑖−1∏︁
𝑗=1

[𝐵𝑖−𝑗 : 𝐴𝑖−𝑗 ]𝜉.

We claim that 𝑓𝑖 and 𝑔𝑖 take values in 𝑇𝜉(Sp(2𝑛,K)). We will prove it only for
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𝑓𝑖, the proof for 𝑔𝑖 being completely analogous.

What we have to prove is that 𝐵 = 𝑓𝑖(𝑋)𝜉−1 is a Hamiltonian matrix for

every 𝑋 ∈ 𝑇𝐴𝑖(Sp(2𝑛,K)), i.e., 𝐵𝑡𝐽 = −𝐽𝐵. Call

𝑈 =
𝑖−1∏︁
𝑗=1

[𝐴𝑗 : 𝐵𝑗 ],

𝑉 = 𝑋𝐴−1
𝑖 −𝐴𝑖𝐵𝑖𝐴

−1
𝑖 𝑋𝐵−1

𝑖 𝐴−1
𝑖 .

Notice that, since 𝐴𝑗 and 𝐵𝑗 are symplectic for every 𝑗 = 1, . . . , 𝑖 and

𝑋 ∈ 𝑇𝐴𝑖(Sp(2𝑛,K)), 𝑈 and 𝑈−1 are symplectic. Moreover, the facts that

𝐴−1
𝑖 𝑋 is hamiltonian and 𝐴𝑖𝐵𝑖 is symplectic imply that 𝐴𝑖𝐵𝑖𝐴−1

𝑖 𝑋𝐵−1
𝑖 𝐴−1

𝑖

is hamiltonian and since 𝑋𝐴−1
𝑖 is hamiltonian, 𝑉 and 𝑉 𝑡 are hamiltonian too.

Then
𝐵𝑡𝐽 =

(︀
𝑈−1

)︀𝑡
𝑉 𝑡𝑈 𝑡𝐽 =

(︀
𝑈−1

)︀𝑡
𝑉 𝑡𝐽𝑈−1

= −
(︀
𝑈−1

)︀𝑡
𝐽𝑉 𝑈−1 = −𝐽𝑈𝑉 𝑈−1 = −𝐽𝐵

that is our claim.

Assume that 𝑍 ′ ∈ 𝑇𝜉(Sp(2𝑛,K)) such that

Tr
(︀
𝐽𝑍 ′𝐽−1𝑑𝜇𝑠(𝑋1, 𝑌1, . . . , 𝑋𝑔, 𝑌𝑔)

)︀
= 0. (3.1.30)

By 3.1.29, this is equivalent to

Tr
(︀
𝐽𝑍 ′𝐽−1𝑓𝑖(𝑋𝑖)

)︀
= Tr

(︀
𝐽𝑍 ′𝐽−1𝑔𝑖(𝑌𝑖)

)︀
= 0

for all 𝑖 and 𝑋𝑖 ∈ 𝑇𝐴𝑖(Sp(2𝑛,K)), 𝑌𝑖 ∈ 𝑇𝐵𝑖(Sp(2𝑛,K)). We show by induction

on 𝑖 that this implies that, if 𝑍 ′ = 𝜉𝑍, with 𝑍 hamiltonian, 𝐶 := 𝐽𝑍𝐽−1

commutes with 𝐴𝑖 and 𝐵𝑖. Notice that 𝐶 is hamiltonian. Assume we have
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already proved this for 𝑗 � 𝑖 and calculate

0 = Tr
(︀
𝐽𝑍 ′𝐽−1𝑓𝑖(𝑋𝑖)

)︀
= Tr

(︀
𝐶
(︀
𝑋𝑖𝐴

−1
𝑖 −𝐴𝑖𝐵𝑖𝐴

−1
𝑖 𝑋𝑖𝐵

−1
𝑖 𝐴−1

𝑖

)︀)︀
= Tr

(︀(︀
𝐴−1
𝑖 𝐶𝐴𝑖 −𝐵𝑖𝐴−1

𝑖 𝐶𝐴𝑖𝐵𝑖
)︀
𝐴−1
𝑖 𝑋𝑖

)︀
for all 𝑋𝑖 ∈ 𝑇𝐴𝑖(Sp(2𝑛,K)). Since 𝐴−1

𝑖 𝐶𝐴𝑖 − 𝐵𝑖𝐴−1
𝑖 𝐶𝐴𝑖𝐵𝑖 and 𝐴−1

𝑖 𝑋𝑖 are

hamiltonian, and Tr(·, ·) is a non degenerate symmetric bilinear form over

sp(2𝑛,K), when char(K) ̸= 2, 𝐶 commutes with 𝐴𝑖𝐵𝑖𝐴−1
𝑖 . Similarly we have

0 = Tr
(︀
𝐽𝑍 ′𝐽−1𝑔𝑖(𝑌𝑖)

)︀
= Tr

(︀(︀
𝐵−1
𝑖 𝐴−1

𝑖 𝐶𝐴𝑖𝐵𝑖 −𝐴−1
𝑖 𝐵−1

𝑖 𝐴−1
𝑖 𝐶𝐴𝑖𝐵𝑖𝐴

−1
𝑖

)︀
𝐵−1
𝑖 𝑌𝑖

)︀
which implies that 𝐶 commutes with 𝐴𝑖𝐵𝑖𝐴𝑖𝐵−1

𝑖 𝐴−1
𝑖 . Thus 𝐶 commutes with

𝐴𝑖 and 𝐵𝑖, hence with 𝜉 =
𝑔∏︀
𝑖=1

[𝐴𝑖 : 𝐵𝑖]. It follows that

𝐶 = diag(𝜆1, . . . , 𝜆𝑛,−𝜆1, . . . ,−𝜆𝑛).

Arguing as in Proposition 3.1.6, we can prove by contradiction that 𝐶 = 0.

Thus there is no non-zero 𝑍 ′ such that 3.1.30 holds for all 𝑋𝑖 and 𝑌𝑖. Since

𝜙(𝐴,𝐵) := Tr
(︀
𝐽𝐴𝐽−1𝐵

)︀
is symmetric non degenerate bilinear form over

𝑇𝜉(Sp(2𝑛,K)) when char(K) ̸= 2, this implies that 𝑑𝜇 is surjective at any

solution 𝑠 of 3.1.27. Thus 𝒰𝜉𝑛 is non singular and equidimensional. Finally, we

see that the dimension of (each connected component of) 𝒰𝜉𝑛 is

dim
(︁
Sp(2𝑛,K)2𝑔

)︁
− dim(Sp(2𝑛,K)) = (2𝑔 − 1)𝑛 (2𝑛+ 1)
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proving the second claim.

Corollary 3.1.19. The dimension of (each connected component of) ℳ𝜉
𝑛 is

equal to 𝑑𝑛 := (2𝑔 − 1)𝑛 (2𝑛+ 1)− 𝑛.

Proof. By Proposition 3.1.6 and 3.1.13, we have that

dim
(︁
ℳ𝜉

𝑛

)︁
= dim

(︁
𝒰𝜉𝑛
)︁
− dim(𝑇 )

so the claim easily follows from 3.1.26.

3.2 Geometry of 𝒰 𝜉𝑛,𝐻

The goal of this section is to describe the geometry of the variety 𝒰𝜉𝑛,𝐻 defined

in 3.1.12 for any 𝑍(𝐺) ≤ 𝐻 ≤ 𝜇𝑛2.

3.2.1 The Lemmas

Notation. If 𝑍 = diag(𝜀1, . . . , 𝜀𝑛, 𝜀1, . . . , 𝜀𝑛) ∈ 𝜇𝑛2, then we denote 𝑍 by

diag2(𝜀1, . . . , 𝜀𝑛). If Φ ∈ 𝑆𝑛, we call Φ the corresponding symplectic permuta-

tion matrix too. If 𝐴 ∈ Sp(2𝑛,K), we write Φ(𝐴) instead of 𝐴Φ.

Let 𝐻 be a subgroup of 𝜇𝑛2/𝑍(𝐺) of rank 𝑘,
−→
ℬ a basis of 𝐻. Then

−→
ℬ = {𝑍1, . . . , 𝑍𝑘}, where 𝑍1, . . . , 𝑍𝑘 are independent matrices, defined up

to a sign, such that −𝐼2𝑛 /∈ span
{︀
𝑍1, . . . , 𝑍𝑘

}︀
≤ 𝜇𝑛2, whatever the choice of

representatives 𝑍1, . . . , 𝑍𝑘 of 𝑍1, . . . , 𝑍𝑘 is. It can be easily shown that there
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exists a permutation Φ ∈ 𝑆𝑛 such that, for all ℎ ∈ [𝑘],

Φ(𝑍ℎ) = diag2

⎛⎜⎜⎝
𝑎ℎ1⏞  ⏟  

1, . . . , 1,

𝑎ℎ2⏞  ⏟  
−1, . . . ,−1, . . . ,

𝑎ℎ
2ℎ−1⏞  ⏟  

1, . . . , 1,

𝑎ℎ
2ℎ⏞  ⏟  

−1, . . . ,−1

⎞⎟⎟⎠ (3.2.1)

where 𝑎ℎ−1
𝑖 = 𝑎ℎ2𝑖−1 + 𝑎ℎ2𝑖 for any 𝑖 ∈ [2ℎ−1].

This permutation gives rise to the following family of unordered partitions

of 𝑛: {︁(︁
𝑎ℎ1 , . . . , 𝑎

ℎ
2ℎ

)︁}︁
ℎ∈[𝑘]

.

We will prove that these partitions are uniquely determined by the subgroup

𝐻. In order to do this, we have to check the following facts about the set{︀(︀
𝑎ℎ1 , . . . , 𝑎

ℎ
2ℎ

)︀}︀
ℎ∈[𝑘]:

1. It does not depend on the choice of the permutation Φ.

2. It does not depend on the choice of the representatives of the elements of

the basis
−→
ℬ .

3. It does not depend on the choice of the basis
−→
ℬ , once the representatives

of its elements are fixed.

Lemma 3.2.1. Let 𝐻 ≤ 𝜇𝑛2,
−→
ℬ = {𝑍1, . . . , 𝑍𝑘} a basis of 𝐻 such that the

elements of
−→
ℬ are of the form 3.2.1. If 𝜆 ∈ 𝑆𝑛 such that 𝜆(𝑍ℎ) = 𝑍ℎ for all

ℎ ∈ [𝑘], then 𝜆 ∈
2𝑘∏︀
𝑖=1

𝑆𝑎𝑘𝑖
.

Proof. By induction on 𝑘 = rk(𝐻).

𝑘 = 1: In this case, 𝜆(𝑍1) = 𝑍1, and since 𝑍1 is of the form 3.2.1, 𝜆 ∈

𝑆𝑎11 × 𝑆𝑎12 .
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𝑘 ↦→ 𝑘 + 1: Let 𝜆 ∈ 𝑆𝑛 such that 𝜆(𝑍ℎ) = 𝑍ℎ for any ℎ = 1, . . . , 𝑘 + 1. In

particular 𝜆(𝑍ℎ) = 𝑍ℎ for any ℎ ∈ [𝑘]. By the inductive hypothesis,

𝜆 = (𝜆1, . . . , 𝜆2𝑘) ∈
2𝑘∏︁
𝑖=1

𝑆𝑎𝑘𝑖
.

Now, 𝑍𝑘+1 = diag2(𝑊1, . . . ,𝑊2𝑘), where

𝑊𝑖 = diag

⎛⎜⎝ 𝑎𝑘+1
2𝑖−1⏞  ⏟  

1, . . . , 1,

𝑎𝑘+1
2𝑖⏞  ⏟  

−1, . . . ,−1

⎞⎟⎠
for 𝑖 ∈ [2𝑘] and 𝜆(𝑍𝑘+1) = 𝑍𝑘+1. This implies that 𝜆𝑖(𝑊𝑖) =𝑊𝑖 hence, by the

case 𝑘 = 1, 𝜆𝑖 ∈ 𝑆𝑎𝑘+1
2𝑖−1
× 𝑆𝑎𝑘+1

2𝑖
, and this proves the lemma.

Notation. If 𝜆 ∈ 𝑆𝑛 and
−→
ℬ = {𝑍1, . . . , 𝑍𝑘} an ordered basis of a subspace 𝐻

of 𝜇𝑛2, then 𝜆
(︁−→
ℬ
)︁
:= {𝜆(𝑍1), . . . , 𝜆(𝑍𝑘)}.

Lemma 3.2.2. Let 𝐻 ≤ 𝜇𝑛2,
−→
ℬ = {𝑍1, . . . , 𝑍𝑘} an ordered basis of 𝐻 and

𝜆, 𝜇 ∈ 𝑆𝑛 such that 𝜆
(︁−→
ℬ
)︁

and 𝜇
(︁−→
ℬ
)︁

are of the form 3.2.1. Then 𝜆
(︁−→
ℬ
)︁
=

𝜇
(︁−→
ℬ
)︁
.

Proof. By induction on 𝑘.

𝑘 = 1: The assertion is true because 𝑎11 and 𝑎12 are equal to the number of

eigenvalues equal to 1 and −1 in 𝑍1 respectively.

𝑘 ↦→ 𝑘 + 1: If
−→
ℬ = {𝑍1, . . . , 𝑍𝑘+1} and 𝜆

(︁−→
ℬ
)︁
and 𝜇

(︁−→
ℬ
)︁
are of the form

3.2.1, then, by the inductive hypothesis, 𝜆(𝑍𝑖) = 𝜇(𝑍𝑖) for any 𝑖 ∈ [𝑘]. In other

words, if {︁(︁
𝑎ℎ1 , . . . , 𝑎

ℎ
2ℎ

)︁}︁
ℎ∈[𝑘+1]

,{︁(︁
𝑏ℎ1 , . . . , 𝑏

ℎ
2ℎ

)︁}︁
ℎ∈[𝑘+1]
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are the partitions of 𝑛 determined by 𝜆 and 𝜇 respectively, then 𝑎ℎ𝑖 = 𝑏ℎ𝑖 for

ℎ ∈ [𝑘].

