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“ And that inverted Bowl we call The Sky, Whereunder crawling coop’t we live and die,

Lift not your hands to It for help—for It. As impotently moves as you or 1.”

Omar Khayym (11th century), Persian astronomer and poet, Rubiyt of Omar Khayym



Abstract

Sector of Elementary Particles
Scuola Internazionale Superiore di Studi Avanzati
Doctor of Philosophy

by Houman Safaai

A worldsheet interpretation of AdS/CFT duality from the point of view of a topological
open/closed string duality using the power of pure spinor formalism will be studied. We
will show that the pure spinor superstring on some maximally supersymmetric back-
grounds which admit a particular Z, automorphism can be recasted as a topological
A-model action on a fermionic coset plus a BRST exact term. This topological model
will be interpreted as the superstring theory at zero radius. Using this decomposition
we will prove the exactness of the o-model on these backgrounds. We then show that
corresponding to this topological model, there exist a gauged linear sigma model which
makes it possible to sketch the superstring theory in the small radius limit as the dual
limit of the perturbative gauge theory. Studying the branch geometry of this gauged
sigma model in different phases gives information about how the gauge/string duality
is realized at small radius from a similar point of view of the topological open/closed
conifold duality studied by Gopakumar, Ooguri and Vafa. Moreover, we will discuss
possible D-brane boundary conditions in this model. Using this D-branes, we will make
an exact check in the N’ = 4 SYM/AdSs x S° duality. We will show that the exact
computation of the expectation value of the circular Wilson loops in the gauge theory
side can be obtained from the amplitudes of some particular D-branes as the dual of the
Wilson loops in the superstring side. The next step will be to construct a BV action
for G/G principal chiral model with G € PSU(2,2|4), we will show that after applying
different gauge fixings of the model, we will get either a topological A-model theory
or a topological thery whose supersymmetric charge is equal to the pure spinor BRST
charge. Using this model one can explore the cohomology of the pure spinor action from
the topological BV model. Then we show that there exist a particular consistent defor-
mation of the G/G action equal to the pure spinor superstring action. In this way we
generate the superstring action on a non-zero radius AdS background as a perturbation
around a topological model corresponding to zero radius limit of the superstring theory.
Using this picture we will give an argument based on the worldsheet interpretation of
open/closed duality to give a worldsheet explanation for AdS/CFT duality. A better
understanding of this picture might give a prove of Maldacena’s conjecture. At the end
we will show that using the topological A-model, one can also give a prescription for

computing multiloop amplitudes in the superstring theory on AdSs x S° background.
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Chapter 1

Introduction

1.1 General gauge/string duality

One of the most attractive subjects of theoretical physics giving deeper understanding
of the string theory is the large N duality between gauge theories and string theories.
There are several examples of this duality in physics and mathematics. Most of these
dualities are motivated and studied from the target space point of view to relate the
string theory on the target space to the dual gauge theory. However, the original idea of
large N duality which originated from ’t Hooft was based on the worldsheet perspective
in his paper on 1974 [1]. According to 't Hooft, we start with a U(N) gauge theory with

the following action

S— g;M £(A) (1.1.1)
where A is the gauge field and gy s is the coupling constant of the YM theory with
Lagrangian £(A). The gauge field takes value in the adjoint of the complex gauge group
U(N) and can be represented with two fundamental and antifundamental indices as Ag "
where 7,7 = 1to N and p is the space-time index. In this notation the propagator
and all the interactions can be drawn as ribbon graph Feynman diagrams as is shown in
figure (1.1)!. Here an upper index is denoted with an incoming arrow and a lower index
by an outgoing arrow. The vertices’s consist of Kronecker delta functions connecting
upper and lower indices in which we do not need the explicit relation here. As usual,
all the amplitude and Green functions can be computed by considering all planar and
non-planar diagrams with their appropriate weight factor. An important observation

is that any loop, which exists whenever an index line closes, contributes a factor of N

'Here we just considered the propagator and vertices’s of the pure gauge fields for simplicity and do
not consider other matter degrees of freedom of the theory.
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FIGURE 1.1: Feynman diagrams as ribbon graphs.

to a particular scattering amplitude because of the multiplicity of that index for the

Kronecker delta

N .
d =N (1.1.2)
=1

As it was shown in [1], we can classify the diagrams according to their powers of coupling
constant gy s and their powers of N. The next step is to realize this Feynman diagrams
as big connected surfaces. It was shown in [1] that for large N we can draw the diagrams

on closed surfaces as in figure (1.2).

FIGURE 1.2: A ribbon diagram drawn on a surface.

Then the next step is to fill each loop with a disk as follows

i i
Filling the holeg
— s
i i

FIGURE 1.3: Filling each loop with a disk produce a Riemann surface.

This generates a surface which has g handles and h holes as is shown in figure (1.4)
where the number of holes is equal to the number of the loops of the corresponding

ribbon diagram.
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FIGURE 1.4: A ribbon diagram makes a surface with holes.

Each Feynman diagram with h faces or loops, V vertices’s and E propagators corre-

sponds a factor
r=(g%y) VTEN (1.1.3)

to the amplitude. This is because each loop brings a factor N and each vertex contributes

a factor g% » and each propagator a facto of g;?\/f in the result.

This contribution can be also specified referring to the topology of the surface in which

the diagram is drawn. This can be seen after rewriting (1.1.3) as

7V+ENh: 2M) V+E—- h(gYMN) (114)

r= (952/M) (9y

According to Euler formula for a surface with h holes, E edges and V vertices’s we have
h—E+V=2-2 (1.1.5)

where ¢ is the genus of the surface. So (1.1.4) can be rewritten as
r=(g2,) 92" (1.1.6)

where t = g% u AV is named as the 't Hooft parameter.

The full amplitude is obtained after summing over all the ribbon graphs with the weight
factor (1.1.6)
oo oo

Fyy = (93 00) % 2" Fy (1.1.7)
g=0 h=1

where Fy j is a function of the other parameters exsiting in the theory. We can rewrite

it as a sum over the genera

Fyy = Z(Q%M)Qg_QFg(t) (1.1.8)
g=0
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where
(o]
Fy(t)=> t"Fyn (1.1.9)
h=1

In the large N limit, the graphs corresponding to low-genus dominate in the computa-

tions and taking t = g}% u N fixed, the expansion in % becomes similar to the expansion
in g%, M

On the other hand, we can write the free energy of the closed string theory as a sum over
the amplitudes correponding to connected closed worldsheets with genus g contributing

a factor ggg ~2 where gs is the string coupling constant. The free energy can be written

as the following expansion

Fo=> g2 F,(1) (1.1.10)
g=0

Here t is a geometric modulus of the target space. Comparing (1.1.8) and (1.1.10), we
can see that the two theories can be interpreted as they are computing the same thing

stating the 't Hooft conjecture.

’t Hooft conjecture: There is a closed string theory whose g—loop amplitude is given
by F4(t) = Fyn(t) where the target space modulus is identified with the 't Hooft
coupling t = g% IV and the string coupling constant is related to the YM coupling
as gs = g% u- The two theories are the dual descriptions of the same physical

theory.

This duality can be seen from a higher perspective as a duality between open and closed
string theories by considering the simple fact that the U(N) gauge theories can be
realized as the Chan-Paton degrees of freedom of open strings ending on a stack of NV

D-branes.

A ribbon graphs has natural interpretation as describing open string worldsheet ending
on D-branes. The left figure in (1.5) is an open string describing a worldsheet in which
its end points carrying the indices ¢ and j of the gauge group are on the D-brane making
the ribbon graph. On the other picture, the open surface with genus g and h holes is the
worldsheet of open string whose amplitude is equivalent to the scattering amplitude of
the corresponding ribbon graph in figure (1.4). Each open worldsheet amplitude which
has genus g and h holes like figure (1.5) is weighted with a factor 929 _2(]\7 gs)" where the
factor (Ngs)" comes from the Chan-Paton factors for each hole which is the intersection
of the worldsheet with D-branes. In fact, one can give a conjecture for the duality

between open and closed string theories in the sense that there is a closed string theory
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ribbon graph - worldsheet
ﬁﬂeﬂ STNJ ‘ /
D-brane
worldsheet

D-branes

FIGURE 1.5: Ribbon graphs as the intersection of D-brane and worldsheet.

whose free energy F, on a closed worldsheet with genus g is related to the amplitude of

the open string theory with fixed genus g as follows
oo
Fg=> (Ngs) (1.1.11)
h=1

where F| ;, is the amplitude of open strings propagating on a worldsheet with genus g
and h holes like the one in figure (1.5). If we take the low energy limit, we get the
original 't Hooft conjecture since the gauge theory can be realized as the low energy

limit of the open string theory in the presence of D-branes.

1.2 AdS/CFT correspondence

By now, several examples of large N dualities have been discovered including the famous
Maldacena’s AdS/CFT duality and the topological string dualities which we will briefly
discuss. We are going to relate them at least for some specific cases and we will show
that we can use the techniques and advantages of the topological string duality in the

more elaborated AdS/CFT correspondence.

In [2], Maldacena considered a system of N D-branes which according to different ways
of interpretation, give rise to different theories. If one takes the near horizon limit in
which the string coupling gs and N is fixed, while the length of strings goes to zero
ls — 0, the open and closed strings decouple and we get two decoupled descriptions

of the same physics. The first description is in terms of the closed strings which is a
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superstring theory on a AdS x X background with N units of flux on X and the second
description is in terms of open strings whose low energy limit is a superconformal gauge
theory on the boundary of the AdS space. In this sense it can be seen as a holographic
duality. In both sides of the duality the superstring and superconformal gauge theory

have equal supergroup as their super-isometry or super-conformal group.

LY
-
. standard AdS/CFT
" —— : —
p duality
- -
L4
r
near horizon
stack of geomerry
N branes
open strings closed strings

FIGURE 1.6: Standard AdS/CFT duality.

The main three examples of AdS/CFT duality which was addressed by Maldacena is
listed in table (1.1). We should note that there is also a long list of non-conformal SYM

dualities which we are not referring them here.

Brane AdS theory dual SCFT Superisometry
M2-branes M-theory, AdSy x S” some 3d SCFT OSp(8|4)
D3-branes | [IB superstring, AdSs x S°|4d N' =4 SU(N) SYM PSU(2,2/4)
M5-branes M-theory, AdS7 x S* some 6d SCFT OSp(6,24)

TABLE 1.1: Three main Maldacena AdS/CFT correspondences.

The most by far studied example of the AdS/CFT duality is the type IIB supersting on
AdS5 x S° with N units of RR flux

/ Fs=N (1.2.1)
S5

on the S° with the NV = 4 super Yang-Mills theory with SU(N) gauge group in four
dimensions which appears to be a conformal theory. The gauge theory amplitudes can
be expanded in powers of 1/N for large N at fixed 't Hooft parameter ¢ defined as
t = g% u V. This 't Hooft expansion corresponds to the string loop expansion in the

superstring side after the following identifications

R2 eVt |, gs e (1.2.2)

t
N
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where we take o to be one. The parameter R is the radius of the AdSs and S° which
should be the same in order to maintain worldsheet conformal invariance and g is the
string coupling constant determined by the value of the dilaton field. The source of the
curvature lies in the nonzero value of the self-dual 5-form flux belonging to the SUGRA

multiplet.

To match conformal supersymmetry in 4d with AdS supersymmetry in 5d the symme-
try supergroups in both cases happen to coincide, as they should. There are 8N real
SUSY generators and the bosonic part consists of the conformal AdS group Spin(4,2) =
SO(4,2) times an internal group SU(N)p x U(1) 4. For the case N’ = 4, we have 32 real
SUSY generators and an internal group SU(4)r x U(1)4. Now, SU(4) = Spin(6) and
Spin(6) is the isometry group of S° with spinorial fields. The bosonic spatial isometry
group of AdSs x S? is SO(4,2) x SU(4) which together with fermionic degrees of freedom
completes the supergroup PSU(2,2[4).

In N' = (2,0) 10D IIB superstring theory, we have 32 real SUSY generators. However,
the bosonic spatial isometries with 55 generators in the flat case is now substituted by
SO(4,2) x SU(4) with 30 generators. N' = (2,0) also has a U(1)g symmetry and this
is identified with U(1) 4. The AdSs x S° superstring action was shown to be given as a
supercoset sigma model on PSU(2,2|4)/SO(5) x SO(4,1) [3] whose isometry group is
exactly the superconformal group of the dual SCFT.

The other important AdS/CFT duality which attracts many attentions during the last
two years is the type ITA/ABJM duality which is the first duality of table (1.1). This
duality got progressed because new achievments in understanding of the M2-brane sys-
tems. Bagger, Lambert and Gustavsson [4], followed a suggestion by Schwarz [5] to
use Chern-Simons theory, constructed a three-dimensional superconformal gauge theory
with ' = 8 maximal supersymmetry based on the so called three-algebra structute.
Because of its special consistency condition, their construction works just only for the
gauge group SO(4) and so it does not provide the dual of M-theory on AdSy x S” unless

for a very special case of N = 2.

The correct dual however was obtained by Aharony, Bergman, Jafferis and Maldacena
(ABJM) in [6]. They considered M-theory on the orbifold AdSy x S7/Zj with N units
of flux which gives 3/4 supersymmetry for k& > 2. The dual gauge theory which they
proposed was a supersymmetric ' = 6 superconformal Chern-Simons theory which has
two Chern-Simons terms corresponding to a U (N )i x U(N)_j, gauge group where k and
—k are the levels of the Chern-Simons terms. Because of a nontrivial property of the
quantum theory which was explained in [6], the supersymmetry increases to N’ = 8 for
k =1,2. The ABJM theory also includes bifundamental scalar and spinor fields. The 't
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Hooft expansion of the gauge theory is defined as follows

t= m (1.2.3)

The difference with the previous case is that here the 't Hooft parameter appears to be

a rational number.

The orbifold S7/Z; can be described as a circle bundle over a CP? basis upon reduction

to string theory

Sl N S7
! (1.2.4)
cp?

The circle has radius R/k, where R is the radius of S7. In the limit &% >> N there is a
weakly coupled type ITA on AdS; x CP3 with a string coupling given by

g = (/i\;)m (12.5)

and upon the following identification with the dual superconformal gauge theory

R2 oVt | go e ti/N (1.2.6)

The difference which arise here with the maximally supersymmetric AdSs x S° case is
that in this case the construction of the action for AdS, x CP? is more complicated as the
background preserves only 24 out of the 32 supersymmetries of the type ITA supergravity.
A supercoset space OSp(6]4)/U(3) x SO(1,3) with 24 fermionic coordinates has been
used in [7, 8, 9, 10] to construct the superstring sigma model in AdSy x CP? but it
was shown in [11] that this supercoset is a subspace of the complete superspace and it
describes just a subsector of the full type ITA superstring theory in AdSy x CP3. The
complete type ITA superspace with 32 fermionic coordinates in AdS; x CP? background

is not a supercoset space and is more complicated as it was stated in [11].

The AdS/CF'T correspondence gives a dictionary between the objects on the two sides of
the duality. For example we can relate n-point correlation functions in the gauge theory
to the corresponding quantities in the string theory side [12]. If one considers two-point
functions, the duality relates the energy FE, of a state |a) to the conformal dimension

A, of the operator O, which is defined as

Aab

CaO0) ™ e

(1.2.7)
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specifically the duality says
Au(t,1/N) = E,(R?, gs) (1.2.8)

The studies on AdS/CFT have been pointed mainly to test the duality by finding,
comparing and matching similar objects on both sides of the duality. In this sense it is
an state/operator duality. Being a weak/strong duality, almost all the studies have been
done in the weak string theory side which corresponds to supergravity theory, because
from the target-space point of view in which most of the studies have been directed,

there is no possibility to explore the string theory in the strongly coupled regime.

As we saw before, the 't Hooft parameter is proportional to the radius of the AdS
space and if one wants to obtain the 't Hooft expansion in the gauge theory side which
corresponds to t — 0 as it is a perturbative expansion, one should study the string theory
in the corresponding limit which is the highly curved R — 0 limit. Since the string theory
sigma model coupling constant is proportional to the inverse of R?, this corresponds to
the strongly coupled regime of the sigma model and can not be discussed with usual
techniques. One has to find a good description of the theory which makes it possible to
explore superstring theory in the small radius limit. With a ”good” description we mean
the one in which the worldsheet quantum field theory is well-defined and can be used to
study the physics near R = 0 as the dual of the perturbative gauge theory side of which
we have a good perturbative description. This seems puzzling from the duality point
of view but as we will see later one can resolve this puzzle by defining a well-defined
description of the string theory in this limit. We can state this puzzle more clearly as

follows.

A puzzle in large N dualities: Usually in large N dualities, the 't Hooft parameter
t is identified with a geometric modulus of the string theory target space and
the limit ¢ — 0 leads to vanishing cycles and breakdown of the closed string
perturbation theory by leading to the divergence of some amplitudes. But, in the
dual side, this limit corresponds to a reliable perturbative regime. This seems
puzzling which should be overcomed by giving a better description to the string

theory side which does not breakdown in this limit.

1.3 Topological A-model conifold open/closed duality

Actually there is an example in which this good description was found and the duality

was proved. This is the case of topological gauge/string dualities which we will explain
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here. The first type of topological gauge/string dualities was discovered by Gopakumar
and Vafa [13] which states:

Topological gauge/string duality: Chern-Simons gauge theory in three dimensions
which can be obtained from the low energy limit of open string theory ending
on A-branes in a deformed C'Y3 is dual to a topological closed string theory with

A-twist in resolved CY3.

where the A-twisted topological string theory will be defined and discussed later and
the A-branes are consistent boundary conditions in the Calabi-Yau manifold which does

not spoil the supersymmetric structure of the topological A-model theory.

The correspondence is between open strings ending on D-branes on the deformed CY3
and closed strings on the resolved C'Y3 where deforming and resolving are two ways of

removing the singularity of the Calabi-Yau manifold which we take it to be the conifold.

There is also the mirror Version of this duality which was discovered by Dijkgraaf and
Vafa [14]. The topological theory in question is the B-model and the roles of the deformed

and resolved C'Y3 are exchanged.

In order to have a more precise statement of the duality, consider the Chern-Simons
theory on S? with gauge group U(N)

k 2
S—M/tr(A/\dA+3A/\A/\A> (1.3.1)

where k is the level of the Chern-Simons action and the gauge coupling constant is given
in terms of k and N as g}, = H#N . The statement is that the large N expansion of
this Chern-Simons theory on S2 produces the closed A-model topological string theory

defined on the resolved conifold with string coupling constant g5 = ﬁ

The singular conifold is topologically a cone over S? x S2 defined by the equation

» =0 (1.3.2)

in C*. We can remove the cone singularity in two ways as is shown in figure (1.7).
Either by blowing an S? in the singularity or by replacing the singularity with a 52,
the first geometry is a deformed conifold which can be seen as the contangent bundle
T*S3 and the second one is the resolved superconfold which can be described as a sum
of line bundles over the base which is the S? as O(—1) + O(—1) — P!. The more
detailed description of the geometries will given later when we will discuss the super

generalization of the conifold duality.
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>N D-branes

[

3

S3
deformed singular
conifold conifold Eg%%%‘é’fg-
t— 0 {— 0
,5'3 —= point
Large N duality
p oY
T
Open string Closed string

FIGURE 1.7: Large N duality as a geometric transition between topological open string on
the defomred conifold and closed string theory on resolved conifld.

The base of the deformed conifold is S® with radius t. It can be checked that it is a
Lagrangian submanifold and so it is a proper place to wrap the branes in the topological
A-model theory. Putting N D-branes on the base S3, it was shown by Witten [15], using
open string field theory, that the theory reduces to the Chern-Simons theory on S? with
SU(N) gauge group. On the other hand, in the closed string side the complexified
Kahler class is given by ¢t = iN/(k + N). This parameter corresponds to the size of
the S? on the base. Since ¢ is pure imaginary, this size is corresponding actually to a

non-vanishing NS-NS two-form field whose integral over the two-cycle is equal to |¢|

N

The duality is between the closed string theory with this flux and the open string theory
with the open strings wrapping the base. The duality converts the resolved and deformed
geometries and switches the branes into the flux. Since the theory is topological A-model

the action have the general form?

S—it/E{Q,V}—irt/Ex*(K) (1.3.4)

2Here the integration is over the worldsheet 3 and the explicit form of V and the pullback of the
Kahler form K, expressed as z*(K), can be be found for example in [16].
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where @) is the conserved supersymmetry charge of the N = 2 topological A-model
theory and ¢ is the K&hler modulus of the manifold which is identified with the 't Hooft
parameter in the gauge/string duality. It can be shown that the topological string
amplitudes are independent of the Kéahler parameter ¢ and so we can in principle send
it to zero as is shown in figure (1.7). We can send the size of the S as the Kihler
parameter to zero in the open string side. On the other hand, in the closed string side,
in this £ — 0 limit the string amplitudes diverges and string theory perturbation breaks
down. This is in accordance with the puzzle we addressed before for general large N

dualities.

Having a singularity in a theory usually means lacking some degrees of freedom whose
dynamics in the singular limit describes the theory. The idea proposed by Ooguri and

Vafa in [17] was to introduce a new sector in the theory containing a gauge field. The

non-linear singular N adding new non-singular _| gauged linear
sigma-model t—0 degrees of freedom t—0 sigma model
IR

FIGURE 1.8: Adding a new sector to non-linear sigma model (1.3.4) gives a linear sigma
model which is no longer singular in the limit ¢ — 0. The gauged linear sigma model gives the
non-linear action after the flow to infra-red.

basic idea is to start with the closed string side and use a ’good’ description of the
string theory being able to explore the physics in the ¢ — 0 limit. This description was
proposed by Witten [18] to be the gauged linear sigma model which flows to the original

non-linear theory in the infra-red where the new degrees of freedom are integrated out.

The gauged linear sigma model in the case of the conifold duality contains one vector
multiplet V', and four chiral multiplet Ay, As, B; and Bs which are charged differently

under the gauge group. The gauged linear sigma model action can be written as follows

2 2

_ _ 1

S = /d4/<; (Z A;e® A+ Bie VB + 6222> + t/dQ/?; 415> (1.3.5)
i=1 i=1

where ¥ is the gauge field strength which is a twisted chiral superfield ¥ = DDV and

e is the gauge coupling constant, the x’s are the fermionic coordinates of the N = 2

supersymmetry on the worldsheet. We see that the Kéahler parameter ¢ corresponding

to the 't Hooft coupling is appears here as a Fayet-Illiopoulos parameter.

It was shown by Witten in [15] that the vacuum of theory admits two branches corre-
sponding to different regimes of the ¢ parameter. Here we consider a U(1) gauge field in

which the chiral superfields A; and B; have charge +1 and —1 respectively.
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In order to find the vacuum we should find the zero points of the scalar potential which
is given by

e? 2
V =2[o|* (Ja1|* + |azf* + [b1|* + [b2]?) + 5 (la? + lag|* = [ba]* = [b2|* = £)” (1.3.6)

where o, a; and b; are the first components of the ¥, A; and B; superfields respectively.
Both e and ¢ have the dimension of mass on the worldsheet and in the infrared they can

be sent to infinity. We can study the classical solution V' = 0 in two regimes separately

o t#0:

In this case the condition V = 0 is satisfied when ¢ = 0 and with the following

constraint on the other fields
a1 ? + |ag]? — [b1]* = [bof* = ¢ (1.3.7)
modulo the gauge transformations
a; — a;e? b — bie " (1.3.8)

The space defined by this scalar fields as its coordinates can be shown to be the
resolved conifold. The S? in the base of the resolved conifold is placed at b; = 0
with radius v/t with coordinates a; and b;’s as the fiber coordinates over the base
S2. Expanding the gauged linear sigma model (4.1.5) in components one can see
that in this regime the gauge field get mass and in the infrared it can be integrated
out and the gauge symmetry gets broken. This phase of the theory is the Higgs
phase denoted by H. The physics in this phase is totally described with the chiral
superfields A; and B; which can be mapped to the fields of the corresponding

topological A-model non-linear sigma-model action.

ot —0:

In this limit, it can be seen that the zero point of the potential can be obtained in

two ways and the theory develops two phases:

— Higgs phase:
This phase is similar to the previous case and is obtained by putting ¢ = 0
for a; # 0 and b; # 0 subject to (1.3.7). This solution defines the resolved
conifold as its target space and the gauge symmetry is broken because the
gauge field becomes massive. The physics is described with the matter fields

A; and B; which as we saw are related to the A-model non-linear sigma model
fields.
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— Coulomb phase:

On top of the Higgs phase, here we have another solution which obtained
for ¢ # 0 and putting a; = b; = 0. This is actually the new phase which
appears in the singular point of the theory and describes the physics in this
limit. One can check that the mass of the scalar fields are proportional to
|o|? and so in this phase they become massive and can be integrated out.
The physics is given only by the dynamics of the gauge field. The emergence
of the dynamics of this new degree of freedom removes the singularity of the

theory.

There is an important issue here that one can check that there is no energy gap

between these two phases and they can actually co-exist.

From the worldsheet point of view, the gauged linear sigma model tells us that the
singularity at ¢ — 0 in the non-linear sigma-model action is due to the emergence of this
new Coulomb phase which does not have interpretation in terms of the geometry of the
conifold and physical content of the non-linear sigma model action. It was used to prove

the duality from a worldsheet perspective [17].

In order to proof the gauge/string duality as in the original idea of 't Hooft, we start
writing the closed topological string theory and try to obtain the open string amplitudes
as an expansion in the 't Hooft parameter for small ¢ as we described before. A particular

g-loop topological closed string amplitude can be written as

39—3
Fq = M, < H /)(dQan(Z)GZ(Z)/XdzznZ(Z)Gl_%(z)> (1.3.9)

=1

where M, is the moduli space of the genus-g Riemann surfaces, G; and G are N =
2 supersymmetry charges of the topological A-model and n; and 7; are the Beltrami
differentials of the Riemann surface X. In the corresponding path integral over the field
configuration, we have to do integration over the fields A; and B; corresponding to the
physical degrees of freedom of topological string theory on the resolved conifold, and
also over the new degree of freedom o. Cosinsidering a particular field configuration on
a closed string worldsheet in the ¢ — 0 limit, as we saw before the field configuration
separates into two parts. Either we have the fields in the Higgs phase or the Coulomb

phase according to the value of the o, we can put a cutoff parameter o( to identify this
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phases on the worldsheet as follows

Cdomain = {ze€ X :|o(z)] > 00} (1.3.10)
H domain = {z€ X :|o(2)| < o0}
Interface v = {z¢€ X :|o(z)| =00}

If we consider a genus-g Riemann surface as the worldsheet, it separates into h connected
pieces in the H-domain with genus g;, ¢ = 1 to h and ¢ pieces in the C-domain with genus

gj » j =1 to cin which

h c
g+ gi=9 (1.3.11)
i1 j=

all the pieces are connected to other pieces which is in a different branch with a circle

which we named as 7. We can present a particular closed worldsheet in figure (1.9).

C-branch

FIGURE 1.9: The worldsheet splits into connected pieces, some in Coulomb branch and some
in the Higgs branch.

As we explained before, in the H-branch, the field configuration in the infrared is sup-
pressed with the string theory fields A; and B; which can be mapped to the non-linear
topological sigma-model fields. But in the C-branch, these physical fields get mass and
we can integrate them out and they do not appear in the functional integration on these
branch. In C-branch, the dynamical field is the gauge field and from the string theory
field content which is (A;, B;) these branches are like empty Riemann surfaces connected
to the worldsheet with Dirichlet boundary conditions a; = b; = 0. It is like that the
worldsheet is connected to D-branes, as we expect for an open string worldsheet. It is
a consequence of adding the new degree of freedom which generates holes on a closed

string worldsheet. So, starting from a closed string worldsheet without holes we obtain
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open string worldsheet with many holes and the next step is to generate the partition

function of the open string theory from this mechanism.

The functional path integral also decompose into the C and H-branches and we can do the
functional integration over the fields in these two separate branches. The contribution
from the C-branch is just comming from the dynamics of the o field. It was observed
by Ooguri and Vafa [17] that the functional integration over the C-branches satisfies the

following properties

1. The only configuration of the C-branch contributing in the path integral is the
disk. The contribution of the other topologies with at least one hole is zero. This
is consistent from the way we realized the 't Hooft expansion by filling any hole
with a disk and we did not have any other non-trivial topology. Starting from a
close Riemann surface as the worldsheet for the closed string theory, the worldsheet
partitions into open Riemann surfaces with h holes which can be interpreted as
the worldsheet of the open string theory side. The number of the holes is equal
to the number of the C-branches on the worldsheet and their contribution will be

shown to be a constant later.

The partition of a close Riemann surface into open Riemann surfaces with h holes

can be visualized as in figure (1.10).

FIGURE 1.10: The partition of a close Riemann surface into open Riemann surfaces with
holes.

The closed string amplitude for a worldsheet with genus g also partitions into open
string amplitudes with worldsheets with genus g and any number A of holes F

as follows

F, = i(;w)) h> (1.3.12)

h=1

where F(©) is the contribution of the C-branch computed as a path integral just
over the gauge field in the Coulomb phase and féi) is the amplitude corresponding

to H-branch on a Riemann surface with genus g and h holes.

2. Using A-model topological theory it can be shown that the contribution of any

C-branch can be computed exactly as a contour integral over the complex o-plane
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around the boundary of the hole. Because of the topological localization, it was
shown in [17] that the boundary value oy does not have angular dependence and
so it is constant along the boundary as the Dirichlet boundary conditions. The
contribution from the C-branch was computed in [17] using the fact that in the
C-branch the theory becomes like a Landau-Ginzburg theory with superpotential
W = t¥ as follows

So, using (1.3.12) we see that we generate the 't Hooft expansion as follows

o0
Fg=Y t"Fyn (1.3.14)
h=1
This is the direct consequence of the generation of the open string worldsheets from the

mechanism derived by gauged linear sigma-model for small 't Hooft parameter.

Using the fact that the amplitude in the H-branch is independent of the Kéhler parameter
t, it can be shown that the F, j is the amplitude of the open strings with D-branes
wrapping on the base S2 of the deformed conifold 7%S3. It comes as a worldsheet proof

of the topological open/closed duality on conifold.

1.4 Towards a worldsheet proof of AdS/CFT duality

The proof of the topological open/closed duality was done using the power of the gauged
linear sigma-model which is useful when the 't Hooft parameter is small. It would be
very interesting to find similar description for the case of superstring on AdS spaces
which might make it possible to give a similar proof for AdS/CFT duality in the regime
which is not accessible with the usual target space methods. AS we will see, this can
be done by using pure spinor superstring theory on some maximally supersymmetric
string theory on AdS backgrounds and a topological decomposition of their action. The
similarity between Chern-Simon and A" =4 d = 4 SYM comes actually not surprising
because, using pure spinor formalism, the d = 10 SYM action which can be reduced

to the four-dimensional one upon dimensional reduction can be written in the Chern-

S = / <VQV+ §v3> (1.4.1)

Simons form as follows [19]
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where () is the pure spinor BRST operator and V' is the super-Yang-Mills vertex operator.
One would expect to find a similar worldsheet derivation for large IV duality like in the

case of CS/conifold duality.