Now,
(︀
𝜆𝜇−1

)︀
(𝜇(𝑍𝑖)) = 𝜆(𝑍𝑖) = 𝜇(𝑍𝑖) for any 𝑖 ∈ [𝑘]. By Lemma 3.2.1, 𝜆𝜇−1 =

(𝛼1, . . . , 𝛼2𝑘) ∈
2𝑘∏︀
𝑖=1

𝑆𝑎𝑘𝑖
. Write 𝜆(𝑍𝑘+1) = diag2(𝑊1, . . . ,𝑊2𝑘), 𝜇(𝑍𝑘+1) =

diag2(𝑉1, . . . , 𝑉2𝑘), where

𝑊𝑖 = diag

⎛⎜⎝ 𝑎𝑘+1
2𝑖−1⏞  ⏟  

1, . . . , 1,

𝑎𝑘+1
2𝑖⏞  ⏟  

−1, . . . ,−1

⎞⎟⎠,

𝑉𝑖 = diag

⎛⎜⎝ 𝑏𝑘+1
2𝑖−1⏞  ⏟  

1, . . . , 1,

𝑏𝑘+1
2𝑖⏞  ⏟  

−1, . . . ,−1

⎞⎟⎠
for 𝑖 ∈ [2𝑘]. We have that

𝜆(𝑍𝑘+1) =
(︀
𝜆𝜇−1

)︀
(𝜇(𝑍𝑘+1))

= diag2(𝛼1(𝑉1), . . . , 𝛼2𝑘(𝑉2𝑘)) = diag2(𝑊1, . . . ,𝑊2𝑘).

It follows that the 𝛼𝑖(𝑉𝑖)’s have the form 3.2.1, and by the case 𝑘 = 1, 𝛼𝑖(𝑉𝑖) =

𝑉𝑖 for 𝑖 ∈ [2𝑘]. So 𝑉𝑖 =𝑊𝑖 for any 𝑖 ∈ [2𝑘] and this concludes the proof.

Lemma 3.2.3. Let 𝐻 ≤ 𝜇𝑛2 such that −𝐼2𝑛 /∈ 𝐻,
−→
ℬ = {𝑍1, . . . , 𝑍𝑘} an ordered

basis of 𝐻,
−→
ℬ′ = {𝑍1, . . . , 𝑍𝑗−1,−𝑍𝑗 , 𝑍𝑗+1, . . . , 𝑍𝑘} and

{︁(︁
𝑎ℎ1 , . . . , 𝑎

ℎ
2ℎ

)︁}︁
ℎ∈[𝑘]

,{︁(︁
𝑏ℎ1 , . . . , 𝑏

ℎ
2ℎ

)︁}︁
ℎ∈[𝑘]

(3.2.2)

the partitions of 𝑛 associated to
−→
ℬ and

−→
ℬ′ respectively. Then for any ℎ ∈ [𝑘],

there exists a permutation 𝜆ℎ ∈ 𝑆2ℎ such that 𝑏ℎ𝑖 = 𝑎ℎ𝜆ℎ(𝑖) for all 𝑖 ∈ [2ℎ].
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Proof. First of all, notice that partitions 3.2.2 are uniquely determined by

Lemma 3.2.2. Let 𝜇 ∈ 𝑆𝑛 such that 𝜇
(︁−→
ℬ
)︁
is of the form 3.2.1. Then the

matrices of 𝜇
(︁−→
ℬ′
)︁
assume the following form:

𝜇(𝑍ℎ) = diag2

⎛⎜⎜⎝
𝑎ℎ1⏞  ⏟  

1, . . . , 1,

𝑎ℎ2⏞  ⏟  
−1, . . . ,−1, . . . ,

𝑎ℎ
2ℎ−1⏞  ⏟  

1, . . . , 1,

𝑎ℎ
2ℎ⏞  ⏟  

−1, . . . ,−1

⎞⎟⎟⎠
for ℎ ̸= 𝑗 and

𝜇(𝑍𝑗) = diag2

⎛⎜⎜⎝
𝑎𝑗1⏞  ⏟  

−1, . . . ,−1,
𝑎𝑗2⏞  ⏟  

1, . . . , 1, . . . ,

𝑎𝑗
2𝑗−1

−
⏞  ⏟  
1, . . . ,−1,

𝑎𝑗
2𝑗⏞  ⏟  

1, . . . , 1

⎞⎟⎟⎠.

Let 𝜆 ∈ 𝑆𝑛 such that, for any 𝑙 ∈ [2𝑗 ], if
(︂
𝑙−1∑︀
𝑖=1

𝑎𝑗𝑖 + 1

)︂
≤ 𝑠 ≤

𝑙∑︀
𝑖=1

𝑎𝑗𝑖 , then

𝜆(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
𝑠+ 𝑎𝑗𝑙+1 if 𝑙 is odd

𝑠− 𝑎𝑗𝑙−1 if 𝑙 is even

(𝜆 is the permutation that exchanges pairwise the blocks of size 𝑎𝑗2𝑖−1, 𝑎
𝑗
2𝑖,

𝑖 ∈ [2𝑗−1]). It is easy to check that 𝜆𝜇
(︁−→
ℬ′
)︁
is of the form 3.2.1 and that the

desired permutations 𝜆ℎ are the following:

𝜆ℎ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
id[𝑛] if 1 ≤ ℎ ≤ 𝑗 − 1

2(2𝑗−1)∏︀
𝑙=0

(︃
2ℎ−𝑗∏︀
𝑖=1

(︀
𝑖+ 𝑙2ℎ−𝑗 , 𝑖+ (𝑙 + 1) 2ℎ−𝑗

)︀)︃
if 𝑗 ≤ ℎ ≤ 𝑘.
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Lemma 3.2.4. Let 𝐻 and
−→
ℬ like in Lemma 3.2.3,

−→
ℬ′ another ordered basis

of 𝐻 and consider the partitions of 𝑛 as in 3.2.2 associated to
−→
ℬ and

−→
ℬ′.Then

for any ℎ ∈ [𝑘], there exists a permutation 𝜆ℎ ∈ 𝑆2ℎ such that 𝑏ℎ𝑖 = 𝑎ℎ𝜆ℎ(𝑖) for

all 𝑖 ∈ [2ℎ].

Proof. First of all, let us give an explicit description of the action of an element

in GL(𝑘,Z2) on an ordered basis of 𝐻: if 𝐴 = (𝑎𝑖𝑗)𝑖,𝑗∈[𝑘] ∈ GL(𝑘,Z2) and
−→
ℬ = {𝑍1, . . . , 𝑍𝑘}, then

𝐴
(︁−→
ℬ
)︁
:=

{︃
𝑘∏︁
𝑖=1

𝑍
𝑎𝑖𝑗
𝑖

}︃
𝑗∈[𝑘]

.

It is known that GL (𝑘,Z2) is generated as a group by the matrices of the

form 𝐼𝑘 +𝐸𝑖,𝑖+1 for 𝑖 = 1, . . . , 𝑘− 1, where 𝐸𝑖,𝑖+1 is the (𝑖, 𝑖+ 1)-th elementary

matrix. Then, it is sufficient to prove the lemma only for the change of basis

given by these matrices. For simplicity, we will give the proof only in the case

where the change of basis is given by 𝐼𝑘 + 𝐸1,2, being the proof in the other

cases completely analogous. Therefore, the basis involved are

−→
ℬ = {𝑍1, . . . , 𝑍𝑘} ,
−→
ℬ′ = {𝑍1, 𝑍1𝑍2, 𝑍3, . . . , 𝑍𝑘} .

Let 𝜇 ∈ 𝑆𝑛 such that 𝜇
(︁−→
ℬ
)︁
is of the form 3.2.1. Then

𝜇(𝑍1𝑍2) = diag2

⎛⎜⎝ 𝑎21⏞  ⏟  
1, . . . , 1,

𝑎22⏞  ⏟  
−1, . . . ,−1,

𝑎23⏞  ⏟  
−1, . . . ,−1,

𝑎24⏞  ⏟  
1, . . . , 1

⎞⎟⎠.
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Let 𝜆 ∈ 𝑆𝑛 such that

𝜆(𝑠) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑠 if 1 ≤ 𝑠 ≤ 𝑎21 + 𝑎22

𝑠+ 𝑎24 if 𝑎21 + 𝑎22 + 1 ≤ 𝑠 ≤ 𝑎21 + 𝑎22 + 𝑎23

𝑠− 𝑎23 otherwise

(𝜆 is the permutation exchanging the blocks of size 𝑎23, 𝑎24). Then 𝜆𝜇
(︁−→
ℬ′
)︁
is of

the form 3.2.1 and it turns out that 𝑎11 = 𝑏11, 𝑎12 = 𝑏12 and that, for ℎ = 2, . . . , 𝑘,

𝑏ℎ𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑎ℎ𝑖 if 1 ≤ 𝑖 ≤ 2ℎ−1

𝑎ℎ
𝑖+2ℎ−2 if 2ℎ−1 + 1 ≤ 𝑖 ≤ 2ℎ−1 + 2ℎ−2

𝑎ℎ
𝑖−2ℎ−2 if 2ℎ−1 + 2ℎ−2 + 1 ≤ 𝑖 ≤ 2ℎ.

Summaring up, Lemma 3.2.1 together with Lemma 3.2.2 prove 1, Lemma 3.2.3

proves 2 and Lemma 3.2.4 proves 3.

3.2.2 The Theorem

Finally, we are able to prove the following

Theorem 3.2.5. Let 𝐻 be a subgroup of 𝜇𝑛2 containing 𝑍(𝐺). There exists a

unique set-partition {Π𝑖}𝑖∈[2𝑘] of Π = {𝜙𝑚1 , . . . , 𝜙𝑚𝑛} such that

𝒰𝜉𝑛,𝐻 ∼=
2𝑘∏︁
𝑖=1

𝒰Π𝑖(𝜉)

𝑎𝑘𝑖
(3.2.3)
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where

Π𝑖(𝜉) := diag
(︁
(𝜉ℎ)ℎ∈Π𝑖

,
(︀
𝜉−1
ℎ

)︀
ℎ∈Π𝑖

)︁
and 𝑎𝑘𝑖 = |Π𝑖| for any 𝑖 ∈ [2𝑘].

Remark 3.2.6. For any 𝑖 ∈ [2𝑘], Π𝑖(𝜉) is a matrix uniquely determined by Π𝑖

up the action of a permutation 𝜙 ∈ 𝑆𝑎𝑘𝑖 . So 𝒰
Π𝑖(𝜉)

𝑎𝑘𝑖
is uniquely determined up

to isomorphism induced by such a 𝜙.

Proof of Theorem 3.2.5. Notice that for 𝑖 ∈ [2𝑘], the eigenvalues of Π𝑖(𝜉)

satisfy 3.1.1 because of Remark 3.1.2, so 𝒰Π𝑖(𝜉)

𝑎𝑘𝑖
is well defined. Let 𝑋 =

(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ∈ 𝒰𝜉𝑛,
−→
ℬ = {𝑍1, . . . , 𝑍𝑘} an ordered basis of 𝐻/𝑍(𝐺).

Then 𝑋 ∈ 𝒰𝜉𝑛,𝐻 if and only if, for 𝑖 ∈ [𝑔] and 𝑗 ∈ [𝑘],

𝐴𝑖𝑍𝑗 = 𝑍𝑗𝐴𝑖,

𝐵𝑖𝑍𝑗 = 𝑍𝑗𝐵𝑖.

(3.2.4)

Applying a permutation Φ such that Φ
(︁−→
ℬ
)︁
is of the form 3.2.1 to equations

3.2.4, we have, for 𝑖 ∈ [𝑔] and 𝑗 ∈ [𝑘],

Φ(𝐴𝑖)Φ(𝑍𝑗) = Φ(𝑍𝑗)Φ(𝐴𝑖),

Φ(𝐵𝑖)Φ(𝑍𝑗) = Φ(𝑍𝑗)Φ(𝐵𝑖)

For any 𝑖 ∈ [𝑔], it can be easily shown that

Φ(𝐴𝑖) =

⎛⎜⎝𝐴1
𝑖 𝐴2

𝑖

𝐴3
𝑖 𝐴4

𝑖

⎞⎟⎠ , Φ(𝐵𝑖) =

⎛⎜⎝𝐵1
𝑖 𝐵2

𝑖

𝐵3
𝑖 𝐵4

𝑖

⎞⎟⎠
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where
𝐴𝑠𝑖 = diag

(︁
𝐶𝑠𝑖,1, . . . , 𝐶

𝑠
𝑖,2𝑘

)︁
,

𝐵𝑗
𝑖 = diag

(︁
𝐷𝑠
𝑖,1, . . . , 𝐷

𝑠
𝑖,2𝑘

)︁
and 𝐶𝑠𝑖,ℎ, 𝐷

𝑠
𝑖,ℎ are square matrices of size 𝑎𝑘ℎ for any 𝑠 = 1, . . . , 4, ℎ ∈ [2𝑘].

Since the Φ(𝐴𝑖)’s and the Φ(𝐵𝑖)’s are symplectic matrices, we have for 𝑖 ∈ [𝑔],

ℎ ∈ [2𝑘] (︀
𝐶1
𝑖,ℎ

)︀𝑇
𝐶4
𝑖,ℎ −

(︀
𝐶3
𝑖,ℎ

)︀𝑇
𝐶2
𝑖,ℎ = 𝐼𝑎𝑘ℎ

,(︀
𝐶3
𝑖,ℎ

)︀𝑇
𝐶1
𝑖,ℎ =

(︀
𝐶1
𝑖,ℎ

)︀𝑇
𝐶3
𝑖,ℎ,(︀

𝐷1
𝑖,ℎ

)︀𝑇
𝐷4
𝑖,ℎ −

(︀
𝐷3
𝑖,ℎ

)︀𝑇
𝐷2
𝑖,ℎ = 𝐼𝑎𝑘ℎ

,(︀
𝐷3
𝑖,ℎ

)︀𝑇
𝐷1
𝑖,ℎ =

(︀
𝐷1
𝑖,ℎ

)︀𝑇
𝐷3
𝑖,ℎ.

(3.2.5)

Moreover, Φ determines a partition of {Π𝑖}𝑖∈[2𝑘] of Π, with 𝑎𝑘𝑖 = |Π𝑖|, and

Φ(𝜉) = diag
(︁
(𝜉ℎ)ℎ∈Π1

, . . . , (𝜉ℎ)ℎ∈Π
2𝑘
,
(︀
𝜉−1
ℎ

)︀
ℎ∈Π1

, . . . ,
(︀
𝜉−1
ℎ

)︀
ℎ∈Π

2𝑘

)︁
.

Now, let 𝜆 ∈ 𝑆2𝑛 such that

(𝜆Φ)(𝑍𝑗) = diag

⎛⎜⎜⎝
2𝑎𝑗1⏞  ⏟  

1, . . . , 1,

2𝑎𝑗2⏞  ⏟  
−1, . . . ,−1, . . . ,

2𝑎𝑗
2𝑗−1⏞  ⏟  

1, . . . , 1,

2𝑎𝑗
2𝑗⏞  ⏟  

−1, . . . ,−1

⎞⎟⎟⎠
for all 𝑗 ∈ [𝑘], and 𝜆 does not move any element in any of the blocks of size 𝑎𝑗ℎ.

Then
(𝜆Φ)(𝐴𝑖) = diag

(︁
𝐶1
𝑖 , . . . , 𝐶

2𝑘

𝑖

)︁
,

(𝜆Φ)(𝐵𝑖) = diag
(︁
𝐷1
𝑖 , . . . , 𝐷

2𝑘

𝑖

)︁
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where

𝐶ℎ𝑖 =

⎛⎜⎝𝐶1
𝑖,ℎ 𝐶2

𝑖,ℎ

𝐶3
𝑖,ℎ 𝐶4

𝑖,ℎ

⎞⎟⎠ , 𝐷ℎ
𝑖 =

⎛⎜⎝𝐷1
𝑖,ℎ 𝐷2

𝑖,ℎ

𝐷3
𝑖,ℎ 𝐷4

𝑖,ℎ

⎞⎟⎠
for ℎ ∈ [2𝑘], 𝑖 ∈ [𝑔], so the 𝐶ℎ𝑖 ’s and the 𝐷ℎ

𝑖 ’s are symplectic by 3.2.5, and

(𝜆Φ)(𝜉) = diag(Π1(𝜉), . . . ,Π2𝑘(𝜉)).

It follows that there is an isomorphism between 𝒰𝜉𝑛,𝐻 and
2𝑘∏︀
𝑖=1
𝒰Π𝑖(𝜉)

𝑎𝑘𝑖
given by

𝑓 : 𝒰𝜉𝑛,𝐻
∼=−→

2𝑘∏︁
𝑖=1

𝒰Π𝑖(𝜉)

𝑎𝑘𝑖

(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ↦−→
(︂(︀
𝐶1
𝑖 , 𝐷

1
𝑖

)︀
𝑖=1,...𝑔

, . . . ,
(︁
𝐶2𝑘

𝑖 , 𝐷
2𝑘

𝑖

)︁
𝑖=1,...,𝑔

)︂ (3.2.6)

induced by the permutation 𝜆Φ.

If we choose a different Φ′ such that Φ′
(︁−→
ℬ
)︁
is of the form 3.2.1, then by

Lemma 3.2.1, Φ−1Φ′ = (𝛼1, . . . , 𝛼2𝑘) ∈
2𝑘∏︀
𝑖=1

𝑆𝑎𝑘𝑖
. Therefore, Φ′ induces the same

partition {Π𝑖}𝑖∈[2𝑘] of Π and by 3.2.6 we are done. If
−→
ℬ′ is a different basis of

𝐻/𝑍(𝐺), by the proofs of Lemma 3.2.3 and 3.2.4, we have that if Φ′
(︁−→
ℬ′
)︁
is of

the form 3.2.1, Φ′ ∈ 𝑆𝑛, then Φ′ = 𝜇Φ, where 𝜇 ∈ 𝑆𝑛 permutes the blocks of

size 𝑎ℎ𝑖 . It follows that Φ′ induces the same partition {Π𝑖}𝑖∈[2𝑘] of Π and we

are done again.



Chapter 4

𝐸-polynomial of ℳ𝜉
𝑛/C

4.1 Mixed Hodge structures

Motivated by the (then still unproven) Weil Conjectures and Grothendieck’s

“yoga of weights”, which drew cohomological conclusions about complex varieties

from the truth of those conjectures, Deligne in [De71] and [De74] proved the

existence of mixed Hodge structures on the cohomology of a complex algebraic

variety.

Proposition 4.1.1. ([De71], [De74]). Let 𝑋 be a complex algebraic variety.

For each 𝑗 there is an increasing weight filtration

0 =𝑊−1 ⊆𝑊0 ⊆ · · · ⊆𝑊2𝑗 = 𝐻𝑗(𝑋,Q) (4.1.1)

and a decreasing Hodge filtration

𝐻𝑗(𝑋,C) = 𝐹 0 ⊇ 𝐹 1 ⊇ · · · ⊇ 𝐹𝑚 ⊇ 𝐹𝑚+1 = 0 (4.1.2)

77
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such that the filtration induced by 𝐹 on the complexification of the graded pieces

𝐺𝑟𝑊𝑙 :=𝑊𝑙/𝑊𝑙−1 of the weight filtration endows every graded piece with a pure

Hodge structure of weight 𝑙, or equivalently, for every 0 ≤ 𝑝 ≤ 𝑙, we have

𝐺𝑟𝑊
C

𝑙 = 𝐹 𝑝𝐺𝑟𝑊
C

𝑙 ⊕ 𝐹 𝑙−𝑝+1𝐺𝑟𝑊
C

𝑙 . (4.1.3)

Remark 4.1.2. This mixed Hodge structure of 𝑋 respects most operations in

cohomology, like maps 𝑓* : 𝐻*(𝑌,Q)→ 𝐻*(𝑋,Q) induced by a morphism of

varieties 𝑓 : 𝑋 → 𝑌 , maps induced by field automorphisms 𝜎 ∈ Aut (C/Q),

the Künneth isomorphism

𝐻*(𝑋 × 𝑌,Q) ∼= 𝐻*(𝑋,Q)⊗𝐻*(𝑌,Q), (4.1.4)

cup products, etc.

Using Deligne’s construction [De74, 8.3.8] of mixed Hodge structure on

relative cohomology, one can define ([DK86]) a well-behaved mixed Hodge

structure on compactly supported cohomology 𝐻*
𝑐 (𝑋,Q), compatible with

Poincarè duality for smooth connected 𝑋 (see also [PS08]).

Definition 4.1.3. Define the compactly supported mixed Hodge numbers by

ℎ𝑝,𝑞;𝑗𝑐 (𝑋) := dimC

(︁
𝐺𝑟𝐹𝑝 𝐺𝑟

𝑊C
𝑝+𝑞𝐻

𝑗
𝑐 (𝑋,C)

)︁
. (4.1.5)

Form the compactly supported mixed Hodge polynomial :

𝐻𝑐(𝑋;𝑥, 𝑦, 𝑡) :=
∑︁
𝑝,𝑞,𝑗

ℎ𝑝,𝑞;𝑗𝑐 (𝑋)𝑥𝑝𝑦𝑞𝑡𝑗 (4.1.6)
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and the 𝐸-polynomial of 𝑋:

𝐸(𝑋;𝑥, 𝑦) := 𝐻𝑐(𝑋;𝑥, 𝑦,−1). (4.1.7)

Remark 4.1.4. The 𝐸-polynomial of an algebraic variety 𝑋 is an algebraic

invariant, as well as mixed Hodge structures and their compactly supported

counterpart.

Remark 4.1.5. By definition, we can deduce the following properties of the

𝐸-polynomial 𝐸(𝑋;𝑥, 𝑦) of an algebraic variety 𝑋:

∙ 𝐸(𝑋; 1, 1) = 𝜒(𝑋), the Euler characteristic of 𝑋.

∙ The total degree of 𝐸(𝑋;𝑥, 𝑦) is twice the dimension of 𝑋 as a complex

algebraic variety.

∙ The coefficient of 𝑥dim(𝑋)𝑦dim(𝑋) in 𝐸(𝑋;𝑥, 𝑦) is the number of the highest

dimensional connected components of the variety 𝑋.

Remark 4.1.6. If {𝑍𝑖}𝑖=1,...,𝑛 is a stratification of an algebraic variety 𝑋, i.e., a

finite partition of 𝑋 into the locally closed subsets 𝑍𝑖, then

𝐸(𝑋;𝑥, 𝑦) =
𝑛∑︁
𝑖=1

𝐸(𝑍𝑖;𝑥, 𝑦) (4.1.8)

that is, the 𝐸-polynomial is additive with respect to stratifications.

4.2 Spreading out and Katz’s theorem

Sometimes, the 𝐸-polynomial could be calculated using arithmetic algebraic

geometry. The setup is the following.
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Definition 4.2.1. Let 𝑋 be a complex algebraic variety, 𝑅 a finitely generated

Z-algebra, 𝜑 : 𝑅 →˓ C a fixed embedding. We say that a separated scheme X/𝑅

is a spreading out of 𝑋 if its extension of scalars X𝜑 is isomorphic to 𝑋.

Definition 4.2.2. Suppose that a complex algebraic variety 𝑋 has a spreading

out X such that for every ring homomorphism 𝜓 : 𝑅 → F𝑞, the number of

points of X𝜓(F𝑞) is given by 𝑃𝑋 (𝑞) for some fixed 𝑃𝑋(𝑡) ∈ Z[𝑡]. We say that

𝑋 is a polynomial count variety and that 𝑃𝑋 is the counting polynomial.

Then we have the following fundamental result:

Theorem 4.2.3. ([HRV08, Katz (2.18)]). Let 𝑋 be a variety over C. Assume

𝑋 is polynomial count with counting polynomial 𝑃𝑋(𝑡) ∈ Z[𝑡], then the 𝐸-

polynomial of 𝑋 is given by 𝐸(𝑋;𝑥, 𝑦) = 𝑃𝑋(𝑥𝑦).

In this case, and more generally, when the 𝐸-polynomial only depends on

𝑥𝑦, we write

𝐸(𝑋; 𝑞) := 𝐸(𝑋;
√
𝑞,
√
𝑞).

Remark 4.2.4. By 4.1.5, for a variety 𝑋 whose 𝐸-polynomial is given by 𝑃𝑋(𝑞),

the Euler characteristic of 𝑋 is equal to 𝑃𝑋(1), while the leading coefficient of

𝑃𝑋(𝑞) is the number of highest dimensional connected components of 𝑋.

Remark 4.2.5. Informally, Katz’s theorem says that if we can count the number

of solutions of the equations defining our variety over F𝑞, and this number turns

out to be some universal polynomial in 𝑞, then this polynomial determines the

𝐸-polynomial of the variety.

Example 4.2.6. Let 𝑋 = C×. A spreading out of 𝑋 over Z is given by X = Z×.

Clearly, there is only one possible ring homomorphism 𝜓 : Z→ F𝑞, and trivially
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|X𝜓(F𝑞)| =
⃒⃒
F×𝑞
⃒⃒
= 𝑞 − 1. Thus C× is a polynomial count variety and by Katz

theorem 4.2.3, 𝐸(C×; 𝑞) = 𝑞 − 1.

Actually, generally we do not need to perform the computation of the

rational points of an algebraic variety over all possible finite fields in order to

apply Theorem 4.2.3. In fact, one can restrict the computations via a suitable

choice of the finitely generated Z-algebra which a spreading out of the variety

𝑋 is defined over. We list some examples to explain this situation in more

detail.

Example 4.2.7. ([HRV08, Example 2.1.10]). Fix a non-zero integer 𝑚 ∈ Z and

let us consider the complex algebraic variety 𝑋 ⊂ C2 defined by the following

equation:

𝑥𝑦 = 𝑚. (4.2.1)

A possible spreading out of 𝑋 is the scheme X over Z determined by the

equation 4.2.1. The extension of scalar X𝜓 determined by a ring homomorphism

𝜓 : Z→ F𝑞 is given by the same equation 4.2.1 now viewed over F𝑞. It is easy

to count solutions to 4.2.1. Let 𝑝 be the characteristic of F𝑞 (so that 𝑞 is a

power of 𝑝). Then

|X𝜓(F𝑞)| =

⎧⎪⎪⎨⎪⎪⎩
2𝑞 − 1 if 𝑝 | 𝑚

𝑞 − 1 otherwise.

Therefore 𝑋 does not admit an universal polynomial in 𝑞 counting the number

of its F𝑞-points with this choice of a spreading out. But if we consider the

spreading out X over Z
[︀
1
𝑚

]︀
, then we eliminate the primes dividing 𝑚 and

find that in all cases |X𝜓(F𝑞)| = 𝑞 − 1, hence 𝑋 has polynomial count and by
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Theorem 4.2.3, 𝐸(𝑋; 𝑞) = 𝑞 − 1 This is consistent with the fact that 𝑋 ∼= C×

using Remark 4.1.4.

Example 4.2.8. ([Mer15, Example 2.4]). Let us take the affine curve

𝐶 =
{︀
(𝑥, 𝑦) ∈ C2 | 2𝑥2 + 3𝑦2 = 5

}︀
.

We want a scheme 𝒳 defined by the same equation over a finitely generated

Z-algebra. It is easy to check that |𝐶(F𝑝)| = 𝑝 −
(︁
−6
𝑝

)︁
for 𝑝 > 5 prime,

where
(︁
−6
𝑝

)︁
is the Legendre symbol, and that |𝐶(F2)| = 2, |𝐶(F3)| = 6 and

|𝐶(F5)| = 9. To have a polynomial count for 𝐶, we need to exclude some

primes. To get rid of 2, 3 and 5, we consider the scheme 𝒳 over Z
[︀
1
30

]︀
, ending

up with a quasi-polynomial, since the term
(︁
−6
𝑝

)︁
is periodic. To satisfy the

hypotheses of Theorem 4.2.3, we still have to exclude all primes 𝑝 such that

−6 is a quadratic non-residue modulo 𝑝. This can be accomplished by adding
√
−6 to the base ring. The scheme 𝒳/Z

[︀
1
30 ,
√
−6
]︀
is a spreading out for 𝐶

with polynomial count 𝑃𝐶(𝑝) = 𝑝− 1. By Katz’s result, the 𝐸-polynomial of

𝐶 is 𝐸(𝐶;𝑥, 𝑦) = 𝑥𝑦 − 1. Again, this agrees with the fact that 𝐶 ∼= C×.