The first step towards having this description was done by Berkovits. Using pure spinor
formalism for superstring on AdSs x S°, he found that there is a particular limit in which
the sigma-model reduces to a topological A-model constructed from fermionic N' = 2
superfields. In an AdS5 x S° background, one can write the sigma model action in terms

of a supercoset as follows®

1

=R

/d2z [;nabJ“Jb + N (JBJO‘ — iJBJ“) + pure spinor contribution |(1.4.2)
where J¢ with a = 0 to 9 are bosonic and (J?, J%) with o, & = 1 to 16 are the fermionic
left-invariant currents construct from J = ¢ 'dg where g belongs to the supercoset
g € % which was used by Matsaev and Tseytlin [3] to construct the world-
sheet Green-Schwarz superstring action. The 74, and 7 0f Te the bilinear metrics of
the supercoset. The pure spinor part of the superstring was introduced by Berkovits
[20] in order to give a covariant quantization of the superstring theory. Unlike Green-
Schwarz formalism in which the xk—symmetry gauge fixing is poorly understood even in
a flat background unless in some particular gauges like the light-cone gauge, the pure
spinor formalism as we will describe it better in the next chapter of the thesis give a
quantization scheme, using a BRST charge which is constructed after introducing the
ghost degrees of freedom (A%, 5\0‘) and their conjugate momenta (w,, Wg) subject to pure

spinor constraints
MA=0 , MA=0 (1.4.3)

These constraints leaves eleven complex degrees of freedom in ten dimensions. On
top of many advantages of the pure spinor formalism we are interested to a particular
application which is the construction of a topological theory based on superstring on
AdS5 x S° [21] or as it was shown in [10] on any supercoset background which admits a

particular Z, automorphism.

Superstring on AdSs x S° has a limit which is the d = 10 flat space limit in which the

radius of the AdSs x S® goes to infinity or in a covariant way one can do the limit by

3We put always o’ = 1.
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rescaling the metric 9oi = Mg and gjap)(ed] = Nab][cd] tas

9op = Bop + Gablied) = B Nav]jcd (1.4.4)

also the structure constants of the PSU(2,2|4) supergroup should be rescaled consis-
tently. In the AdSs x S° background, the torsions TMB and T, agb are proportional to
the corresponding structure constants and they satisfy Taaﬁnﬁﬁ = Tagbnab but in the
flat background Tn,® = 0. The rescaling of the structure constants and the metric used
by Berkovits implies the following rescaling of the torsion

T b
—ap llb _ g (1.4.5)

Taa%n5
where in the R — oo limit implies Tcmfé = 0 as it should be for the flat background. Also

the left invariant one-forms of the supergroup simplify after this rescaling as follows
J¢ = 02% + 04°00 + 0700 , J*=00° |, J¥=086% , J =0 (1.4.6)

which after putting back into the pure spinor action (1.4.2) gives the pure spinor super-
string action for flat background®
1 1 ay,.b Apa A Apd aya A~ al&
S = 2 Enabf)x 0" — pa 00 — Pa00% + W, 0AY + Ws 0N (1.4.7)
On top of this limit, Berkovits showed [21] that there is another rescaling sending R — 0
which giving a topological theory corresponding to highly curved AdSs x S® superstring.

To go to this limit we have to apply another rescaling for the metric and the structure

constants as follows

9ab=R""nap . Gabjlea) = R Map)jeq (1.4.8)

When R — 0, the structure constants ffﬁ — 0. This implies that the 32 fermionic

isometries become Abelian. In this limit the supercoset splits into its bosonic and

SU(2,2)
SO(4,1)

AdS5 and the coset gggg which parametrizes the sphere S°, The fermionic part of the

fermionic parts. The Bosonic part composed of the coset which parametrizes

supercoset is parametrized with two matrices 0" and §* where 0" = 6% + 6% and

“The generators of the PSU (2, 2|4) are represented by (Tjas), Tu, T, Ta) where T,y are the generators
of the SO(5) x SO(4,1) group and T,, Ts are the fermionic generators and T, are the translation
generators for a,b =0 to 9 and a, & = 1 to 16.

®Note that eventhough it looks like the flat superstring action, it is different from the flat superstring
theory quantum mechanically since it does not exist any continous deformation of the PSU(2,2/4)
supergroup into the super Poincaré group since they have different number of generators.
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6" = 0> — i are the upper-right and lower-left blocks of the supergroup elements as

we will discuss it better later.

AdS5 X S5

pure spinor

R>0 R—0

near-Flat Topological
pure spinor A-model

FIGURE 1.11: Taking a particular rescaling, Berkovits showed that the zero radius limit of
the pure spinor superstring theory on AdSs x S° gives a topological A-model.

This rescaling (1.4.8) implies T,3* = 0 but since the usual construction of supergravity
backgrounds assumes that T,,3* = 745 so this limit does not correspond to a standard
supergravity background as we expected since we are exploring the strongly coupled

regime of superstring theory.

It was shown by Berkovits that after taking the limit the superstring action can be

written as a A = 2 worldsheet action in terms of fermionic superfields 02" and ©° as

follows
S = 1/d2 d* é@—lé@é@+1é@éeé®+---
-2 2 3
= /d2zd4ﬁTr [log (1 + @@)} (1.4.9)

where k’s are the N' = 2 worldsheet supersymmetry coordinates and fermionic chiral

superfields 02" and ©* can be expanded as follows

) = 0+ K+Z°‘+ +r_Ve 4+ T (1.4.10)
0% = 0% 4R ZY +RYY 4R R_fO

where 6 and 6 are the fermionic degrees of freedom of the superspace and Z and Y fields
are bosonic twisted variables constructed from the bosonic degrees of freedom of the
superspace and the pure spinors and their conjugate momenta. The fields fa+ and f‘f
are auxiliary fields. The fact that there are 11 complex independent pure spinor degrees
of freedom is a very crucial fact which make it possible to construct such unconstrained

twisted-like variables as follows

Z0T = fOL HTNTT 20 = o HMAT (1.4.11)
?oﬂr _ f%;-!-HmwﬂJr ’ ye — f;;rvlé_ quj;57
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where H™ = (H®, H") are the bosonic cosets and f%}r and fgl/g, are structure constants

of the supergroup.

The matching of the bosonic and fermionic degrees of freedom appears as follows

I0R =™ b s
o 16C z% |, Z¢
11C A% N s o (1.4.12)
o 16 C 6% 6«
16 C 6%, 6%
where m =1to 9 and o, & = 1 to 16.
In fact the chiral fermionic superfield © belongs to the fermionic supercoset
P 2,2/4
oc 1SUEZ2Y (1.4.13)

SU(4) x SU(2,2)
for the case of AdSs x S°.

The action (1.4.9) is an A-model topological action which after expanding its Kéhler

potential and integrating over the auxiliary fields we get the following action

5= / P (1,57 T VT2 e VTV (Y, Z] [V, 217 (1:4.14)

which as we will see later in this thesis and in [22] it has the right structure of an

A-twisted topological action.

Actually it was shown in [23] for AdS5 x S° and in [10] for a general maximally super-
symmetric supercoset background which admits a particular Z, automorphism that this
A-model topological action is related to the pure spinor action with a BRST trivial term

and one can split the pure string action as follows

Spure spinor — SA—model + Q Q (1415)

where @ is the pure spinor BRST charge. Note that the topological charge of the A-
model action is different from () and so this decomposition gives the ability to explore

the BPS sector of the superstring theory using the A-model action.

A symmetry argument were used in [23] and [10] to find this decomposition. Being an
element of the supercoset PSU(2,2[4)/SU(4) x SU(2,2), the A-model action preserves
all the PSU(2,2]4) supergroup but it has a ’bonus’ U(1) symmetry which does not exist
in AdSs x S° background. It appears that after expanding the A-model action (1.4.14)

in terms of the pure spinors and left-invariant Cartan one-forms, the fermionic currents
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appear as the following kinetic term in the Z,4 grading language
1 - 1-
§J1J3 - §J1J3 (1.4.16)

It is clear that there is a U(1) symmetry which switches the fermionic currents J; < J3

and under this U(1) the currents J; + i¢Js and J; — iJ3 have opposite charges.

However, this symmetry does not exist in the AdS5x S° action because the corresponding

fermionic currents appear as follows
3_ - 1-
—JiJg — —J1J 1.4.17
4 143 4 143 ( )

In order to relate the pure spinor action and the A-model action, we add a BRST-trivial
term Sponus = @ X to the pure spinor action which forces the pure spinor action to
preserve this U(1) symmetry

!/

pure spinor

Spure spinor + Sbonus (1'4'18)

Then using BRST transformation rules of the pure spinor formalism, one can check that
S’ — SA-model 18 @ BRST trivial term which proves (1.4.15).

pure spinor

Using this topological decomposition, one can use similar techniques in the AdS/CFT
duality as in the topological CS/conifold duality which we discussed before to explore
AdS/CFT duality from a worldsheet point of view. The first tool which we need is a
gauged linear sigma model for the topological AdSs x S® superstring theory. Based on
an observation in [24, 25] it was shown in [23, 10] that there is a gauged linear sigma
model corresponding to the nonlinear topological A-model defined on the Grassmannian
% by gauging the theory under a U(4) gauge group after introducing the

following vector, chiral and antichiral superfields in the N = (2,2) superspace
VE(z, 2, kT, k78T, RT) , OB(2,2,kT, k7)), O%(z,z,RT,RT) (1.4.19)

where the indices R, S correspond to the gauge indices of the U(4) group and the index
Y= (I,A) is a global SU(4) x SU(2,2) index where A is a SU(2,2) and I is a SU(4)
index. The difference here with the CS/conifold duality is that the chiral superfields can

be eihter fermionic or bosonic according to their global index as follows

{@? ——  bosonic (1.4.20)

@ﬁ ——  fermionic



Chapter 1. Introduction 23

They are related to the non-linear sigma model fields © as follows
of = dp@h) L, %= dR@)! (1.4.21)

where we used the matrix notation of © superfields.

The gauged linear sigma model can be written as follows

S = / i / dt [B8(V)Ba% — 1V (1.4.22)

which after integrating out the gauge field V' it produces the non-linear action (1.4.9) in

the infra-red.

Having the gauged linear sigma-model one can study study the theory in the ¢ — 0
limit in which we have not access from the non-linear sigma model. The Vacua of the
gauged linear sigma model of AdS5x S° and also for more general backgrounds including
%% was studied in [23] and [10] and it was shown that in ¢ — 0 on top of the
Higgs branch corresponding to the phase in which the gauge field is integrated out,
we have the emergence of a Coulomb branch in which the gauge field is dynamical and

produces holes on the worldsheet. In principle, one can use the same technique of Qoguri

and Vafa for the case of CS/conifold [17] to prove the AdS/CFT duality.

The branch geometry in the case of P(S)Ux(éé‘él) 7y @ and S(S)(‘gf i@i)( 7y supercosets were stud-

ied in [23, 10] and it was shown that it produces the following geometries as the target
space of the topological model

PSU(2,2/4
570(5)x(so|(4),1) = ((C]P’ 3 ) //Sa

(1.4.23)

OSp(6l4
o - = (SO)? /85 x Z

where the double slash is used to stress the fact that it is not the Sy or S3 x Zs orbifold
but it is the set of maximal Sy or S3 X Zs orbits, meaning that the orbits whose elements

are not fixed by any non-trivial subgroup of Sy or S5 X Zs.

Also it was shown that the open sector of this topological A-model corresponds to the
free N' = 4 SYM theory. It would be very interesting to try to accomplish the same
analysis of the worldsheet CS/conifold duality for AdS/CFT using this construction.
For example, one has to see if it is possible to produce the 't Hooft expansion from the
worldsheet picture and the emergence of the holes on the closed string worldsheet by
checking if any hole produce a factor of ¢ in path integral. A possible prescription will
be given later together some other applications of the topological construction which

will be addressed some of them here in this thesis.
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Conformal exactness of the background: One can check easily by computing the
Ricci scalar of the topological A-model action (1.4.9) as the one-loop conformal anomaly

that the A-model does not have conformal anomaly at one loop.
R = log det(9d(1 + ©O)) =0 (1.4.24)

Being an N = 2 supersymmetric theory, the conformal anomaly and ghost anomaly
belong to the same superfield and the vanishing of the conformal anomaly at one loop
ensures its vanishing at any loop. So the A-model action is an exact conformal theory.
Since the A-model and the pure spinor action are related through a BRST trivial term, It
ensures also the exactness of any superstring background which admits such a topological

decomposition.

An exact check of AdS/CFT duality: One can use the A-model to do some exact
check in the A" = 4/AdSs x S® correspondence. As an example we will explore an exact
check between some D-brane amplitudes and the exact result for the expectation value
of circular Wilson loops in gauge theory side which their exact value was computed to
be given by Gaussian matrix model. In order to check the duality we use the topological
A-model to compute the correponding dual objects of the circular Wilson loop in the
superstring side. We first consider the A-model for closed strings on AdSs x S° and
its gauged linear o- model in the limit of small Fayet-Illiopoulos which corresponds to
the large curvature regime. In this limit as we saw the model reduces to the invariant

5 (3\4))4

quotient (CIP’ //S4. Tts maximal orbit under the cyclic permutation is isomorphic

o (314
to a single copy of the superprojective space (CIF’( 4

. We can consider then a mirror of
such a geometry in the form of a deformed fermionic conifold, dubbed superconifold [26].
This is actually the cotangent bundle over S(1?) and we get the closed B-model with
N-units of flux along the S, We can follow then the theory in a dual formulation
after a geometric transition analogous to the Dijkgraaf-Vafa one [14, 27]. In the super-
conifold case one calculates the minimal resolution as the resolved superconifold over
cpM = {(C(m) \ (0,0)} /C*. This will be discussed in detail in this thesis. Here the
dual theory is that of N D-branes wrapping the base manifold and therefore the theory
is described by the dimensional reduction of the holomorphic U(N) Chern-Simons the-

ory to the branes [15]. This results to be the hermitian N x N Gaussian matrix model

similar to the purely bosonic case [14].

In order to generate gauge invariant observables in the topological string, let us return
to the gauged linear o-model of AdS5 x S° and look for the A-branes there. These are

wrapped around special Lagrangian’s of the supercoset and their geometry is dictated
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FIGURE 1.12: The duality chain: the mirror symmetry maps to the B-model on the deformed
superconifold and the geometric transition to the resolved one corresponding to the Gaussian
matrix model.

by the possible supersymmetric boundary conditions. On top of the AdS, branes con-
sidered in [23], there are also other possibilities among which we choose that of the real
supercoset OSp(4*[4)/SO*(4) x USp(4). As such, the choice of Dirichlet boundary con-
ditions for open strings on such a submanifold breaks the original U(2,2|4) isometry to
Osp(4*|4). Notice that this is the same symmetry breaking which corresponds to placing
1/2-BPS circular Wilson loops in Minkowski space as in [28]. These D-branes can be
shown to correspond to D5-branes wrapping AdSs x S* geometries [29]. As such, these
states realize the Wilson loops in an alternative way — suitable for the large curvature
regime — compared to the string world-sheet with boundary condition along the loop
on the AdSs boundary. Analogue constructions were actually elaborated in [30] (and
references therein) from the point of view of the effective Dirac-Born-Infeld theory, while

it is obtained here directly for the microscopic theory.

We have then to follow these D-branes along the duality map described above (see Figure
1.13). Actually the Lagrangian cycle is mapped to a transverse non-compact holomor-
phic cycle in the superconifold geometry. Therefore, the computation of the correspond-
ing topological string amplitude gets mapped to the computation in the Gaussian matrix
model of the corresponding observables. The relevant observables are obtained by inte-

grating over the open strings with mixed boundary conditions similar to [31].

Non-compact

branes

4
AdSz x §” branes Mirror Non-compact Geometric Transition [}

Osp(4*14) > branes

Matrix model
observables

FIGURE 1.13: The duality chain for the AdSs x S*-branes. Following them we obtain
Gaussian matrix model amplitudes.

This construction therefore leads to express the topological string amplitudes for the
A-model on the fermionic quotient with AdSy x S*-branes boundary conditions as cor-
relators of Wilson loops in the Gaussian matrix model. As such, these amplitudes should
obey the holomorphic anomaly equations of BCOV [32]. It has been actually proved
that it is indeed the case in [33]. This not only applies to the construction in [14], but
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more in general also to the ones given in [34]. This consistency check strongly supports

the validity of our derivation. This problem will be addressed more in detail in chapter

(4).

Multiloop amplitudes computation: Having a topological A-model theory as
the theory which is exploring the BPS sector of the superstring theory, there is the
possibility to use the well-defined multiloop amplitude computations of the topological
theory in order to give a multiloop amplitude prescription for the pure spinor superstring
on AdSs x S® since we can construct a general n-point topological amplitude for genus

g > 1 as follows

39—3

Agl’_“in :/ dQZ/ <Oi1~-0in
Xy My k

. where O;’s are observables and b and p are the b-field and the Beltrami differential

(b, 1) @, uk)> (1.4.25)

=1

respectively. We have to integrate over the moduli space of Riemann surfaces with genus

g, which is denoted as M,.

Here in this work using the topological A-model of the AdSs x S° we try to give a
prescription for worldsheets with ¢ = 0, ¢ = 1 and g > 1 by introducing appropriate
picture changing operators to soak up the sigma-model fields. The main difference which
arise from the usual topological A-model sigma models is that here we have a fermionic

target space and the zero modes of the fields are different from the bosonic case.

This is one of the important possible applications of this construction in which we will try
to address a little bit in chapter (7). A more clear construction is very appealing since a
multiloop amplitude computation of the superstring on Ramond-Ramond backgrounds

is not known.

1.5 G/G principal chiral model and its deformation

Another step towards a better understanding of the zero radius limit of pure spinor
superstring on AdSs x S was started by Berkovits in [35] by showing that the topological
A-model corresponding to this limit can be obtained from a gauge-fixed version of the
G/G principal chiral model with G = PSU(2,2|4) with the following action

Soja = Str [ #znan(d - AT - 4)° (15.1)
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where J and J are the left and right components of the one-form J = g~ !dg with
respect to the worldsheet derivatives d and 0 and g is a group element of the PSU (2, 2|4)
supergroup and (A, A) are PSU(2,2/4) gauge groups on the worldsheet.

Using the same G/G topological action it was proposed in [36] that there exist another
gauge fixing in which we get a topological theory which its supersymmetric charge is

equal to the pure spinor BRST charge of the AdSs x S° superstring

Qtopological = qure spinor BRST (152)

Here in this thesis, based on a work in progress [22], the Batalin-Vilkovisky version of

the G/G principal chiral model will be constructed as follows
o _ 1
Spy = Sg/G+/d2z[Af4(dC+[A, C])A+AZ(dC+[A, C])+g§C’A—§Cz C, C’]A (1.5.3)

where C4 are the ghosts® and the fields with the star are the antifields corresponding
to the fields. These are new ingredients of the BV formalism which make it possible to
have a covariant description of the gauge-fixing based on the BRST quantization as we

will explain more clearly later.

Having the BV action of the G/G model, we can define different gauge fixing fermions ¥
which are projecting the field space into a Lagrangian submanifold ¥ in the field-antifield
space as the gauge fixing orbit by putting the following constraint on a particular antifield
o™,

ov

> P = ——
o0

(1.5.4)

Here we take two different gauge fermions ¢; and 2 which their resulting gauge fixing
produce two different topological theories, one is the A-model topological action which
we got from the decomposition of AdS5 x S° pure spinor action with a topological su-
percharge which is different from the pure spinor BRST charge. On the other hand,
following the second gauge fixing we will show that it will produce a topological action
with a topological charge equal to the BRST charge of the pure spinor superstring the-
ory on AdSs x S® as the gauge fixed G/G model. The fact that the topological A-model
and the second topological model are the gauge fixed version of the same BV theory
means that they are describing the same physics. Since the second theory is exploring
the cohomology of the Qpure spinor this means that all the physical states of the super-
string action might be encoded in the cohomology of the A-model action too. One can

in principle study the cohomology of the superstring using the topological A-model after

5The index A = {[ab], a.a, &} is a PSU(2,2|4) index.
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G /G model
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Gauge-fixing, Gauge-fixing,
Topological A-model Topological theory
Qtop 7é QZJS Qtop - st

FIGURE 1.14: Upon different gauge-fixings, the G/G principal chiral model gives either an
A-model topological action or another topological action with the same supersymmetry charge
as the BRST charge of pure spinor superstring.

passing through the bridge sketched in figure (1.14) from the A-model to the other topo-
logical theory whose supersymmetric charge is equal to the pure spinor BRST charge.
In principle we can use the cohomological techniques of the BV formalism including the
homological perturbation theory to analyze the cohomology of the superstring theory
in this topological language. The BRST charge splits according to a grading which is

named as the antighost number as follows
Q =90+ d+"more terms” (1.5.5)

where 0 is the Koszul-Tata differential with antighost number —1 and d is the differential
with antighost number 0 which their form we will give later. It happens that for G/G
model the expansion stops after the second term. One can use this decomposition of
the BRST charge to simplify the computations of the cohomology using homological
perturbation theory.

Another important issue is to study whether there exist possible consistent deformations
for the G /G principal chiral model. For a general BV action we can expand around a

particular classical solution of the master equation as follows
S =50 180 42502 4 ... (1.5.6)

where r is the perturbative parameter.

In order to find the first order deformation of the BV action we have to study the
relative cohomology group H (6|d) at ghost number zero as we will see later. A particular
deformation of the BV action is obtained after solving a set of descent equations. We
will see later that for the case of the BV action of the G/G principal chiral model with
G € PSU(2,2|4), there is a particular deformation which after the gauge fixing upon
the second gauge fixing in figure (1.14), it produces exactly the AdSs x S° pure spinor
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superstring action and the action of the topological theory deforms as follows

2
Stopological ’ Stopological +R Spure spinor (1~5-7)

where R is the radius of the AdS space. This deformation corresponds to turning on the
radius modulus of the AdS by inserting an integrated vertex operator which is equal to
the superstring action. In this way the topological theory which is the zero radius limit of
superstring extended with a perturbative term to the small radius limit of the superstring
theory on AdSs x S°. This small radius superstring action with the BRST charge of
the pure spinor superstring theory is dual to the perturbative limit of the gauge theory
side which we know it produces the 't Hooft expansion. We will discuss the possible
modification of the large N gauge/string duality from the original 't Hooft idea which
we explained before by adding these vertex operators to the worldsheet. Getting a more
clear understanding of this picture might help to give an exact worldsheet proof of the
AdS/CFT duality.

1.6 Résumé of the thesis

In this thesis we will try to build a new way of studying and understanding of the most
important examples of the gauge/string duality which is AdS/CFT correspondence. In
particular we will focus more on the particular example of N' = 4 SYM/AdSs x S°
duality and try to find a way of extracting more information about this duality from a
worldsheet perspective. We will see that using pure spinor formalism we can trade the
AdS/CFT duality into a duality which is similar to a topological open/closed duality.
One can then use the better known understanding of the topological string theory to
get deeper information about the superstring on the backgrounds which admit this
construction like AdSs x S° and also to study or even prove the AdS/CFT duality using
the techniques of the topological open/closed duality.

In chapter (2) we will review the pure spinor formalism of string theory. First we
discuss the Green-Schwarz formalism of superstrings and then we introduce the pure
spinor formalism for flat and curved backgrounds. In particular we will explore the
action for the supercoset backgrounds which admit a Z, automorphism like AdS5 x S°
we will see that we can write the action in a simple form in terms of the left-invariant

Cartan one-forms of the super-isometry group of the background.

In chapter (3) we will show how the pure spinor action on the maximally supersymmetric
backgrounds which admit a particular Z, automorphism decomposes into a topological

A-model action plus a BRST trivial term. We use a simple symmetry argument which
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was explained briefly in the introduction to find the map from the A-model action to
the superstring action. At the end it will be shown how this topological decomposition

can be used to proof the conformal exactness of these backgrounds.

In chapter (4), we start using the topological A-model as the theory which explores the
BPS sector of the superstring action and as the zero radius limit of the superstring action
towards studying the gauge/string duality. First we will show that we can write a gauged
linear sigma model based on the non-linear topological A-model action. This makes it
possible to study the physics in the limit R — 0 of the superstring side corresponding
to the perturbative regime in the gauge theory. We will study the vacuo of the gauged
linear sigma model and explore its branch geometry. We will see that the emergence
of the Coulomb branch will produce holes with Dirichlet boundary conditions on the
closed string worldsheet which makes it possible to give a worldsheet interpretation to
the AdS/CFT duality as a closed/open duality. We then explore the open string sector
of the theory both for AdSs x S° and the AdS, x CP? supercosets”. At the end we
will do an exact check on AdS/CFT duality by showing that an exact result in the
gauge theory side, namely the expectation value of some circular Wilson loops, can be
computed exactly from the scattering amplitudes of some D-branes in the superstring

action using the topological A-model.

Chapter (5) is an introductory to the Batalin-Vilkovisky quantization of gauge theories.
After introducing the Faddeev-Popov and BRST quantization procedures, we will give
a detailed introduction to BV antifield formalism. At the end we will see how one can
find a consistent deformation of a particular BV action which does not spoil the gauge

structure of the theory.

In chapter (6), we will write a BV action for the G/G principal chiral model with
G € PSU(2,2/4). Then we will study two different gauge fixings of G/G and will
see that one of them produces the topological A-model action and the other one gives a
topological action whose supersymmetry charge is equal to the pure spinor BRST charge.
We will then explore the possible deformation of this G/G BV action and we will see
there exist a particular deformation which in the second gauge fixing produces the pure
spinor superstring action on AdSs x S°. In this way we will produce the pure spinor
superstring as a deformation over a topological theory with the perturbation parameter
which is equal to the radius of the AdS space. We will give an argument to sketch the
AdS/CFT duality from the worldsheet point of view similar to the analysis of Ooguri
and Vafa on topological conifold duality.

0Sp(6]4)
m as a subspace

of the full superspace of the AdSy x CP3. We specify the difference with the tilde which we put on AdSy

"From now on, whenever we refer to AdS, x CP® we mean the supercoset
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In chapter (7), we will show that using A-model topological action we can give a possible
prescription to compute multiloop amplitudes in the pure spinor superstring on AdSs x
S5,

In the last chapter we will briefly discuss the possible open questions and problems on
this construction and also the possible extensions and applications of the following work

will be reviewed.

The contents of chapter (3) is based on [10], chapter (4) and part of chapter (2) are
based on the paper [37] and chapters (6) and (7) are based on [22].






Chapter 2

Pure spinor formalism of

superstring theory

Before 2001 there were mainly two standard formalisms to describe the superstring
theory, the Ramond-Neveu-Schwarz (RNS) and Green-Schwarz (GS) formalisms. Al-
though the RNS formalism has a manifest N=1 worldsheet supersymmetry, it lacks
manifest target-space supersymmetry makes a lot of problems for some applications.
For example, to compute amplitudes involving more than four external fermions, it is
almost impossible to compute in a Lorentz-covariant manner because of the complexity
of picture-changing operators and the bosonization procedure [38]. The other important
problem of this formalism is that there is not a well defined description for superstring
theory in the presence of Ramond-Ramond fluxes using this formalism. This is usually
the case for most of the backgrounds which we are discussing in the gauge/string duality
like superstring AdSs x S° with N units of flux as the dual of N' = 4 SU(N) SYM in

four dimensions.

On the other hand, in the GS formalism the target-space supersymmetry is manifest,
but we do not know how to realize the worldsheet supersymmetry. This prevents to
have a quantization of the theory except in light-cone gauge. Although we can use the
light-cone gauge to determine the physical spectrum of the theory, it is difficult to use it
to compute scattering amplitudes because of the lack of manifest Lorentz covariance and
the need to introduce interaction-point operators and contact terms. For these reasons,
only four-point tree and one-loop amplitudes have been explicitly computed using the
GS formalism [39]. Furthermore, the necessity of choosing light-cone gauge means that

quantization is only possible in those backgrounds which allow a light-cone gauge choice.

As will be discussed in this chapter, a new formalism for the superstring was proposed

by Berkovits [20] which combines the advantages of the RNS and GS formalisms.

33



Chapter 2. Pure spinor formalism of superstring theory 34

This new formalism was inspired, among other things, by the so called superembedding
description of superparticles, superstrings and superbranes. The superembedding ap-
proach was first proposed in [40, 41]. In these works, on examples of superparticles in
D = 3,4,6 and 10 dimensions, it was shown that the kappa-symmetry is a somewhat
weird realization of the conventional N-extended worldsheet supersymmetry N = 8 in
D = 10 dimensions. As a result corresponding irreducible set of Lorentz-covariant first-
class fermionic constraints was obtained by projecting the fermionic covariant momenta
D, along commuting spinor variables A* which are superpartners of 6. Berkovits was
the first who noticed these results and generalized them to the heterotic superstring in
[42]. It was shown later in [43], that the pure spinor condition is part of a so called
superembedding condition which is the key fundamental condition of the superembed-
ding formalism [44]. Later, Berkovits proposed the pure spinor formalism as a covariant
approach of quantizing superstring [20]. The superembedding origin of the pure spinor

formalism for the heterotic string was demonstrated in [45].

In pure spinor formalism, the worldsheet action is quadratic in a flat background so
quantization is as easy as in the RNS formalism. Since we have D=10 super-Poincaré
covariance, we can compute covariant tree-amplitudes and also we can quantize Ramond-
Ramnod backgrounds. It will also be shown how this approach can be used to quantize

the superstring in an AdS5 x S° background with Ramond-Ramond flux in particular.

We will see in the next chapters how the pure spinor formalism enables us to give a
topological realization of the superstring theory on some RR background which makes
it possible to give a worldsheet approach to study gauge/string duality and Maldacena’s
conjecture. This power originates from the new degrees of freedom which is used in this

formalism, namely the pure spinors.
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2.1 Green-Schwartz formalism of superstrings

The classical type II Green Schwarz (GS) superstring [46] describes the embedding of a

string worldsheet into a target type Il superspace with coordinates
M = (2™ 6%, 6%) (2.1.1)

The bosonic coordinates ™ locally parametrize the ten-dimensional spacetime manifold,
while the fermionic coordinates 6% and % have dimension of Majorana Weyl spinors
which is 16 real for the 10—dimensional critical superstring theory. In the flat case,
where one can identify the manifold with its tangent space, the 8’s are the spinors. In
the context of a curved supermanifold that we will treat later on, this will not be the

case a priori.

The difference between type ITA and IIB arises from the presence or absence of the
left-right chiral symmetry meaning to require either 6% = @, for type ITA or 6% = §*for

type IIB.

In Green-Schwarz formalism we can manifestly observe the N = 2 supersymmetry. The

target space supersymmetry in flat space-time can be written in this way

50% = €, 60 =& (2.1.2)

A~

ox™ = e+ ™o

where v’s are the ten-dimensional gamma matrices. In order to write a supersymmetric
sigma-model on the superspace we can write the superspace vielbein one-forms of the

target space
EA=diME A = (dxm + dOy™0 + o™, do, dé) (2.1.3)
Their pullback on the worldsheet can be written as follows
4 =o0:ME) |, 1d=0ME} (2.1.4)

whose bosonic components are known as supersymmetric momentum can be written as

follows
7 = 9z™ + 0070 + 90y™0 ,  TIT* = dz™ + 900 + d0y™0 (2.1.5)

The Green-Schwarz superstring action can be constructed from the square of this super-

symmetric momentum as its kinetic term plus a Wess-Zumino term which is quadratic
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in the derivatives of the fields and is necessary to maintain the conformal invariance
of the worldsheet theory. It also establishes a fermionic gauge symmetry named as

K—Ssymmetry.

The GS action gets the following form in conformal gauge

1
Sgs = = / d? 20 T2 + / Q3 (2.1.6)
2 b M

where X is the worldsheet and M is a 3-manifold which OM = ¥. The second term is
the WZ term which to construct it we can write the general N = 2 supersymmetry and

SO(9,1) invariant closed three-form in flat space which is
Q3 = fMNpEM/\EN/\EP (2.1.7)

with some constant fi;yp and one-forms EM which were defined in (2.1.3).

This three-form is closed and Lorentz invariant only for the following choice as it was

shown in [46]
Q3 = E™ A dfv,, A df (2.1.8)
It appears that not only 3 is closed (d€23 = 0) but also it is exact, namely
Q3 = d€2 (2.1.9)
where
1 ] . .
Qp = — 11" (e%ae - 97m89) + 507" 90) (mdB) — (= = 2) (2.1.10)
This should be integrated over the worldsheet to generate the WZ term.