4.3 Computation of the 𝐸-polynomial of ℳ𝜉
𝑛/C

In this section, we compute the 𝐸-polynomial ofℳ𝜉
𝑛/C, where 𝜉 is a generic

element of the form 3.1.4 with 𝜙 a primitive 𝑚-th root of unity. By using the

stratification 3.1.23 ofℳ𝜉
𝑛/C and Remark 4.1.6, we have that

Proposition 4.3.1. The 𝐸-polynomial of ℳ𝜉
𝑛/C satisfies

𝐸
(︁
ℳ𝜉

𝑛/C;𝑥, 𝑦
)︁
=

∑︁
𝑍(𝐺)≤𝐻≤𝜇𝑛

2

𝐸
(︁̃︁ℳ𝜉

𝑛,𝐻/C;𝑥, 𝑦
)︁
. (4.3.1)
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So we reduce to compute the 𝐸-polynomial of the stratum ̃︁ℳ𝜉
𝑛,𝐻 for any

𝑍(𝐺) ≤ 𝐻 ≤ 𝜇𝑛2. In order to do this, we prove that each stratum has polynomial

counting function over finite fields possessing a primitive 2𝑚-th root of unity.

Then by Theorem 4.2.3, this function will be the 𝐸-polynomial of the stratum.

But firstly, we need to find a suitable spreading out schemes of the strata.

Notation. Throughout this chapter, we denote by 𝜁 a primitive 2𝑚-th root of

unity.

4.3.1 Spreading out of ̃︁ℳ𝜉
𝑛,𝐻/C

Define the following finitely generated Z-algebra:

𝑅 := Z
[︂
𝜁,

1

2𝑚

]︂
(4.3.2)

Then we have

Proposition 4.3.2. For all 𝑍(𝐺) ≤ 𝐻 ≤ 𝜇𝑛2, the variety ̃︁ℳ𝜉
𝑛,𝐻/C admits a

spreading out scheme over 𝑅.

Proof. From the definition 3.1.12 of ̃︀𝒰𝜉𝑛,𝐻 it is clear that it can be viewed as a

subscheme X𝐻 of Sp(2𝑛,𝑅)2𝑔 and we can do the same thing for the open 𝑇 -

stable affine piece 𝒰ℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 defined as in 3.1.19, calling Xℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚

𝑖1,...,𝑖𝑚;𝑠

the corresponding subscheme over 𝑅 for any possibile values of the indices. Let

𝜌 : 𝑅→ C be an embedding, then X𝐻 and Xℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 are spreading out

of ̃︀𝒰𝜉𝑛,𝐻/C and 𝒰ℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 /C respectively.

On the other hand, the group scheme 𝑇 (𝑅), defined as the centralizer

of 𝜉 in Sp(2𝑛,𝑅), acts on X𝐻 and Xℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 by conjugation, so using

Seshadri’s extension of geometric invariant theory quotients for schemes (see
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[Se77]), remembering Proposition 3.1.13, we can take the geometric quotient

Y𝐻 := X𝐻/𝑇 (𝑅) (4.3.3)

and we can define the affine schemes

Yℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 := Spec

(︂
𝑅
[︁
Xℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠

]︁𝑇 (𝑅)
)︂

over 𝑅 for any possible choice of the indices. Then
{︁
Yℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠

}︁
is an

open cover of affine subschemes of Y𝐻 . Because 𝜌 : 𝑅→ C is a flat morphism,

[Se77, Lemma 2] implies that Yℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 is a spreading out scheme of the

complex varietyℳℎ1,...,ℎ𝑚;𝑘1,...,𝑘𝑚
𝑖1,...,𝑖𝑚;𝑠 as defined in 3.1.24 for any possible choice of

the indices, so Y𝐻 is a spreading out of ̃︁ℳ𝜉
𝑛,𝐻/C because of the local nature

of fibered product for schemes.

4.3.2 The number of F𝑞-points of ̃︁ℳ𝜉
𝑛,𝐻

Let 𝑞 be a power of a prime 𝑝 ≥ 3 . From now on, let us assume that F𝑞

contains a primitive 2𝑚-th root of unity 𝜁 such that 𝜁2 satisfies conditions 3.1.1.

In particular

𝑞 ≡
2𝑚

1. (4.3.4)

For any 𝑍(𝐺) ≤ 𝐻 ≤ 𝜇𝑛2, define

̃︀𝑁 𝜉
𝑛,𝐻(𝑞) :=

⃒⃒⃒ ̃︀𝒰𝜉𝑛,𝐻(F𝑞)⃒⃒⃒ (4.3.5)

𝑁 𝜉
𝑛,𝐻(𝑞) :=

⃒⃒⃒
𝒰𝜉𝑛,𝐻(F𝑞)

⃒⃒⃒
. (4.3.6)

These quantities are the number of rational points of ̃︀𝒰𝜉𝑛,𝐻/F𝑞 and 𝒰𝜉𝑛,𝐻/F𝑞
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respectively. When 𝐻 = 𝑍(𝐺), we simply write ̃︀𝑁 𝜉
𝑛(𝑞) and 𝑁 𝜉

𝑛(𝑞). From 3.1.11

and 3.1.12, it is easy to see that

𝑁 𝜉
𝑛,𝐻(𝑞) =

∑︁
𝐻≤𝑆≤𝜇𝑛

2

̃︀𝑁 𝜉
𝑛,𝑆(𝑞) (4.3.7)

hence by applying the Möbius inversion formula 2.1.9 in the poset of subgroups

of 𝜇𝑛2, we have ̃︀𝑁 𝜉
𝑛,𝐻(𝑞) =

∑︁
𝐻≤𝑆≤𝜇𝑛

2

𝜇(𝐻,𝑆)𝑁 𝜉
𝑛,𝑆(𝑞). (4.3.8)

Here, the Möbius function 𝜇 is that one in 2.1.11 once replaced 𝑞 with 2, so for

𝐻 ≤ 𝑆 ≤ 𝜇𝑛2, we have

𝜇(𝐻,𝑆) = (−1)rk(𝑆)−rk(𝐻) 2

(︀
rk(𝑆)−rk(𝐻)

2

)︀
. (4.3.9)

By Theorem 3.2.5, if 𝑍(𝐺) ≤ 𝑆 ≤ 𝜇𝑛2, there exists a unique partition {Π𝑖}𝑖∈[2rk(𝑆)]

of Π = {𝜙𝑚1 , . . . , 𝜙𝑚𝑛} such that

𝑁 𝜉
𝑛,𝑆(𝑞) =

2rk(𝑆)∏︁
𝑖=1

𝑁
Π𝑖(𝜉)

𝑎
rk(𝑆)
𝑖

(𝑞) (4.3.10)

where 𝑎rk(𝑆)𝑖 = |Π𝑖| and Π𝑖(𝜉) is a generic element in the sense of Definition

3.1.4 for any 𝑖 ∈ 2rk(𝑆). Plugging 4.3.9 and 4.3.10 into 4.3.8, we obtain

̃︀𝑁 𝜉
𝑛,𝐻(𝑞) =

∑︁
𝐻≤𝑆≤𝜇𝑛

2

(−1)rk(𝑆)−rk(𝐻) 2

(︀
rk(𝑆)−rk(𝐻)

2

)︀ 2rk(𝑆)∏︁
𝑖=1

𝑁
Π𝑖(𝜉)

𝑎
rk(𝑆)
𝑖

(𝑞). (4.3.11)

Define ̃︀𝐸𝜉𝑛,𝐻(𝑞) := ̃︀𝑁 𝜉
𝑛,𝐻(𝑞)

(𝑞 − 1)𝑛
. (4.3.12)
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and

𝐸𝜉𝑛(𝑞) :=
𝑁 𝜉
𝑛(𝑞)

(𝑞 − 1)𝑛
. (4.3.13)

Plugging 4.3.11 into 4.3.13, we obtain

̃︀𝐸𝜉𝑛,𝐻(𝑞) = ∑︁
𝐻≤𝑆≤𝜇𝑛

2

(−1)rk(𝑆)−rk(𝐻) 2

(︀
rk(𝑆)−rk(𝐻)

2

)︀ 2rk(𝑆)∏︁
𝑖=1

𝐸
Π𝑖(𝜉)
rk(𝑆) (𝑞) (4.3.14)

Now, we make this fundamental assumption:

Claim 4.3.3. For any 𝑘 ∈ N such that 𝑘 ≤ 𝑛 and for any possible choice of a

generic element 𝜉, 𝐸𝜉𝑘(𝑞) is a polynomial in 𝑞 with integral coefficients.

Then, we are able to prove the following

Theorem 4.3.4. Assume that Claim 4.3.3 is true. Then for any 𝑍(𝐺) ≤ 𝐻 ≤

𝜇𝑛2, the variety ̃︁ℳ𝜉
𝑛,𝐻/C has polynomial count and its 𝐸-polynomial satisfies

𝐸
(︁̃︁ℳ𝜉

𝑛,𝐻/C; 𝑞
)︁
= ̃︀𝐸𝜉𝑛,𝐻(𝑞). (4.3.15)

Proof. Let us take the spreading out X𝐻 over the algebra 𝑅 defined in 4.3.2 of̃︀𝒰𝜉𝑛,𝐻/C considered in Proposition 4.3.2. For every homomorphism

𝜑 : 𝑅 −→ F𝑞 (4.3.16)

the image 𝜑(𝜁) is a primitive 2𝑚-root of unity in F𝑞, because the identity

2𝑚−1∏︁
𝑖=1

(︀
1− 𝜁𝑖

)︀
= 2𝑚

guarantees that 1 − 𝜁𝑖 is a unit in 𝑅 for 𝑖 = 1, . . . , 2𝑚 − 1, and therefore
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cannot be zero in the image. Moreover, since 3 is invertible in 𝑅, its image

in F𝑞 cannot be zero too. Hence the number of rational points of the scheme

X𝐻,𝜑(F𝑞) obtained from X𝐻 by the extension of scalars in 4.3.16 is given by

|X𝐻,𝜑(F𝑞)| = ̃︀𝑁 𝜉
𝑛,𝐻(𝑞).

Now take an F𝑞-point of the scheme Y𝐻,𝜑 obtained from the spreading

out Y𝐻 of ̃︁ℳ𝜉
𝑛,𝐻/C defined in 4.3.3 by the extension of scalars in 4.3.16. By

[Ka80, Lemma 3.2], the fiber over it in X𝐻,𝜑(F𝑞) is non empty and an orbit of

(𝑇/𝐻)(F𝑞) and one can easily show that (𝑇/𝐻)(F𝑞) acts freely on X𝐻,𝜑(F𝑞).

Consequently

|Y𝐻,𝜑(F𝑞)| =
|X𝐻,𝜑(F𝑞)|
|(𝑇/𝐻)(F𝑞)|

=
̃︀𝑁 𝜉
𝑛,𝐻(𝑞)

(𝑞 − 1)𝑛
= ̃︀𝐸𝜉𝑛,𝐻(𝑞). (4.3.17)

Thus by 4.4.2, the assumption on the validity of Claim 4.3.3 tells us that̃︁ℳ𝜉
𝑛,𝐻/C has polynomial count. Now the theorem follows Theorem 4.2.3.

Remark 4.3.5. Notice that in the second equality in 4.3.17, we used the fact

that |(𝑇/𝐻)(F𝑞)| = (𝑞 − 1)𝑛. This depends on the finiteness of the group 𝐻.

Corollary 4.3.6. If Claim 4.3.3 is true, then the 𝐸-polynomial of ℳ𝜉
𝑛/C

satisfies

𝐸
(︁
ℳ𝜉

𝑛/C; 𝑞
)︁
= 𝐸𝜉𝑛(𝑞). (4.3.18)

Proof. Specializing 4.3.7 at 𝐻 = 𝑍(𝐺), we have

𝑁 𝜉
𝑛(𝑞) =

∑︁
𝑍(𝐺)≤𝑆≤𝜇𝑛

2

̃︀𝑁 𝜉
𝑛,𝑆(𝑞). (4.3.19)
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Thus plugging 4.3.15 into 4.3.1, we obtain

𝐸
(︁
ℳ𝜉

𝑛/C; 𝑞
)︁
=

∑︁
𝑍(𝐺)≤𝑆≤𝜇𝑛

2

̃︀𝑁 𝜉
𝑛,𝑆(𝑞)

(𝑞 − 1)𝑛
4.3.19
=

𝑁 𝜉
𝑛(𝑞)

(𝑞 − 1)𝑛
= 𝐸𝜉𝑛(𝑞)

and we are done.

So we reduce to prove Claim 4.3.3. Since by definition

𝑁 𝜉
𝑛(𝑞) =

⃒⃒⃒⃒
⃒
{︃
(𝐴1, 𝐵1, . . . , 𝐴𝑔, 𝐵𝑔) ∈ Sp(2𝑛,F𝑞)2𝑔 |

𝑔∏︁
𝑖=1

[𝐴𝑖 : 𝐵𝑖] = 𝜉

}︃⃒⃒⃒⃒
⃒

then by Frobenius formula 2.2.5 we have that

𝐸𝜉𝑛(𝑞) =
1

(𝑞 − 1)𝑛
∑︁

𝜒∈Irr(Sp(2𝑛,F𝑞))

(︂
|Sp(2𝑛,F𝑞)|

𝜒(1)

)︂2𝑔−1

𝜒(𝜉) (4.3.20)

4.3.3 The case 𝑛 = 1

In this case we are dealing with parabolic character varieties defined over

Sp(2,C) = SL(2,C). Thus a generic element is of the form

𝜉 =
(︁
𝜙 0
0 𝜙−1

)︁
(4.3.21)

where 𝜙 a primitive 𝑚-th root of unity with 𝑚 > 2. We denote in the same

way its counterpart over finite fields.

We can use the well known character table of SL(2,F𝑞) to compute 𝐸𝜉1(𝑞).