The GS action (2.1.6) is covariant and spacetime supersymmetric. It is the difference
with respect to RNS formalism in which we have manifest worldsheet supersymmetry
since we build the model using worldsheet fermions but then we lost the covariance
and the spacetime supersymmetry. However the problem of GS formalism is related
to its quantization which does not let to find a covariant way of quantization with the
standard BRST quantization. The reason for this is related to the existence of second

class constraints which we will discuss here.

Let p.o be the conjugate momentum of #% which can be written in terms of other phase

space variables as p, = 0L£/600%. The Dirac constraints corresponding to this relation
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is given by the field d, with the following explicit form
_ m 1 m 1, m 9/
do = P2ee — (Ymb)a | 0™ — 597 00 — 597 00 (2.1.11)

One can use the canonical commutation relations to find the Poisson bracket

{do,dg} = 270%Hm (2.1.12)
Because of the Virasoro constraint

1
T = —iﬂmﬂm =0 (2.1.13)

the non-closure of the Poisson algebra (2.1.12), because of (2.1.13), implies that eight
of d,, constraints are first-class and the other eight are second-class constraints. The
eight first class constraints correspond to the fermionic k—symmetry. Since the anti-
commutator of the second class constraints d,, is proportional to an operators II instead
of a number, we can not use the standard Dirac quantization since it needs inserting
some operators. Except in a special frame in which the right hand side of (2.1.12)
becomes a constant like in the light-cone gauge, we can not easily quantize the covariant

GS superstring action.

In order to get ride of this problem, Siegel [47] made the open algebra of (2.1.12) to be a
closed algebra by adding the generators which arise via the Poisson bracket. This leads

to the following centrally extended but closed algebra

{dzaaﬂm} = 2(’7771)(1[3895 (2114)
{Hzma Hzn} = Tmn (2.1.15)
{dm,aeﬁ} = (2.1.16)

The important observation is that this closed algebra can be obtained from a free-field

action
1 _ _ ”
Spree = / 508 03" + 0 peg -+ D0 ] (2.1.17)

1 _ R
_ / @22 ST 1L + L7 +00%d- + 00° )

Las

which coincide with the GS action (2.1.6) for dq = dgy = 0. This reformulation does

not remove the mixed first-second class constraints of d, but it gives a simple free-field
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action which make it trivial to compute the following OPE’s

P ()a"(z) — —2" logly — 2|, paly)d®(x) = 6ly—2)"'  (2.118)

MWWHWJ@%%@,dMMMH@;%W%)

Using these OPE’s we can compute the conformal anomaly of the model and also the

ghost degree needed to cancel this anomaly. The pair (p,, ) contributes a factor of
—32 to the conformal anomaly, there is another 10 coming from ten x™’s. The total
conformal anomaly appears to be —22 which should be canceled with an appropriate
ghost sector which we will discuss in the next section the one suggested by Berkovits
[48]. Furthermore, looking into the Lorentz currents of the Siegel approach which are
Mmn = PYmnt, we can compute their OPE and it appears that they produce a double
pole with a numerator which is +4. In order that this matches with the RNS formalism
which is 1, the ghost sector should have Lorentz currents which produce a double pole
with a factor of —3 in the numerator. We will see that the pure spinors of Berkovits are

in fact the appropriate ghost sector which satisfies the above requirements.

One can also write the generalization of the flat space-time GS action to a curved

background as follows

= /dQZ(GMN + Byn) 0™ oz (2.1.19)

where Gy and Bjpsn corresponds to the background superfields.
Since we are interested to study superstring theory on maximally supersymmetric back-
grounds like AdS5 x S® and AdS, x CP3! and because it was shown that the theory on

these backgrounds can be formulated as sigma models on supercosets [3, 7, 8, 9, 10], here

we give the prescription to write the superstring theory on such supercoset backgrounds.

2.1.1 Structure of AdS; x S and AdS, x CP? supercosets

Two examples we are considering here are superstring theory on AdSs x S® and AdSy x
CP? which as we said before the superstring on these backgrounds was shown to be

written completely in terms of the following supercosets

PSU(2,2/4)

A 5 ’ 2.1.2
dSs x 5 SO(5) x SO(4,1) (2.1.20)
AdS, x CP? Osp(614) (2.1.21)

SO(6) x Sp(4)

By AdS4 x CP? we mean a subsector of the AdSy; x CP? superstring which captured by the supercoset

% sigma model. Even though it is not the full superspace of the superstring on AdSsy x CP?,

it is a particular subsector of it which deserves studying.
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which we investigate their Lie algebra separately here.

The algebra of the psu(2,2]|4) supergroup is the algebra of 8 x 8 matrices with bosonic

diagonal blocks and fermionic off-diagonal blocks as follows

(v 3)
M = (2.1.22)
Y B

which A, B, X and Y are 4 x 4 matrices which satisfy trA = trB = 0. The operation of

transposition for supermatrices is defined as follows

. At Yt
Mt = (2.1.23)
-Xt B!

that is compatible with the supertrace which is defined as StrM = trA—trB and satisfies

Str(MN) = Str(NM) (2.1.24)

The super antihermiticity MT = —M for the psu(2,2|4) implies [49, 50]

1 cAle  —ioYTt
M =yMy~! = ot ot =-M (2.1.25)
—1 g

where Y is a block diagonal matrix defined as

o 0
Y= ( 0 il ) (2.1.26)

satisfying 2 = 1l and T = ¥. The condition (2.1.25) implies

A=—-cAl¢ ., B=-B' | X=ioY! (2.1.27)
Choosing
10 0 0
0 1 0
o= (2.1.28)
00 -1 0
00 0 -1

implies that A € su(2,2) and B € su(4).

For the case of Osp(6|4) supergroup the bosonic blocks A and B are 4 x 4 and 6 x 6

matrices and the fermionic blocks X and Y are 4 x 6 and 6 x 4 matrices respectively. The
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supermatrices instead of anti-hermiticity condition (2.1.25) should satisfy the following

orthosymplecticity condition [50]

oMt = —M! (2.1.29)
HMH' = -M™!
where
Q 0 H 0
Q:< (4x4) ) , H:( (4x4) ) (2.1.30)
0 Qexe) 0 Hexe)

where the block matrices satisfy
2
Oy =-1u , Uy=—Uy , e =2 (2.1.31)
Using (2.1.30), (2.1.29) implies the following conditions on the blocks of M
AtQ(4) + Q(4)A =0 , BtH(6) + H(6)B =0 (2.1.32)

then (2.1.31) means that A € sp(4) and B € 0(6).

It appears that this supergroups admit a particular Z,4 automorphism which will become
very important in our construction of the action. This Z4 automorphism is generated

by the following conjugation
M — QM) =Q ' MQ (2.1.33)

where ) is a matrix with eigenvalues equal to i* for k = 0 to 3 and Q*(M) = M. For

the case of psu(2,2]4) it can be realized by the following matrix presentation [51]

A X JAYJ] —JYtJ
M = L QM) = (2.1.34)
Y B JXtJ JBYJ
where
0 —1
J = 22 (2.1.35)
JIDI 0

This is a Lie algebra automorphism which is compatible with the antihermiticity condi-

tion of psu(2,2[4).
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The action of this Z, automorphism decomposes the Lie algebra G of the supergroups
PSU(2,2[4) and Osp(6]4) as follows

G =Ho+ Hi1+ Ho + Hs (2.1.36)

where each subspace Hj, is the eigenspace of the operator Q with eigenvalue i*. The

subspaces Hg and Ho are bosonic while H; and Hj3 are fermionic which are related

through hermitian conjugation for the PSU(2,2|4) group.

Since Z4 is an automorphism of the Lie algebra, the decomposition (2.1.36) satisfies
[Hm, Hn) € Hintn (mod 4) (2.1.37)
Also the bilinear form is Z4 invariant an so we have
(Hm,Hn) =0 unless n+m =0 (mode 4) (2.1.38)

the more illustrative realization of this Z4 will be given later separately for the generators

of supercosets we will study.

2.1.2 Sigma model action for supercosets with 7Z, automorphism

Consider a supercoset G/ H which admits the Z,4 discussed before with G as the Lie alge-
bra of G and H € Hy. As in the flat space case, the sigma model for such backgrounds
is constructed from two terms, the kinetic term Sj;, and the Wess-Zumino term Sy z

as

S = / d%zLyin +/ REAY (2.1.39)
) M
where OM = ¥ and dW = 0.

In order to satisfy G invariance, both L, and W should be constructed in terms of the
left-invariant Cartan one-forms J = g~ !dg valued in the Lie algebra G for g € G and
can be expanded in the supergroup basis J = JAT where T4 are the generators of the
supergroup G. This comes from the fact that under the action of an arbitrary element
of the isometry supergroup G, the Vielbein transforms as tangent vectors of the stability

group H

J(y)g = J(y)h (2.1.40)
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for g € G and h € H. So any invariant of the stability group H constructed in terms of

J will be automatically invariant under the full group G.

To write the kinetic term for the supercoset, we can gauge the kinetic term of the GG

sigma model with a gauge field A which takes value in Hy as follows
Skin = RQ/szStr(J — A)? (2.1.41)

which is the most general quadratic action can be written in terms of the left-invariant

one-forms and the gauge field A to be invariant under G.

Let us decompose J in two pieces Jy € Hoy and Jg € (G\Hp). We can take the following

metric on G as
(A, B) = Str(AB) (2.1.42)
where together with (2.1.38) implies
Str(JaJo) =0 (2.1.43)

This means that under the gauge transformation g(z) — ¢(z)h(z) the currents Jg and

Jo transform as
Jo — h~Ygh , Jo— bt Joh +h7ldh (2.1.44)

where the term h~'dh can be canceled with a gauge transformation of the gauge field

A — h™'Ah + h='dh and so the action is invariant under this gauge transformation.

Because of (2.1.43) the action decomposes into two terms, one with the Lagrangian J2
and the other as (Jy — A)2. Integrating out the gauge field will cancel the second term

and we end with the following action for the supercoset

kin

SYH _ p2 / d?2Str(J2) (2.1.45)

The action (2.1.45) is not conformal in general and its conformal anomaly is proportional
to the Ricci tensor. So in order to make conformal theory as a string theory one should

add a Wess-Zumino term which compensates this conformal anomaly.

The general structure of the Wess-Zumino term for a supergroup is constructed from
a closed 3-form W which can be written in terms of the left-invariant one-forms of the

supergroup as follows

W = Str(J A[JAJ)]) = fapcJA N TP ATC (2.1.46)
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where fapc = gAngC are the structure constants of the supergroup and gap is a G

invariant bilinear form on the supergroup manifold.

In order to construct an exact three-form one can use the Maurer-Cartan equations of

the supergroup
1
dJ* = —ifg‘CJB AJC (2.1.47)

The possibility of constructing the exact three-form which arises from a two-form is very
specially depend on the fact that the supergroup has the Z, automorphism. This action
has been written in [3, 52] for the case of AdS5 x S° but it can be generalized to any
maximally supersymmetric supergroup manifold which admits the Z4 automorphism.
The reasoning is simply related to the fact that if we denote the projections of the

Cartan one-form J on the subspaces Hj, as
Ji = J|n, (2.1.48)

and because of (2.1.37), using the fact that W should be invariant under H € H),
then it comes out that the only three-form W which can be composed of the currents

Ja € {H1,Ha, H3} and stay in Hy is the following one
W = St?“(OéJl ANJLNAJo+ BJI3 A J3 A JQ) (2.1.49)

because any combination of three form Jy, A Jy A Jp € Hypgngp (mod) 4 and one can see
that (1,1,2) and (3, 3,2) is the only way of partitioning a number into 0 (mod) 4 out of
the numbers {1, 2, 3}.

Using the Maurer-Cartan equations and the fact that W should be closed

AW =0 (2.1.50)
forces the coefficients a and 3 to satisfy &« = —3. Then we can check easily that W is
also a d-exact three-form

W = dStT(Jl N Jg) = dW(Q) (2.1.51)

The sigma model action (2.1.39) can be written as follows
R? - - -
s=2 /d% Str(Jads + (14 k)i Js + (1 — k)Ju J) (2.1.52)

where k is the overall factor of the Wess-Zumino term and is determined after considering
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the conformal invariance of the background. Using background field method, the one-
loop conformal anomaly of the model was computed in [51] to be zero for k = +1/2
where the difference between and plus signs is just to change the role of the J; and Js as
covariant holomorphic or antiholomorphic currents. So we can take k = 1/2 and write

the sigma-model action for these backgrounds as follows

1. - - 1-
S = R? /d2z StT‘(§J2J2 + %ch]g + ZJ1J3) (2.1.53)
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2.2 Pure spinor action for flat background

As we have seen the main problem of the GS formalism were related to the fact that
we could not find a covariant way of quantizing the theory because of the presence of
second class constraints. Berkovits [48] implemented the constraints cohomologically
with a BRST operator disregarding its non-closure. He proposed the following left
and right-moving BRST operators which are constructed simply from the structure

Q@ = (ghost x constraint) as follows
Q= fvda ., Q= }[de& (2.2.1)

Also the non-closure of the second class constraints d, implies a lack of the nilpotency
of the BRST operator, we can maintain the nilpotency

1

1
2 _ — —_

%dz(/\’ym/\)ﬂm (2.2.2)
by putting the following constraints on the bosonic ghosts
AN =0 X%g%}ﬂ =0 (2.2.3)

These are named as pure spinors which are bosonic ghost degrees of freedom. They
are ten independent constraints and so the pure spinor has eleven complex degrees of
freedom which exactly compensate the -22 conformal anomaly of the GS action. We can
also introduce the conjugate momenta w, and wg corresponding to these ghosts and
add the ghost sector to the action (2.1.17) to get the following worldsheet action for the
flat background

S = /d%[;@ygmnmnéx" + 00%py 4 00%Ps — waOX® — waONY] (2.2.4)

The pure spinor constraints (2.2.3) prevents a direct computation of the OPE’s between
A and w but we can solve the pure spinor constraint by Wick-rotating the Lorentz
group SO(10) into a SU(5) x U(1) subgroup [48]. The sixteen complex components
of the A\ splits into (AT, Agp, A?) for a,b = 1 to 5 which transform as (13, 17()%, 5_%) of
the SU(5) x U(1) group. We can solve the pure spinor constraints (2.2.3) with eleven

complex degree of freedom v and u;, transforming as 15 and 10_5 respectively as follows
+ a 1 abede
AT=a s A=t A= oy e (2.2.5)

which satisfies the pure spinor constraints.
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Using the solution (2.2.5) we can compute the OPE’s of the theory. Although the OPE’s
of the unconstrained variables are not manifestly Lorentz-covariant, all the OPE’s and
other computations involving the pure spinors A can be written in a manifestly Lorentz-

covariant way.

Because of the pure spinor constraints, the conjugate momenta of the pure spinors

contain the gauge transformation
dwa = A"(YmN)a 5 0a = A" (vmN)a (2.2.6)

Because of this gauge symmetry, five out of the sixteen components of w,, can be gauged
away and since we want to preserve the Lorentz invariance, the momenta w, and wg
can only appear in the gauge-invariant combinations which are the Lorentz current and

the ghost current defined as follows

1
Nopp = §wa(’ymn)5a)\ﬂ o = wa\° (2.2.7)
_ 1. a8 . ha
Nmn - 2wa('7mn)ﬂ A ’ J wa)\
Using the solution (2.2.5), one can find the following Lorentz-covariant OPE’s
N ()30 (2) — ) TN () - (228
2(y - 2) ’ (y—2)
m[lNk]n _ n[lNk}m 3nn[knl]m
Nkl y N™(5) Ui Ui _
WM =2 W—2P
—4
J(y) Nmn(2) — regular ; J(y)J(z) — e
Nmn J(Z) -8
Non(Y)T(2) = ——5 ) J()T(z) —
WITE =5 =2 W =4 2 ~ =y
where
1 _
T = —iaxmaxm — Pa00% + wa A (2.2.9)

is the left-moving stress-energy tensor of the pure spinor flat superstring theory. We
can see from these OPE’s (2.2.8) that levels for the Lorentz and ghost currents are -3
and -4 respectively and the ghost anomaly is -8. From the first OPE it is obvious that
the pure spinor A transforms as a spinor under the action of the Lorentz current. We
can also see that the stress-energy tensor (2.2.9) has vanishing central charge because
the (10-32) contribution of (z™, 6%, 0%) cancels with +22 from the eleven (A%, w,) ghost

variables.

In order to define physical states of the theory we naturally use the BRST operator
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(2.2.1) and the physical vertex operators would be the ghost-number one elements of
the cohomology of ). Note that we assign ghost number one to A and zero to all the
rest. In this way easily we can show that the most general unintegrated ghost number

1 and (1,1) operators are the following ones for open and closed superstring theory

Vopenw® = AAq(z,0) (2.2.10)
Vatosed = A*A*Aqa(z,0,0) (2.2.11)

where A, (z,0) and Aya(z, 6, é) are spinor and bispinor superfields depending only on

the worldsheet zero modes of the =, §¢ and 00

These operators are in the cohomology of the BRST operator satisfying QVipen =
QViosed = 0 as their equation of motion and also they transform as 0V = QA un-
der gauge symmetry. This implies for the open vertex operator using the fact that

AN ()\'ym"pq’")\)%an%pqr , the following equation

QViopen = 7{ d2Ado NP Ay = XN Dy Ag = 0 (2.2.12)
where the OPE
D.f
do(y) f(z(2),0(2)) — 2.2.13
(W) f(x(2),0(z)) -2 ( )
is used in which the covariant derivative is defined as
0 1
Dy = — + =0°4".0,, 2.2.14
The gauge variation reads as d A, = DA for the spinor superfield.
The relation \*\° D,Ag = 0 implies
DaAg + DﬁAa = 'YO%Am (2.2.15)

for some vector superfield A,, which transforms under the gauge symmetry as dA,, =

OmA\.

Using (2.2.15), and the gauge invariance of the spinor and vector superfields, it was

shown [53] that there is the following solution for A, and A,

Aa(,0) = @ (Gan(r"0)a — O+ ) (2.2.16)

Ap(z,0) = e*(ap + (64™0) +---) (2.2.17)
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where k? = k™a,, = E™(vm&)m = 0. These, as the ghost-number one elements of the
BRST operators, were shown to coincide exactly with the super-Maxwell multiplet and

so this BRST operator produces correctly the massless spectrum of the open superstring.

One can write the integrated massless vertex operators as follows
Vopen = /dz[@HO‘Aa + 1" Ay, + "more”] (2.2.18)

where the "more” terms are needed to get BRST invariance.

Similarly we can investigate the massless closed string vertex operator by imposing

QViiosed = QViiosed = 0 which implies the following equations

fymnquD Agy =0 fymnpqu Avﬁ =0 (2.2.19)
whose solutions can be written as follows
Ay = —1DA%4, 2.2.20
ny 3 aVn 4By ( L )
1.
Ay = —gDa’}/n A (2.2.21)
Apn = 64D vam o A (2.2.22)
where the covariant derivatives are defined as follows
0 0 1.5
- 9B
D, = 200 + 0 'yaﬁa , Dg= e 29 @Bam (2.2.23)

which are the N = 2 D = 10 supersymmetric derivatives. These solutions are the
linearized N = 2 supergravity equations of motion which is written in terms of superfield

A, 5 and the linearized supergravity connections in terms of AaB [54].

In order to construct the sigma model for the type II superstring, it is useful to construct

the integrated vertex operator as follows

Vo = / @22[00°90° A,y + D0°TI™ Ay + I 00% Ay, + T Ay + "more’]
(2.2.24)

this is similar to the Green-Schwarz type Il superstring vertex operator except the
"more” term which is necessary for this to be BRST invariant. The superstring closed
vertex operator (2.2.24) can be seen as the square of the open vertex operator (2.2.18)
for the left and right movers because the theory is holomorphic-antiholomorphic for

flat background. This holomorphicity does not exist for more general backgrounds like
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AdS5 x S° and the closed supergravity vertex operator can not be seen as the product

of the open string left and right vertex operators [36].
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2.3 Pure spinor formalism for curved backgrounds

The pure spinor formalism for a general curved background which is constructed either
by adding the closed superstring vertex operator (2.2.24) to the flat background and then
covariantizing with respect to the N = 2 D = 10 super-reparametrization invariance or
by writing the most general action constructed from the worldsheet variables and retain

its worldsheet conformal invariance as follows

s = 2 / d%[%(GMN(Z)+BMN(Z))aZM52N (2.3.1)

2ma/

PB(Z)dody + E5(Z)dadZM + B3 (Z)ds0 2™
+ 0102 (2) A w30 ZM + Qe (Z) X040 2M
CONZ)N"wpdy + O (2) 3 0yd, + S (Z)N wpA i

+ o+ o+ o+

1
S R(Z)r] + 5y + Sy

where Sy and S5 are the action for pure spinors, r is the worldsheet curvature, and
(Guin = MBS B, Bun, ESy By Qs Qua®, P8, €27, E2) 5% #) are
the background superfields. Putting their value which comes from their supergravity
equations of motion, will give the pure spinor action for that curved background. The
superfields Ej(‘/[, By and @ are the supervielbein, two-form potential and dilaton super-
fields, PP is the superfield whose lowest components are the Type II Ramond-Ramond
field strengths and the fields C’g& and C’g” are related to N = 2 D = 10 dilatino and
gravitino field strengths. It was shown in [54] that one can get all the supergravity

constraints from the type II pure spinor superstring integrability conditions.

We saw in the previous section how to construct Green-Schwarz action on the back-
grounds which are constructed on supercosets like AdSs x S° and AdS, x CP? whose Lie
algebra admits a particular Z4 automorphism. Here we use that construction and write
the pure spinor action for those backgrounds, but we have to add the corresponding

ghost sector to the action in order to make it BRST invariant.

The worldsheet action here has also the pure spinor ghost sector on top of the matter
sector of the Green-Schwarz sigma model action. The matter fields are written in terms
of the left-invariant Cartan one-forms J = ¢~'dg where g : ¥ — G is the map from the
worldsheet to the superisometry group. The currents J and J decomposes exactly like

(2.1.48) into graded components.

The pure spinor ghosts and their conjugate momenta can also be expanded into the

generators of the supergroup and also according to the Z, grading [55, 56] as follows

A=XT, , w=wan®Th , A=X'Tx , @ =wanTa (2.3.2)
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where T, and Ty are the generators of G taking their value in the Lie algebras H; and

H3 respectively and 7% is the inverse of the Cartan metric.

The Lorentz currents are defined to be
N=-{\w} , N=—{\w} (2.3.3)

which take value in Hj.

The sigma model, being a G/H supercoset sigma model is invariant under the global
transformation dg = g where ¥ is a constant element of G. The left invariant currents
J and J are invariant by their definition. The sigma model is also invariant under the

following gauge transformation
dg =0Q+[J,Q] , 6A=[NQ] |, dw=[w,Q (2.34)

where ) € Hp which is an element of the Lorentz group.

one can check that the most general action invariant under the local symmetry (2.3.32)

and the global symmetry G has the following form [55]

S = RQ/dQZStT(aJQJQ + ﬁjljg + ’}/Jgjl + wo + WON + Nj() + NJ[) + QNN)
(2.3.5)

As we saw before, the pure spinor theory is invariant under a BRST symmetry which is

generated with the following BRST operator written in the Z4 grading

Q= jédz Str(AJs) + %di Str(ijl) (2.3.6)

This generates the following BRST transformations. Note that @) takes value in Hy and
so does not change the Z4 equivalence class. The BRST transformations can be written

in the following way

SGA=0 , &GA=0 , Suw=-J; , &o=—-J (2.3.7)
Spdo = [J3, N+ [JL A . 1= 0N+ [Jo, A + [Jo, A
Spdo = [JL, AN + [J3, A . 1= 0N+ [Jo, A + [Jo, A

N ={J5,A} &GN ={J,\}

Requiring (2.3.5) to be invariant under the transformations (2.3.7) and using the fact

that {N,\} = {N , 5\} = 0 because of the pure spinor constraints, one can solve for the
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coefficients «a, (3, v and a as follows [55]

i S == =1 2.3.
a , 10 171 @ (2.3.8)
which produces the following action

1 1 . - < . .
S = R2/d2z5tr(2J2J2 + 1N+ ng,Jl + wI + WO\ + NJy + NJy — NN)
= SGS + Sghost (239)

where the Green-Schwarz action Sgg was given in (2.1.53) and using the definition of

the currents N and N, the ghost action can be rewritten in this way
Sghost = R? / 2 2Str(wVA 4+ VA — NN) (2.3.10)
where the covariant derivative is defined as follows

VX =0X +[Jo,X] , VX =0X+[Jy,X] (2.3.11)

Using this general construction, in the next two subsections, we will explore more in

detail the form of the pure spinor action for the AdSs x S® and AdSy x CP? backgrounds.

2.3.1 Pure spinor action for superstring on AdS® x S°

To write the explicit form of the action for the AdSs x S° background we should first
study the structure of the % = % supercoset which was shown to produce
the correct sigma model for this background [3]. The action is written in terms of
the left-invariant currents J4 = (gfldg)A where g takes value in the supercoset and

A = ([ab], a, @, &) is the index of the generators of the supergroup PSU(2,24).

The 30 bosonic and 32 fermionic generators of the supergroup can be represented as

(Tiap) Tos Ter, Ts) where a = 0---9 is an index of the bosonic SO(5) x SO(4,1) Lorentz

and gg%g; X gggiﬁ; translation generators which are denoted by 7}, and T, respectively

and a,& = 1---16 are the indices for the fermionic generators T, and Ts. The bosonic
generators T, are the coset representatives for the bosonic manifolds AdSs fora =0---4

and S° for a = 5---9 respectively.
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The non-zero structure constants of the supergroup PSU(2,2|4) for the following super-

algebra
a a ab
{Tu, Tp} = fa5Ta, m%h@ﬁ,{n%%ﬁﬁm
[T, Tp) = f([zzd}T[cd]’ [Ta, Ta] = fflﬁaTﬁ’ [Ta, Ta) = faaTﬁ (2.3.12)

[Tty Tea] = Fistea T [Tan Tol = fogoTs [Ty Ta] = fon T

can be written in terms of the ten-dimensional + matrices «, which are the 16 x 16

off-diagonal blocks of the Weyl representation of the 32 x 32 10-dimensional I matrices

as follows
fas =" -+ Te3=15s (2.3.13)
mn 1 mn m'n’ m'n’
S =S ST = =20 n,
fga = (%)aﬁnﬁﬂ ’ fga = _(’Ya)d,[;nﬁﬁ
e h h
f[[alf[cd (ncdéggdf} - ?7cf5c[zg(53} + g 0980 — 77de5£g5f])
1 3 1 3
f[cd]e = 77@[0515] ) f[ﬁd]a = 5(7&02 ) f[[zd]a = (’ycd)ﬁ
where m,n = 0---4 and m’,n’ = 5---9. The non-zero components of the metric

nap = (Ta,Tp) = Str(TATg) are given by

Tab = "lba ) Nap = Mg = (701234)QB (2.3.14)
1 1
Mmnllpg] = 3 "Imp"lgn ’ M lp'q’) = = 5[/ Tg 0
where 7,3 is the Euclidean and Minkowski metric for a,6 =0,--- ,4 and a,b =15, -+ ,9

corresponding to coordinates of S° and AdSs respectively. The matrix yp1234 is defined
as the product of y—matrices 91234 = Y07Y1727374. Any group index can be raised or

lowered with the metric 45 or its inverse n? satisfying napn®¢ = 52.

As we see from the superalgebra (2.3.12), the supergroup PSU(2,2|4) admits the pre-
viously mentioned Z, automorphism which can be realized easily. The generators can

be classified according to the Z, grading as follows
T[ab] €EHy , To€eH , To,e€Hy , Ty €eHs (2.3.15)
Using (2.3.12) and (2.3.14), one can see that they satisfy

[(HimsHn} = Himgn (mod) 4 (2.3.16)
(Hm,Hn) = 0unless m+n =0 (mod) 4
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To write the superstring sigma-model action we can either use the general type II Green-
Schwarz action of (2.3.1) and generalize it to pure spinor formalism or to use the fact
that AdSs x S° is a maximally supercoset background which admits a Z4 in which we
wrote their sigma model action in the previous section. We will review both derivations
both in brief here.

Let us start with the following Green-Schwarz action for a curved background
R? _
Sas = 2/d2Z(GMN + BMN)azMOZN (2.3.17)

where ZM = (z™, 61, é“) are the coordinates of the target space with m = 0---9 and
yft =1---16. The background metric and two form B can be written in terms of the

Vielbeins as follows
_ a b _ 1A B
Gun =nawEyENy , Bun = EyENBag (2.3.18)

in which A = (a, «, &) are tangent superspace variables and 745 is the bilinear metric of
the PSU(2,2|4) supergroup and M = (m, p, j1) are coordinate variables. The Vielbeins

can be written in terms of the left-invariant one-forms J = g~ 'dg as
JA=EgozM | gl = g zM (2.3.19)

where w!®! is the spin connection and the one-form .J was expanded in the PSU(2,2|4)

basis
J = JO T + JOT, + JOT, + JOT (2.3.20)

The non-zero components of the Byp were computed from the supergravity equations

to be given as follows [3, 51]

Naa (2.3.21)

N | =

1
B,;=Bs, = §(W01234)ag =

Putting (2.3.18) and (2.3.21) into the action (2.3.17) one finds the Green-Schwarz action
for the AdSs x S° as follows

R[5 - 1. - 1 =
Sas = ? d Z(J2J2 + §J1J3 + §J3J1) (2.3.22)

using the Z4 grading (2.3.15).

In order to generalize this GS action to pure spinors, we can add the canonical momenta
(da, cza) for (6%, ée) fermionic variables and also the pure spinor ghosts and their mo-

menta (A%, w,) and (5\‘3‘, wg) which can be expanded according to the Z, grading [55, 56]
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with the following action [36]

S = Sgs+R? / d?2(—do T +dg J% +dods FOS —wa VI +104 VAS + Rapeq N1 N 1ed])
(2.3.23)

where F'*% is the bispinor Ramond-Ramond background fields strength which for AdSs x
S5 background is given by

FO% = (Y01234)* = n** (2.3.24)

and Rgpeq is the curvature of the supercoset which for a particular supercoset G/H is
given by [57, 51]

- - 1 - - -
Ripep + (B C) = gpfiplep +mifiplis + (B < C) (2.3.25)

where the covariant derivative is defined with respect the Lorentz currents
VA® = O + fp /N VAT = 0N f[ijb} Bﬂabl b (2.3.26)

The (A, B, - - -) are indices for the generators of H algebra which here is SO(5) x SO(4, 1)
with generators i, and (I, J, - - ) are indices for G\'H generators which are (Ty, To, T4)
for AdSs x S°.

Computing (2.3.25) explicitly for the symmetric supergroup PSU(2,2|4) gives

Raped = ina[cnd]b = M[ab][cd] (2327)

where the + sign is for the S° directions a,b = 0 to 4 and the — sign is for the AdSs

directions a,b =5 to 9.

Putting these back into the action (2.3.23) and considering the fact that the momenta
d, and dg fields are auxiliary because of the non-vanishing Ramond-Ramond flux, we

can integrate them out and get the following action

1 7 3 7 = ~ e ab] xr[c
S = SGS+R2/d2z<2naB(J°‘Jﬁ—JﬁJ°‘)—wavMerdw ~ap]jea NI N d]>

= Sas + Sar + Sghost (2.3.28)

where Sgr is the k—gauge fixing part of the action defined as follows

2 A 5 —
Sar = % /d%naﬁ(ﬂjﬁ—ﬂja) (2.3.29)
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The gauge-fixing action breaks the fermionic k-symmetry and adds kinetic terms of the
fermions and the coupling to the Ramond-Ramond flux and Sypes is the pure spinor

ghost part of the action.

The action (2.3.28) can be written in Z4 grading as follows
9 o - 1 - 1
S=R d Z(§J2J2 + §J1J3 - iJng) + Sghost (2.3.30)

As we saw before, the pure spinor theory is invariant under a BRST symmetry which is

generated with the following BRST operator written in the Z4 language
Q = %dz)\o‘da + %dz&add = y{dzna&vﬂ + j{dzﬁaﬂ (2.3.31)
Q = fdz Str(\Js) + fdz Str(\Jy)

which generates the BRST transformations (2.3.7). Note that the operator @ is Ho

invariant and so does not change the Z,4 grading of any field it acts on. The sigma model,

. PSU(2,2|4)
as a supercoset sigma model on the supercoset SOG)x S0,

transformation 0g = 3g where ¥ is a constant element of PSU(2,2|4) supergroup. The

is invariant under the global

Cartan one-forms J and J are invariant by their definition. The sigma model is also

invariant under the following gauge transformation
dg =0Q+[J,Q] , 6A=[NQ] , dw=[w,Q (2.3.32)

where Q € Hy = SO(5) x SO(4, 1) which is the Lorentz group.

Actually, as it was shown in [36] and [56], the action (2.3.30) is the unique action which
has the global and local symmetries which were mentioned and is invariant under BRST
charge (2.3.31).

2.3.2 Pure spinor action for superstring on AdS, x CP?

Here in this section we use similar techniques to construct the pure spinor superstring
sigma model action on the AdS, x CP? as a subspace of AdS, x CP? background which
got many attentions after it was discovered that they are related in somehow to the string
theory compactification of the M2-brane backgrounds. As we will see this background
has many similarities with the AdSs x S° background, one of which is that its sigma
model can also can be represented with a supercoset which admits a Z4 automorphism.
We will use this grading in order to construct the sigma model action. Here in this
section we will construct the pure spinor formalism on this background and we will

study and solve the corresponding pure spinor constraints according to [7, 8, 9, 10].
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By the superstring on AdS 4 xCP? we mean the superstring on the supercoset %
which as it was shown in [7, 8, 9, 10] it is a subspace of the full superspace of the

superstring on AdS, x CP? background.

Its Maurer-Cartan left invariant 1-forms can be expanded into the generators of Osp(6]4)

as follows
J =T+ Iy T+ T T j 4 H gy HY T+ T2 QI+ T A QI4+T Qo+ T14Q14(2.3.33)

where (177, T!7,TJ) are the generators of SO(6), Tiap) with A, B =1...6 decomposes
according to irreducible representations of U(3) as it will be explained later, and TJI

are the generators of U(3). Then, J;; and J!7 are the Maurer-Cartan forms associated

SU(4)
)

the coset. Similarly, (Va,Yap) With a,b = 1...4 are the generators of the anti de Sitter

to the generators of the coset and H IJ are the corresponding spin connections of
group SO(2,3) which as is shown in [9] they all turn out to be given by real symplec-
tic matrices and ~,, are the generators of the Lorentz group SO(1,3). The matrices
Qr,Q Id, Q[ and QD{ are the 24 fermionic generators where we split the symplectic in-
dices x = 1...4 into SO(1, 3) spinorial indices o, & = 1,2. The Maurer-Cartan 1-forms
of the symplectic group Sp(4,R) are related to the Maurer-Cartan of SO(2,3) with
the relation J® = Jo%3¥ + H%®~2/. The fermionic 1-forms J% are real and transform
in the fundamental 4-dimensional representation of sp(4,R) and in the fundamental 6-
dimensional representation of s0(6) with the symplectic invariant antisymmetric metric

€y = 101 @ 1L

Notice that 7% is the invariant metric on AdS; and g, is the U(3) invariant metric
on P3 and we denote by k;; as the Kihler form on P3. The index I can be raised and
lowered with the inverse metric gj T as JI = gj K gj L Ji 1, which is independent of J!7,

similarly we can make Jyz out of Jr;.

The osp(6|4) algebra H admits a Z4 grading with decomposition H = Z?:o H; as follows?

Ho = {HopHeg H7 ), o= {000,097
Hy = {Jad, i, J”}, My = {JIO‘, Jf"}. (2.3.34)
satisfying
[Hm, Hn] € Hintn (mod 4) (2.3.35)

2Sometimes the notation J will be used to denote the currents of the subset Hs.
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We can check that the bilinear metric is also Z4 invariant. Recall that the invariant

supermetric for Osp(6]4) is given by

Str(TapTcp) = 6acdpp — 6ApdCE (2.3.36)
Str(Tmy th) =  €Exz€ty + Ext€zy
Str(T, Ty) = €y,

Str(Qf‘Q%) = Jape™l.

where Ty g and T, are the generators of the bosonic subgroups SO(6) and Sp(4,R), and

% are the fermionic generators of the supergroup. It is convenient to adopt a complex
basis for the generators of SO(6). We can define Typ = Uﬁ)]gTIJ—i-U§,ABT1J+U1J,ABTU
where U ﬂ;, U j a5+ Ursap are the Clebsh-Gordon matrices mapping from 15 of SO(6)
to the representations 3(—1), 8(0), 3*(+1) of U(3), respectively. In the same way, we

decompose the fermionic generators into Q7 and Q"' of 3(—1) and 3*(1), respectively.

The metric of the supergroup can be written explicitly as follows

StT(T[JTKL) == (5IK(5JL - (5JK(SIL s (2337)
Str(T;/T¢) = 6,64,
Str(QFQY7) = ofe™.

while the other traces vanish. This means that the bilinear metric is Z4 invariant,
satisfying
(Hom, Hp) = Str(H,,Hy) = 0, unless m +n =0 mod 4 (2.3.38)

Using this Z4 automorphism similar to the AdSs x S® sigma model action, it was shown

that the pure spinor sigma model action can be decomposed in the following way
S = Sgs + Sar + Sghost (2339)

where S is the Green-Schwarz action was shown in [7, 8, 9, 10] to exhibit the usual
quadratic form after using the fact that it is possible to write the Wess-Zumino term as
a total derivative in this background which produces the following term as an integral

over a two-form on the worldsheet
2 2 1. - 1 7 7
Sas = R dzStr §J2J2 + Z (J1J3 — J3J1) (2.3.40)

Here J; = J|y, are the projections of the MC left invariant currents into different

subclasses according to Z, automorphism as it was defined in (2.3.34). The action can
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be written in terms of the left-invariant currents of the coset in the following form

_ 1 _ 1 _ .7 _ = .
Sas = R / d%[enyrJugJI gJt +Z(JafJalJrdeJaIfJaI-JaIfJMJ‘“I)] (2.3.41)

To this, one has to add a term which breaks k—symmetry and adds kinetic terms for
the target-space fermions and the coupling to the RR flux. This gauge fixing action Sgr

was shown to be given by [9]
Sap = R2/d2z <JM—J°”_+ JMJC”> , (2.3.42)
which gives the following action

S = Sgs+ Sar (2.3.43)

R I P .
= R2/d2z[6nyny + 5JUJ” + Z(JQIJO‘I + T i T + Z(JOJJO‘I + Jar )]

In order to write the pure spinor ghost part of the action, we introduce the pure spinors

()\IO‘,)\I—O"), (AT A&T) and their conjugate momenta (w, ! wdf), (War, Wg), belonging to

)

the H; and Hj respectively. The pure spinor constraints can be written as follows

AN =0 AN =0
Neap\i =0 Mee s\ =0 (2.3.44)
A e AT =0 MegsN) =0

To solve this constraint, we can use the following ansatz

AP = A%y, X =)\ (2.3.45)

)\OJ — Aaa[ )\Ioc — )\a@[,

1 ; 1.,
AY = XY N S DAY —opuy, ol — ol (2.3.46)
p o
ya 1AO¢ N 1Ad ~1 AT ~ AN
A _>7)\7 A _>T)\7 u = pu, vy — oV,
o)

where p, o, p,6 € C*.

Inserting these factorization into (2.3.44), we arrive to the following constraints

upol =0, ol =0. (2.3.47)
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So, the counting of the degrees of freedom gives 2 x (243 — 1) — 1 = 7 complex for
X and the same for A. The geometry of the pure spinor space can be easily described.
Using the gauge symmetries p and o we can fix the norm of u; and v’ as such u;a! =1
and vlo; = 1. Then, together the constraint upvl = 0, the matrix (ul,T)I,eUKﬁJvK)
is an SU(3) matrix. In addition, using the remaining phases of the gauge symmetries
p and o, we see that the variables u; and v! parametrize the space SU(3)/U(1) x U(1)
which is the space of the harmonic variables of the N = 3 harmonic superspace (It is

also known as the flag manifold F'(1,2, 3)).

Another way to solve the constraints (2.3.44) is decomposing the pure spinor into A¢ =
(A2, A%) and A% = (A% \Y) where a = 1,2. It is easy to show that the pure spinor
constrains become A% + A*A\% = 0, det(\) = 0, det(\) = 0, \eup\’ = 0 and
Aoe ag)‘B = 0. The first set of constraints implies that we can solve 3 parameters in
terms of the rest and we get a consistency condition det(A\y) det(AS) = 0. This is solved
by imposing the second and the third conditions. The latter also imply the existence of a
solution for the forth and for the fifth constraints. Again the counting of the parameters

gives 7 complex numbers.

The pure spinor constraints are first class constraints and they commute with the Hamil-
tonian, therefore they generate the gauge symmetries on the antighost fields w’s. In
particular if we denote by a4, 7]1 g nr; and by Kag, k!’ k1 the infinitesimal parameters

of the gauge symmetries we have that

Swh = naa A 4+ 20! ey Ag ;o Owar = Naa AT + 2015€44 P (2.3.48)
O = /{MS\?‘ + 2/{”6(% N swl = KaaA + 277”5&6 5\? o
One can introduce pure spinor Lorentz generators (N = —{w, A}, N = —{w, 5\}) € Ho,

bringing the couplings between the pure spinor fields and matter fields, as follows

Nag = wiAgr,  Nag = wrahp, (2.3.49)
_ I YIS o

NdB = QU(QI)\B), Nozﬁ —W(dAB)I,

N/ = wI A\ wpa Y

IS VRS W

They are gauge invariant under the transformations (5.1.5). Finally, we can write the

pure spinor ghost piece of the action

Sghost = R? / d%(wéw? + war VA o VA + 0 VA (2.3.50)

WD N5 Ry — g SOON, Ry S NINE)
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where the bilinear metrics 7 are given from (2.3.36) and (2.3.37) as

(@DO0) _ (o B3y b By LK L5 K (2.3.51)

Putting everything together we get the pure spinor action for AdS4 x CP? background

as follows
_ 1 _
S = R? / d?z [EIyJ"Jy + 51 gt (2.3.52)
1 . —f\ 3 iy .
’ (Jar T+ Jar 1) + . (Jar T+ Jar J°T)
wév)\? + wd[?)\d[ + ﬁJQIVS\IQ + l@évx%
— BN N 5 — n@B)9) NysNos — 'S N, Nfﬂ

The theory admits a BRST transformation with the following BRST charge

Q+Q = 7{<dz)\J3 + deJ1> (2.3.53)
_ 7{ dz (Mo + X3 Jyr) + 7{ az (A Jr + 5JE) |

The BRST transformation (2.3.7) for a general supercoset background admitting the Z4

automorphism can be written in the following form for the AdS, x CP? background

71 N I3 I35
6BJocﬁ = _2>‘(aIJﬁ) - 2J(OJ>\B) 5 53‘]@,6 = _2>\(d’]ﬁ.)] - 2‘](0'4)\[3)1’ (2354)
ot = (VA JNG + TGN, Spdf = (VAT + JA + I8¢
SpJf = (VNF + A +J%A¢, dpJ = (VN + JVAG 4+ g%,

I I 7 31 3 7l
6BJ0¢B = )\OJJB + Ja[)\g + JBI/\a + )‘BIJa ,

05d1s = 26 Nordps+ 2P dh 5,

5BJ” = 260"6)\ng1+26""5%[{]5\§,

dpwl = —JL, Spwar = —Jar ,
0pWar = —Jar, Opik = —J§,

the variations of N,g, Naﬁ'v Nag, Naﬂ' can be easily derived by their definitions (2.3.49).
Using this notation, we can assign a further quantum number by assigning 0 to Jug4, +1
to JI7, =1 to Jrj, —1/2 to Ja[,ja,l and +1/2 to ja],JdJ. This is the center of U(1)
inside of U(3). Notice that the symmetry is a Zs symmetry. The action, the BRST
transformations and the pure spinor conditions respect such a symmetry. It would be
nice to see if this symmetry corresponds to some geometric symmetry in the background

or can be used to simplify the superstring formulation.






Chapter 3

Topological decomposition of

pure spinor superstring action

In this chapter we show that the same way Berkovits and Vafa [23] obtained the embed-
ding of the A-model action in the pure spinor superstring on AdSs x S° background,
we can obtain the existence of such an embedding and decomposition for any super-
scoset background admitting a Z, automorphism, as is the case also for the AdS, x CP?

supercoset.

3.1 Topological A-model on a Grassmannian

Let’s consider the following Kéhler potential defining a topological theory on a fermionic

Grassmannian coset G/H [58]
K(0,0) = %m det (£(6)¢()) (3.1.1)

The £(©) € G/H is a representative of the fermionic coset G/H where for any h € H
and g € G satisfies

9¢(8) = £(0"N(8, g) (3.1.2)
For G/H = % coset and for G/H = %, we can present the coset

representative in the following form

63
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Ops(6]4) lyxs © - lyxs ©
G = = = %
=500 xS © (@ uws)’f (—é um)(?’”’)

_ PU(2,2/4) [ s O & PRV
G/H_SU(4)><SU(2,2) §_< 6 ) ,f—( o 1 4>(3.1.4)

where here © and © are fermionic matrices.

Using the convention i® = ©F, the Kihler potential (3.1.1) can be written as

i} (1 1
K(©,0) = %lndet ((:) i)( o i)

1 [/ 1-06 0
= —=Indet _
2 I 0 1+66

= 5o [det(1l - ©8) x det(1l + 60)]
= Trin(l+60) (3.1.5)

which in the last line we used the fact that
Tr(©0)" = —Tr(00)", forn >0, (3.1.6)

This Kéhler potential gives the following action which after writing the explicit form
of the superfields © and © it will produce the same topological A-model action as it
was found by Berkovits from a particular limit of the superstring and was proposed to

correspond to the zero radius limit of the superstring as we explained in the introduction.

The action of the A-model topological theory can be written as follows
S = /d22d4/-iT1“ [log <1 + Dot o-OF @‘ﬁ)} (3.1.7)

where k’s are the N' = 2 worldsheet supersymmetry coordinates and fermionic chiral

superfields 02" and ©* can be expanded as follows

at

) = 0% 4 2 4R Y kR (3.1.8)
0 = 0% +R.Z% +R.YY +RR_f*
where 6 and 6 are the fermionic degrees of freedom of the superspace and Z and Y fields

are bosonic twisted variables constructed from the bosonic degrees of freedom of the
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superspace and the pure spinors and their conjugate momenta. The fields fo‘+ and fo°
are auxiliary fields. The fact that there are 11 complex independent pure spinor degrees
of freedom is a very crucial fact which make it possible to construct such unconstrained

twisted-like variables as follows

Z0 = fOL HTNTT 20 = o HMAT (3.1.9)
YO{"’ — fgL;+Hmwﬂ+ ’ YO(_ — fWOZL/_B_ HmQZ)B_

where H™ = (H* H a/) are the bosonic cosets corresponding to the geometry of the

background! and f;jlzﬁ and fﬁ%f are structure constants of the supergroup.

The action (3.1.7) is an A-model topological action which after expanding its Ké&hler

potential and integrating over the auxiliary fields we get the following action

S = /d% [nagjajé—nafwya‘@ZQW%WJ/“VZQ‘—[Y, Z1l¥, Z1™| (3.1.10)

For the case of AdSs x S° the fermionic chiral superfield © belongs to the fermionic

supercoset
PSU(2,2/4)
© 3.1.11
€ SU@) x SU(2,2) (3-1.11)
which can be expanded in terms of the bosonic fields Z and Y as follows
Ok k) = 0F +reZY + v Y+ rpn f4 (3.1.12)
Oh(Ry, k) = O +Rr ZI+R Y{+R Rk _f]

where A = 1to4 and J = 1 to 4 label fundamental representation of SU(2,2) and
SU(4) respectively. The 64 and 6% are the fermionic coordinates of the AdSs x S°
superspace. The fields fj‘ and f; i are auxiliary fields and the other fields are twistor-like
variables encoding the bosonic and the pure spinor and their conjugate momenta degrees

of freedom expanded as follows

Z) = HL@@E @) NS . Zi=E @Y EN@N,  (3.113)
VA= HA@E @), Vi = (@) A @)

where A’ = 1to4 and J' = 1 to 4 are SO(4,1) and SO(5) spinor index respectively.

The H ﬁ, is a coset representative of % corresponding to AdSs with coordinates &™

I The bosonic cosets are either H® = E(O)Egg and HY = 288?; or H* = SUO(_SS) and H* = S‘?)"((f)l) for

AdSs x S° and AdS, x CP? backgrounds respectively.
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(4)

and H j, is a coset representative of the coset ggi@ corresponding to S° with coordinates

™.

The matching of the bosonic and fermionic degrees of freedom can be represented as

follows
I0R 2™, ™ _
. 16 C z4, Z4
11 — B 1.
C MY 3.1.14
e 16 C 04,04
16 C 64,67

where m = 0to4, m = 5to9 and a,& = 1 to 16. The bosonic degrees of freedom
(z™, &™) corresponding to the coordinates of AdSs and S® together with 11 complex

pure spinors (A%, \%) are encoded in the sixteen complex degrees of freedom of (Z .Z9).

The worldsheet variables for this Kahler N=2 sigma-model on AdS, x CP? are fermionic

superfields ©% and ©4 belong to the following Grassmannian coset

Osp(6]4)

0= SO(6) x Sp(4)

(3.1.15)

where A = 1,...,6 and = = 1,...,4 label fundamental representations of SO(6) and
Sp(4) respectively.

These N = 2 chiral and anti-chiral superfields can be expanded in terms of the fields of

the pure spinor superstring theory as follows
O%Y(ky, k) = 04+ K25 +k_YE + Rk fh, (3.1.16)
OFi,R) = 024+ R ZA+ R YA+ R R_fA,

where (k4, <4 ) are left-moving and (k_, i—) are right-moving Grassmannian parameters
of the worldsheet N=2 supersymmetry. The matching of the bosonic and fermionic

degrees of freedom can be represented as follows

I0R z4,x _
hor 2UR 74, 7]
7C N\ = _ (3.1.17)
z pA
o 24 R 0%,6;
24 R 64,07
x JA ‘o : Osp(6]4)
The 24 lowest components 0% and 0;' are 24 fermionic coordinates of the U(3)x50(13)

supercoset. The 24 bosonic variables Z% and ZZ' which are twistor-like variables com-
bining the 10 spacetime coordinates of AdS; and CP? with pure spinors ( e A2) which

the number of their degrees of freedom was calculated in [9, 10] to be 14.
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The twistor-like variables can be expressed explicitly as follows

25 = Hy(xa)(H (xp))d X o Z7 = (H N(ea))s Hi(zp) Xy (3.1.18)

T

Here HY,(x4) is a coset representative for the AdSy coset % and H ﬁ,(ac p) is a coset
50(6)

OR Similarly, the conjugate twistor-like variables

Yf‘ and YA] are constructed from the conjugate momenta to the pure spinors and f%

representative for the CP3 coset

and f2 are auxiliary fields.

3.1.1 From Kihler action to topological A-model action

Here we will see how we can get the A-model action from the Kéhler action defined on
the Grassmannian discussed before. To do so we have to expand the K&hler potential

and integrate over the fermionic coordinated of the worldsheet supersymmetry.

The Kihler action (3.1.7) for the case of AdSs x S° can be written as follows

S = / iz / d'xTx [log (1 + 69)] (3.1.19)

We can expand chiral © and antichiral © superfields in terms of their components as

follows [18] as follows

0% (2,2, iy, )= 07 () + K. 2% () +6 Y () +rpm [ (y)  (3.1.20)

O (2,2, ki, ko) = 0% () +R+ 2% (9)+R-Y (§)+R+R-f* (5)  (3.1.21)

where their components depend on coordinates (y,y), instead of the usual worldsheet

coordinates (z, z, K, k), defined as follows

Yy =Z+1ikoR ) =2z — IKOR (3.1.22)

|

where 2 x 2 matrices o and ¢ are defined as

) 0 0 B ) 01
0 =01 +1i0y = , T0=o01— 109 = (3.1.23)
10 00

and o1 and o9 are the following Pauli matrices

1 0 2 1 0 1
o1 == , 09 =— 3.1.24
' 2<i0> ? 2<—1 0) (3.124)
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This implies
Yy=Z+kKk_Fyq , Y=2z—KiR_ (3.1.25)

Using this new set of coordinate makes it possible to expand around z and z and integrate

over the fermionic worldsheet supersymmetric coordinates. Defining

0 (2,2z,Fky,k_) —0* (g) (3.1.26)

g = @O‘+(z, Z, Ky, K_) — 6" (y) , ¥&
which are linear in x and K, implies that
v =0 0O =0 (3.1.27)

So at most two ¥ and two ¥ can appear in any expansion around z and Z.

We can expand these superfields as a function of y and 3 around z and Z as follows
U (2, 7, K, k) = /@+Z“+(z,2)+/€_}70‘+(z,2)+/<;+/<c_f°‘+(z,2) (3.1.28)
t Kk Ry0Z% (2, 2)+ k4 R_00% (2, zZ)

U (2,2,K,F) = Ry 2% (2,2)+R_Y* (2,2)+ R R f* (2,2) (3.1.29)
+ Rk Ry 0ZY (2,2)+K_F 00% (2, %)

Using (3.1.27), a general Kiihler potential K (©,0) can be Taylor expanded as follows

_ -1 I
K(0,0)=K(0,0)+ K.+ ¥ +K, U° 5 Ko - T° 0P +§Ka+ﬁ+xpa*qfﬁ*
-1 - 1 -
+ Kyt g0 0P +§Ka+,g+,a7\1/a*\pﬁ*\1/a 5 Kam ot O g gt
1 -4
o Kt gt o p- 0 U000 (3.1.30)

where we used the following definitions

2
96°7 99

Ka+ = i,l:{(g, 0) ; Kaf - —L,K(é7 9) ) KOCJF,OC* =

K(0,0)(3.1.31
o0t 00« (9,0)(3.1.31)

and also similar other definitions as derivatives of the Kahler potential for K+ g+, K,-g-

and K+ g-o+ and so on.

In order to integrate over the fermionic coordinates x and &, we have to expand the
Kahler potential (3.1.19) using (3.1.28), (3.1.29) and (3.1.30) and keep only the terms

which has a factor kyk_RKyRk_. The kik_F4k_ components of (3.1.30) can be obtained
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using the following identities

vl ke =0 (3.1.32)
U0 |k gk =0
VU | e =Y 020 Y020 T P 190 907
L R R =Ll Al L ;7
T ae =20 YT T Y 007 2o
N A I /L LA T

Putting (3.1.32) into the Kéhler potential (3.1.30) we get the following sigma-model

action

_ e 1 _ _ _
S = / dQZ[Kaw_aea*aeﬁ + Kot gramp- 2% Y 27V (31.33)

Kor g (YP 029 47 025 4 o 77
1 _ _
3Kapmat (ZY7 5 4 Y007 2%

1 o
+ g Kat gra- (27 VPP 1Y 007 2

The equations of motion for auxiliary fields f"+ and f® can be written as follows

1 - — | - =5~ 3—
fa+:_§[(a+va Ksi e o-20VP0 o :§K“+»O‘ Ks 5o+ Z2° YP™ (3.1.34)

where K" is the inverse of Kot o
Putting (3.1.34) in (3.1.33) we get the following action
S = / d*2K 1 - [éea*aéﬁ* +YOvZE pyP vz (3.1.35)

1

+ ZKa+7ﬁ7 K5+”8+7a7’67 Z5+ Yﬁ+ ZQ7Y571|

where the covariant derivatives are defined as follows

1 sig ot 5 _
Vo= 040" TR K e 5007 (3.1.36)
_ _ 1 _ _ o

vV o= a+§na+a KK, 5 50000 (3.1.37)

For a general Kahler potential K, the second derivative

K 0 K(6,0) (3.1.38)

R e
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is the Kéahler metric of the manifold whose coordinates are 6 and 6. The metric is

invariant under the Kahler transformation
K(0,0) — K(0,0) +g(0) + g(0) (3.1.39)

The coefficient of the quartic term ZZYY in the action is actually the curvature of the

corresponding Kéhler manifold with metric (3.1.38).

The explicit expression for derivatives of the Kéahler potential can be obtained after

using K = Trlog(1 + 06), for example
Kot - =[(14+00) 0+ @ [(1400)" 1], (3.1.40)

Also we can write the curvature term.

The next step is to relate the A-model action (3.1.35) with the one we wrote before as

%. ‘We have to relate the Kahler metric

and curvature to the supercoset geometry.

a sigma model on the Grassmannian

The left-invariant one-forms J = g~'dg for g € PSU(2,2|4) can be expanded into the
generators of the PSU(2,2|4) supergroup as follows

J=JMTy + J Tor + J T, (3.1.41)

where (T, T+, T, ) are generators of PSU(2,2|4) supergroup. The bosonic generators
Ty for M = ([abl],a) with a = 0 to 9 are the diagonal block generators corresponding
to SU(4) x SU(2,2) group and the fermionic generators T+ and T,- are related to the

usual T, and T,- generators as follows
T+ =To+1i1ls , T,- =T, — i1} (3.1.42)

In (44 4) x (4 4+ 4) matrix representation of PSU(2,2|4) a supergroup element can be

represented as follows

A X
G=| "t o (3.1.43)
Yixa DBaxa

the generators Ty, 4, T, and Tjs correspond to the upper-right, lower-left and the block-
diagonal matrices respectively. Hence, we have the following algebra for PSU(2,2|4)

+ —
[To1, Tot) = FrpaeToe > [Tor, Tom) = Frpa-T- (3.1.44)
{Tor Tyg-} = fals-Tu [T, Tn) = finTr
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The non-zero components of the metric are the symmetric and antisymmetric tensors

Ny and 7,4+ g Tespectively.

An element of the Grassmannian Lo o(2:24) ) instead can be represented as follows

SU(2,2)xSU (4

g(0) = exp ( 2_ g ) (3.1.45)

where each block is a 4 x 4 matrix. This can be written as follows

o (1+00): 0
9(0) = ( 7 (14 56} ) (3.1.46)

where _ _
sinh v/(( _ _sinh /(¢
VS5 0= (V5> 1.
o , ¢ % (3.1.47)

and 6 and @ are the fermionic coordinates of the target superspace. The inverse of the

b=¢

group element is obtained as follows

(3.1.48)

g1 (0) =g(—6) = ( (1+ 99)% "y )

0 (1+00)

Using (3.1.46) and (3.1.48), we can write the left-invariant one-forms as follows

JM = M geT §pt (3.1.49)
M= Mgt age (3.1.50)
JT = feteT (14 00)2)M o6 (3.1.51)
JO = et (1 4 00)2)M a0 (3.1.52)

One can check that the kinetic term of (3.1.35) can be written in terms of Maurer-Cartan

one-forms as follows

Kot 000" 00° =110 Jgot oo (3.1.53)
Also we can check that
1 N ~ o
gM 517()4th)¢ Kot.8 Ka7767’6+835 (3.1.54)
_ 1 _ _ _
T N (3.155)

putting all these in the action we can reproduce the following A-model action

5= / @2 1,51 TP = Y V2 iy o VO V2 Y, Z][¥, 2] (3.1.56)
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where the covariant derivatives are defined as follows

V =9

V = 0+4J (3.1.57)
+J (3.1.58)

This is the A-model action which is capturing the zero radius limit of AdS5 x S° super-

string.
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3.2 Pure spinor superstring on supercosets with 7Z, auto-

morphism and the “bonus® symmetry

Consider a supercoset G/H which admits a Z, automorphism under which its generators
can be decomposed into invariant subspaces H;,¢ = 0- - - 3. The matter fields of the sigma
model can be written in terms of the left-invariant currents J = ¢g~'dg, J = g~ '0g,
where ¢ € G. The left-invariant currents are decomposed according to the invariant

subspaces of the Z4 into J = Jy + J1 + Jo + J3 as follows

Ty (3:2.1)
where the left-invariant current J = ¢~'dg is expanded by the generators of the super-
algebra as ,
J = Ji =TT g + T T + JOTa + JOTs, (3.2.2)
i=0
here, JBl € H are the spin connections of the supercoset and J™ and (J,J%) are the
bosonic and fermionic components of the supervielbein respectively. The generators of
the supercoset are (T[ By Tm, Ta, Ts) which are the Lorentz generators, translations and
fermionic generators respectively with the following non-zero structure constants

A [EF)] [AB] m
m'r[z B]’ f[AB][CD]’ fa@ o fad”s (3.2.3)

The sigma model is invariant under the global transformations dg = Yg, ¥ € G and
under the BRST transformations, using the fact that (AB) # 0 only for A € H; and

B € Hy4—;. It can be written in the following form

S = R2/d22 <;J2J2 + ijlj:; + zjgjl + wIN 4+ WA+ NJy + NJy — NN> ,
(3.2.4)
for any supercoset admitting a Z4 automorphism including AdSs x S° and AdS, x CP?
examples as discussed also before (see also [59, 55] for non-critical examples based on

different sets of pure spinor variables).

On top of the global bosonic isometry group Gp of the supergroup G, the A-model
action has a 'bonus’ chiral symmetry exchanging left and right movers which appears
in the sigma model as a symmetry between left and right moving fermions J* and J¢.
Apparently (3.2.4) does not have such a symmetry because of the different coefficients

of J1J3 and J3.J; terms. To promote the symmetry of (3.2.4), one can add an additional
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term to the action including a —%Jg Ji to cancel the asymmetry of the fermionic currents
together with its appropriate companion in order that the whole term stays a BRST-

closed term

Strim'al _S + Sg

2 ~ ~
}; /d2 (CanmJ” — (J3J1) + (WVA+ OV — NN)) (3.2.5)
R _ e e iy .
=5 [ @2 (Con ™ T 40,577 J° + w0a VA" +3aVA® = qapop NFINICP])

where S, = %2 [ d?2(wV A+ OV — NN) is exactly the ghost part of the original action
(3.2.4) and nxy = (I'x,Ty) = Str(TxTy). The requirement of BRST invariance of the

Strivial Will determine the unknown coefficients Cy,,.