This can be found for instance in [DM91, pag.157]. From there, one can see

that if 𝜒 ∈ Irr(SL(2,F𝑞)) then:

𝜒(𝜉) = 0 unless 𝜒 is a principal series of SL(2,F𝑞).
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Thus we can restrict the range of the summation 4.3.20 to the set ℛ of the

principal series of SL(2,F𝑞). Let us extract the information that we need from

the character table and collect them in the following table:

Table 4.1: Principal series table of SL(2,F𝑞).
classes 𝐼2 𝜉

𝑅𝐺𝑇 (𝜃)

𝜃 ∈ ̂︁F×𝑞
𝜃 ∼ 𝑘, 𝑘 ∈ 𝑄

𝑞 + 1 𝜙𝑘 + 𝜙−𝑘

𝜒±
𝜖

𝑞+1
2 (−1)

𝑞−1
𝑚

1𝐺𝐹 1 1

St𝐺𝐹 𝑞 1

where 𝐺𝐹 denote SL(2,F𝑞) and 𝑄 is as in Proposition 2.2.64:3. Since

⃒⃒
𝐺𝐹
⃒⃒
= 𝑞 (𝑞 − 1) (𝑞 + 1) (4.3.22)

plugging the values of the table 4.1 and 4.3.22 in 4.3.20 for 𝑛 = 1, the character

sum 4.3.20 becomes:

𝐸𝜉1(𝑞) =
1

(𝑞 − 1)

[︃ 𝑞−3
2∑︁

𝑘=1

(︁
𝜙𝑘 + 𝜙−𝑘

)︁ (︀
𝑞2 − 𝑞

)︀2𝑔−1

+ 22𝑔 (−1)
𝑞−1
𝑚
(︀
𝑞2 − 𝑞

)︀2𝑔−1

+
(︀
𝑞2 − 1

)︀2𝑔−1

+
(︀
𝑞3 − 𝑞

)︀2𝑔−1

]︃
(4.3.23)

where different lines match the corresponding rows in the table 4.1. Collecting



CHAPTER 4. 𝐸-POLYNOMIAL OFℳ𝜉
𝑁/C 90

terms of the same degree and simplifying the sums, 4.3.23 reduces to

𝐸𝜉1(𝑞) =
1

(𝑞 − 1)

[︃(︁
(−1)

𝑞−1
𝑚
(︀
22𝑔 − 1

)︀
− 1
)︁ (︀
𝑞2 − 𝑞

)︀2𝑔−1

+
(︀
𝑞2 − 1

)︀2𝑔−1
+
(︀
𝑞3 − 𝑞

)︀2𝑔−1

]︃ (4.3.24)

and finally to the quasi-polynomial:

𝐸𝜉1(𝑞) =
(︁
(−1)

𝑞−1
𝑚
(︀
22𝑔 − 1

)︀
− 1
)︁
𝑞
(︀
𝑞2 − 𝑞

)︀2𝑔−2

+ (𝑞 + 1)
(︀
𝑞2 − 1

)︀2𝑔−2
+
(︀
𝑞2 + 𝑞

)︀ (︀
𝑞3 − 𝑞

)︀2𝑔−2
(4.3.25)

which for 𝑞 ≡
2𝑚

1 becomes:

𝐸𝜉1(𝑞) =
(︀
22𝑔 − 2

)︀
𝑞
(︀
𝑞2 − 𝑞

)︀2𝑔−2
+ (𝑞 + 1)

(︀
𝑞2 − 1

)︀2𝑔−2

+
(︀
𝑞2 + 𝑞

)︀ (︀
𝑞3 − 𝑞

)︀2𝑔−2
.

(4.3.26)

Thus Claim 4.3.3 is proved in this case, so we have that 𝐸𝜉1(𝑞) as in 4.3.26 is

the 𝐸-polynomial ofℳ𝜉
1/C.

Remark 4.3.7. It turns out that the 𝐸-polynomial ofℳ𝜉
1/C does not depend

on the choice of the generic element 𝜉. So we write 𝐸1(𝑞) instead of 𝐸𝜉1(𝑞).

Remark 4.3.8. If merely 𝑞 ≡
𝑚
1, then we only get the quasi-polynomial 4.3.25.

This motivates the requirement 4.3.4.

Remark 4.3.9. We see that the coefficient of the leading term of the 𝐸-polynomial

found in 4.3.26 is attained at the trivial character of SL(2,F𝑞) and it is equal

to 1. So 𝐸
(︁
ℳ𝜉

1/C; 𝑞
)︁
is monic of degree 6𝑔 − 4 and since by Corollary 3.1.19

ℳ𝜉
1/C is equidimensional, the principal coefficient of the 𝐸-polynomial counts

the number of the connected components ofℳ𝜉
1/C by Remark 4.2.4, so the
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character varietyℳ𝜉
1/C is connected.

Remark 4.3.10. It is easy to see that the 𝐸-polynomial 𝐸
(︁
ℳ𝜉

1/C; 𝑞
)︁
= 𝐸1(𝑞)

is palindromic, i.e., it does not change when its coefficients are reversed. Being

palindromic for a polynomial 𝑃 ∈ Z[𝑞] means that 𝑃 (𝑞) = 𝑞deg 𝑃𝑃
(︀
𝑞−1
)︀
. In

our case, the polynomial 𝐸1(𝑞) has degree 6𝑔 − 4, as we have already noticed,

and verifies:
𝐸1

(︀
𝑞−1
)︀
=
(︀
22𝑔 − 2

)︀
𝑞−1

(︀
𝑞−2 − 𝑞−1

)︀2𝑔−2

+
(︀
𝑞−1 + 1

)︀ (︀
𝑞−2 − 1

)︀2𝑔−2

+
(︀
𝑞−2 + 𝑞−1

)︀ (︀
𝑞−3 − 𝑞−1

)︀2𝑔−2
.

(4.3.27)

multiplying both sides of 4.3.27 by 𝑞6𝑔−4

𝑞6𝑔−4𝐸1

(︀
𝑞−1
)︀
=
(︀
22𝑔 − 2

)︀
𝑞
(︀
𝑞3
(︀
𝑞−2 − 𝑞−1

)︀)︀2𝑔−2

+
(︀
𝑞2 + 𝑞

)︀ (︀
𝑞3
(︀
𝑞−2 − 1

)︀)︀2𝑔−2

+ (𝑞 + 1)
(︀
𝑞3
(︀
𝑞−3 − 𝑞−1

)︀)︀2𝑔−2

=
(︀
22𝑔 − 2

)︀
𝑞
(︀
𝑞2 − 𝑞

)︀2𝑔−2

+
(︀
𝑞2 + 𝑞

)︀ (︀
𝑞3 − 𝑞

)︀2𝑔−2

+ (𝑞 + 1)
(︀
𝑞2 − 1

)︀2𝑔−2
.

whose right-hand side is 𝐸1(𝑞).

Remark 4.3.11. The Euler characteristic ofℳ𝜉
1/C is calculated evaluating at

𝑞 = 1 the polynomial 𝐸1(𝑞) = 𝐸
(︁
ℳ𝜉

1/C; 𝑞
)︁
. When 𝑔 > 1, we can isolate in

𝐸1(𝑞) a factor equal to (𝑞 − 1)2𝑔−2, so 𝐸1(1) = 0. When 𝑔 = 1, 𝐸1(𝑞) assumes

the following form:

𝐸𝜉1(𝑞) = 2𝑞 + 𝑞 + 1 + 𝑞2 + 𝑞 = 𝑞2 + 4𝑞 + 1
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so in this case

𝐸𝜉1(1) = 𝑞2 + 4𝑞 + 1
⃒⃒
𝑞=1

= 1 + 4 + 1 = 6.

Remark 4.3.12. The resulting 𝐸-polynomial 𝐸
(︁
ℳ𝜉

1/C; 𝑞
)︁
= 𝐸1(𝑞) agrees with

the one computed in [MM15, Theorem 2] for any generic 𝜉.

4.3.4 The case 𝑛 = 2

In this case we are dealing with parabolic character varieties defined over

Sp(4,C). Thus a generic element is of the form

𝜉 =

(︃ 𝜙𝑚1

𝜙𝑚2

𝜙−𝑚2

𝜙−𝑚1

)︃
(4.3.28)

where 𝜙 is a primitive 𝑚-th root of unity for some sufficiently large natural 𝑚

and 𝑚1 and 𝑚2 satisfy the following conditions

𝜙𝑚1 , 𝜙𝑚2 ̸= −1

𝑚1 ̸= ±𝑚1

𝑚2 ̸= ±𝑚2

𝑚1 ̸= ±𝑚2.

(4.3.29)

Again, we denote in the same way its counterpart in finite fields. We can use

the known character table of Sp(2,F𝑞) computed in [Sr68] to calculate 𝐸𝜉2(𝑞).

From there, one can see as in the previous case that if 𝜒 ∈ Irr(Sp(4,F𝑞)) then:

𝜒(𝜉) = 0 unless 𝜒 is a principal series of Sp(4,F𝑞).
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Thus we can restrict again the range of the summation 4.3.20 to the set ℛ of

the principal series of Sp(4,F𝑞). Extracting the information that we need in the

character table of Sp(4,F𝑞), keeping the same notation in [Sr68], we construct

the following table:



CHAPTER 4. 𝐸-POLYNOMIAL OFℳ𝜉
𝑁/C 94

Table 4.2: Principal series table of Sp(4,F𝑞).

classes 𝐼4 𝜉

𝜒3(𝑘, 𝑙)

𝑘, 𝑙 ∈ 𝑄; 𝑘 � 𝑙
(𝑞 + 1)2

(︀
𝑞2 + 1

)︀
𝛼𝑚1𝑘𝛼𝑚2𝑙 + 𝛼𝑚2𝑘𝛼𝑚1𝑙

𝜒8(𝑘)

𝑘 ∈ 𝑄
(𝑞 + 1)

(︀
𝑞2 + 1

)︀
𝛼𝑚1𝑘𝛼𝑚2𝑘

𝜒9(𝑘)

𝑘 ∈ 𝑄
𝑞 (𝑞 + 1)

(︀
𝑞2 + 1

)︀
𝛼𝑚1𝑘𝛼𝑚2𝑘

𝜉3(𝑘)

𝑘 ∈ 𝑄
(𝑞 + 1)

(︀
𝑞2 + 1

)︀
𝛼𝑚1𝑘 + 𝛼𝑚2𝑘

𝜉′3(𝑘)

𝑘 ∈ 𝑄
𝑞 (𝑞 + 1)

(︀
𝑞2 + 1

)︀
𝛼𝑚1𝑘 + 𝛼𝑚2𝑘

𝜉41(𝑘), 𝜉
′
41(𝑘)

𝑘 ∈ 𝑄
1
2

(︀
𝑞2 + 1

)︀
(𝑞 + 1)2 (−1)𝑡1𝛼𝑚1𝑘 + (−1)𝑡2𝛼𝑚2𝑘

Φ5,Φ6
1
2

(︀
𝑞2 + 1

)︀
(𝑞 + 1) (−1)𝑡1 + (−1)𝑡2

Φ7,Φ8
1
2𝑞
(︀
𝑞2 + 1

)︀
(𝑞 + 1) (−1)𝑡1 + (−1)𝑡2

Φ9 𝑞
(︀
𝑞2 + 1

)︀
2 (−1)𝑡1+𝑡2

𝜃1, 𝜃2
1
2𝑞

2
(︀
𝑞2 + 1

)︀
(−1)𝑡1+𝑡2

𝜃3, 𝜃4
1
2

(︀
𝑞2 + 1

)︀
(−1)𝑡1+𝑡2

𝜃9
1
2𝑞 (𝑞 + 1)2 2

𝜃11, 𝜃12
1
2𝑞
(︀
𝑞2 + 1

)︀
1

St𝐺𝐹 𝑞4 1

1𝐺𝐹 1 1

where 𝑄 is again as in Proposition 2.2.64:3, 𝐺𝐹 = Sp(4,F𝑞), 𝑡𝑖 := 𝑚𝑖
𝑞−1
𝑚 for



CHAPTER 4. 𝐸-POLYNOMIAL OFℳ𝜉
𝑁/C 95

𝑖 = 1, 2, 𝛼𝑠𝑘 := 𝜙𝑠𝑘 + 𝜙−𝑠𝑘 for 𝑘 ∈ 𝑄 and 𝑠 ∈ {𝑚1,𝑚2}. Since

⃒⃒
𝐺𝐹
⃒⃒
= 𝑞4

(︀
𝑞2 + 1

)︀
(𝑞 − 1)2 (𝑞 + 1)2 (4.3.30)

plugging the values of the table 4.2 and 4.3.30 in 4.3.20 for 𝑛 = 2, the character
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sum 4.3.20 becomes:

𝐸𝜉2(𝑞) =
1

(𝑞 − 1)2

[︃ 𝑞−3
2∑︁

𝑘,𝑙=1
𝑘 ̸=𝑙

𝛼𝑚1𝑘𝛼𝑚2𝑙

(︁
𝑞4 (𝑞 − 1)2

)︁2𝑔−1

+

𝑞−3
2∑︁

𝑘=1

𝛼𝑚1𝑘𝛼𝑚2𝑘

(︁
𝑞4 (𝑞 + 1) (𝑞 − 1)2

)︁2𝑔−1

+

𝑞−3
2∑︁

𝑘=1

𝛼𝑚1𝑘𝛼𝑚2𝑘

(︁
𝑞3 (𝑞 + 1) (𝑞 − 1)2

)︁2𝑔−1

+

𝑞−3
2∑︁

𝑘=1

(𝛼𝑚1𝑘 + 𝛼𝑚2𝑘)
(︁
𝑞4 (𝑞 + 1) (𝑞 − 1)2

)︁2𝑔−1

+

𝑞−3
2∑︁

𝑘=1

(𝛼𝑚1𝑘 + 𝛼𝑚2𝑘)
(︁
𝑞3 (𝑞 + 1) (𝑞 − 1)2

)︁2𝑔−1

+

𝑞−3
2∑︁

𝑘=1

22𝑔
(︀
(−1)𝑡1 𝛼𝑚1𝑘 + (−1)𝑡2 𝛼𝑚2𝑘

)︀ (︁
𝑞4 (𝑞 − 1)2

)︁2𝑔−1

+ 22𝑔
(︀
(−1)𝑡1 + (−1)𝑡2

)︀ (︁
𝑞4 (𝑞 + 1) (𝑞 − 1)2

)︁2𝑔−1

+ 22𝑔
(︀
(−1)𝑡1 + (−1)𝑡2

)︀ (︁
𝑞3 (𝑞 + 1) (𝑞 − 1)2

)︁2𝑔−1

+ 2 (−1)𝑡1+𝑡2
(︁
𝑞3 (𝑞 + 1)2 (𝑞 − 1)2

)︁2𝑔−1

+ 22𝑔 (−1)𝑡1+𝑡2
(︁
𝑞2 (𝑞 + 1)2 (𝑞 − 1)2

)︁2𝑔−1

+ 22𝑔 (−1)𝑡1+𝑡2
(︁
𝑞4 (𝑞 + 1)2 (𝑞 − 1)2

)︁2𝑔−1

+ 22𝑔
(︁
𝑞3
(︀
𝑞2 + 1

)︀
(𝑞 − 1)2

)︁2𝑔−1

+ 22𝑔
(︁
𝑞3 (𝑞 + 1)2 (𝑞 − 1)2

)︁2𝑔−1

+
(︁(︀
𝑞2 + 1

)︀
(𝑞 + 1)2 (𝑞 − 1)2

)︁2𝑔−1

+
(︁
𝑞4
(︀
𝑞2 + 1

)︀
(𝑞 − 1)2 (𝑞 + 1)2

)︁2𝑔−1
]︃

(4.3.31)
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where different lines match the corresponding rows in the table 4.2. Define