Using the classical equations of motion
VA—[N,A]=0, VA—[N,\=0, (3.2.6)

and the identities [N, \] = [N, A] = 0 coming from the pure spinor constraints, it can be

shown that under the BRST transformations, S, and S,, vary as follows

R? = = A% - - <
dB(Sy) = o> /d22<—J38)\ — J1OX — J3[Jo, A] — J1[Jo, A])

R2
2
R2
2
s (wﬁ +JmABY ) T 4,507 (wa S+ JnRGf ) ] (3.2.8)

/d% Do (—JPVAY 4 JoVAP) (3.2.7)

55(Sm) = / 42z [c,,m (mﬁ Fag " TN f“) T4 Copa ™ (j%ﬁ Fog '+ TN B")

which gives

1 1 m Jo n 1 m T 6
ﬁ(sB(Strivial) = icmnt] J A/Bfag +*7]OLBJ J )\ﬁf ﬂ, (329)
1
+ 5(,*Wwf’kfﬂxaf m oy L 5l JngBaf e
1 _
- n Jay B m - m T& ,6 n
+ 2C’an J N fop —i-sznJ AP f&ﬁ
= 0,
which admits the following solution for d5(St iviqr) = 0 after using the Jacobi identities

for the structural constants

1705 Fra® YA £,05)
2 Mg N '

Conn = (3.2.10)
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The first and the second lines of (3.2.9) vanish because of the identity ngq = Str (T3Ts) =

f o f,% and the terms in the last line vanish because of the following Jacobi identity,

L foy + £ L2 = £ f 0 (3.2.11)

which implies
NOXT(f oty + Sl ) = 0. (3.2.12)

So Siriviar of (3.2.5) with Cy,,, given in (3.2.10) is BRST-closed. We should also show
that it is really a BRST-trivial term satisfying Siiviar = @QX, up to the equations of
motion. In order to do that, we introduce the antifields w}, and @} which after adding

the term
R? / d2znaf’w*aw;, (3.2.13)

the full action stay invariant under the new BRST transformations,

Qua = —Naat®, Qwa = w}, (3.2.14)
Qg = Wy, Qs = —NaaJ”

Qu. = n,a(VA* =[N, A%, Qui=0,

Qi = 0, Q" = naa(VA* — [N, A]Y),

QN =[5\, Q'N = [w", )],

QN = [, N, Q'N = [@*, )],

These BRST transformations are nilpotent off-shell.

Now, considering the following identities we can make a BRST-close term which its

BRST variation produces Sgiviai-

QQ (Cond"J") = Crp{QQ(J™J"+Q(J™Q'(J")}

+ G {QUMQM) +I"QQ (M)}

= Coun {VASNF T 4 TN N 0

t Coun {TPT NN fo O f 5™ T TN L0 f
+ Con {JOTENN [ f 5+ TETNON L S o}

= 20, J T (AN, (3.2.15)



Chapter 3. Topological decomposition of pure spinor superstring action 76

also we have

QY (NN) = QRN +QN)Q(N)+Q(N)Q (V) + NQQ' ()
+

= (VA= [N, ), AN + [ 3, N][J1, A]
+ [w*, N[o*, Al + N[(VA = [N, A]), A (3.2.16)
and,
QQ (WN@EY) = QQENE@N) +Q W)@
+ QWNQ(@N) + (wNQ'Q (@)
= SUTA = [N A NG@A) + 5[ AL+ e, A,
+ %(wx)[(w—m,m,m (3.2.17)

to get these identities, we used the equation of motions, (3.2.9), (3.2.11) and (3.2.12)
together with the following Jacobi identity

fongl - ngéfMgl = fukfpd (3.2.18)

where M, N, --- = {m, [mn]} and a, 3,--- = {a, &}. From (3.2.15), (3.2.16) and (3.2.17)
one can see that there exists a linear combination of them such that Siiviai = QQX up

to the anti-ghost term, that is up to the momenta equations of motion

X_l/d2 _ [1CanmJ” 4(m)( W) —

NN 3.2.19
2 Naa AAAS ( )

Ly
8

The sigma model action after adding Si,yiq; to the pure spinor action becomes

Sy =

R 2| 19,50%,6) F )

_ mn | JTT™ 3.2.20
5 5 ST +n ( )

1 _ _ . .
+5 (s = I Ty + wVA+GVA - NN)]

The analysis follows the considerations in the literature, but it is derived in a very

general way.



Chapter 3. Topological decomposition of pure spinor superstring action 77

3.3 Mapping pure spinor superstring action to topological

A-model action

In order to relate S, and the A-model action, we should relate the supercoset element

9(2,0,0) € & with the Grassmannian coset element G(6,0) € G%

We can define the following bosonic twisted variables out of the bosonic coset elements

H(x) € % and the pure spinors as follows

7% = [HN=H" @)\ f 8 (3.3.1)
2% = (BN = (H AP @)A0f, 0
Yo = [H ' w = H WP )’ wﬁf[AB}g”

\/ A
Ye = [Hd]= B](x)nﬂﬁ Bf[AB}ﬂa
The supercoset element g can be parametrized as follows

9(x,0,0) = G(0,0)H(z) (3.3.2)

where G(0,0) = 0 Tat0°Ta gnq H(z) = e*"Tm in which (T, Ta, T4) are the generators
of the supercoset G/H.

According to (3.3.2), we can also decompose the left-invariant currents J = g~'9g. The
pure spinor action can be written into H and G components, corresponding to the purely

bosonic part and purely fermionic part of the supercoset as follows

J=H'9H + HY(G'0G)H (3.3.3)

Its components J = J™T,, + J[AB]T[AB] + JT,, 4+ J%T}; can be written as

JM = @YoM + (HYM(GTOG)PHC fn B frg” (3.3.4)
Je = (HHYM@TOa)PHN fy g f N (3.3.5)
where M, N,--- = {m,[AB]} and o, 3, -- = {a, &}.

The A-model action can be written in terms of the fermionic superfields (6%, ©%) which
was defined before as S = [ Trln[l + ©0]. Here we assume that for the Grassmannian
supercoset G /Gy, there exist a gauging in which the supercoset elements G can be

written in the following form

Gm =1, GWBl=1, G*=¢ G*=¢° (3.3.6)
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Finally, the A-model action, after integration over the auxiliary fields can be written in

this form
Sy = t/dzz[(G_lﬁG)(G_léG) +YVZ+YVZ - (YZ)(ZY)} (3.3.7)
_ / &2 [10a (G10G) (G10G)™ + may (G10G)M (G10G)N

+ 00aY (V)™ + neaY(VZ)S
— Nnfaa ﬁgn [(YdZa)(ZB?ﬁ)_i_(Zayol)(YﬁZﬁA)}]

where,

(VZ2)* = 0Z+[G71aa, 7] (3.3.8)
= 0Z°+ (G 1aG)\PIZ0 £, g

(V2) = 0Z+[G7'0G, Z)

_ 56 —1 [AB] 3 &

= 02°+(GT'oG) P20 f o

To relate the pure spinor action (3.2.20) and the A-model action (6.2.17), we use the
explicit form of the twisted variables (3.3.1).

Using (3.3.1) and Jacobi identity (3.2.18), one can write

YO0Z = [H ', w]o([H,\) (3.3.9)
= [H™'w] ([0H, N + [H,9N])
= woA+ [H '0H, w)]|
= woA+ [H'OH, w\ + [H Y (G'0G)H,w\] — [HH(G'0G)H, w)]
= woA+ [J,w\ - [(GT'0G),Y Z]

which after using (3.3.8), we get

YVZ = wil+ [J,w)] (3.3.10)
= wa DA + TP N fip 5% 4 N T wa X £
= waVAY + nmnnaﬁjmwa)\’yffy[?

similarly, one can see that

YVZ = @A+ [J, 0N (3.3.11)
_ .~ 936 [AB],~ 383 & aB ymo~ 35 ¢ n
= wWgON*+J Wa A f[AB]B + D™ J wa)ﬂfw

= WaVA 4 ™ T AT f
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The last term simplifies as follows

(vZ)(2Y) = (" wlE, ) (A, @) (3.3.12)
= (wA)(wA)
ABJ[CD B, ya) (. 3a B
nABIED) (fa[AB]wﬁ)‘ ) (wfz)‘ fa[cp})
Putting everything together, we obtain the A-model action in terms of the pure spinor
fields as follows
1 5 _ _a _ . .
Sa = t/d2z[2naB(JﬁJa — JJP) + wVN+ VA - NN (3.3.13)
0™ TMwe AT f,2 + ndBme&Sﬂfm%

The equations of motion for w and w comes from the variation of the action under the

transformations dw, = fagl)\ﬁAm and dws = fdg,”j\ﬁ]\m can be written as follows
(fmi)\a) (jm - Uﬁﬁfﬁaquj\d> = 0 (3.3.14)
(frnaA®) (J’" - nﬂ”fgéf‘wwa) =0 (3.3.15)

After inserting these equations (3.3.13), the second line of (3.3.13) produces the following

kinetic term for the bosonic Maurer-Cartan currents,

Aj\d L« )\[3 Jé
y L8O 000

— + D | ST 3.3.16
2 o A (3310

Then the action (3.3.13), becomes

Y& « 3
1105(A e )N F ) 1 - 5
— ¢ dQ[faﬁ na 77 Im S I L LR S S O
Sa / 7| 5 %B)\a)\ﬁ +n J"J +217a5(J JY—J*J7)
FwVA + DVA — NN} (3.3.17)
which coincides with the action (3.2.20) after identifying ¢t = $ R

We conclude that the pure spinor superstring action on supercoset backgrounds which
admit a particular Z4 automorphism can be decomposed into a topological A-model

action and a BRST trivial term as follows

Spure spinor = SA—model + QQX (3318)
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Since the supersymmetric charge of the topological A-model theory is different from
the BRST charge of the pure spinor formalism, the cohomologies of the two theories
are not coincide? but the topological theory captures at least the BPS sector of the
superstring theory. In principle, one can study the BPS sector of the superstring theory
using the topological A-model theory. The A-model topological theory was conjectured
to describe the superstring theory at zero AdS radius which is the dual of the free gauge
theory. We will see that we can extend this picture by adding some vertex operators
to the topological theory which turn on the radius modulus in the string theory side,
corresponding to turning on a nonzero coupling constant in the gauge theory side. This

picture will be used to study AdS/CFT duality from a worldsheet point of view.

2Actually as we will see later the two theories can be seen as different gauge fixings of the same
theory, so the cohomologies seems to be related non trivially.
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3.4 On conformal exactness of superstring backgrounds

Using the A-model action defined on the fermionic Grassmannian, we can compute the

one loop conformal anomaly of the A-model as its Ricci scalar which is given as follows
R =logdet(0e0g K) (3.4.1)

where
K(0,0) = trlog(1 + 60) (3.4.2)

Writing the superfields with their matrix indices as ©™/ and ©;, where (r, s) and (i, )
are different kind of indices corresponding to upper and lower diagonal blocks of the

supergroup element. Then we can write

dorsdo, K = Do [@“[(1 +60) 1/ (3.4.3)
= OI[(1+60)™1] — 0" [(1+66) |"Oun[(1+60)"]]

but we have
6r —O"(1+600) "0, = [(1+6006)7!] (3.4.4)
which implies
Oer-0p, K = [(1+00)'7[(1+66) '] (3.4.5)

This a tensor product of two matrices with different kind of indices. We can compute

the Ricci scalar using the fact that
trlog(M) = log det(M) (3.4.6)
So we have

R = logdet(0g0gK) (3.4.7)
= logdet[(1 4 ©0)7!] +logdet[(1 + 6O) ]
= —trlog(1+ ©0) — trlog(l + ©O)

We can write the Taylor expansion for the logarithm as follows

log(14+T) = i (_lr)lnHT” (3.4.8)

n=1
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Then (3.4.7) can be written as follows
R=—t i EU" 00y + (00)") | =0 (3.4.9)

= —tr = S
n
n=1
where in the last step we used the fact that

Tr(©0)" = —Tr(00)", forn >0, (3.4.10)

since © and © are fermionic.

So the A-model is conformal at one-loop. Being a N = 2 supersymmetric model in

two dimensions, ensures the cancellation of the all-loop conformal anomaly since the

conformal anomaly and the ghost anomaly belong to the same multiplet.

The pure

spinor superstring action and the A-model action are related through a BRST-exact

term then the N = 2 supersymmetry non-renormalization theorem implies its all-loop

conformal invariance in the A-model term, this conformal exactness in the A-model also

implies the conformal exactness in the superstring theory.



Chapter 4

An exact check of AdS/CFT
duality using the topological
A-model

4.1 Gauged linear sigma-model for the superstring action

AS we saw in the introduction, to prove the open/closed duality for the d = 3 Chern-
Simons/resolved conifold duality, we used the fact that sigma model could be written
as a gauged linear sigma model in which the Kéhler modulus ¢ of the A-model becomes
the Fayet-Illiopoulos parameter. This is useful when we want to study the limit ¢ — 0
limit in which the nonlinear A-model becomes unable to explore the physics. On the
other hand the gauged linear sigma model for the resolved conifold can develop both a
Coulomb phase and a Higgs phase, and the Coulomb phase was interpreted as D-brane
holes which corresponds to loops in the Feynman diagrams of the Chern-Simons gauge

theory.

In this section, we suggest that a similar technique which might be useful to give a
worldsheet derivation of the Maldacena’s conjecture as a duality between N = 4 d=4
super-Yang-Mils and the AdSs x S® sigma model. We will write the A-model action of
AdSs x S? studied in the previous chapter as a gauged linear sigma model with a U(4)
worldsheet gauge field. Then, we will argue that in the limit where ¢ — 0, a Coulomb
phase develops which can be interpreted as D-brane holes. Furthermore, it will be argued
that these D-brane holes are associated with gauge-invariant N' = 4 d=4 super-Yang-
Mills operators. In particular an exact check in the AdS/CFT will be discussed using

this construction.

83
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4.1.1 Gauged linear sigma-model of AdSs; x S° background

The worldsheet variables are fermionic superfields @’; and (:):{1 where A = 1 to 4 and
J =1 to 4 label fundamental representations of SU(2,2) and SU(4) respectively. These

N = 2 chiral superfields can be expanded in components as

OF(ky, k) = O3+ ki Zt +r Y 4ok f7 (4.1.1)
J
A

(R+,f€_) = éi+R+ZX+R_YA]+R+R_fAZ
where (K4, k4 ) are left-moving and (k_, k_) are right-moving Grassmannian parameters.

The 32 lowest components 9? and 5}11 are related to the 32 fermionic coordinates of the
% supercoset which parametrizes the AdSs x S° superspace. The 32 bosonic
variables Zj‘ and Z j are twistor-like variables combining the 10 spacetime coordinates
of AdSs and S® with 11 pure spinors (A4, %) of the pure spinor formalism. They can

be expressed explicitly as follows

Z§ = Hi(@)(H(@)] A} (4.1.2)
Zy = (H'@)i Hi (@)X

where the pure spinors are written in SO(4,1) x SO(5) notation. Here HY, is a coset

gggiﬁg where A’ =1 to 4 is an SO(4,1) spinor index

and H 7,(&) is a coset representative for the S° coset gggg% where J' =1 to 4 is an SO(5)

spinor index. Similarly, the conjugate twistor-like variables qu and YA] are constructed

representative for the AdSs coset

from the conjugate momenta to the pure spinors and ff and f jl are auxiliary fields.

As discussed before, the U(2,2]4) invariant action for the topological A-model can be

written in the N = (2, 2) superfield notation as follows
S = t/d2z/d4ﬁTT [log (87 + ©46%)] (4.1.3)

where t is a constant parameter proportional to the o-model coupling R?Adss /o

U(2,24)
U(2,2)xU (@)

a nonlinear o-model action based on a Grassmannian can be obtained as the Higgs phase

This A-model is based on a Grassmannian coset and as it was shown before,

of an appropriate gauged linear o-model.

This is obtained by introducing a U(4) worldsheet gauge field VSR, together with an

appropriate set of matter fields transforming in the fundamental representation of the

gauge group

(I)%(Z,Z,I{+,K,_), ‘i)}g(Z,Z,I_Q vR_) (414)
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where R, S = 1 to 4 are local gauge U(4) indices, and X = (A, J) is referred to the
global A and J indices for U(2,2) and U(4) respectively. Note that ®4 is a fermionic
superfield whereas @}72 is a bosonic superfield. The gauged linear sigma model can be

written in U(2,2]|4) , N = (2,2) and gauge invariant notation as
S = /dQZ/d‘l/@[fbg (eED%: —tTrV) (4.1.5)

where t enters as the Fayet-Illiopoulos parameter. When t is nonzero, one can show
using the equations of motion that the action (4.1.5) is equivalent to the A—model
action (4.1.3) with the following parametrization for the chiral and antichiral superfields

@’}‘ and @;{1 as follows
o) = pp@}) . 6% = BHEH) ! (4.1.6)

As it will be shown later, in the small ¢ regime, the above gauged linear o-model is

equivalent by applying an observation at the end of [25], to the geometric quotient

+ (314)\ 4
((CIP( | )) //S4. we will concentrate on the twisted sector corresponding to the cyclic

o (34
permutation. This is equivalent to a single copy of the twistorial space (CIP’( | ).

4.1.2 Gauged linear sigma-model of AdS, x CP® background

The nonlinear A-model action of this background was studied in the previous chapter.
Similar to AdSs x S° background, we can write a gauged linear sigma model correspond-
ing to this background. The two-dimensional N=(2,2) linear gauged sigma model can be
described by a set of matter fields which are chiral and antichiral superfields CI% and @g
gauged under the real worldsheet superfield VSR taking value in the SO(6) gauge group
where R,S,... = 1,...,6 are gauge field indices and ¥ = (x, A) is a global Osp(6]4)

index. We can take ®% to be fermionic while q)é are bosonic superfields.

The gauged linear sigma model action can be written in a Osp(6]4) invariant way as
= 1
S = /dzz/d4n [@%(ev)fg@% +tTrV + —222 (4.1.7)
e

where ¥ = DDV is the field strength of the gauge field V and is a twisted chiral
superfield.

As it is clear from the matter content of the theory, it contains 24 fermions and 36 bosons
and so the theory actually has conformal anomaly if we ask the bosons and fermions to
be gauged in the same representation of the gauge group as we did. But still the theory

has a conformal IR fixed point corresponding to the large volume and gauge coupling
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limit which after integrating out the auxiliary equations of motion for the gauge field

we obtain the non-linear sigma model (when e — 00)

S _t/dQZ/d4/€TT' [@foy] (4.1.8)
which can be rewritten in terms of the meson fields ©% and ©2 defined as
r=on@)E,  ef= (@ )jek (4.1.9)

which gives exactly the A-model sigma model which was obtained from the pure spinor
string for AdSs x CP? as

S = t/d22/d4nTr In [1+ ©6)] (4.1.10)

The FI parameter corresponds to the Kahler parameter of the supercoset Grassmannian

Osp(6[4
target space %'
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4.2 Vacua of the gauged linear sigma-model

The small radius limit of the gauged linear sigma-model is convenient to study the
perturbative regime of the gauge theory since the introduction of the Coulomb branch.
The presence of the gauge group which is an additional degree of freedom in the gauged
linear sigma model with respect to non-linear sigma model, resolves the singularity of
the non-linear sigma-model in the small radius limit. To study different phases of the
theory, we should solve the D-term equations of the gauged linear sigma-model. It is
enough to focus on the fields which have conformal weight zero because they are the only
fields which can get non-zero expectation value. We analyze the gauged linear o-model

following the standard techniques of [18] and [60].
The gauge superfield VSB in Wess-Zumino gauge can be expanded as follows
VE=oBlrk i +68kiRy +.. 4Kk Rk DE (4.2.1)
Similarly we can expand the fermionic and bosonic superfields as follows
OF = R+ rvr+..., OE=0B 1k o84 (4.2.2)

where we just kept the components which have zero conformal weight after the A-twist
because they are the only fields which can attain nonzero expectation value and so can
appear in the D-term equations. Here the index X refers to both x and A indices. Note

that (qﬁg, ()8 o%, ) are bosonic and ( B wl‘%, oE %) are fermionic fields.

Using the vector superfield and the usual superderivatives Dy and D, one can define

the covariant superderivatives as follows
Dy = e_VDie‘W, 'Di = €+VD:‘:€_V (4.2.3)
Then the field strength 3 which is a twisted chiral superfield is constructed as follows

Y = {D.,D_} (4.2.4)
= o0+...4+ K1k_Rpk_ (D™ Do + [o,[0,5]] + [0 vm, 0])

which produces the following gauge field kinetic term in the Lagrangian
1 4 =
Lyquge = —2 d*kTryY (4.2.5)

1 , 1
= gTT (—DiaDZa — 5[0, 5% +.. )
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Also we have the following FI term Lp g

Lpy = it/d/i+dn_TrE —Z'{/dli_dli+TTi (4.2.6)
K_=ky=0 Kye=Rk_=0
(-0 gm)
= Tr|{—rD+ —vn
2

Now we can consider the matter part of the gauged linear sigma model consisting of
the kinetic terms for the fermionic and bosonic superfields which carries the kinetic and

interaction terms for the bosonic and fermionic fields as follows
kin

Ly = / d'k®fe’ op (4.2.7)
= (D) (Do) + FAF — ¢a{o.a}§on + 3DJeR + ..
Similarly we can write the kinetic term for the fermionic chiral superfields,
L, = / d*kdle 03, (4.2.8)
= —(Di¢) (D’ %) + FiFfy — ¢3{0,5}§% + 07 DEoR + ..
We can see that {0, 5} appears as the mass for the matter fields and so whenever o gets

VEV, the matter fields become massive and can be integrated out in the effective theory

as it happens in the Coulomb phase.

The potential of the theory can be written as,

1 _ _
Ly = 55TrD?=rTrD+¢5D5¢h + 65 Do (4.2.9)
1 _ - _ - _
~ 52 Trlo.of — #i{o.0}¢% — di{o.a}Ho

After eliminating the D-field by using the following D-term equation

Dy = ¢3¢% + didn — 0% (4.2.10)
one obtains the potential
2
(& - w - — - _
Vo= [0k + a0k —rog] (6765 + olies — rof] (4.2.11)
1 e R e
+ 5z rlo o + 67{o, o} Sk + di{o, o} Son

The space of the classical vacua is given by putting the potential to zero up to gauge
transformations. We can study the vacua in two regimes, when r > 0 and not small,
the constraint V' = 0 implies that ¢ = 0 which implies the following condition as the

classical vacua for the matter fields
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The space of the classical vacua is given by putting the potential to zero up to gauge
transformations. We can study the vacua in two regimes, when r > 0 and not small,
the constraint V' = 0 implies that ¢ = 0 which implies the following condition as the

classical vacua for the matter fields
D} = ¢3¢% + 5¢n — 0% =0 (4.2.12)

For the % it means actually that the vectors (¢, @bg) for any R =1,...,4 are

orthonormal. Any such vector, after diagonalization, is subject to the constraint

6 4
ST 0a6t D 6u0" =1 (4.2.13)
A=1

z=1

5[4)

which defines a supersphere SG).1 The space of classical vacua is the gauge invariant

subspace of the product of such vectors [25] giving the orbit space
(SCIY3/ /Sy x Zy (4.2.14)

obtained by dividing the action of S3 x Zs on the three copies, where Zs is the simulta-
neous reflection. This phase corresponds to the Higgs phase of the theory because the

gauge symmetry completely breaks.

For the gauged linear sigma-model of AdSs x S one can rewrite the D-term equation

as follows A A
D oadt +> 650" =r (4.2.15)
A=1 J=1

where J and A are SU(4) and SU(2,2) indices respectively. This D-term equation
defines a projective space CPCY), The space of classical vacua is the gauge invariant
subspace of the product of such vectors [10] divided by the S; permutations over the
four copies. The Higgs phase is given by the following superspace

((C]P’(3|4)>4 /)84 (4.2.16)

If one looks into » — 0 limit, on top of the above Higgs phase, one can have another
possibility as it is explained in [17] and [23]. In this phase, the O'}S% is unconstrained but

the matter variables are constrained to satisfy

OF = ¢5 6% + PAdRr =0 (4.2.17)

'The conditions for a supermanifold of being a super-Ricci flat are discussed in [61].
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The mass term for the fermions and bosons are written as
¢3{0, 5} 5ot + ¢alo o} e (4.2.18)

And so whenever the o gets expectation value the matter fields become massive and one
can integrate them out from the theory. One can easily compute the 1-loop correction
to the condition (4.2.17) which should be proportional to r by doing the path integral
with a cut-off py,

6 4
1 1
= — dp—— dp—— 4.2.1
O = =X [y + X [ ooy (210
1 {o,5}

| _

() =

{0,5} = 2u? exp (—277) (4.2.20)

which has a solution as

After integrating over all the matter fields, the classical vacua V' = 0 is given by condition

Tr[o,5)? = 0 which together with (4.2.20) gives the following solution,
o = oppexp (—2mr) (4.2.21)

where here o is an orthogonal 6x6 or 4x4 constant matrix for OSp(6|4) and PSU (2, 2(4)
supergroups respectively. This means that ¢ can be diagonalized and for each diagonal
component of the ¢ in the small radius regime, one gets a copy of the SG4) or CcpGlY

in each case as it was seen before.
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4.3 Open sector and D-branes

Let us now pass to the discussion of observables and D-branes which are made after
putting consistent boundary conditions on the fields in our theory. In order to discuss

open strings and D-branes we have to see how to put the boundary conditions.

4.3.1 Open sector of topological AdSs x S°

We take the boundary conditions for open strings in the coset o-model as follows 2
(OH4 = g ok (4.3.1)

where 3 § and € are four by four constant matrices such that ¢ = ae™! and § = bé~*

with a and b complex numbers such that ab = —1.

In order to preserve the correct 1/2 supersymmetry, we chose

5:(1())@(0 _1> and e:<10>®<1 0) (4.3.2)
0 1 1 0 0 1 0 -1

This breaks the U(2,2[4) isometry to OSp(4*|4).

Notice that this remnant symmetry is exactly the same symmetry preserved by 1/2 BPS
circular Wilson loops in N' =4 SYM of Drukker and Gross [28].

These A-branes wrap the Lagrangian submanifolds of the target space, as

OSp(4*[4) U(2,204)

—_ 4.3.3
SO*(4) x USp(4) U(2,2) x U(4) ( )
which is the fixed locus under the anti-involution
6 —deld and © — 'O (4.3.4)
which is explicitly a symmetry of the o-model action since ' = 6t = —§ and ¢! =

¢ = ¢ in our case. Recall that SO*(4) = SU(1,1) x SU(2) and USp(4) = SO(5) (see
[62]).

2Note that these boundary condition are different from the ones which was used in [23] as (©")4 =

OB 6K Tt can be shown that these two type of boundary conditions are producing different types of
D-branes.
3We work in the conventions ©f = i@, O = i© and (z/)C)Jr = —¢ty! for fermionic ¥ and (.
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In the gauged linear o- model the boundary conditions (4.4.81) become
(@N)B5t = k1E3Y  and  (1)Bets = kiLdY, (4.3.5)
which is the fixed point of the transformation
O — (8N (@NgrE and Of — (€Nz(@N)FRE (4.3.6)

while (e") — keV k' and & is, because of the reality condition on the fields, a constant
element in O(4). This breaks the gauge symmetry to ones preserving x, namely A € U(4)
such that A'kA = k.

4.3.2 Open sector of the topological AdS, x CP?

For the supercoset Osp(6]4)/SO(6) x Sp(4), we reduce it as follows: the bosonic subcoset:
SO(6) x Sp(4) is reduced to U(3) x Sp(2) and the fermionic part is halved. This achieved

by using the boundary conditions
e =2 gtev ey =627/ 09, (4.3.7)

where jjl is the complex structure on P3. The tensor ¢ reduce the subgroup Sp(4) to
Sp(2). We recall that using the symplectic matrices A of Sp(4,R) as the 4 x 4 matrices
satisfying ATeA = € where € = ioy ® 1, we can see immediately the two subgroups
Sp(2,R) x Sp(2,R). In the above equation, we have selected the diagonal subgroup
Sp(2,R). The above equations are invariant under Sp(2,R) x U(3). Notice that we have
identified on the boundary of the Riemann surface the fermionic variables of the subset
Hy = {021, ©%} with those of the other subset Hz = {©%,©%}. This simply reduces
the 24 fermions to 12 ones. The new set of states can be represented in terms of the

supercoset
SU(3|1,1)
U@3) x SU(1,1)
(where we have used the isomorphism Sp(2,R) ~ SL(2,R) ~ SU(1,1)). The 6 fermions

are in the (3,2) or in the (3,2) representation of the bosonic subgroup.

(4.3.8)

In addition, we have to recall SL(2,R) ~ AdSs, which can be seen by parameterizing a

group element of SL(2,R) as follows

Xa+X: Xo-X
g= 1AL 40— a2 (4.3.9)
~Xo—-X; X1 -X;



Chapter 4. An exact check of AdS/CFT duality using the topological A-model 93

with the condition detg = X2, — X7 + X§ — X2 = 1 which shows that the SL(2,R)
group manifold is a 3-dimensional hyperboloid. The metric on AdS3 is given by ds? =
—dX?, +dX?—dXZ+dX3, which is the invariant metric on the group manifold. Then,
we have that these boundary conditions imply a boundary theory of the type N = 6
super-YM/Chern-Simons on AdS3 space.

There is another possibility which is given by the following boundary conditions
0l =26l 0% 0% =6267 09, (4.3.10)

In this case the supergroup Osp(6]4) is broken to Osp(6]2) x SO(2). Notice that using
the delta 67 in place of J7 we do not break the SO(6). In addition, the subgroup
Sp(4) is broken to Sp(2) x SO(2). Now, using the isomorphism SU(4) ~ SO(6), we
can see the coset SO(6) x SO(2)/SU(3) x U(1) ~ S7/Z, where p defines how the U(1)
is embedded in the groups of the numerator. This observation would help us to lift
the D-branes solution to KK monopoles of M-theory. The fermions are halved by the
boundary conditions. So, the boundary open topological model can be described as the

Grassmannian
Osp(6|2) x SO(2)

U(4) x Sp(2)

(4.3.11)

This solution deserves more attention.
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4.4 An exact check in AdS; x S°/N =4,d =4 SYM duality

As we have seen, the AdSs x S° string admit a formulation in the pure spinor framework
[20, 56]. In particular we have shown that to calculate 1/2-BPS string amplitudes, one
can use a topologically A-twisted version of the N' = (2, 2) o-model on the fermionic coset
U(2,2/14)/U(2,2) x U(4) [21, 23, 37, 10]. This non-linear sigma-model can be obtained
by an auxiliary gauged linear one which has been proposed as the correct framework to

describe the string theory in the large curvature regime.

Here in this section we collect a set of arguments which lead to reproduce the known
perturbative gauge theory results alluded above by making use of this topological de-
composition proposal. Our line of reasoning goes as it was explained in the introduction
chapter. Here we will do the steps more in detail and will show that there are some par-
ticular Wilson loops in the gauge theory side which can be computed as the amplitude

of some D-branes in the string theory side.

4.4.1 Mirror symmetry, superconifold and matrix model

AS we showed before, the BPS sector of the superstring on AdSs x S° can be studied
by a topological A-model theory defined on four products of the superprojective space
CP®™) . Here we consider a particular sector of the superstring theory which is captured
by just one of these four copies. We start from the closed topological A-model theory
on the super Calabi-Yau CIP(3|4), passing through a duality map which was explained
in the introduction chapter, first we obtained its closed topological B-model theory by
using mirror symmetry, then we use the geometric transition to go to the open B-model
theory and at then end we will show that this open topological theory can be reduced to
a Gaussian matrix model. We will show that there are some particular D-branes in this
topological theory whose amplitudes computed as observables of the Gaussian matrix
model produce exactly the result of their dual objects in the gauge theory side which
are the circular Wilson loops whose expectation value was computed exactly and was
shown to be given by a Gaussian matrix model. This will serve as an exact check on
AdS/CFT duality.

4.4.1.1 Mirror symmetry

The first step is to use mirror symmetry to relate the A-model which we get from the
superstring action to a B-model theory. This has been already calculated in [63] and
further elaborated in [26] for the case at hand. The mirror symmetry is an equiva-

lence between two topological N = 2 string theories which are defined on on different
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Calabi-Yau manifolds as the proper target spaces for topological string theories. We will
discuss in more detail about the structure of topological string theories mainly a class
of the namely the A-model later but here we take as granted that we have two types
of topological string theories named as A-model and B-model according to the way we
do the topological twist which is explored in [64]. As we see from figure(4.1), mirror
symmetry is a symmetry between A-model theories and B-model theories and also the
proper boundary conditions of these two theories can be related by mirror symmetry
too which are Lagrangian submanifolds for the A-model and holomorphic cycles for the
B-model [64].