𝑎𝑚 := 1 + (−1)
𝑞−1
𝑚 . Collecting terms of the same degree and simplifying the

sums, 4.3.31 reduces to

𝐸𝜉2(𝑞) =
1

(𝑞 − 1)2

[︃
𝑎𝑚
(︀
4− 22𝑔

(︀
(−1)𝑡1 + (−1)𝑡1

)︀)︀ (︁
𝑞4 (𝑞 − 1)2

)︁2𝑔−1

+
(︀
22𝑔
(︀
(−1)𝑡1 + (−1)𝑡2

)︀
− 4𝑎𝑚

)︀ (︁
𝑞4 (𝑞 + 1) (𝑞 − 1)2

)︁2𝑔−1

+
(︀
22𝑔
(︀
(−1)𝑡1 + (−1)𝑡2

)︀
− 4𝑎𝑚

)︀ (︁
𝑞3 (𝑞 + 1) (𝑞 − 1)2

)︁2𝑔−1

+
(︀
22𝑔 + 2(−1)𝑡1+𝑡2

)︀ (︁
𝑞3 (𝑞 + 1)2 (𝑞 − 1)2

)︁2𝑔−1

+ 22𝑔(−1)𝑡1+𝑡2
(︁
𝑞2 (𝑞 + 1)2 (𝑞 − 1)2

)︁2𝑔−1

+ 22𝑔(−1)𝑡1+𝑡2
(︁
𝑞4 (𝑞 + 1)2 (𝑞 − 1)2

)︁2𝑔−1

+ 22𝑔
(︁
𝑞3
(︀
𝑞2 + 1

)︀
(𝑞 − 1)2

)︁2𝑔−1

+
(︁(︀
𝑞2 + 1

)︀
(𝑞 + 1)2 (𝑞 − 1)2

)︁2𝑔−1

+
(︁
𝑞4
(︀
𝑞2 + 1

)︀
(𝑞 − 1)2 (𝑞 + 1)2

)︁2𝑔−1
]︃

(4.3.32)
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and finally to the quasi-polynomial:

𝐸𝜉2(𝑞) =

[︃
𝑎𝑚
(︀
4− 22𝑔

(︀
(−1)𝑡1 + (−1)𝑡2

)︀)︀
𝑞8𝑔−4

+
(︀
22𝑔
(︀
(−1)𝑡1 + (−1)𝑡2

)︀
− 4𝑎𝑚

)︀ (︀
𝑞4 (𝑞 + 1)

)︀2𝑔−1

+
(︀
22𝑔
(︀
(−1)𝑡1 + (−1)𝑡2

)︀
− 4𝑎𝑚

)︀ (︀
𝑞3 (𝑞 + 1)

)︀2𝑔−1

+
(︀
22𝑔 + 2(−1)𝑡1+𝑡2

)︀ (︁
𝑞3 (𝑞 + 1)2

)︁2𝑔−1

+ 22𝑔(−1)𝑡1+𝑡2
(︁
𝑞2 (𝑞 + 1)2

)︁2𝑔−1

+ 22𝑔(−1)𝑡1+𝑡2
(︁
𝑞4 (𝑞 + 1)2

)︁2𝑔−1

+ 22𝑔
(︀
𝑞3
(︀
𝑞2 + 1

)︀)︀2𝑔−1

+
(︁(︀
𝑞2 + 1

)︀
(𝑞 + 1)2

)︁2𝑔−1

+
(︁
𝑞4
(︀
𝑞2 + 1

)︀
(𝑞 + 1)2

)︁2𝑔−1
]︃
(𝑞 − 1)4𝑔−4

(4.3.33)
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which for 𝑞 ≡
2𝑚

1 becomes:

𝐸𝜉2(𝑞) =

[︃ (︀
8− 22𝑔+2

)︀ (︀
𝑞4
)︀
2𝑔 − 1

+
(︀
22𝑔+1 − 8

)︀ (︀
𝑞4 (𝑞 + 1)

)︀2𝑔−1

+
(︀
22𝑔+1 − 8

)︀ (︀
𝑞3 (𝑞 + 1)

)︀2𝑔−1

+
(︀
22𝑔 + 2

)︀ (︁
𝑞3 (𝑞 + 1)2

)︁2𝑔−1

+ 22𝑔
(︁
𝑞2 (𝑞 + 1)2

)︁2𝑔−1

+ 22𝑔
(︁
𝑞4 (𝑞 + 1)2

)︁2𝑔−1

+ 22𝑔
(︀
𝑞3
(︀
𝑞2 + 1

)︀)︀2𝑔−1

+
(︁(︀
𝑞2 + 1

)︀
(𝑞 + 1)2

)︁2𝑔−1

+
(︁
𝑞4
(︀
𝑞2 + 1

)︀
(𝑞 + 1)2

)︁2𝑔−1
]︃
(𝑞 − 1)4𝑔−4

(4.3.34)

Thus Claim 4.3.3 is proved in this case too, also thanks to what we proved

for the case 𝑛 = 1, so we have that 𝐸𝜉2(𝑞) as in 4.3.34 is the 𝐸-polynomial of

ℳ𝜉
2/C.

Remark 4.3.13. As in the case 𝑛 = 1, we have that

1. 𝐸-polynomial of ℳ𝜉
2/C does not depend on the choice of the generic

element 𝜉. So we write 𝐸2(𝑞) instead of 𝐸𝜉2(𝑞).

2. If merely 𝑞 ≡
𝑚

1, then we only get the quasi-polynomial 4.3.33.

3. 𝐸
(︁
ℳ𝜉

2/C; 𝑞
)︁
is monic of degree 10 (2𝑔 − 1)− 2 and since by Corollary

3.1.19ℳ𝜉
2/C is equidimensional, the character varietyℳ𝜉

2/C is connected.

Remark 4.3.14. The 𝐸-polynomial 𝐸
(︁
ℳ𝜉

2/C; 𝑞
)︁
= 𝐸2(𝑞) is palindromic. 𝐸2(𝑞)
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has degree 10 (2𝑔 − 1)− 2 = 20𝑔 − 12, as we have already noticed, and verifies:

𝐸2

(︀
𝑞−1
)︀
=

[︃ (︀
8− 22𝑔+2

)︀ (︀
𝑞−4
)︀2𝑔−1

+
(︀
22𝑔+1 − 8

)︀ (︀
𝑞−4

(︀
𝑞−1 + 1

)︀)︀2𝑔−1

+
(︀
22𝑔+1 − 8

)︀ (︀
𝑞−3

(︀
𝑞−1 + 1

)︀)︀2𝑔−1

+
(︀
22𝑔 + 2

)︀ (︁
𝑞−3

(︀
𝑞−1 + 1

)︀2)︁2𝑔−1

+ 22𝑔
(︁
𝑞−2

(︀
𝑞−1 + 1

)︀2)︁2𝑔−1

+ 22𝑔
(︁
𝑞4
(︀
𝑞−1 + 1

)︀2)︁2𝑔−1

+ 22𝑔
(︀
𝑞−3

(︀
𝑞−2 + 1

)︀)︀2𝑔−1

+
(︁(︀
𝑞−2 + 1

)︀ (︀
𝑞−1 + 1

)︀2)︁2𝑔−1

+
(︁
𝑞−4

(︀
𝑞−2 + 1

)︀ (︀
𝑞−1 + 1

)︀2)︁2𝑔−1
]︃ (︀
𝑞−1 − 1

)︀4𝑔−4

(4.3.35)
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multiplying both sides of 4.3.27 by 𝑞10(2𝑔−1)−2

𝑞20𝑔−12𝐸2

(︀
𝑞−1
)︀
=

[︃ (︀
8− 22𝑔+2

)︀ (︀
𝑞8𝑞−4

)︀2𝑔−1

+
(︀
22𝑔+1 − 8

)︀ (︀
𝑞8𝑞−4

(︀
𝑞−1 + 1

)︀)︀2𝑔−1

+
(︀
22𝑔+1 − 8

)︀ (︀
𝑞8𝑞−3

(︀
𝑞−1 + 1

)︀)︀2𝑔−1

+
(︀
22𝑔 + 2

)︀ (︁
𝑞8𝑞−3

(︀
𝑞−1 + 1

)︀2)︁2𝑔−1

+ 22𝑔
(︁
𝑞8𝑞−2

(︀
𝑞−1 + 1

)︀2)︁2𝑔−1

+ 22𝑔
(︁
𝑞8𝑞4

(︀
𝑞−1 + 1

)︀2)︁2𝑔−1

+ 22𝑔
(︀
𝑞8𝑞−3

(︀
𝑞−2 + 1

)︀)︀2𝑔−1

+
(︁
𝑞8
(︀
𝑞−2 + 1

)︀ (︀
𝑞−1 + 1

)︀2)︁2𝑔−1

+
(︁
𝑞−4

(︀
𝑞−2 + 1

)︀ (︀
𝑞−1 + 1

)︀2)︁2𝑔−1
]︃

·
(︀(︀
𝑞−1 − 1

)︀
𝑞
)︀4𝑔−4

=

[︃ (︀
8− 22𝑔+2

)︀ (︀
𝑞4
)︀2𝑔−1

+
(︀
22𝑔+1 − 8

)︀ (︀
𝑞3 (𝑞 + 1)

)︀2𝑔−1

+
(︀
22𝑔+1 − 8

)︀ (︀
𝑞4 (𝑞 + 1)

)︀2𝑔−1

+
(︀
22𝑔 + 2

)︀ (︁
𝑞3 (𝑞 + 1)2

)︁2𝑔−1

+ 22𝑔
(︁
𝑞4 (𝑞 + 1)2

)︁2𝑔−1

+ 22𝑔
(︁
𝑞2 (𝑞 + 1)2

)︁2𝑔−1

+ 22𝑔
(︀
𝑞3
(︀
𝑞2 + 1

)︀)︀2𝑔−1

+
(︁
𝑞4
(︀
𝑞2 + 1

)︀
(𝑞 + 1)2

)︁2𝑔−1

+
(︁(︀
𝑞2 + 1

)︀
(𝑞 + 1)2

)︁2𝑔−1
]︃
(𝑞 − 1)4𝑔−4

(4.3.36)
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whose right-hand side is 𝐸2(𝑞).

Remark 4.3.15. The Euler characteristic ofℳ𝜉
2/C is equal to 𝐸2(1). In formula

4.3.34, we put in evidence a factor equal to (𝑞 − 1)4𝑔−4, so when 𝑔 > 1,

𝐸2(1) = 0. When 𝑔 = 1, 𝐸2(𝑞) assumes the following form:

𝐸2(𝑞) =− 8𝑞4 + 6𝑞3 (𝑞 + 1)2 + 4𝑞2 (𝑞 + 1)2 + 4𝑞4 (𝑞 + 1)2

+ 4𝑞3
(︀
𝑞2 + 1

)︀
+
(︀
𝑞2 + 1

)︀
(𝑞 + 1)2 + 𝑞4

(︀
𝑞2 + 1

)︀
(𝑞 + 1)2

so in this case

𝐸2(1) = − 8𝑞4 + 6𝑞3 (𝑞 + 1)2 + 4𝑞2 (𝑞 + 1)2 + 4𝑞4 (𝑞 + 1)2
⃒⃒⃒⃒
𝑞=1

+ 4𝑞3
(︀
𝑞2 + 1

)︀
+
(︀
𝑞2 + 1

)︀
(𝑞 + 1)2 + 𝑞4

(︀
𝑞2 + 1

)︀
(𝑞 + 1)2

⃒⃒⃒⃒
𝑞=1

= −8 + 24 + 16 + 16 + 8 + 8 + 8 = 72.

4.3.5 The general case

The computation of the formula 4.3.20 requires to evaluate the irreducible

characters of 𝐺𝐹 = Sp(2𝑛,F𝑞) at the generic element 𝜉. In order to do this, we

recall the following

Proposition 4.3.16. ([DL76, (7.6.2)]). Let 𝑠 ∈ 𝐺𝐹 be a regular diagonal

element, 𝜒 ∈ Irr
(︀
𝐺𝐹
)︀
, 𝑇𝐹 the maximal torus of diagonal symplectic matrices.

Then

𝜒(𝑠) =
∑︁
𝜃∈̂︁𝑇𝐹

𝜃
(︀
𝑠−1
)︀⟨︀
𝑅𝐺𝑇 (𝜃) , 𝜒

⟩︀
𝐺𝐹 . (4.3.37)

Thus since 𝜉 is a regular semisimple matrix, the range of the summation in

4.3.20 restricts to the set of the principal series ℛ of 𝐺𝐹 and by Proposition

2.2.84, we can collect principal series according to the type 𝜏 , so combining
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with 2.2.64, we obtain that

𝐸𝜉𝑛(𝑞) =
1

(𝑞 − 1)𝑛
∑︁
𝜏

(𝐻𝜏 (𝑞))
2𝑔−1𝐶𝜏

where

𝐶𝜏 :=
∑︁

𝜏(𝜒)=𝜏

𝜒𝜏 (𝜉).

Our next task is to compute 𝐶𝜏 ; we will find that it is an integer constant

for any type 𝜏 . In particular, since the number of all possible types does not

depend on 𝑞, by Remark 2.2.91 this will show that 𝐸𝜉𝑛(𝑞) ∈ Z [𝑞], proving Claim

4.3.3.

We refer to the notations used in 2.2.5. If 𝜏 = (𝜆, 𝛼1, 𝛼𝜖, 𝛽), with 𝑐 = |𝜆|,

𝑙 := 𝑙 (𝜆), and 𝛽 ∈ Irr(𝑆𝜆,𝛼1,𝛼𝜖), then combining Remark 2.2.63 and Proposition

2.2.78 in formula 4.3.37 we have

𝜒(𝜉) =
1

|𝑆𝜆,𝛼1,𝛼𝜖 |
∑︁

𝑤∈𝑊𝐵𝑛

𝜃𝑤
(︀
𝜉−1
)︀
𝛽(1)

where 𝜃 ∈ ̂︁𝑇𝐹 is of the form 2.2.46. Define, for 𝑖 = 1, . . . , 𝑛 and 𝑘 ∈ 𝑄,

𝛾𝑘𝑚𝑖
:= 𝜙𝑘𝑚𝑖 + 𝜙−𝑘𝑚𝑖 .