Mirror symmetry

|

Topological theories

A-model B-model
Calabi-Yau X Calabi-Yau Y
Boundary conditions
A-branes Qundaty conamy B-branes
Lagrangian’s holomorphic cycles

FIGURE 4.1: Mirror symmetry as a symmetry between topological theories and their bound-
ary conditions.

The idea behind mirror symmetry is very similar to the T-duality, it is an equivalence
between two ways of writing an effective action for a mother theory. Starting from
the mother theory which is a worldsheet supersymmetric sigma-model, we can write an
effective theory in two different ways which since they are all effective description of the

same theory, they are equivalent theories in this sense.

In order to realize this T-duality let us consider the following mother Lagrangian as the

starting point
_ 4 2qv+B 1 ¥ 1 2~

where (k~,xkT,k™,k") are the N = 2 superspace coordinates and V is a N = 2 vector

superfield which in the Wess-Zumino gauge can be expanded as follows

V = k& (vo—v1)+kTE (vo+v1) =k Eto— kTR & (4.4.2)
+ V2R (RTAL FRTAL) FiV2ETRT (07N + 0T ) + 26 kTRTRTD
where D is the D-term which is an auxiliary field.

In (4.4.1), the field B is a real superfield and Y is a twisted chiral superfield and X is
the twisted chiral field strength superfield. For the twisted chiral superfield Y and real
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chiral superfield B we have
D, Y=D.Y =0, , D;B=D_B=0 (4.4.3)

where D4 and D4 are the N = 2 supersymmetry derivatives

0 — 0 0 _ 0 . 0 0
Dy =_—— iR+ ( + 1> , Dy = T oRtE +ikt (8950 + 8951) (4.4.4)

The superfields B and Y are expanded into their components as follows

B = b+ V25T + V2T +26TKTF 4 - (4.4.5)
Y = y+ V24 + V2 - + 26T R_G+ - (4.4.6)

9

where F' and G are auxiliary fields and ” - --” involves only the derivatives of the com-

ponent fields.

We can now write an effective theory for the Lagrangian (4.4.1) in two ways, which we
investigate them here separately following the lines of [63] as we can see schematically
in figure(4.2).

”mother” theory

Ly (Y, B)
integrating out integrating out
B fields fields
A theory B theory
LaY) Lp(B)

FIGURE 4.2: Mirror symmetry as different descriptions of the same mother theory.

First description: First we can integrate over Y which gives the following constraints

on the real chiral superfield B as its equations of motion
DiD_B=D,D_B=0 (4.4.7)
These has the following solution
B=U+VU (4.4.8)

for a chiral superfield V.

Inserting (4.4.8) into the Lagrangian (4.4.1) we get the following effective Lagrangian

L= /d4/<; 2QVAIHT _ ;/d% ty (4.4.9)
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which after using the redefinition
o =eY (4.4.10)
it becomes
Lo= /d4/<;<I>62QV<T> — ;/d% ty (4.4.11)

This is the gauged linear sigma model action with Fayet-Illiopoulos parameter ¢ and as
we will see is defined on a particular super Calabi-Yau. This is the action which we
got from the A-model action of the pure spinor superstring theory and will be used to
find the dual of the certain gauge theory observables. The target space of the theory
is determined by looking into the D-term equations and the vacua of the theory which

will was explored before.

The proper boundary conditions, as D-branes, in this A-model action which are pre-
serving the N = 2 supersymmetry structure were shown to be given by the Lagrangian
submanifolds of the Calabi-Yau which are half-dimensional subspace with vanishing

symplectic form.

Second description: To get the second description of the mother action (4.4.1)
which is the mirror dual of the linear gauged sigma model we integrate over the real

chiral superfield B using the following equations of motion

Y+Y
B = -2QV +log < s > (4.4.12)
inserting this into the mother action (4.4.1) gives the following action
]_ 4 —, =, ]. 2~
Lp=—3[d (Y +Y)log (Y 47Y) +5[d EX(Y —t) (4.4.13)

which is the dual theory of the linear gauged sigma model (4.4.11). As we can see, the
chiral superfield of (4.4.11) is playing the role of the neutral chiral superfield Y which
couples to the field strength X.

We can see from (4.4.8) and (4.4.12) that the superfield ® of the linear gauged sigma
model is related to the Y field with the following relation

ReY =209V 0 (4.4.14)

This is the map between the dual fields.
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Hori and Vafa showed that the superpotential of the action (4.4.13) is subject to instan-
tonic non-perturbative corrections which is given by e~Y and the exact superpotential

becomes

W=x({Y —t)+e ¥ (4.4.15)

for a theory with n chiral superfield, we get the following dual superpotential

W= (Yi-t)S+e " (4.4.16)
=1

integrating out X gives
n
d Y=t (4.4.17)
i=1

which is dual of the D-term equation for the A-model action. Putting this back in the

superpotential gives the following superpotential
W=y e (4.4.18)

The theory with the superpotential (4.4.15) defines a Landau-Ginzburg theory which is

the mirror dual of the linear gauged sigma model we obtained as the first description.

Up to now we just considered that the chiral superfields are bosonic meaning that their
first components are bosonic fields, which means that the target space which is specified
from the D-term equation of the action (4.4.11) is a bosonic manifold. But as the linear
gauged sigma model which we got from the A-model action of the pure spinor formalism
is a super Calabi-Yau, we should generalize these results to this case. Starting with a
linear gauge sigma model with A bosonic chiral superfields ® and S fermionic chiral
superfields U, the dual fields in the B-model side would be the bosonic fields X? and Y7

in which

ReY'=|®? , i=1toA (4.4.19)
Re X9 =|W? |  j=1toS

It was shown in [63] that in this case, on top of these bosonic fields we need to add also
some pairs of fermionic variables (7n,x) to the dual Landau-Ginzburg superpotential
in order to preserve the superdimension which is the difference of the number of the

bosonic and fermionic coordinates. These fermionic fields contribute as follows to the
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superpotential

A S
W= Z eV 4 Z e X (14 177x7) (4.4.20)
i=1 j=1
which gives the Landau-Ginzburg dual of the linear gauged sigma model for the case of

supermanifolds, where we have also fermionic coordinates.

We have observed that these two theories, the A-model linear gauged sigma model and
the B-model Landau-Ginzburg with superpotential (4.4.15), are the mirror duals. We
will use this mirror dual to do computations in the B-model side for the topological

A-model of the AdS5 x S° superstring theory.

In order to relate the geometries on which the two theories are defined, as we will see
later, we have start from the path-integral of one of them and after integrating over
some family of fields, we will get some delta functions in the path integral which define
constraints over the coordinates of the dual theory. These constraints are translated as

the geometry of the mirror theory.

Here we start with the linear gauge sigma model and use the mirror symmetry to inves-

tigate the mirror of the linear gauged sigma model of the AdSs x S° following [37].

As we saw before, the Coulomb branch of the linear gauged sigma model of AdSs x S° is

34)

equal to four copies of the super projective Calabi Yau CPCIY)s but since we are going to

consider some observables which are coupled just with a particular sector of the theory

(314)s we consider the linear

which can be explained just by just one of these four CPP
gauged sigma model on the CP®™ and will follow the duality map which was explained

before before.

o (34
Let us consider the A-model on the (C]P’( 4 with bosonic and fermionic coordinates ¢!

and ¢4 which are the first components of the chiral superfields ® in (4.4.10). Since all
the fields have charge one under the remnant U(1) gauge group, the D-term equation

can be written, in terms of the first components of the superfields, as

4 4
ST+ et =r (4.4.21)
I=1 A=1

subject to the following symmetry

6l s eingl | g gmiagA (4.4.22)
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The fields ¢’ and ¢* are corresponding to the coordinates of the super Calabi-Yau
ip(314) sp(mIn)

CP" " . The twistor space CP is defined as
™" = {ctm i (0,00} /- (4.4.23)

where {(0,0)} is the origin in C(™+1") This space describes the vacua of the gauged
linear sigma-model with m + 1 bosonic chiral multiplets " and n fermionic ones ®% all
of them with unit charge under the Abelian U(1) gauge symmetry. Its defining equation
is Soa10M 12 + S n |6V = r modulo the U(1) action ¢y, — e®¢y. We can trade the
D-term equation for a complexification of the group action and obtain the symplectic
. sp(min)
quotient CP
superprojective space CP("I") = {(C(mﬂ‘”) \ {(C(0|")}} /C*, where COM is sitting at
the origin ®” = 0 of the commuting variables. This is a supermanifold contained
in cp™™

to remove, makes the difference between the two spaces. The gauged linear o-model

as defined above. In the mathematical literature, one defines the

It is clear that the choice of the sublocus containing the origin one has

chooses the sublocus closed under the action of the global U(m + 1|n) symmetry of the
D-term equations, namely the origin of the whole space. For more formal issues related

to supergeometries and all that, see for example [65] and references therein.

The first step to get the mirror dual is to define the dual fields which appear in the

mirror theory as follows

ReY! = |pl? (4.4.24)
Re X% = —[¢"?

The superpotential for the mirror Landau-Ginzburg description results to be

4

- o e

W = g eV 4 g e X1+ (4.4.25)
I=1 A=1

where the fermionic fields n and x were added to the bosonic field X to match the
central charge of the original o-model and to ensure the exact matching of the effective
superpotentials. To find the mirror we can follow the lines of [26] by starting with the

path integral for the mirror Landau-Ginzburg model as follows

/ ﬁ Iﬁ A A A(;(f: I 24: A ) (i e b e X i)
dY | |dX“dn“dyx Yt — X4 —t |e\=T= =
I=1 A=1 I=1 A=1

(4.4.26)
where the delta function is specifies the dual of the D-term equation of the linear gauged

sigma model. The delta function can be solved by integrating over one of the fields for

example X!, in terms of the other fields.
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The path integral then becomes

4 4 4
/ [Tav T[anax* T ax* (4.4.27)
A=2

I=1 A=1

4 4 4 4
exp <Z e’ + € H e Y! H eiXA(l + 771X1) + Z 67XB(1 + WBXB)>
I=1 I=1 A=2

B=2

The next step is to integrate over the fermionic fields n”* and x*, one by one, except n*

and x? to get the following path integral

4 4
/ [Tav7 e T]ax4eX dntax* (4.4.28)
I=1 A=2
4 3 3
exp (Z e et H e Y! H e X" 4 Z e X" ¢ 67X4(1 + 774X4)>
I=1 I=1 A=2 A=2

g = e X! . oyl = e Y! .oyl = XY for J = 2,3,4 (4.4.29)

we get the following path integral

4 4 d$4
/H dyIHd:L‘A ?dn‘ld){l (4.4.30)
I=1  A=2

4 4 4
exp (yl + Zy‘]x] + €t H y + Z R O 774x4))
J—2 =1 A=

The factor %4 in the path integral can be rewritten after introducing the auxiliary bosonic

variables v and v as follows

1 'U/UZ'4
A= /dudve (4.4.31)

then we can write the path integral in terms of the new variables as

4

4
/H dy" || da?dn*dx*dudv (4.4.32)
I=1  A=2

4 4
exp (yl (1 +e' I y1> +) 2+ )+ 2t (' u + y“))
=2

J=2

2

Integrating over y', 22, 2% and 2* gives

3

4 4
/ H dy’ dudvs(1 + n*x* + uv + y*) H S(y' +1)5(1 + € H y!) (4.4.33)
J=2 =2 =2
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The delta functions impose the following constraints

4 e

Yy = ——53
y2y?
o= =1 (4.4.34)

0 = 1+t +uww+y?
These constraints can be solved together to obtain
L+ 4w =e! (4.4.35)
For small ¢ this gives
u—nx =t (4.4.36)

where n = x* and y = .

Therefore, we see that the geometry which is defined by (4.4.36) and is named as super-
conifold* is the dual geometry of the CP3|4 and so as far as the calculation of 1/2 BPS
invariant observables in Type IIB String theory on AdSs x S° concerns, one can use the
mirror geometry formulation for the A-model, which is the B-model on the superconi-
fold (4.4.36)in the regime ¢t ~ 0. The geometry in such a regime gets singular. In these
situations the string theory target space gets represented by a blown up geometry via
the conifold transition, like in the cases which were analyzed in [17] and [14]. One can

actually extend the geometric transition to this Grassmann odd version of the conifold.

We study the aspects of the singular superconifold by starting with the singular super-

conifold corresponding to t = 0 point
uww—nx =0 (4.4.37)
we can use another parametrization of the coordinates which can show better the ge-

ometry. Using u = wuj + iug and v = uj + iug, the conifold equation (4.4.37) can be

rewritten as

ul 4+ u3 —nx =0 (4.4.38)

41t is the generalization of the conifold ) ;i =0to supermanifolds in which we have also fermionic
coordinates.
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for complex bosonic variables u; and uy. Now writing (4.4.38) in the real and complex

components

up = v1 + 1w , Ug = Vg + 1W9 (4.4.39)

n=m+iv , x =nt 4+t

we get the following equations from the real and imaginary parts of (4.4.38)

2

2
Z(v? —wi) + Z(Vozya —nan®) = 0 (4.4.40)

=1 a=1

2
Z viw; + Z nav® = 0 (4.4.41)
] a=1

i=1

Using (4.4.40) and (4.4.41) we can see the supergeometry can be viewed as 7*S(!2)

where coordinates (wj,v,) are parameterizing the fiber and (v;,7,) are parameterizing
the base S12) which is defined by Z?Zl v? + Zi:l N*ne = 0 on the base which has
zero radius here. As we see in figure(4.3), the singular superconifold can be seen as

0[1)

a cone over S(?) x PO We can get ride of the singularity by blowing up into this

(12

[CIEY)

P

FIGURE 4.3: The singular superconifold.

supersphere to make it having a non zero radius. This means the ¢ = r parameter in
(4.4.36) becomes nonzero too and this modifies (4.4.40) and (4.4.41) as follows

2 2

S —wd) + 3 (war® —nan®) = t (4.4.42)
1=1 a=1
2 2

> viwi+ Y nar® = 0 (4.4.43)
i=1 a=1

This supergeometry which has a S projective space at the singular point is named

as the deformed superconifold.

0[1)

One can observe that the base SO is a Lagrangian submanifold and so it is a proper

boundary condition for the topological A-model by looking into the symplectic form of
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FIGURE 4.4: The deformed superconifold.

the super Calabi-Yau which is given by [37, 26]

2 2
w=> dvidw; + ) dnodv” (4.4.44)
i=1 a=1

1]2)

which is zero on S(12). Also we can check that the imaginary part of the holomorphic

measure

_ dudxdn

Q (4.4.45)

v

We can easily see that w is zero on S and so this submanifold is actually a special

Lagrangian submanifold.

Another way to cure the singularity of (4.4.37) is to define the so called resolved su-

perconifold which is defined by blowing a CP(CIY)

figure(4.4.1.1).

into the singularity as we can see in

The resolved superconifold can be parametrized with the following relations

v “)=o 4.4.46
o)) 1449

where (z,¢) € {CUIV\ (0,0)} /c* = PV

to the singular cone uv — nx = 0, the singularity being replaced by CP

. Away from the singularity it gets mapped
(01)
very much
like in the bosonic case. This space is covered by two patches which we now describe. If
z # 0, then we can fix our coordinates ° at any given zy # 0 as (20, ¢) which is a COIV)
patch, while if { # 0, then we can fix our coordinates at any given (y # 0 as (z, (p) which
is a C(H9) patch. Clearly, on the intersection, the two patches are related by z¢ = zo(o.
The last condition is the choice of representative upon the C* equivalent points exactly

as in the usual CP'.

®Notice that also in the usual bosonic geometric analog, one usually specifies the reference points to
zo = 1, but this is not compulsory at all.
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(0

(112)

FIGURE 4.5: The resolved superconifold.

So, following mirror symmetry, it was shown that the closed topological A-model theory
on CP?* is dual to the closed topological B-model on the deformed conifold. The
next step is to use geometric transition to relate the closed topological B-model on
the deformed superconifold to an open topological B-model on a particular background

which will be conjectured to be the resolved superconifold.

4.4.1.2 Geometric transition

As we have seen, we got the mirror dual of the closed string topological A-model on
CPB® to be the closed topological B-model on the deformed superconifold. One can
trade this closed string theory to an open topological string theory by doing the so called
geometric transition an example of which was discussed in the case of the Ooguri-Vafa
duality. In that case it was shown that the closed topological A-model theory on the
resolved conifold is equivalent to an open topological A-model theory on the deformed

conifold as it was shown in the introduction.

Let us now apply the construction of the open string dual theory after geometric transi-
tion , by following [14], for the generalization to the superconifold. This is obtained by
realizing the fermionic resolved conifold geometry as a complex structure deformation

of the local super-K3 geometry, namely O(—2) @& O(0) over CP(Oll). The gluing condi-
tions among the northern and southern hemispheres which are bosonic and fermionic

respectively are

,Z = C()Zo (4.4.47)
Y = 2+ 200
¢ = 200

where 1" and ¢’ are fermionic while v and ¢ are bosonic variables. The complex structure

deformation is induced by the non-diagonal patching term in the second line. Let us call
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X this superCalabi-Yau space. The invariant three-form 2 on X can be defined in this

parametrization as follows
O = zodp dip dz = (o d'dyp’ d(’ (4.4.48)

in the two coordinate patches.

Similarly to the purely bosonic case, the geometry obtained by imposing the gluing rules

can be projected via the blow-down map

n o= Gy (4.4.49)
X = z¢

u = 21

r = z¢

which defines the following blown-down geometry

nx = Gtz (4.4.50)
= (e
= 2(2¢ + 200)
= u(u+zx)

which is the singular superconifold (4.4.37) with v = u + .

So, starting from the closed topological B-model superstring theory on deformed super-
conifold, we conjecture to get open topological B-model superstring theory on resolved

superconifold with the D-branes residing on the base of the resolved superconifold.

4.4.1.3 From open topological B-model superstring to holomorphic Chern-

Simons

After the geometric transition, we get the open topological B-model action on the de-
formed superconifold. In [15] it is explained how the Fock space of a particular topo-
logical open string theory can be explained in terms of a functional .4 which composed
of the Bose and Fermi zero modes, with other modes in their Fock vacuum. In order
to look at this construction let us remind first the general structure of a topological

B-model action.

The topological B-model sigma model governs maps from Riemann surface ¥ as the

worldsheet to a target space X which would have a complex structure and in our case is
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the resolved superconifold. The B-model is well-defined on target spaces with vanishing
first Chern class ¢1(X) = 0 namely the Calabi-Yau’s. The fields of the B-model are sim-
ply maps ® : ¥ — X which can be described with functions ¢! (z®) as local coordinates
of the target space X. In the case we are discussing, the target space is a supermanifold,

so the coordinates ¢ can be either bosonic or fermionic fields.

Writing an N = (2,2) supersymmetric theory, we have to consider also the fermions
which accompany the bosonic fields of the sigma model. These fermionic fields in the
B-model include sections 67, 77g of the pullback ®*(7%!'X) to the worldsheet and the
other way 6; = gﬁﬁi which g;5 is the Ricci flat metric of the Calabi-Yau target space X
considering its complex structure. In order to complete the supersymmetric multiplet
we should add also a one-form fermionic field p° taking value in ®*(T19X) which they

transform as follows under supersymmetry [15]

56'=0 .,  5¢' =ian (4.4.51)
oni =060, =0 , 6p = —adg’

We can define a BRST operator @) acting on any field as 6A = —ia{@, A}, then the
Lagrangian can be obtained as £ = i{Q, V'} for a suitable V', one gets the action for the

topological B-model sigma model as follows
L=t / (9150-0"0:0" + i/ (Dl Dzpl)giz-+ 03 (Dzpl, — D2 ph) + Riggpl ol 0 }4.4.52)
b
where R;;;5 is the curvature of the target space. Note that since the Lagrangian is
written as £ = i{Q,V}, the t dependence and the metric dependence is of the form
{@, - -} which means that it does not change the BRST cohomology of the theory and

so the theory does not depend on the coupling ¢ and the metric of the target space.

We can look into the Hamiltonian version of (4.4.52) for open strings. As it was shown
in [15], the Hilbert space H consists of some functionals A which depend on the maps
® from the worldsheet to the target space which the dependence comes from the rep-
resentation of the canonical anticommutation relations. This functional depends on the

zero modes of the fields ¢!, 77g as follows
A1) = e(@") + 0" A5(8) + 0P B (o") + - (4.4.53)

which because of the commutations relations [Q,qf)g] = —7]g and {Q,ng} = 0, we can

interpret 7 as d¢' and see (4.4.53) as a sum over (0,¢) forms over X.

In order to give a space time interpretation to the B-model topological sigma model
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(4.4.52), Witten proposed a string field theory based on the functional A which is inter-
preted as a ghost number one element in the associative algebra B with a multiplication
law which is denoted as * and a derivative Q of degree one satisfying Q% = 0. There is
a functional [ : B — C which is non vanishing just for ghost number -3 operators and

obeying the following relation

/a*b— (—1)degadegb/b*a (4.4.54)

and also we have [ Qb = 0 for any b € B. Using the fact that A is a ghost number one
operator, Witten wrote the following Lagrangian using the properties of the x and [ [15]

1

E p—
295

/ (A*Q.A—F ;A*A*A> (4.4.55)

This is invariant under the following gauge transformation
IA=Qa—axA+Axa (4.4.56)

Actually we can associate Chan-Paton factors to the string fields A by considering to
take value in the space of N x N hermitian matrices and this way the theory defined
by (4.4.55) as the string field theory is describing open string theory with the boundary
conditions which is given from the Chan-Paton factors of the string fields .A. In this
way the associative algebra B is the space of the open string states and the operations
x and [ are related to the string theory with the gluing of the open strings which we
don’t discuss it here. The operator () of the open string field theory also is going to be
interpreted as the BRST charge of the string theory.

It was shown by Witten [15] that the string field theory action (4.4.55) describing open
strings ending on space-filling D-branes, meaning that no specific place for the boundary
condition is chosen, has a simpler realization in terms of a specific Chern-Simons theory

named as holomorphic Chern-Simons theory.

The boundary condition should preserve the supersymmetric structure of the sigma

model, for B-model this means that we should have
0,9=0 (4.4.57)

where 0, is normal derivative on 9¥. This condition means that 0|9y, = 0 and also it

implies the vanishing of pullback to 0% of xn where * is the Hodge star product.

The string field should have ghost number one which is raised with the BRST operator

Q. Giving ghost number zero to the target space maps ¢, one can see from (4.4.51) and
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so from (4.4.53) that we should keep only the linear term in the field n
A= Az(¢") (4.4.58)

It is a one-form which takes value in the endomorphisms of some holomorphic vector
bundle E. Since the string field just depends on the bosonic and fermionic zero modes,
the star product x becomes the wedge product of forms in Q(P)(End(E)) and the
integration operator | becomes ordinary integration over the forms on the target space
X wedged by the holomorphic form €2 which completes the functional form in order to
define a non-zero integral. We can write the following dictionary from the string field

theory to a field theory defined in terms of the one-form connection A on the target

space X
A—A )
- @ (4.4.59)
* = A . = JaA
The string field action (4.4.55) after this identification becomes
1 = 2
S = /QATr ANOA+-ANANA (4.4.60)
295 Jx 3

where (2 is the invariant holomorphic three-form of the resolved superconifold we dis-

cussed before.

We have shown that the closed topological A-model string theory is equivalent to the
holomorphic Chern-Simons (4.4.60) on the resolved superconifold. This was obtained
with the assumption that the open strings are free and we have space-filling D-branes,
but as we know, in our case the D-branes which are the counterparts of the fluxes in
the closed string side, are reside just on the base of the superconifold and not in all the
target space. So in the next section we will modify the result by taking into account

this consideration.

4.4.1.4 Dimensional reduction and The Gaussian Matrix model

Here we consider the case in which the branes which as the end points of the open
strings wrap only the holomorphic two-cycles CPM as the base of the resolved super-
conifold we discussed before. We have to dimensionally reduce the action (4.4.60) on

the worldvolume of these branes in the Calabi-Yau

0(0) & O(=2) — CpOI) (4.4.61)
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in the geometry defined in (4.4.47). To do this dimensional reduction we follow the
passage of [14, 31] which was reviewed in [27]. For some comments on the Chern-Simons

theory on supermanifolds, see also [66].

We discussed before the geometry of the Calabi-Yau (4.4.61) which is described by the
gluing (4.4.47). Since we want to consider the branes wrapping CPM, this means
that the gauge field A which is describing the field theory on the worldvolume of the
D-branes, splits into a gauge potential on the worldvolume of the branes and a Higgs
field which describes the motion along the noncompact, transverse direction of the fiber.
These Higgs fields ®g and ¥ are actually sections of the corresponding normal bundles

O(0) and O(—2) respectively. One can decompose the gauge field as follows
A=a(z,¢,9) + Po(2)dd + P1(2)dy (4.4.62)

where a is a one-form residing on the base with coordinates z and (¢, ) are the coordi-
nates of the fibers as it was explained in (4.4.47). Assuming that we have N D-branes,
all the fields take value in the adjoint representation of U(N). Putting (4.4.62) into
(4.4.60) one gets the following action

1
295

[/@PM Tr(®1D%o) + %Tr W(%)] (4.4.63)

where D = 9+ [a, -] is the covariant derivative and W (z) = 122 is the complex structure
deformation which as we are working on a supermanifold which has fermionic coordi-
nates, the only possibility is a quadratic function. As we will see this quadratic complex

structure deformation gives rise to produce the hermitian Gaussian matriz model.

The gauge connection appear in the action as a Lagrange multiplier giving rise to the

constraint
[(I>0, @1] =0 (4.4.64)

This means that we can diagonalize ®¢ and ®; simultaneously. Also we can integrate
out the other field ®; since it appears linearly in the action (4.4.63) which gives rise to

the following equation of motion for ®g

9P =0 (4.4.65)

(0|1), 0-operator has just one constant zero mode and the solution

Since we are on CP
of (4.4.65) is a constant diagonal matrix. Notice the fact that here, although the base
geometry is half fermionic and half bosonic, this does not influence the endpoint result,

because as ¢ and ¥ change statistics while patching, their propagating contributions
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continue to cancel against the ghost determinants. The important fact is that the O-

operator on scalars still has a single (constant) zero mode.

On the other hand, the equation of motion for ®y implies
0% = W'(®g)w (4.4.66)

where w is a (1,1) form which can be taken to have unit volume on the CP/V), Note
that the integral of 0®; over CPM should be zero for non-singular ®; which leads to
the following relations after integrating (4.4.66)

Oy = W'(Dg) =0 (4.4.67)

This means that the classical vacua are localized on the critical points of W (®) which

is a quadratic function in our case.

Putting all these together and remembering the fact that W(x) = %ZL’Q for the superconi-
fold, we get the Gaussian hermitian N x N matrix model with the following measure
factor

p=dd e 2T (4.4.68)

where ® is a N x N matrix. This corresponds to the Drukker-Gross one if g, = g?, A as
predicted by gauge string duality. In the next section we will do explicit computations
on both side of the duality by using these Matrix models and we will see that there are
some particular observables producing exact result of the circular Wilson loops in the

gauge theory side.

4.4.2 Circular Wilson loop and its dual in topological model

Using the construction we did in the previous section, we saw that the closed topological

(1Y) is equivalent to a Gaussian

A-model string theory on the superprojective space CIP
hermitian matrix model. And, as we saw before this is a particular sector of the AdS5x.S°
superstring and can be used in order to study the dual sector in the N'=4 D =4 SYM
theory. The particular observables residing in the dual of this sector are proposed to
be the circular Wilson loops which from their symmetry we will argue that their duals
in the string theory side can be captured by particular observables in the topological
A-model on CPCG!Y or its equivalent matrix model. We start by studying briefly the half-
BPS circular Wilson loops which was studied in [28] and confirmed in [67] to produce
exactly a Gaussian matrix model. Then we go to the string theory side, using our

topological construction, we will show that the exact result of the gauge theory side can

be calculated in the string theory side. It is an exact check of the Maldacena conjecture.
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4.4.2.1 Circular Wilson loops in N =4 d =4 SYM

In gauge theory, a Wilson loop is a gauge-invariant observable obtained from the holon-
omy of the gauge connection around a given loop. In the classical theory, the collection
of all Wilson loops contains sufficient information to reconstruct the gauge connection,

up to gauge transformations [68].

If we consider a SU(N) gauge theory, the Wilson loop can be defined as the path-ordered

exponential of the gauge field as follows

1
W = NTr P exp <i7{A#dx“> (4.4.69)

where the trace is defined in the fundamental representation. We can define this Wilson
loop for any closed path in the target space and they define a class of observables in
the gauge theory forming a complete basis of gauge invariant operators for pure Yang-
Mills theory. The Wilson loop is actually the phase of a quark in the fundamental

representation of the gauge group.

In N =4 SYM we have the gauge field A, six scalars ¢; for i = 1 to 6 and four Weyl
fermions Ay, @ = 1 to 4 in the adjoint representation of the SU(N) gauge group. This
theory does not have any quark in the fundamental representation and we have to use
the W-bosons to probe the theory and make the Wilson loops. To do this we consider a
non-zero expectation value for the six scalars and parametrize the vacuum expectation
values with a point 6% on the unit five-sphere which is defined as 2 = 1. The phase factor
associated to the trajectory of the W-boson in the path we defined gives the following
Wilson loop operator

W= %Tﬁ? expi j’{ (A + i®i]()|0(s)) (4.4.70)

where s parametrizes the point on the five-sphere. This special loop is taken to be locally

supersymmetric.

We can write the expectation value of the Wilson loop (4.4.70) around some contour C

order by order in perturbation theory as follows
(We) =) A\ (4.4.71)
n=0

where \ = 952, NV is the 't Hooft coupling. The first terms are computed as follows

Ay = 1 (4.4.72)
1 1 TN . i j
A = 2]{(151 }[dszNTr (=t (A (o) Au(w2)) + 1161|2163 (@(21) @; (22)) )
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We are working in R* and all the propagators are translationally invariant because of
the symmetry of the background. Also, since NV =4 SYM in four space time dimension
is conformal invariant, the Wilson loop is also conformal invariant and in this way we
can relate the expectation values of the Wilson loops of the contours which are related

through a conformal transformation.

The contour which we are interested in is the circle in which we want to do explicit
computations. Since the circle and the line are related through a large conformal trans-
formation as we see in figure (4.4.2.1), so we use a conformal anomaly statement to

compute the value for the circle from the one of the straight line.

Xp— Xw/X*

/7N

- [ - - 1/L—~>

FIGURE 4.6: Line and circle are related through an inversion on the plane.

We start by computing the expectation value for the line. The line can be parametrized

on R?* as follows
x, = (7,0,0,0) (4.4.73)

One can check that it preserves 16 out of 32 supersymmetries and so it is a 1/2-BPS
object. Using parametrization (4.4.73), it was shown [28] that the sum of the gluon and
scalar propagetors vanishes and so in the perturbative series (4.4.71) the only non zero

term is Ap = 1 and so we have the exact result
(Wiine)pe = 1 (4.4.74)

One reason for this simplicity is related to the fact that it is a BPS object which ensures

that there are no contributions to any order of A in (4.4.71).

Instead, the circle can be parametrized as follows
x, = R(sinT,cosT,0,0) (4.4.75)

It preserves a subgroup SU(1,1) x SU(2) x SO(5) of the global symmetry, half of the
supersymmetries and so it is also a 1/2-BPS object but we can not apply the same

reasoning we used for the straight line because the difference of the gluon and scalar
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propagators is not zero here but it is a constant. In order to compute the value of
(Weircle)ga We use a simple conformal anomaly statement which relates the line and
circle thorough the large conformal transformation z, — z,/ 22 and the fact that four-
dimensional N/ = 4 SYM is a superconformal theory. Note that even if the theory is a
superconformal theory, the inversion is not a symmetry of R* but a symmetry of the S*.
We have that

<VV1ine>R4 ?é <W/line>s4 (4476)

This comes from the fact that under the inversion the two end points of the line are

mapped to a single point on S* and we are missing a point as it is seen in figure (4.4.2.1)

oo

—0Q

FIGURE 4.7: The two end points of the line are mapped to a single point under the inversion.