Then, after some little algebra, we obtain the following expression for 𝐶𝜏 :

𝐶𝜏 =
𝑛!𝛽(1)∏︀

𝑖
𝑚𝑖(𝜆)!

𝑙∏︀
𝑖=1

𝜆𝑖!𝛼1!𝛼𝜀!

∑︁
𝑘1,...,𝑘𝑙∈𝑄
𝑘𝑠 ̸=𝑘𝑡
𝑠 ̸=𝑡

⎛⎝ 𝑙∏︁
𝑗=1

∏︁
𝑠∈𝐼𝑗

𝛾𝑘𝑗𝑚𝑠

⎞⎠ (4.3.38)
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where 𝜋 :=
𝑙∐︀

𝑗=1
𝐼𝑗 is the partition of [𝑐] such that

𝐼𝑗 =

{︃
𝑗−1∑︁
𝑖=1

𝜆𝑖 + 1, . . . ,

𝑗∑︁
𝑖=1

𝜆𝑖

}︃

for any 𝑗 = 1, . . . , 𝑙. If

𝜎 :=

𝑙(𝜎)∐︁
𝑗=1

𝐼 ′𝑗 ∈ Π𝑐

let us consider the sets Σ𝜎 and Σ′
𝜎 as in 2.1.12, replacing [𝑥] with 𝑄, and define

Ψ(𝜎) :=
∑︁
ℎ∈Σ𝜎

⎛⎝𝑙(𝜎)∏︁
𝑗=1

∏︁
𝑠∈𝐼′𝑗

𝛾ℎ(𝐼′𝑗)𝑚𝑠

⎞⎠ (4.3.39)

Φ(𝜎) :=
∑︁
ℎ∈Σ′

𝜎

⎛⎝𝑙(𝜎)∏︁
𝑗=1

∏︁
𝑠∈𝐼′𝑗

𝛾ℎ(𝐼′𝑗)𝑚𝑠

⎞⎠ (4.3.40)

It is evident that

𝐶𝜏 =
𝑛!𝛽(1)∏︀

𝑖
𝑚𝑖(𝜆)!

𝑙∏︀
𝑖=1

𝜆𝑖!𝛼1!𝛼𝜀!

Φ(𝜋) (4.3.41)

and that Ψ(𝜋) =
∑︀
𝜋⪯𝜎

Φ(𝜎). By Möbius inversion formula 2.1.9 applied on the

poset of set-partitions of [𝑐], we have

Φ(𝜋) =
∑︁
𝜋⪯𝜎

𝜇(𝜋, 𝜎)Ψ(𝜎). (4.3.42)

Interchanging sum and product in 4.3.39, we get

Ψ(𝜎) =

𝑙(𝜎)∏︁
𝑗=1

Δ𝑗
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with

Δ𝑗 :=
∑︁
𝑘∈𝑄

⎛⎝∏︁
𝑠∈𝐼′𝑗

𝛾𝑘𝑚𝑠

⎞⎠.
Since 𝜙𝑚1 , . . . , 𝜙𝑚𝑛 satisfy 3.1.1, together with Remark 3.1.2 we deduce that

∏︁
𝑠∈𝐼′𝑗

𝛾𝑘𝑚𝑠 =
2
𝜆′𝑗∑︁
𝑖=1

𝜙𝑘𝑖 (4.3.43)

where 𝜆′𝑗 =
⃒⃒⃒
𝐼 ′𝑗

⃒⃒⃒
and 𝜙𝑖’s are primitive 𝑘𝑖-th roots of unity with 𝑘𝑖  1, 𝑘𝑖|𝑚.

Now, condition 4.3.4 implies that

|𝑄| = 𝑞 − 3

2
≡
𝑚
−1

so by 4.3.43, Δ𝑗 = −2𝜆
′
𝑗 and then

Ψ(𝜎) = (−1)𝑙(𝜎) 2𝑐. (4.3.44)

Plugging 4.3.44 into 4.3.42 and using 2.1.14, we get

Φ(𝜋) = 2𝑐 (−1)𝑙 𝑙!. (4.3.45)

Therefore, plugging 4.3.45 into 4.3.41, we finally get

𝐶𝜏 =
𝑛!𝛽(1)2𝑐 (−1)𝑙 𝑙!∏︀

𝑖
𝑚𝑖(𝜆)!

𝑙∏︀
𝑖=1

𝜆𝑖!𝛼1!𝛼𝜀!

=
(−1)𝑙 𝑙! [𝑊𝐵𝑛 : 𝑆𝜆,𝛼1,𝛼𝜖 ]𝛽(1)∏︀

𝑖
𝑚𝑖(𝜆)!

(4.3.46)

that is an integer number.

Remark 4.3.17. It turns out that the value of the coefficient 𝐶𝜏 does not depend
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on the choice of the generic element 𝜉 for any type 𝜏 , hence 𝐸𝜉𝑛(𝑞) does not

depend on the generic 𝜉 too, so we can write 𝐸𝑛(𝑞).

Remark 4.3.18. From the formula 4.3.46, it is evident that 𝐶𝜏 = 𝐶𝜏 ′ for any

possible type 𝜏 .

To summarize, we have proved Claim 4.3.3 and by Corollary 4.3.6 we get

Theorem 4.3.19. The 𝐸-polynomial of ℳ𝜉
𝑛/C satisfies

𝐸
(︁
ℳ𝜉

𝑛/C; 𝑞
)︁
= 𝐸𝑛(𝑞) =

1

(𝑞 − 1)𝑛
∑︁
𝜏

(𝐻𝜏 (𝑞))
2𝑔−1𝐶𝜏 . (4.3.47)

Example 4.3.20. Let us compute again the 𝐸-polynomial ofℳ𝜉
1/C using the

formula 4.3.47. In this case, the possible types are the following:

𝜏1 = ((0) , 1, 0, 1𝜇2) , 𝜏2 = ((0) 1, 0, 𝜀) ;

𝜏3 = ((0) , 0, 1, 𝜀) , 𝜏4 = ((0) , 0, 1, 1𝜇2) ;

𝜏5 = ((1) , 0, 0, I)

where 𝜀 is the sign character of 𝜇2 and I is the trivial character of the trivial

group. Using formula 4.3.46 we get

𝐶𝜏1 = 𝐶𝜏2 =
[︀
𝑊𝐵1 : 𝑆(0),0,1

]︀
= 1;

𝐶𝜏3 = 𝐶𝜏4 =
[︀
𝑊𝐵1 : 𝑆(0),0,1

]︀
= 1;

𝐶𝜏5 = −
[︀
𝑊𝐵1 : 𝑆(1),0,0

]︀
= −2.

(4.3.48)

On the other hand, let us compute the degrees of the characters of the same

type 𝜏 . We refer to the same notation of subsection 2.2.5.

If 𝜏 = 𝜏1, 𝜏2, 𝑊𝑆(0),0,1
is trivial, so restricting 1𝜇2 and 𝜀 to 𝑊𝑆(0),0,1

we
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obtain I, hence using formula 2.2.61, we have

𝜒𝜏1(1) = 𝜒𝜏2(1) =
𝑃𝐵1(𝑞)

2
=
𝑞 + 1

2
. (4.3.49)

If 𝜏 = 𝜏3, 𝜏4, we have to use formula 2.2.60 to compute 𝜒𝜏3(1) and 𝜒𝜏4(1).

From there, it turns out that

𝜒𝜏3(1) = 𝑑𝜀(𝑞), 𝜒𝜏4(1) = 𝑑1𝜇2
(𝑞).

By the correspondence 2.1.8, we see that 𝜀 ∼ ({1} , {1, 0}) and 1𝜇2 ∼ (∅, {1}),

so using formula 2.2.36 we get

𝑑𝜀(𝑞) =
𝑞 (𝑞 − 1) (𝑞 + 1) (𝑞 − 1) 2𝑞 (𝑞 + 1)

2𝑞 (𝑞 − 1) (𝑞 + 1) (𝑞 − 1) (𝑞 + 1)
= 𝑞;

𝑑1𝜇2
(𝑞) =

(𝑞 − 1) (𝑞 + 1)

(𝑞 − 1) (𝑞 + 1)
= 1

(4.3.50)

If 𝜏 = 𝜏5, there is just one irreducible character of type 𝜏5 and its degree is

given by

𝜒𝜏5(1) = 𝑞 + 1. (4.3.51)

Now, plugging 4.3.49, 4.3.50 and 4.3.51 into 2.2.64 for 𝑛 = 1 we get:

𝐻𝜏1(𝑞) = 𝐻𝜏2(𝑞) =
|SL(2,F𝑞)|

𝑞+1
2

= 2𝑞 (𝑞 − 1) ;

𝐻𝜏3(𝑞) =
|SL(2,F𝑞)|

𝑞
= (𝑞 − 1) (𝑞 + 1) ,

𝐻𝜏4(𝑞) =
|SL(2,F𝑞)|

1
= 𝑞 (𝑞 − 1) (𝑞 + 1) ;

𝐻𝜏5(𝑞) =
|SL(2,F𝑞)|
𝑞 + 1

= 𝑞 (𝑞 − 1) .

(4.3.52)
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So finally, plugging 4.3.52 and 4.3.48 into 4.3.47, we obtain

𝐸
(︁
ℳ𝜉

1/C; 𝑞
)︁
=

1

(𝑞 − 1)

[︃
(2𝑞 (𝑞 − 1))2𝑔−1 + (2𝑞 (𝑞 − 1))2𝑔−1

((𝑞 + 1) (𝑞 − 1))2𝑔−1 + (𝑞 (𝑞 − 1) (𝑞 + 1))2𝑔−1

− 2 (𝑞 (𝑞 − 1))2𝑔−1

]︃

=
(︀
22𝑔 − 2

)︀
𝑞
(︀
𝑞2 − 𝑞

)︀2𝑔−2
+ (𝑞 + 1)

(︀
𝑞2 − 1

)︀2𝑔−2

+
(︀
𝑞2 + 𝑞

)︀ (︀
𝑞3 − 𝑞

)︀2𝑔−2

which recovers formula 4.3.26, confirming the validity of Theorem 4.3.19.

4.4 Topological properties of ℳ𝜉
𝑛/C

In this final section, we deduce some important topological information on

ℳ𝜉
𝑛/C encoded in its 𝐸-polynomial 𝐸

(︁
ℳ𝜉

𝑛/C; 𝑞
)︁
. According to Remark 4.2.4,

we have that

Corollary 4.4.1. The 𝐸-polynomial of ℳ𝜉
𝑛/C is palindromic and monic of

degree 𝑑𝑛 = (2𝑔 − 1)𝑛 (2𝑛+ 1)− 𝑛. In particular, ℳ𝜉
𝑛/C is connected.

Proof. By 4.3.47, it is sufficient to prove that 𝐸𝑛(𝑞) is palindromic and monic.

First of all, the degree of 𝐸𝑛(𝑞) is equal to 𝑑𝑛 = (2𝑔 − 1)𝑛 (2𝑛+ 1) − 𝑛 for

Remark 4.1.5 and Corollary 3.1.19. Next, we have to prove that

𝑞𝑑𝑛𝐸𝑛
(︀
𝑞−1
)︀
= 𝐸𝑛(𝑞).
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The polynomial 𝐸𝑛(𝑞) verifies:

𝐸𝑛
(︀
𝑞−1
)︀
=

1

(𝑞−1 − 1)𝑛
∑︁
𝜏

(︀
𝐻𝜏

(︀
𝑞−1
)︀)︀2𝑔−1

𝐶𝜏

2.2.66
=

1

(𝑞−1 − 1)𝑛
∑︁
𝜏

(︂
(−1)𝑛

𝑞𝑛(2𝑛+1)
𝐻𝜏 ′(𝑞)

)︂2𝑔−1

𝐶𝜏

=
𝑞𝑛

(𝑞 − 1)𝑛
1

𝑞(2𝑔−1)𝑛(2𝑛+1)

∑︁
𝜏

(𝐻𝜏 ′(𝑞))
2𝑔−1𝐶𝜏

Rem. 4.3.18
=

𝑞𝑛

(𝑞 − 1)𝑛
1

𝑞(2𝑔−1)𝑛(2𝑛+1)

∑︁
𝜏

(𝐻𝜏 ′(𝑞))
2𝑔−1𝐶𝜏 ′

(4.4.1)

multiplying both sides of 4.4.1 by 𝑞(2𝑔−1)𝑛(2𝑛+1)−𝑛

𝑞(2𝑔−1)𝑛(2𝑛+1)−𝑛𝐸𝑛
(︀
𝑞−1
)︀
=

𝑞(2𝑔−1)𝑛(2𝑛+1)

𝑞𝑛
𝑞𝑛

𝑞(2𝑔−1)𝑛(2𝑛+1)

1

(𝑞 − 1)𝑛∑︁
𝜏

(𝐻𝜏 ′(𝑞))
2𝑔−1𝐶𝜏 ′

=
1

(𝑞 − 1)𝑛
∑︁
𝜏

(𝐻𝜏 ′(𝑞))
2𝑔−1𝐶𝜏 ′

whose right-hand side is 𝐸𝑛(𝑞).

Finally, Corollary 3.1.19 says that ℳ𝜉
𝑛 is equidimensional. Thus, by Re-

mark 4.2.4, the leading coefficient of 𝐸
(︁
ℳ𝜉

𝑛/C; 𝑞
)︁
is the number of connected

components ofℳ𝜉
𝑛. By 4.3.47, the top degree term in 𝐸𝑛(𝑞) corresponds to the

biggest 𝐻𝜏 (𝑞), that is attained by the trivial character 1𝐺𝐹 because of 2.2.64

and Remark 2.2.87. Thus, the leading coefficient of 𝐸𝑛 (𝑞) is equal to 𝐶(0̂,𝑛,0,𝛽)

with 𝛽 ∈ Irr(𝑊𝐵𝑛). Now, using 2.2.42, we get

𝛽(1)
2.2.51
=
⟨︀
1𝐺𝐹 , 𝑅𝐺𝑇 (1𝑇𝐹 )

⟩︀
𝐺𝐹

2.2.3
= ⟨1𝐵𝐹 , 1𝐵𝐹 ⟩𝐵𝐹 = 1

so 𝐶(0̂,𝑛,0,𝛽) = 1 by 4.3.46 and we are done.
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Corollary 4.4.2. The Euler characteristic 𝜒
(︁
ℳ𝜉

𝑛/C
)︁

of ℳ𝜉
𝑛/C vanishes for

𝑔 > 1. For 𝑔 = 1, we have

∑︁
𝑛≥0

𝜒
(︁
ℳ𝜉

𝑛/C
)︁

|𝑊𝐵𝑛 |
𝑇𝑛 =

∏︁
𝑘≥1

1

(1− 𝑇 𝑘)3
= 1 + 3𝑇 + 9𝑇 2 + · · · .