Noting that S* = R* U {00}, the difference between the Wilson loop of the line on R*

and S* just comes from the point at infinity
(Wiine) g4 = (Wiine)ga + (Wiine) oo (4.4.77)

where (Wiine) ., is the contribution of the point at infinity.

On the other hand, a circle is mapped to a circle under inversion, also the line and the

circle are conformally the same on S%, so we have
<Wcircle>R4 = <Wcircle>s4 = <W/line>s4 (4478)
Comparing (4.4.77) and (4.4.78) and using (Wiine)gs = 1 we get

<Wcircle>]R4 = <VVline>oo (4479)

Which means that the result for the circle is equivalent to the result for a single point
at infinity which is like a 0-dimensional field theory, namely a matrix model. This was

shown in [28] and [67] that is computed through the following hermitian Gaussian matrix
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model
(W ) 1T (M) 1/DMlT (M) 2 TrM? (4.4.80)
i =(—-Tre = — — e - 4.
circle) g4 N T exp 7 N T exp Xp 932/ - iy

with a set of observables expanded in the basis of the matrix model.

We will see in the next section that this result can be produced exactly with a set of
D-branes which we proposed to be the dual of this circular Wilson loops in the AdSs x S°

superstring side.

4.4.2.2 Dual of the circular Wilson loops in the superstring

Here we want to find the dual observables of the circular Wilson loops and to do the
computations in the superstring side. The dual objects which was proposed as the dual
of the Wilson loops in the superstring theory side were the D-branes which the Wilson
is realized as the loop which made by the D-brane on the boundary of the AdSs [30, 69].

In section 4.3.1 we took the following boundary conditions for strings as the defining
equations of D-branes
(07 = RO 6F (4.4.81)

We observed that for a particular choice of the matrices € and ¢ as in (4.3.2), the D-brane

breaks the symmetry of the AdSs x S° coset to the following supercoset

OSp(47|4)
SO*(4) x USp(4)

(4.4.82)

which can be shown to be correspond to D-branes wrapping AdSs x S* geometries inside
AdSsx S [29]. As such, this states realize the circular Wilson loops in an alternative way

because they are preserving the same amount of suppersymmetry and global isometry.

It was also shown that the boundary conditions (4.4.81) translated into the following

boundary conditions in the gauged linear sigma model
(@N%551] = k1§D and (@) = nTg®F (4.4.83)

where the matrix k specifies to which twisted sector of the coulomb branch vacuum
p(314)

(CP"""")*//Sy the D-branes couple. For the particular choice of &

(4.4.84)

= o o O
o O O =
o O = O
o = O O
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the gauge symmetry is maximally breaks and the D-branes are just couple with one copy

~ (34
of (CIP’( ) because it commute with the permutation Sy.

For this particular observables defined from the choice of (4.4.84) and the choice of 4 and
€ as in (4.3.2) the boundary conditions can be explained as the boundary conditions in
the projective space CIP(3|4)
model on CIP(3|4)

fermionic fields ¢; and ¥4 with I, A = 1 to 4 with the following boundary conditions

. So we just need to study the D-branes in the topological A-

which is defined with the gauged linear sigma model with bosonic and

coming from (4.4.83)

b1 =1
Yo =1, whereI=1---4, a=1,2and ¢} =3, ¥ = 4 (4.4.85)
dj(/z = _TZJa

these boundary conditions correspond to a Lagrangian submanifold because the Kahler

form

w = dorddr + dpadi)l, + dipgrodi o (4.4.86)

vanishes on this subspace because (4.4.85) sends w — —w whose fixed locus identifies

the Lagrangian cycle.

This Lagrangian cycle can be traced back in the mirror geometry as in [70]. Therefore,

(314

applying to the mirror dual at hand, the Lagrangian submanifold in CPP ) gets mapped

to the non compact holomorphic cycle defined as follows

n=0, w—-nxy=t (4.4.87)

1)

in the superconifold mirror picture. In the singular limit these turn out to be C") non

compact branes. Their fate after geometric transition is to stay non compact, so these

(0[1)

. &y (0 . . . . .
are along a fibration on the base CIP via a complex curve in the fiber direction which

has to compensate the superdimension counting.

Therefore, if in the A-model we add M D5-branes, these correspond after the duality
to M B-branes along the above non-compact cycles. Now, the open string at hand
therefore, on top of the sector of N D-branes along the base, also has the open strings
connecting them with the dual image of the M D-branes. Correspondingly, the reduced

gauge field in the holomorphic Chern-Simons theory becomes

Y, Yy — open strings ending on both type of branes (4.4.88)

A — open strings ending on compact branes
AY
- -
Y X

X — open strings ending on non-compact branes
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where the gauge field components Y and Y! are the M x N components with mixed
boundary conditions and A and X are N x N and M x M components for open strings

ending on just one type of branes with the following holomorphic Chern-Simons action

Shos(A) = — /X QA Teagsn <A NOA + %A AAA A) (4.4.89)

9s

Being the transverse branes non-compact, the relative gauge field has been kept frozen

because its contribution to the holomorphic CS action
1 - 2 -
/QAT&M[X/\8C+3X/\X/\X+Y/\XAY} (4.4.90)
9s Jx

(Of1) because neither X nor Y has a ddz term

is zero upon the reduction to the base CP
to complete the holomorphic three-form 2 and so the integral becomes identically zero
and we can just neglect the open strings in the non-compact M x M sector since they

decouple from the rest.

Therefore the action gets reduced as

1 L
ShCS(-A) = ShCS(A) + — / QAYD,Y (4.4.91)
X

9gs
where D4 is the covariant 0 operator.

Dimensionally reducing to the base and integrating the reduced (Y, 57) sector one gener-

ates the corresponding observable in the matrix model. In formulas, we have therefore
/ dFe 75T 0 (F) (4.4.92)

By expanding the observable in characters as

Oum(F) =Y On (i, {ni}) [[ Tre™* (4.4.93)
i{ni} i

one obtains the expansion of the D5-brane amplitudes in terms of 1/2 BPS circular Wil-
son lines (see Section 4 in [28]). The explicit dictionary needs a much deeper elaboration
on the specific form of the observables which will follow from the analysis of the reduced
theory on the base of the resolved superconifold. The prototype of such an analysis for

the usual conifold is in [17], although to be adapted to our case.

Here, we proposed a dual picture for the calculation of 1/2 BPS open string amplitudes
on AdSsx S° with boundary conditions (4.4.81) in the large curvature regime. These has

been shown to reduce to observables in the hermitian Gaussian matrix model. Identifying
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gs = g%/ s We can interpret those topological string amplitudes as 1/2 BPS circular

Wilson loops.

There are two consistency checks of this result which are independent on the duality
chain we formulated. The first is a symmetry argument, which we already recalled, that
is the fact that AdSy x S*-branes break exactly the same 1/2 superconformal symmetry
as the 1/2 BPS circular Wilson loops do.

The second has to do with the ability of the matrix model to reproduce topological
strings amplitudes. Actually, in order for a candidate set of amplitudes to be compatible
with the topological gauge symmetry, these have to satisfy the consistency conditions
of BCOV [32], namely the holomorphic anomaly equations. This is a strict constraint
on any dual picture one might find for topological string amplitudes. The fact that this
proposed matrix model passes such a non trivial test is due to the analysis performed
in [33] where this was shown much more in general for the matrix models. Actually, the
D5-branes amplitudes then gets reduced to matrix integrals at finite N. The coinciding
genus expansion is consistent for the corresponding non local observable insertions which

we get in the form

dx 1
Tre™t = ¢ ——e™*T 4.4.94
re 7{ omi. F—z (4.4.94)

which is the natural form of the open string generated observables. It would be in-
teresting to further elucidate the properties of the specific realization via the Gaussian

hermitian matrix model also in direct comparison with the analysis in [71].



Chapter 5

The Antifield Lagrangian

quantization of gauge theories

5.1 Basics of gauge theories

Gauge theories are one of the most important ingredients of theoretical physics which
can be thought as a theory in which whose dynamical variables are specified with respect
to a reference frame in which one has the freedom to choose it arbitrary at any instant
of time. The physics is determined with the variables which are independent on the
choice of the local reference frame. This freedom to choose the local frame is the gauge

symmetry of the theory.

Gauge theories may be quantized by specialization of methods which are applicable to
any quantum field theory. However, because of the subtleties imposed by the gauge
constraints there are many technical problems to be solved which do not arise in other
field theories. At the same time, the richer structure of gauge theories allow simplification
of some computations: for example Ward identities connect different renormalization
constants. Here with quantization we mean the path integral quantization. A classical
mechanical theory is given by an action with the permissible configurations being the
ones which are extremal with respect to functional variations of the action. A quantum-
mechanical description of the classical system can also be constructed from the action of
the system by means of the path integral formulation. One should start from a physical
system with degrees of freedom labeled by ¢°, which for simplicity here we take them
to be bosons. On this configuration space of fields, an action S[¢] can be defined as a
functional over field configurations which governs the dynamics of the theory. One can

define the partition function as the path integral over all the possible field configurations

119
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as follows

216 = [ ldiets® (5.1.1)

where each configuration contributes with a phase which is determined with the action

for that field configuration.

The classical solution of the theory is determined as usual from the stationary surface

which is defined from the equations of motion or Fuler-Lagrange equations given by

y(¢') = g(; (5.1.2)

we assume that we are studying theories in which they have at least one classical solution.
The quantum solution is obtained after adding the quantum fluctuations around the

classical solution.

The next step is to enter some symmetry in the theory. Suppose there exist a set of

operators R’ [¢] with the following relation

y'(¢)RL[ple* =0 (5.1.3)

for any value of the parameter €. For the case in which the parameter ¢* depends on
the target space coordinates, we have a gauge theory and the symmetry is local. The

Rg are the gauge generators.

A consequence of (5.1.3) is that there are some zero modes for the Hessian, namely

solutions for the following equation

EREC

Tl
5@ 6¢)Z ) Ra[¢0] =0 (514)

where the zero modes R! [¢}] impose the following infinitesimal transformation on the

stationary surface

yi(¢o + Ru[60]€”) = 0. (5.1.5)
This maps a classical solution to another one.

For the case of the global symmetry where €’s are independent of space-time, the sta-
tionary surface becomes a finite dimensional space but in the case of the local symmetry
we have an infinite dimensional space as the stationary surface since we can take a set of
parameters €* for any point in space-time. This is the very basic difference of the global

and local symmetries which shows itself already in the level of classical solutions. The
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global symmetries are relating a set of classical solutions but the existence of a local
symmetry means that not all field equations are independent and so not all the field
degrees of freedom are fixed by the equations of motion. There is an arbitrariness in the
field space which relates to the gauge degree of freedom. To get ride of this arbitrariness
one should impose some constraints in the field space which are named gauge fixing

conditions.

The next step after studying the classical solutions of a gauge theory is to quantize it.
Here, if simply exponentiate the action like (5.1.1) and sum over the field configurations
we will end with problems which are originating from the arbitrariness arises from the

gauge syminetry.
In order to quantify this problem more in detail, consider quantum fluctuations around
the classical solution which can be decomposed in two components

¢ = ¢+ 019" + 610 (5.1.6)

here 4 and ¢, are the variations parallel and orthogonal to the stationary surface
respectively. One can see from (5.1.5) that (5H<Z>i = R!e“. The measure of the path

integral also splits as follows
[dp] — [de][do 1 @] (5.1.7)

The action is expanded around the classical solution as follows

— —

0 9
3¢t 503

S[¢'] = S[eh] + 6167 S[eploLe’. (5.1.8)

As we can see, the integrand of the path integral is independent of the gauge transfor-
mation parameters €%, so they can be factorized. This might lead to divergences which

should be cured with the methods which will be explained.

Another important property of the gauge systems is that the gauge transformations
usually form a gauge algebra. To study this consider the field ¢¢ has Grassmann parity

ezé. Consider gauge generators R! which satisfy

YR, = 0 (5.1.9)

eg = €egt+en
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where as before, y = g—f is the stationary surface equation. Suppose that the gauge

generators form a complete set, namely they satisfy

yiX5(6) =0 = Xj(¢) = Rhe§(o) +y; M7 (), (5.1.10)
for all possible X%. Where 3 is an arbitrary set of indices. And where M%j is graded
antisymmetric Méj = (—1)686]&;+1Mg.

Using (5.1.10), we can find a relation which should be satisfied by R! to maintain

consistent gauge transformations

—

ERZa J €n€ 5RZB 7 i Y €a Jt € €a
e ) — ()R = BT - g BlCD S G

for some tensors Tgﬁ and Ei Zﬁ which classify the gauge algebra. In the case when Ei’ﬁ =0
the algebra is closed and the Tgﬁ becomes the structure constants of the Lie algebra.
In [72] it was shown that always there exist a set of generators for the gauge algebra in

which it becomes closed.

Another important property of a gauge algebra is its reducibility. If operators Zg [o]

exist such that
Ry, [¢o] Z§ [¢o] = 0 (5.1.12)

on the stationary surface, this means that not all the zero modes (5.1.4) of the Hessian
are independent and so the gauge algebra is reducible. If there is no such Z3 then the
gauge algebra is irreducible and all the zero modes are independent. This is the case in

some particular gauge theories we will explore in the next sections.
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5.2 Faddeev-Popov quantization procedure

On of the quantization methods was developed by L.D. Faddeev and V.N. Popov [73]
based on the path integral formulation of gauge theories. As we saw before, in the general
path integral for a gauge theory, in order not to get infinities, one should integrate
over whole configuration space, but over the space of gauge orbits. Gauge orbits are
subspaces of the configuration space which can be connected by gauge transformations
and therefore they have the same action. In order to get ride of the infinity each gauge
orbit should contribute once in the path integral. The procedure which selects just one
configuration on each gauge orbit is through introducing gauge fixing conditions which
selects just one particular configuration from each gauge orbit contributing in the path

integral.

To determine explicitly a gauge orbit we note that each gauge orbit is parametrized
with a set of parameters 6, where its index is a gauge index running over all the gauge
symmetries parametrized by gauge generators R! and so they have the same dimen-
sion. Different gauge orbits are connected with infinitesimal gauge transformations. A

particular gauge orbit is defined as follows

39'(0)
567

= R, [0'(0)]X5(6) (5.2.1)

for some unspecified function A3 (0) which relates to the fact that we can choose different
gauge generators R!. As it comes from its definition, the action is equal for all the

configurations on a particular gauge orbit

0S[¢'(0)]

sga = Vil = (5.2.2)
where the functions )\g satisfy
ONG 0N
B Y a \MU\V __
S0 308 +t,AgAy =0 (5.2.3)

which comes from the integrability of (5.2.1), namely the analogue of the Maurer-Cartan

equations

0%¢'(0) _ 8°¢"(0) _
507665 665667

0 (5.2.4)

different choices of AG give rise to different ways of defining the coordinates of the gauge

orbits.
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After defining the gauge orbits, the measure of the path integral splits naturally into
two pieces, over the space of gauge orbits and over the configurations of a particular

gauge orbit

= [d®f). [ [[d67]. det A (5.2.5)
l

where 6f* are the coordinates on the I-th orbit and [df}'] is the measure for integrating
over the configurations which lie on a particular gauge orbit. The det A just makes
the integration over the gauge orbits to be coordinate invariant. The first part of the

measure [d®)] is the measure over the space of different orbits.

In order to render infinities which is made by integration over the gauge orbits, since
they encode the same field configuration, we can make use the fact that the action is
constant under the change of the gauge orbit coordinate 8. To do this, we choose just
one configuration on each orbit by using d—functions and rewrite the measure over the

gauge orbits [dff*] as follows

; 5 (6% — O9) 5(0
[d@o]n[del]detA.(m_ H dt>\ (5.2.6)

where ©7' are the base coordinates for the configurations which is selected over [—th
gauge orbit. The more practical way to select one configuration over each gauge orbit is
by choosing a set of gauge fixing functions F®(¢') which are as many as the coordinates
of the gauge orbit. Then we put delta functions 6(Fla(¢) — f%(¢)) in the path integral
for some function f¢. This can be related to a d—function in terms of the coordinates

as follows

1
det M

o (F*(o(6h) — f*) = (67 —er) (5.2.7)

where here O is defined as the solution of F'*(¢(6;)) — f* = 0 and the matrices M are
defined as

o _ 0F(0(9))
After using (5.2.1) this can be rewritten as follows
o _ OF((0)) i

Then one can write the measure of the path integral as follows

[d¢]$. det M.5(F® — f) (5.2.10)
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ant the path integral becomes

1 i
Z = [ [d¢]——.det M.6(F* — f*).en” 5.2.11
J1d0] 1y det MS(E — ) (5211)
In order to make the determinant computable, we can enlarge the field space by adding
one pair of fields (b,, c®) of reverse Grassmann parity for every gauge generator R, and

use the following identity
det M = / [db][dc] exp {;baMgcﬁ] = / (db][dc]e Sonost (5.2.12)

This new sector is the ghost sector in which ¢® and b, are the ghosts and antighosts
respectively. The action for the ghost sector Synes: can be defined after using )\gcl3

instead of ¢® as the ghost, then the action becomes

Sghost = bawRﬁcﬁ (5.2.13)
where now the Jacobian of the transformation )\gcﬁ — ¢® cancels the det A factor in the

path integral (5.2.11).

Finally, in order to write the partition function in a way that is independent of the choice

of the functions f®, one can integrate over f® with a suitable factor W|[f] such that

/ WS = 1 (5.2.14)
Taking a Gaussian gauge fixing factor W[f] = N e we get the following partition
function
z = [anzwin
_ / [do][db][dc] e# Seompice (5.2.15)

where the complete action splits into three terms, the original action, the ghost term

and the gauge fixing term

Scomplete = SO + Sghost + ng

SFe
= S+bayy

, 1
ioB 4 2 2.1

This was the basic ingredients of the first gauge quantization procedure. As we can see
the gauge fixed action (5.2.16) has no longer the gauge invariance anymore. However,
the gauge invariance is expected to be present also in the quantum theory and it is the

subject of the next section which studies the traded form of the gauge invariance into a
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global symmetry which exist during all the quantization procedure and is called BRST

symmetry. Also we can obtain the gauge fixed action using this symmetry.
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5.3 BRST quantization of gauge theories

Another quantization method which we are going to discuss in this section is the BRST
quantization which was developed by C. Becchi, A. Rouet, R. Stora and I.V. Tyutin in
[74]. Tt is based on the observation that the local gauge symmetry can be replaced with
a global symmetry which is present during all the quantization procedure and even for
the gauge fixed action. This is the basic procedure will be used to construct the antifield

formalism in the next section.

First, we start by introducing the BRST symmetry and then we see the construction of
the gauge fixed action of the quantum theory. It appears that the gauge fixed action

Scomplete is indeed invariant under the BRST symmetry.

We start from a classical action Sp[¢?] with a gauge symmetry which specified by the
generators R! [¢]. In order to construct the BRST symmetry first we have to use the
BRST operator s which is a fermionic, linear differential operator acting from the right

as follows
s(X.Y)=X.sY +(-1)¥sX.Y (5.3.1)
with the following action on the Fields
s¢' = R [¢]c* (5.3.2)

where we introduced a ghost degree of freedom ¢ for every gauge generator with opposite
statistics. For function(al)s that depend on the classical fields, the BRST invariance
(5.3.2) is equivalent to gauge invariance, an example of which is the classical action

which is invariant under the BRST transformation as sSy = yiRgc“‘ =0.

The BRST operator should be nilpotent nilpotent which is related to the closure of the

corresponding gauge algebra, namely
52 =0 (5.3.3)
which is guaranteed by choosing the BRST transformation for the ghost fields as follows
sc’ = Tgﬁ [¢]cPc® (5.3.4)

We can always enlarge the set of fields by pairs like D* and d® named as trivial system

for an arbitrary set of indices a with the following BRST transformation rules

sD*=4d* , sd*=0 (5.3.5)
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Since the classical action we start with does not depend on D fields, shifting these
fields is a local symmetry of the theory and the d* fields are the associated ghost fields
corresponding to this gauge symmetry. The form of their BRST transformations (5.3.5)
ensures its nilpotency. Adding this trivial sector to theory will be shown to have useful
applications. An example of which is the Faddeev-Popov antighosts which are introduced

exactly in this way
sba =Xa , 8Aa=0 (5.3.6)

We can assign a grading to each field which is called the ghost number with the following

assignments

gh(¢") =0 ., gh(c*) =1 (5.3.7)
gh(ba) =-1 ) gh()‘a) =0

The BRST operator itself carries a ghost number gh(s) = 1.

The next step after introducing the BRST operator is to use this operator to construct
the gauge fixed action. The claim is that there exist a functional ¥ which is named as

gauge fermion such that
Scomplete = SO + s (538)

The gauge fermion has ghost number —1 and odd Grassmann parity. Since ¢’ and c,
have ghost number 0 and 1 respectively, we can not make a suitable gauge fermion out
of them. We should introduce a trivial pair (by, A*) with gh(b,) = —1. It can be proved
that as long as W leads to path integrals that are well-defined, means that they do not
have gauge invariance, the path integral is independent of the form of the gauge fermion.
This is an important consequence of the BRST quantization which admits systematically
to apply different gauge fixings of the theory which are useful for their specific purpose.
This will be used to find different gauge fixings of the G/G principal chiral model in
the next chapter. An example of gauge fermion is the one which produces the Faddeev-
Popov gauge fixed action by taking ¥ to be ¥ = b, (F'* — A*a) which gives the following
action
TF(9)

Seomplete = So + 5@ = So + baT#Rgcﬁ + F\g — aX?(—1)% (5.3.9)

This is equivalent to Faddeev-Popov gauge fixed action (5.2.16) after integrating over \.

Since the gauge fixed action is written as (5.3.8), and the classical action Sy is invariant
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under the BRST transformations by construction, it is invariant under the BRST trans-
formation too because the BRST charge is nilpotent. The original gauge symmetry now

translates into the BRST symmetry which is manifest also for the gauge fixed action.

One can show easily that for an action which is invariant under the BRST transformation

we have

(sX(6)) = / [dg].sX.e+51 — ¢ (5.3.10)

for any X (¢). These are the Ward identities which can be proved easily by using BRST
technique. Using these Ward identities it is possible to show that the gauge invariance is
replaced with the BRST symmetry also for the quantum theory. And the gauge invariant

observables can be characterized by conditions
s Qo] =0 (5.3.11)

which means they have to be BRST closed.

Using Ward identity it is possible to show that two functions which differ with a BRST
exact term, i.e. a BRST wvariation of something, like Xo = X; + s{2 have the same
expectation value (X;) = (X2). Since the BRST operator is nilpotent we can conclude

the last two sentences in the following theorem

Theorem 5.1. The gauge invariant operators of the gauge theory are given with the
non-trivial cohomology classes of the BRST operator s at ghost number zero.

Namely if we define the cohomology group of the BRST differential as

ker s

H(s) (5.3.12)

Ims

where it can be splited in different sectors according to the ghost number grading as

H(s) =3, H9(s), then we have
H®O) (s) = {classical gauge invariant observables} (5.3.13)
where H()(s) consists of the functions A with gh(A) = 0 such that
sA=[A,S] =0 (5.3.14)

where S is the BRST generator.

In the next sections we will explore more in detail the cohomology group of the BRST

operator and its elements for different ghost numbers.
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5.4 The BV antifield formalism

The antifield formalism is another way of quantization of gauge theories which is mainly
based on the BRST Lagrangian quantization which we discussed in the previous section.
It was developed by Batalin and Vilkovisky [75, 72]. In this approach the BRST sym-
metry of the theory is enlarged in a way that Schwinger-Dyson equations which are the
shift symmetries of the theory become Ward identities of the theory and one can have a
direct Lagrangian formalism of the theory without the need to pass to the Hamiltonian
formalism.Using Lagrangian formalism we have all the adapted covariance in hand. This

makes it easier to study and quantize the gauge theories.

Here again we start from a classical action Sp[¢] depending on the fields ¢ which admits
a gauge symmetry which we assume to be irreducible and closed. We can construct the
nilpotent BRST operator in a way we spoke before acting on the extended set of fields

A = {d)i, c*, D%, da} including also the ghosts and the trivial pairs.

Another ingredient of the antifield formalism is an antibracket (-,-) which replaces the
Poisson bracket of the Hamiltonian formalism which acts as a canonical transforma-
tion sA = [A,s]. Here the BRST transformation of the BV formalism is a canonical

transformation in the antibracket which acts as follows
sA=(A,S) (5.4.1)

where S is the generator of the BRST symmetry.

After introducing new degrees of freedom named as antifields for each field and ghost,
we can see that using this antibracket there is a symmetry between the fields and ghosts
on one hand and the antifields on the other side. This symmetry appears as a conjugate

relation between fields and antifields as follows
(¢',05) =67, (c*,ch) =68 (5.4.2)

where the ¢% = {¢},c},} is the antifield sector which we add in order to realize this
symmetry. The antifields are related to the variation of the action with respect to a
particular differential which we will speak later. They have also opposite Grassmann

parity with their corresponding field.

We can assign the following ghost number to the fields, ghosts and antifields as follows

¢z c d);« CZ

o 1 -1 -2

— ghost number (5.4.3)
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The definition of antibracket can be extended to any arbitrary functional X, Y of the
fields, ghost and the antifields as

6rX apdrY _ opX 0LY 0pX oLy
5 528 T 59A 57, 697, 697

(X,Y) = (5.4.4)

where z4 = {(bA, ¢*A} and wAB(z) is the inverse of the symplectic form of the space of

fields and antifields w = wapdz?dz? which can be written explicitly in this way
w = 6™ A 5oy (5.4.5)

and the variations are with respect to the BRST charge defined before.

Because of the parity and ghost number of the antibracket which can be seen from (5.4.2)
and (5.4.8), the generator of the BRST transformation S should have the following

Grassmann parity and ghost number
eq(S)=0 , gh(S)=0 (5.4.6)
The nilpotency of BRST operator s translated into the following condition
(5,5)=0 (5.4.7)

this is named as the master equation. The problem of finding the BRST symmetry as a
canonical transformation in the antibracket becomes equivalent to the problem of finding
the solution of S of (5.4.7) with the consideration that it should produce the classical

action after putting the antifields to zero.

To solve the master equation is a crucial step of getting the gauge fixed action of the
theory. In order to do so, we should introduce another grading which as we will see
it has a natural geometric interpretation. This new grading is named as the antighost

number with the following assignment

¢z o (ﬁ;k C;;

0O 0 1 2

— antighost number (5.4.8)

which then one can define the pure ghost number as pure gh = gh + antigh.

we can decompose everything including the BRST operator s and BRST generator S

according the antighost number as

s = Z s s = ZS(”) (5.4.9)

n>—1 n>0
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with
antigh(s™) =n |, antigh(S™) = n (5.4.10)

The fact that we started from antighost number —1 for s is related to the important
theorem that we will discuss later when we will explore the cohomology of the theory.
The minimum antighost number for S is one more than the one of s because of (5.4.2)
since it implies antigh((A, S)) = antigh(S) + antigh(A) — 1 = antigh(sA) = antigh(s) +
antigh(A) which gives

antigh(S) = antigh(s) 4+ 1 (5.4.11)
Here we assume that the BRST operator can be expanded explicitly as follows
s =0+ d+"more” (5.4.12)

where 9 is the Koszul-Tata differential with antighost number —1 and d is a differential
with antighost number zero which anticommutes with § and is longitudinal exterior
derivative along the gauge orbits on the stationary surface. This splitting has many
influences in deriving the cohomology of BV action using the homological perturbation

theory.

We can use this form of BRST charge according to antighost number to solve the master
equation using the fact that any field-antifield pair transform under the Koszul-Tata

differentiate as follows

» 350
o' =0 0p; = — 5.4.13
d) ) d)l 6¢Z ( )
correspondingly we have the following transformations coming from (5.4.1)
(¢",8) = d¢' + "more” , (¢;,S) = 0¢; + "more” (5.4.14)

(c*,S) = dc® + "more” , (¢, S) = dc; + "more”

Since the differential d is the exterior derivative along the gauge orbits on the station-
ary surface, it just measures how the p—forms change as one moves along a particular
gauge orbit. It contains no information about the transverse directions and is such that
H(d) = {gauge invariant functions}. It generates the following BRST transformations
coming from (5.3.2) and (5.3.4)

oF

IF = 55

; 1
R, c* dcazi 5“70’807 (5.4.15)
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The differential d is actually the BRST differential which we used in the previous section.
Actually one of the effects of adding the antifields to the theory is to generalize the
BRST operator with terms which they are absent in the usual interpretation of the

BRST symmetry as the global extension of the local gauge symmetry.
The nilpotency of the BRST operator s translates into the following conditions

=0 , dé+d8d=0 (5.4.16)
taking the following gradings

pure gh(d) =0 , pure gh(d) =1 (5.4.17)
antigh(d) = —1 , antigh(d) =0 (5.4.18)

Now we should solve the master equation (5.4.7) by using (5.4.14) using the expansion
(5.4.9), we get for each antifield degree of the expansion of the action the following

equations coming from the master equation

SO = g, (5.4.19)
SW =GR (5.4.20)
SO = %gyc;;cﬁcv (5.4.21)

The next terms in S are then determined recursively by equations of this form
265 + H=1 — ¢ (5.4.22)

where the local functional H®™ 1 is the antighost number n — 1 component of the
(R=D, R("=1)) where R(*1) = D k<no1 S). So as we saw, a solution for master
equation exists. Furthermore, in order to find it as local functional, the expansion of S
should stop at some antighost number i.e. 3N, S = 0 for n > N because the number
of derivatives may increase with n. Therefore to have a local functional we should not

have infinite number of S(™)’s.

Finally we can write the first terms of S as the solution of master equation as an

expansion over antifield degree as follows

; 1
S = So[p] + &; R c™ + §Tgﬁcf{cacﬁ + "more” (5.4.23)

where "more” means possible terms with higher antighost number. This solution starts

from the classical action and continues as a polynomial in antifields.
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Always we have considered the gauge algebra to be irreducible and closed. For the cases
in which the gauge algebra is reducible or open, we have to add more terms in the

solution of the master equation to take into account the irreducibility.

The solution (5.4.23) of the master equation is not unique since because of (5.4.22) we can
always add a d-exact term to S . Furthermore, we can always add to a given solution
further variables that are cohomologically trivial which don not modify the cohomology.

This trivial pairs construct the nonminimal solution of the master equation.

As we said before, the trivial pair (D, d) fulfill the following transformations
sD*=d* |, sd*=0 (5.4.24)
with the ghost numbers which are related as follows
gh(D*) = gh(d*) — 1 (5.4.25)

These trivial pairs does not appear in the cohomology of the BRST operator, actually
the condition sF' = 0 eliminates D* from the cohomology because of the nilpotency of
s, and since D? is not BRST closed. The further step in the cohomology eliminates d
which is BRST exact and its presence cancels in the Ker(s) and I'm(s) and so does not

appear in the cohomology H(s) = %((SS))

We can add another trivial pair which let us to write a canonical action for the non-
minimal sector after introducing their antifields D} and df which are conjugate to D®

and d® satisfying the following antibrackets
(DY Dy) =06y , (d* dy) =0y (5.4.26)

which implies also gh(D*) = —gh(D) — 1 and gh(d*) = —gh(d) — 1.