Proof. By 4.3.47 and Remark 4.2.4, the Euler characteristic ofℳ𝜉
𝑛/C equals

𝐸𝑛(1) =
∑︁
𝜏

(𝐻𝜏 (𝑞))
2𝑔−1

(𝑞 − 1)𝑛

⃒⃒⃒⃒
⃒
𝑞=1

𝐶𝜏 . (4.4.2)

it follows from 2.2.65, 2.2.64 and Remark 2.2.91 that (𝑞 − 1)𝑛(2𝑔−2) divides
(𝐻𝜏 (𝑞))

2𝑔−1

(𝑞−1)𝑛
, so 𝐸𝑛(1) = 0 when 𝑔 > 1, and this proves the first assertion.

When 𝑔 = 1, plugging 2.2.65 in 2.2.64 and using 2.2.57 and Remark 2.2.54:2,

we get
𝐻𝜏 (𝑞)

(𝑞 − 1)𝑛

⃒⃒⃒⃒
𝑞=1

=
|𝑊𝐵𝑛 |

[𝑊𝐵𝑛 : 𝑆𝜆,𝛼1,𝛼𝜖 ]𝛽(1)
(4.4.3)

if 𝜏 = (𝜆, 𝛼1, 𝛼𝜖, 𝛽) where 𝜆 ⊢ 𝑐, 𝑐+ 𝛼1 + 𝛼𝜖 = 𝑛 and 𝛽 ∈ Irr(𝑆𝜆,𝛼1,𝛼𝜖). Thus

plugging 4.4.3 and 4.3.46 in 4.4.2 for 𝑔 = 1 and summing over 𝛽, we have

𝐸𝑛(1) = |𝑊𝐵𝑛 |
∑︁

𝜆,𝛼1,𝛼𝜖

(−1)𝑙(𝜆) 𝑙(𝜆)!∏︀
𝑖
𝑚𝑖(𝜆)!

|Irr(𝑆𝜆,𝛼1,𝛼𝜖)|. (4.4.4)

Since 𝑆𝜆,𝛼1,𝛼𝜖 =

(︃
𝑙(𝜆)∏︀
𝑖=1

𝑊𝐴𝜆𝑖−1

)︃
×𝑊𝐵𝛼1

×𝑊𝐵𝛼𝜖
, it follows that

Irr (𝑆𝜆,𝛼1,𝛼𝜖) =

𝑙(𝜆)∏︁
𝑖=1

𝑝(𝜆𝑖)
⃒⃒
Irr
(︀
𝑊𝐵𝛼1

)︀⃒⃒ ⃒⃒
Irr
(︀
𝑊𝐵𝛼𝜖

)︀⃒⃒
where 𝑝(𝜆𝑖) is the number of partitions of 𝜆𝑖, for 𝑖 = 1, . . . , 𝑙(𝜆). Thus, if we
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collect the partitions of the same size and length, summing over 𝛼1 and 𝛼𝜖,

equation 4.4.4 becomes

𝐸𝑛(1) = |𝑊𝐵𝑛 |
𝑛∑︁
𝑐=0

𝑎𝑐𝑏𝑛−𝑐 (4.4.5)

with

𝑎𝑐 :=
∑︁
𝑙≥0

∑︁
𝜆⊢𝑐
𝑙(𝜆)=𝑙

(−1)𝑙 𝑙!∏︀
𝑖
𝑚𝑖(𝜆)!

𝑙∏︁
𝑖=1

𝑝(𝜆𝑖)

and

𝑏𝑛−𝑐 :=
∑︁

𝛼1,𝛼𝜖≥0
𝛼1+𝛼𝜖=𝑛−𝑐

⃒⃒
Irr
(︀
𝑊𝐵𝛼1

)︀⃒⃒ ⃒⃒
Irr
(︀
𝑊𝐵𝛼𝜖

)︀⃒⃒
so ∑︁

𝑛≥0

𝐸𝑛(1)

|𝑊𝐵𝑛 |
𝑇𝑛 =

⎛⎝∑︁
𝑐≥0

𝑎𝑐𝑇
𝑐

⎞⎠⎛⎝∑︁
𝑚≥0

𝑏𝑚𝑇
𝑚

⎞⎠ (4.4.6)

Now, it is easy to see that

∑︁
𝑐≥0

𝑎𝑐𝑇
𝑐 =

∑︁
𝑙≥0

⎛⎝−∑︁
𝑛≥1

𝑝(𝑛)𝑇𝑛

⎞⎠𝑙

=
1∑︀

𝑛≥0
𝑝(𝑛)𝑇𝑛

so by an identity of Euler, we get

∑︁
𝑐≥0

𝑎𝑐𝑇
𝑐 =

∏︁
𝑘≥1

(︁
1− 𝑇 𝑘

)︁
. (4.4.7)

On the other hand, by the correspondence 2 and 4.4.7, we can deduce that

∑︁
𝑛≥0

|Irr(𝑊𝐵𝑛)|𝑇𝑛 =
∏︁
𝑘≥1

1

(1− 𝑇 𝑘)2
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hence ∑︁
𝑚≥0

𝑏𝑚𝑇
𝑚 =

∏︁
𝑘≥1

1

(1− 𝑇 𝑘)4
. (4.4.8)

Thus the second assertion of the corollary follows by plugging 4.4.7 and

4.4.8 in 4.4.6.
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algorithm for calculating Hodge-Deligne numbers. Izv. Akad. Nauk.

SSSR Ser. Mat. 50(5), 925-945 (1986).

[De70] Deligne, P.: Équations différentielles á points singuliers réguliers.

Lecture Notes in Mathematics, vol. 163, Springer-Verlag, Berlin

(1970).

113



BIBLIOGRAPHY 114

[De71] Deligne, P.: Théorie de Hodge II. Inst. Hautes Études Sci. Publ.

Math. 40, 5-47, (1971).

[De74] Deligne, P.: Théorie de Hodge III. Inst. Hautes Études Sci. Publ.

Math. 44, 5-77 (1974).

[DL76] Deligne, P., Lusztig, G.: Representations of reductive groups over

finite fields. Annals Math. 103, 103-161 (1976).

[DM91] Digne, F., Michel, J.: Representations of finite groups of Lie type.

London Math. Soc. Student Texts, vol. 21. Cambridge University

Press, Cambridge (1991).

[FQ93] Freed, D.S., Quinn, F.: Chern-Simons theory with finite gauge

group. Commun. Math. Phys. 156(3), 435-472 (1993).

[FS906] Frobenius, G., Schur, I.: Über die reellen Darstellungen der

endlichen Gruppen. Reimer, London (1906).

[FH91] Fulton, W., Harris, J.: Representation theory. Graduate Texts in

Mathematics, vol. 129, Springer-Verlag, New York (1991).

[Fu93] Fulton, W.: Introduction to toric varieties. Annals of Mathemat-

ics Studies, 131. The William H. Roever Lectures in Geometry.

Princeton University Press, Princeton, NJ (1993).

[GHS14] García-Prada, O., Heinloth, J., Schmitt, A.: On the motives of

moduli of chains and Higgs bundles. J. Eur. Math. Soc., 16(12),

2617-2668 (2014).



BIBLIOGRAPHY 115

[GP00] Geck, M., Pfeiffer, G.: Characters of finite Coxeter groups and

Iwahori-Hecke algebras. London Math. Soc. Monographs, New Series

21, Oxford University Press, New York (2000).

[Go94] Gothen, P.B.: The Betti numbers of the moduli space of rank 3

Higgs bundles. Internat. J. Math., 5, 861-875 (1994).

[GWZ17] Groechenig, M., Wyss, D., Ziegler, P.: Mirror symmetry for mod-

uli spaces of Higgs bundles via p-adic integration. arXiv e-prints,

arXiv:1707.06417 (2017).

[HLRV11] Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Arithmetic har-

monic analysis on character and quiver varieties. Duke Math. J.,

160(2), 323-400 (2011).

[HRV08] Hausel, T., Rodriguez-Villegas, F.: Mixed Hodge polynomials of

character varieties. Invent. Math., 174(3), 555-624 (2008). (With

an appendix by Nicholas M. Katz)

[HT03] Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality

and Hitchin systems. Invent. Math., 153, 197-229 (2003).

[Hi87] Hitchin, N. J.: The self-duality equations on a Riemann surface.

Proc. Lond. Math. Soc. (3) 55(1), 59-126 (1987).

[Hi87] Hitchin, N. J.: Stable bundles and integrable systems. Duke Math.

J., 54, 91-114 (1987).

[Ho12] Hoskins, V.: Geometric invariant theory and symplectic quotients.

http://userpage.fu-berlin.de/hoskins/GITnotes.pdf (2012).

http://userpage.fu-berlin.de/hoskins/GITnotes.pdf


BIBLIOGRAPHY 116

[HK80] Howlett, R.B., Kilmoyer, R.W.: Principal series representations of

finite groups with split 𝐵𝑁 -pairs. Comm. in Algebra 8(6), 543-583

(1980).

[Hu75] Humphreys, J.E.: Linear algebraic groups. Graduate Texts in Math-

ematics, No. 21. Springer-Verlag, New York-Heidelberg (1975).

[Ka80] Kac, V.: Infinite root systems, representations of graphs and invari-

ant theory. Invent. Math. 56(1), 57-92 (1980).

[Ki69] Kilmoyer, R.W.: Some irreducible complex representations of a

finite group with a 𝐵𝑁 -pair. Ph.D. dissertation, M.I.T (1969).

[Kl16] Klingsberg, P.: Probability: Möbius inversion. http://people.sju.

edu/~pklingsb/moebinv.pdf (2016).

[LMN13] Logares, M., Muñoz, V., Newstead, P.E.: Hodge polynomials of

SL (2,C)-charcter varieties for curves of small genus. Rev. Mat.

Complut. 26(2), 635 (2013).

[Lu77] Lusztig, G.: Irreducible representations of finite classical groups.

Invent. Math., 43, 125-176 (1977).

[MM15] Martínez, J., Muñoz, V.: 𝐸-polynomials of the SL (2,C)-character

varieties of surface groups. Int. Math. Res. Notices. 2016(3), 923-961

(2015).

[McG82] McGovern, K.: Multiplicities of principal series representations of

finite groups with split 𝐵𝑁 -pairs. J. of Algebra 77, 419-442 (1982).

http://people.sju.edu/~pklingsb/moebinv.pdf
http://people.sju.edu/~pklingsb/moebinv.pdf


BIBLIOGRAPHY 117

[Med78] Mednyh, A.D.: Determination of the number of non equivalent

coverings over a compact Riemann surface. Dokl. Akad. Nauk SSSR

239(2), 269-271 (1978).

[Mel17] Mellit, A.: Poincaré polynomials of moduli spaces of Higgs

bundles and character varieties (no punctures). arXiv preprint,

arXiv:1707.04214 (2017).

[Mer15] Mereb, M.: On the 𝐸-polynomials of a family of Sl𝑛-character

varieties. Math. Ann. 363, 857-892 (2015).

[MS14] Mozgovoy, S., Schiffmann, O.: Counting Higgs bundles. arXiv

preprint arXiv:1411.2101 (2014).

[PS08] Peters, C.A.M., Steenbrink, J.H.M.: Mixed Hodge structures. Ergeb-

nisse der Mathematik und Ihrer Grenzgebiete. Springer, Berlin

(2008).

[Sch14] Schiffmann, O.: Indecomposable vector bundles and stable Higgs

bun- dles over smooth projective curves. Annals Math., 183(1),

297-362 (2016).

[Ser77] Serre, J.-P.: Linear representations of finite groups. Graduate Texts

in Mathematics, vol. 42, Spriger-Verlag, New York (1977).

[Se77] Seshadri, C.S.: Geometric reductivity over arbitrary base. Advances

in Math. 26(3), 225-274 (1977).

[Si92] Simpson, C.: Higgs bundles and local systems. Inst. Hautes Études

Sci. Publ. Math. 75, 5-95 (1992).



BIBLIOGRAPHY 118

[Si95] Simpson, C.: Moduli space of representations of the fundamental

group of a smooth projective variety II. Inst. Hautes Études Sci.

Publ. Math. 80, 5-79 (1995).

[Si90] Simpson, C.: Harmonic bundles on noncompact curves. J. Amer.

Math. Soc., 3, 713-770 (1990).

[Sr68] Srinivasan, B.: The Characters of the Finite Symplectic Group

Sp(4, 𝑞). Trans. Amer. Math. Soc., 131(2), 488-525 (1968).

[St12] Stanley, R.P.: Enumerative Combinatorics. Vol 1. Cambridge Stud-

ies in Advanced Mathematics, 49. Cambridge University Press,

Cambridge (2012).

[SYZ96] Strominger, A., Yau, S., Zaslow, E.: Mirror Symmetry is 𝑇 -duality.

Nucl. Phys. B. 479(1-2), 243-259 (1996).


	List of Tables
	Introduction
	Preliminaries
	Combinatorics
	Partitions and Symbols
	Möbius Inversion formula

	Representation Theory
	Counting solutions of equations in finite groups
	Algebraic groups
	Roots, coroots and the Weyl group
	Coxeter groups and generic degrees
	Principal series representations of Sp(2n,Fq)


	Geometry of Mn
	Parabolic Sp2n-character varieties
	Basic definitions and facts
	Regularity and dimension

	Geometry of Un,H 
	The Lemmas
	The Theorem


	E-polynomial of Mn/C
	Mixed Hodge structures
	Spreading out and Katz's theorem
	Computation of the E-polynomial of Mn/C
	Spreading out of M"0365Mn,H/C
	The number of Fq-points of M"0365Mn,H
	The case n=1
	The case n=2
	The general case

	Topological properties of Mn/C

	Bibliography