A possible non-minimal term in the action which produces (5.4.24) through the an-
tibracket of (D, S) =d and (d,S) =0 is

Spm = Did® (5.4.27)

Using the antibrackets (5.4.26) it generates the following BRST transformations for their
antifields

sd*=D* | sD*=0 (5.4.28)
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Finally the full action as the solution of the master equation is obtained after adding
the non-minimal sector
- 1
S = So[¢] + ¢ RL,c™ + §Tgﬁcfycacﬁ + "more” + Dd* (5.4.29)
The number of required extra trivial pairs depends on the gauge fixing conditions which

is desired as we will discuss later.

A very important property of S is that it is invariant under a set of gauge transforma-
tions. Let name collectively all the fields, ghosts and non-minimal fields as ¢ and their
antifields as ¢ and the set of all fields and antifields as 2% = (¢*; ¢%). If we differentiate

the master equation (5.4.4) with respect to z* we get

O0rS

0z

R =0 (5.4.30)

abdrdrS
L

gauge transformation

where RY = w

This implies that the action S is invariant under the following

02% = Rle° (5.4.31)
The fact that the theory admits such a gauge symmetry means that the path integral
7 = / [D¢|[D*|erS(#") (5.4.32)

where the integration is over all the filed and antifield space and is divergent and ill-
defined before gauge fixing. In order to get ride of this problem one can put some
constraints on the antifields in which in the space of field-antifields get projected to a
submanifold on which the divergent part of the measure factorizes and the rest become
a well defined path integral. This is a consequence of the gauge fixing (5.4.31) as it

appears as a symmetry between fields and antifields.

We can take the constraint to be a gradient in order to use Stokes theorem later

0
& Y

which after using the Stokes theorem a general path integral over a general polynomial
of antifields V (¢, ¢*) = Vo(¢) + V1)o* + VP ¢*2 + ... becomes
oY

/[Dé][Daﬁ*]V (qﬁ, 9" = 5¢> = /[D¢]V (5.4.34)

the function 1(¢) must have ghost number —1 and Grassmann parity 1 in order to

preserve the grading properties of the antifields and fields in (5.4.33), it is named as
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gauge fixing fermion since it project the field-antifield space to the gauge fixed subspace.
Another important thing which should be checked is the fact that the path integral
does not depend on the choice of the gauge fermion and it happens actually when the
Laplacian of the action vanishes since in order to get (5.4.34) we used the Stokes theorem.

So we should have
AS=0 (5.4.35)

where the Laplacian is defined as

_ Or Or (_)Eé—l
5¢A (5@52

(5.4.36)

here eé is the Grassmann parity of the field ¢, This operator has the following prop-

erties
A =0 , e(A)=1 (5.4.37)

One can check that the surface which is defined in the field-antifield space with the

equations
_ . 09
Oa(z) = ¢ — SoA (5.4.38)
satisfies the following condition
(04,0B)=0 (5.4.39)

This means that the symplectic form (5.4.5) vanishes on this surface and since they
have half of the dimension of the field-antifield space because of their defining equation

(5.4.38), they are Lagrangian submanifolds of the field-antifield space.

In order to gauge fix the theory, we should define a Lagrangian submanifold on which

the path integral becomes well defied and its divergent part gets factorized.

The gauge fixed action can be written explicitly as the projection of the action to the

Lagrangian submanifold as follows

oy
3¢

] 1 6w » ”
s’ + QTgﬁgcacﬁ + "more” |y (5.4.40)

S|¢:So+

Also the new BRST charge of the theory can be obtained as the projection of the original
BRST operator to the Lagrangian submanifold

. o ) L 0
spd” = (s¢") <¢, $p = W) = 5o <¢, Oh = W) (5.4.41)
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under which the gauge fixed action is invariant
5pSly =0 (5.4.42)
It is nilpotent only on-shell
3\3@‘4 = equations of motion (5.4.43)

In chapter (6) we will explore an example of the BV action, for the G/G principal chiral
model, and its different gauge fixings to produce the topological actions which are related

to pure spinor formalism and the A-model of the AdS5 x S° will be explored.
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5.5 Consistent deformation of the BV action

The BV formalism gives the power to find consistent interactions among fields which
does not spoil the original gauge invariance of the theory in the sense of the deformation

theory.

Indeed, having a consistent interaction, the solution S(©) of the master equation can be

deformed as an expansion of the interaction parameter r as follows
S =280 4rsWM 44252 4 .. (5.5.1)
The master equation for a consistent deformation should also be satisfied which implies
(5,5)=0 (5.5.2)

This splits according to different orders of the deformation parameter r as

(8O 5Oy = o (5.5.3)
(5@ sy = ¢ (5.5.4)
2(8©, 5@y 4 (sM sy = ¢ (5.5.5)

The first equation is satisfied because we are deforming around a solution of the master
equation. The second equation (5.5.4) implies that S™) is a cocycle for the BRST
operator s = (-, S).1 Tt can be shown [76] that if SV is a coboundary, it corresponds
to a trivial deformation which can be absorbed into $(®). This means that the nontrivial
deformations are elements of the cohomological space H 0(3(0)) which is isomorphic to
the space of the observables of the original undeformed theory. From (5.5.5) we see that
the second order deformation S exists if and only if the cocycle (S, SM) is trivial

in H'(s(9)). If not, there is no S and the deformation gets obstructed at order 2.

It is the cohomological groups H?(s(?) and H'(5(9)) which are giving the information of
the first-order deformations and the obstruction of continuing the deformation to higher

orders.

Here we are interested to find local deformations, deformations which can be expressed
as local functionals. Every term S*) can be written as an integral over a n-form S*) =
i L% which depends on the fields, antifields and ghosts and a finite number of their

derivatives. A vanishing local functional A = [a = 0 implies a = df where d is the

Tt is the BRST operator we have always used before.
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space-time exterior derivative and f f =10. We can define an antibracket {a, b} for these

n-forms as

(A, B) = / {a,b) (5.5.6)
which is defined up to d—exact terms.

One can rewrite the descent equations (5.5.3-5.5.5) as follows

ROV ORI (5.5.7)
sOL@ 4 M 0y = g® (5.5.8)

which implies again that the non-trivial local deformations are elements of the H%(s(9)|d)
which is the cohomology of s(%) modulo the exterior derivative d. The Second equation
(5.5.8) implies that S exists if and only if the cocycle (S, SM) is trivial in H'(s()|d).

For a general theory, the BRST charge s contains all the fields and ghosts and solving
the descent equations (5.5.7-5.5.8) is not an easy task. In order to make it possible, one
can use the homological perturbation theory which relates the cohomology of s to the

cohomology of § and . This relation goes through the following theorem [77]

Theorem 5.2. The cohomology group H*(s|d) is given by

k - H,k((ﬂd) k<0
H*(s|d) ~ { Ol ka0 (5.5.9)

where ~ means up to trivial terms and H”(v|d, Hy()) is the cohomology of H*(v|d) in
Hy(9).

Accordingly, in order to find the deformation space and to find H%(s|d) and H'(s|d), it

is enough to study their antifield independent components.

So, the next step is to find the cohomological group H () of the G/G principal chiral
model as it was studied in [78] in order to find the possible deformations one can find
without spoiling the structure of the theory. This we will do in the next chapter after
introducing its BV action and we will see that the pure spinor superstring action arises

as a possible consistent interaction which one can add to the topological action.






Chapter 6

Towards a worldsheet description
of AdS/CFT duality

It was proposed by Berkovits in [35] and [36] that starting from a G/G principal chiral
model based on the supergroup PSU(2,2|4) there are at least two different ways of
gauge fixing it which gives two topological models, the first is the A-model topological
action we described before, and the other is a topological theory whose supersymmetric

charge is equivalent to the pure spinor BRST charge

Qsusy = @BRST (6.0.1)

Here in this section based on an unpublished work [22], it will be explained that con-
structing the BV action for the G/G principal chiral model, in fact we can systemat-
ically gauge fix it and get two different topological theories. This topological theories
are conjectured to correspond to the zero radius limit of the pure spinor superstring
on AdSs x S® and so they are dual to the free N' = 4 SYM. The connection of the
A-model and the other topological model with the same supersymmetry charge as the
BRST charge of the pure spinor hints that they have actually the same cohomology and
the topological model can explore all the physics of the pure spinor superstring and not
just its BPS sector. Next, we show that we can consistently deform the G/G model by
turning on the radius modulus and we see that the form of the deformation becomes
the pure spinor action itself as the vertex for this deformation. Using this picture one
might in principle apply the same analysis of Ooguri and Vafa for the case of conifold

and give a worldsheet proof for the Maldacena’s conjecture as we will comment later.

141
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6.1 BV action for the G/G principal chiral model

The G/G principal chiral model action can be written in this way
So = Str/d2z77AB(J— A)A(J — AP (6.1.1)

where J and J are the left and right components of the one-form J = ¢g~'dg with respect
to the worldsheet @ and d derivatives constructed from group elements of PSU(2,2/4)
supergroup and (A4, A) are PSU(2,2|4) gauge groups on the worldsheet. They can be

expanded in the generators of the supergroup as follows
J=JATy , J=JTy (6.1.2)

where A here is a general PSU(2,2|4) supergroup index.

An element g € PSU(2,2|4) can be represented in terms of the local coordinates h* on

the supergroup manifold as
g =e""'Ta (6.1.3)
The Cartan one-forms can be written in terms of the local coordinates too

JA = wi(h)dh? (6.1.4)

The matrix ws(h) is invertible because the Cartan forms J 4 form a basis for the super

algebra. One can find their inverse w4 (h) satisfying the following relation

wa(h)QE(h) = 64 (6.1.5)
The action is invariant under the following local symmetry transformations,

dA =de+[A €] (6.1.6)

Which can be promoted to a BRST transformation after introducing the ghost fields C'
taking value in the Lie algebra psu(2,2(4).
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The nilpotent BRST transformation acts on the fields and the ghosts as follows,

sA = dC+[A,C], (6.1.7)
sA = dC+[4,C]
sJ = dC+[J,C)
s] = dC+[J,C]
1
sC = —;le.c

To see the structure of these transformations we can use the Z, automorphism grading
in which any field or ghost is decomposed in four classes (Fy, F1, Fa, F3) belong to Z4
equivalence classes (Ho, H1, Ha, H3). Because of the supergroup structure in which the
generators (Ty € Ho,T> € Hsz) are bosonic and (T} € Hy,T5 € Hs) are fermionic,

different components of the fields and ghosts acquire the following Grassmann parities’

EG(A07A27J07J2701703) =0 (618)
GG(Al, Ag, Jl, Jg, C(), 02) =1

So the BRST transformations (6.1.7) can be rewritten in Z4 decomposition as follows

sAyp = dCp—+ [Ag,Co) + [A1,Cs] + [As, C1] + [A2, C] , (6.1.9)
SA1 = dCl + [Al, Co] + [Ao, Cl] + [AQ, 03] + [Ag, CQ] y
3142 = dCQ + [AQ, C()] + [Ao, CQ] + [Al, Cl] + [Ag, Cg] N
sAs = dC5+ [Al, 02] + [AQ, 01] + [Ao, 03] + [A3, C()] ,
1
sCy = —3 [Cs,C],
1 1
SC]. - _5 [Clv CO] - 5 [037 02] 9
1
sCy = —3 [Ca, Co],
1 1
SCg = —5 [Cg, C()] + 5 [CQ, Cl]

which is nilpotent off-shell. The BRST transformation of the left-invariant currents J

and J are similar to the one of A and A replacing .J with A.

The minimal BV action Sy, (®, ®*) can be written as an expansion in powers of anti-

fields around the classical solution as we described in the previous chapter of this thesis,

Spmin = So + @fi)sqﬂi) (6.1.10)

!The Grassmann parity eg is zero for a boson and one for a fermion.
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where ®®) = (g, A, C) is the minimal set of fields and we introduced a set of their anti-

fields <I>>("Z.) = (g*, A*,C*) for them. The antifield of the group element g belongs to T*G

where G is the supergroup G = psu(2,2[4). It and can be expanded as follows
g = ghT4™! (6.1.11)

They satisfy the following antibracket actions,

(%, 07) = 6F, (6.1.12)
(g,*47g*B) = _nggéW
(9792) = 7gTA

The minimal BV action can be written explicit for G/G as follows

— = - 1
Smin =S¢/ + /sz[AZ(deL[A, C)A+ A% (dC+|A, C])A+g;cA—§c;q C, C]A]
(6.1.13)
where A is a PSU(2,2|4) index.

As we discussed before, we are allowed to add some cohomologically trivial pairs into

the action as the non-minimal sector. We take the non-minimal sector as follows

sDa =d} , sdy =0, (6.1.14)
sdt = DA , sD* =0,
(DAvD*B) = 55 ) (dA7d*B) = 5§7

gh(D") = —gh(D) -1 , gh(d") = —gh(d) — 1
with the following Grassmann parity in the Z4 grading
EG(Dl,Dg,DS,DS,do,dQ, T,d?;)) =0 (6115)

€a(Do, D2, DY, D3, dy,d3, dy, ds) =1

The action which its variation produces these BRST transformations is the following

non-minimal action
Snonfmin = /d2Z D*AdA (6116)

The full action is obtained after adding the non-minimal action (6.1.16) to the minimal

action (6.1.13)

S = szn + Snon—min (6117)
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The action (6.1.17) satisfies the master equation
(S,8) =0 (6.1.18)

This can be written explicitly as follows

oS 6LS TS 5ls
— — 1.1

(5,5) JAA 0AY  OAY JAA (6.1.19)
5SS oS ils
dcA och  och deA
oS S a4 0"S_ 4 5ts

T4 — —T%g—
dg gégz 09% g dg

where each of line of which is vanishing identically.

In order that path integral be independent of the gauge fixing, one can check that the

action (6.1.13) also satisfies the following quantum master equation,

% (S,S) =ihAS (6.1.20)
where A is defined as follows
o O
— (_1\€I 1.21
AS=(-1) iy 5! (6 )

and e; = (0, 1) is the Grassmann parity of the field ®/. Both sides of the identity (6.1.20)
is vanishing for the action (6.1.13).

Since the gauge transformation closes off-shell, we can split the the BRST charge ac-
cording to antighost degree starting from —1 for the Koszul-Tate differential § and the

longitudinal differential v as?
s=06+7, antigh(d) =—1, antigh(y)=0 (6.1.22)

No extra terms of higher antighost number is needed in the G/G BV action and the
full BRST charge is given as the sum of Koszul-Tate differential § and the longitudinal
derivative . The first application of this decomposition comes from the the fact that
the cohomology of s coincides with the cohomology of the longitudinal derivative -~y
according to homological perturbation theory and so one can study the cohomology of

~ which might be easier instead of studying the cohomology of the full BRST charge.

2Before we used d as the longitudinal derivative but in this section d is used as the spacetime exterior
differential and for the longitudinal derivative we use =.
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The BRST transformations (6.1.7) and their generalization to the antifield sector also

decompose into transformations under § and  separately using the fact that

)
o = o* = 20 1.2
=0 , ¢ B (6.1.23)
which gives the following transformations for v and §
yAA = dCA + [ ABCE, §AA =0
vg = gTaC4, 69 =0
cA=_1r4 cBcC, 5CA =0
7 2/5c s (6.1.24)
vAY = R, A50C, SAY = 25
Vs = FRag50C, 094 = 54 (h)
vCh = f5,050°, 5C% = —dAY — fR ALAC + g4

we will use the explicit form of the BRST transformations to compute the cohomological
groups H(s|d) of the BRST differential s modulo the spacetime exterior differential d,
in the space of local forms. As we explained in the previous chapter, these groups
characterize the counterterms in ghost degree zero, while in ghost degree one, they

classify the anomalies.

The longitudinal derivative « is nilpotent off-shell. Therefore, we can analyze first the
v-cohomology, H(v), and the - cohomology modulo the exterior derivative d, H(v|d),
in the space of all fields and antifields.

In the next chapter we will first explore the gauge fixing of this BV action for G/G

principal chiral model to gauge fix it.
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6.2 Gauge-fixing the GG/G principal chiral model

In order to fix the gauge we do the usual procedure of the BV formalism explained before
to project the field-antifield sector to a Lagrangian submanifold whose symplectic form
is vanishing. To do so, one introduce the gauge fermion 1 and the projection to the

Lagrangian submanifold is defined by putting the following constraint for the antifields

_ %

o= —
0P

(6.2.1)

as it was explained in section (5.4).

Here we apply two different gauge fixings and we will see that corresponding to each
gauge fixing fermion, we will get either the topological A-model or a topological theory

with the BRST charge of the pure spinor action as its supersymmetric charge.

6.2.1 Gauge fixing to topological A-model

To define the first gauge fermion we use the set of {Tys,T,+,T,-} generators of the
PSU(2,2[4) supergroup in which Ty = {Tsy (), Tsu(2,2)} are the bosonic generators
and T+ and T,- are the fermionic generators which are related to the usual {T,, T4}

generators as follows

T+ =To+iTy , Ty- =T, —iTy (6.2.2)
They satisfy the following anticommutation relations

{To+,Tp+} =0 , {T,-, 13-} =0 (6.2.3)

These are the generators we already used in the introduction chapter to define the

topological A-model action.

In (44 4) x (4 + 4) matrix representation of g € PSU(2,2|4) supergroup as

A X
g= 4x4 4x4 (6.2.4)
Yixa Baxa

the generators Ty, 4, To— and Tjs correspond to the upper-right, lower-left and the block-
diagonal matrices respectively. Hence, we have the following algebra for PSU(2,2|4)

+ —
[TM)TOc+] = f]@a-ﬁ—Tﬁ“' ’ [TMvTa—] = f]@a_TI@— (625)
{TONL’Tﬂ*} = O{\f-ﬁ—TM ) [TM7TN] - f]}\;NTP
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The non-zero components of the metric are the symmetric and antisymmetric tensors

Ny and 7+ g- Tespectively.

Any Lie algebra valued object can be expanded in terms of these generators and we have

the following contractions

XoYO 4 X,Y0 = <Xa+ vet _x, Ya’) (6.2.6)

DN |

To do the first gauge fixing, we choose the following gauge fermion,
I /d2z {DMAM + D, A% + CMdM} (6.2.7)

where

AT = A 1 AY A% = A% —jAY (6.2.8)

The antifields are fixed on the Lagrangian submanifold with the following constraint

oYy
o= — 2.
50 (6.2.9)
which gives the following conditions on the antifields
Ay, =0, Ay, =0,
AZJr = D+, A:;+ =0,
A =0, AZ_ =D,
g* — 0, D*M — 07
o 6.2.10

prat _ Aoﬁ" pra” = Ao ( )
d*a+ _ O, 4 =0
aM = oM, Cy = du,
C:é_;'_ - 07 C;_ - 0

One can easily check that these conditions fixing half of the degrees of freedom and the

symplectic form

w=Y 604 AIDA (6.2.11)
Ad

is vanishing on this subspace where @ is a collective notation for all the fields and ghosts
and antighosts and ®* is its antifield. The index A is a gauge index. The vanishing
of the symplectic form (6.2.11) for a half-dimensional subspace means that the gauge

fixing (6.2.7) defines a Lagrangian submanifold.
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The equations of motion for d, + and d,- coming from the non-minimal action implies
D =0 , D =0 (6.2.12)

which together with (6.2.7) fix the fermionic part of the gauge group as follows

+ —

AT =0, A" =0 (6.2.13)
Putting (6.2.7) and (6.2.13) back in the BV action (6.1.13) we obtain the following action

_ 1 _ 1 _ _ _

S = /sz[nMNu—A>M<J—A>N+2na+a-ﬂ*ﬁ — e (17— AT (T A7)
1 at at M Bt _1 o~ a~ M B~

+ 5 Dar (30 + forse AMC ) ~Da- (80 + fisAMC ) (6.2.14)

— M dyceT e — LAy et o9

«

This is a gauge fixed action but still has some auxiliary degrees of freedom which one
can safely integrate them out using their equations of motion. The equations of motion

for AM AM  Ae” A" reads as follows

1 - - - - 1
AM = M Mt 00T A = M gD, 08 (6.2.15)

Aoﬁ — Joﬁ Aoﬁ — jocJr
Also we can write the following equation of motion for dys

M oot oe = M cPoe (6.2.16)

ata~

This implies that one can solve for the ghost C* in terms of the ghosts C*" and C*
and since they do not appear anywhere else in the action, they will disappear from the
action. As we will see later, this constraint changes the correct measure of the bosonic

ghosts C®" and C® ™ in the path integral.

Putting (6.2.15) and (6.2.16) back into (6.2.14) we obtain the following action

S = /d% [nam_(ﬂ*ja* —Jo g (6.2.17)

+ Do VC™ =D, VC + [y, ¢, [P, C7]Y]

where

[D..C*],, = fpeDarC7, [D_,C7],, = fY1 D,-CF" (6.2.18)
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The covariant derivatives are defined as follows
Voo =90 + [ MO VO =90 + £ -TMCTT (6.2.19)

The action (6.2.17) is the A-model action which we obtained as the zero radius limit of

the pure spinor superstring on AdSs x S° after the following identifications

Ya— - Da— ) Yoﬁ' - Doﬁ'

Jom o gat_, pat (6.2.20)

The BRST transformation can be obtained from the following variation of the action

projected on the Lagrangian submanifold

oS |
5o =55

QP = (6.2.21)

which is the gauge fixed BRST charge of the BV action (6.1.13) after putting (6.2.10)
into (6.1.24) we get

QI =verT ., QJY =vC0r (6.2.22)
Qcoﬂ’ -0 ’ Q0a+ -0

In order to compute the BRST variation of D,+ and D,- we should use the fact that

Do+ = A%, and D,- = A} from (6.2.10) and after using
* * - + * TO + TJOO
QAL =fM 5 Ay CP 4 f AL O o T =70 D CM g - T (6.2.23)

QAL =fM o A5 CF A OM gy T = D OM - IO (6.2.24)

from (6.1.24) and considering the fact that A}, = 0, Do+ = A’ and D,- = flz, on

the Lagrangian submanifold, finally we get
. ﬁ+ M T _ /@* M . OﬂL
QDa+ - fa+MD,B+C + Nata- J ’ Q,Dcr - foﬁMfDB*C Nata— J (6225)
and the BRST charge can be written as follows
Q= / d2npro-C T + / dZny— gt O T (6.2.26)

which is the BRST charge of the A-model of the pure spinor superstring on AdSs x S°.
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6.2.2 Gauge fixing to a topological model with Qtop = Qpure spinor

In this section, we will see that there is another way of fixing the gauge symmetry of the
G /G principal chiral model which gives a BRST trivial action in which its BRST charge
coincides with the BRST charge of the pure spinor formalism on AdSs x S°. The pure
spinors and their constraints also comes as the gauge fixing constraints imposed on the
BV ghosts C4.

Here we use the SO(5) x SO(4,1) invariant representation of PSU(2,2[4) supergroup
with generators (T[ab] y T Ty, T@) which are Lorentz, translation and fermionic generators

respectively.

We use the non-minimal fields (DA,ﬁA,dA,JA) together with their antifields which

transform under the BRST transformation as follows

QDa=ds , Qds=0 (6.2.27)
Qd*A _ D*A , QD*A -0

Q@A = CZA , QCZA =0
QJ*A _ D*A ’ Q@*A -0

where A = ([ab],a,a, &) is a PSU(2,2|4) index. The non-minimal fields have the fol-

lowing Grassmann parities

€@ (Daa Dg, D*[ab] ’ D*av d[ab]7 da, d*av d*d)
¢G(Dja)s Doy D**, D™ doy, dg, 1Y, d**) = 1

0 (6.2.28)

The dynamics of the non-minimal fields is defined by the following action
Shon-minimal = /dzz[D*AdA + ,Zj*ACiA] (6229)

Using BRST transformation (6.2.27), it can be shown that this non-minimal action is a
BRST trivial term

Shon-minimal = /szQ(Q) (6230)
with
Q = dds+d?dy (6.2.31)

Being a trivial term making out of the cohomologically trivial pairs, the non-minimal

action (6.2.29) does not change the cohomology of the original theory.
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The next step is to gauge fix the theory by taking the following gauge fermion defining

a Lagrangian submanifold

WYy = / d*2[DINT(C)A" + Dy s N (C)A® + DiCT + Dy 5CT + Dy C17)

+ DaA% + D, A% (6.2.32)

where /] =0to4 and a =0 to 9.

This gauge fermion putts the following constraints on the antifields of the theory

Ay =0, A{ab] =0,

Ar = DIN](C), Al =DrsN1(O),
AX =0, A% =Dy,

Az =Da, Az =0,

D = NI (C)A?, D5 = NI(C) A,
D = A, D =0,

P = A P =0, (6.2.33)
prlabl — Drlab] — Clab],

Dra — ca, & =0,

dr =0, di =0

dr =0, i =0

Cy =Dy, Ct.5 = Drys,

Cx = D2 ae, Cg =Dy 2l Ae,
Chy = Dlabl g =0

which defines a half-dimensional subspace in the field-antifield space. In order to have a
Lagrangian submanifold, the symplectic form (6.2.11) should be vanishing which implies

the following completeness and orthonormality conditions on matrices N' and A/
nPNINE =0 | 9®NINI =0 (6.2.34)

In order to find a solution of (6.2.34) we can use the null vectors (7,)asC*C? and
(’ya)éwgC"f‘C'fé satisfying

1 | (1)apCC?| |(10)3COCT| = 0, ™ [(70) 15C7C7] |(1)55C°CT| = 0 (6.2.35)
They decompose under SO(5) x SO(4, 1) into

O = (1)apC*C” , &7 = (17)apC*C” (6.2.36)

b1 = (1);50°C7 | by = (17),50°C
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where I =0to4 and [ =5 to 9.

There is another way of presenting the constraints (6.2.34) for matrices N/ and N/ as

follows
(Va)agCeCP = (1)5yC°CONY (1) 45C°C" = ()5, C°CTNG - (6.2.37)

This is equivalent to (6.2.34) written in a ghost-dependent way. These matrices are the
same as the ones used in [79] to construct extended pure spinor formalism and also in

[36].
From the equations of motion for the non-minimal antighosts which implies
D=0 , D=0 (6.2.38)

Using the gauge fixing constraints (6.2.33), we get the following conditions on the gauge

fields and the fermionic ghost components

A% =0 , A* =0 (6.2.39)
NIA® =0 ., NlA =0
co=0 , Cl=p

The gauge fixing (6.2.33) kills half of the gauge degrees of freedom of A% and half of the
A® because of the rank of AV and N.

Putting the gauge fixing (6.2.33) back in the action (6.1.17) we get the following gauge-

fixed action

S = /d22[77[ab][cd](J_ AT = Al 4y (= A)(T — A (6.2.40)
+ Naa(J = A (T = A = naa ] T
+ DINL(C + f254°CP) + Dy NI (DO + f‘}AA‘S‘Cﬁ)
— Da(VaC® + [ Aacﬂ) +Da(VaCY + f35ACP)
-3 S e toL 5 f& ! DrisCoC7 — fgf 2 CC°
+ NIA%; + NTAd; 5]

where the covariant derivatives are defined with respect to the gauge connections as

VaC® = 9C° + foysAC? | VO = 90% 4 f Al c? (6.2.41)
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The third and fourth lines of (6.2.40) are the A*(0C + [A, C]) terms, the last two lines
are the non-zero C*[C, C| terms and the non-minimal sector of the BV action (6.1.13)

respectively after imposing constraints (6.2.33).

The equations of motion for the anthighosts ﬁ[ab], Dr and Dy 5 coming from the action

(6.2.40) can be written as follows

flecs = o, (6.2.42)
430°C” =0,
féBCdCf} — 0.

The last two are the pure spinor constraint for the ghosts C® and C since because of

(6.2.37) they imply
(10)asCoCP =0, (7a),5C°C7 =0 (6.2.43)

which are the usual ten-dimensional pure spinor constraints for the pure spinors C“ and

ce.

The first equation of (6.2.42) implies that the pure spinors C¢ and 7,4C® has to be
interpreted as complex conjugate and so this becomes a trivial equation whenever they
satisfy the pure spinor constraint. This is consistent with the observation in [36] that

the term 17)\5\ is in the cohomology of the pure spinors.

Because of (6.2.37) and the pure spinor constraints (6.2.42) we get the following identities

apNaC¥=0 . [fLNJC¥=0 (6.2.44)

Putting all these into (6.2.40), the action simplifies as follows

s = /d22[77[ab][cd](J_ AT = Al 4 (7 — A)(T — A (6.2.45)
— Naad T + naa(J — A)*(J — A)
— Da(VaC? + fGACP) + Da(VaCH + fi54°CP)
NI A%+ N A )
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The action (6.2.45) implies the following equations of motion for the auxiliary fields
Alabl s Alabl - ga ga A% and A~

A[ab} _ J[ab] + N[ab] , A[ab] _ j[ab] + N[ab]
AT = Jo 4 fgaDaCB N nab-/(/;)]dl+5 ’ A — Jo _ fgdpdcf,@ _ nab'/\/’bldj
A®=Jg* . AY=J4 (6.2.46)
where we defined
Nl = glflep,cf | Nlatl = f[“b]aD of (6.2.47)

as the usual pure spinor Lorentz currents.

Putting back the equations of motion (6.2.46) into the action (6.2.45) we get

s = /dQZ[nadjaJ&+77[ab][cd]N[ab]N[Cd] (6.2.48)
— N (f20DLC = 0N drys) (f5DCP + PN dr)
— Da(VC* + fliysN1ICP + Fo(Je — f3%Dq OB — N dp) OBy
+ DalVCH+ fE, 5
NJ(J® fg“DaCﬂ — "Ny dyis)dr + N (J* = f30DaC? — "Ny dg)d 5]

GNEUCH 1 0507 4 20D C — ™ N dy15)CF)

+

where now the covariant derivatives are defined with respect to the left-invariant currents

as follows

VCT =00 + [, JCT Vet = act 4 fo glrCs (6.2.49)

We can also integrate out the auxiliary fields d; and dj45 using their equations of motion

dr = (RN (T = f§°DaCP)  digs = (RN (T + fgaDaCB) (6.2.50)

where

R =y NINY (6.2.51)

Finally inserting back (6.2.50) in the action (6.2.48) and after using the following identity
NHR™Y NG = na (6.2.52)
we get the following action

S= [d2[J" NI R NI TP 4106 T =DV C* +Da VO —1yiapyjea NN ] (6.2.53)
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It is the topological action proposed in [36] as coming from a gauge fixing of the G/G

principal chiral model which was shown explicitly before.
The BRST transformation is the ”gauge fixed BRST charge” defined as follows

oY
D= (sP)P,P*=— 6.2.54
The BRST transformation of the left-invariant currents and the ghosts C' can be obtained

directly from (6.1.24) after using gauge fixing constraints (6.2.39) and (6.2.42),

QJ" = fJ0Ce + foa0Ct L QU = flljech 4 At (6.2.55)
Qja — ?Ca + 3djacd 7 QJd — vcd + C(LSzaJaCa
QC*=0 , QC*=0

To compute the BRST transformation of the antighosts D we should use from (6.2.33)
the fact that D, = —A* and Dy = A% and so

QDo = —QA;, = —[A",Cla — gl = — 354507 + Naad® = —[1sDEsNL C + 10
— s (6.2.56)
QDa = QA = (A", Cla+ 5o = [0, 4507 i = [ DINICP — e
= Naat® (6.2.57)

where we used the gauge fixing constraints A% = 0 and A% = 0 and (6.2.33) and the
fact that D7 = D7, 5 = 0 on-shell.

The BRST operator can be written as
Q= / dzneaCOJY + / dzZnaa CO T (6.2.58)
It is exactly the AdSs x S° pure spinor BRST charge after the following identifications,

C* =\, 0%\ (6.2.59)

Dy — wq s Dy — wa

The action (6.2.53) is invariant under this ”gauge-fixed BRST charge”.

The action (6.2.53) is a topological action because as it was shown in [36], it can be

written as a trivial term

S = /de Q(Q) (6.2.60)
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for some 2 which its exact form was given in [36] and we do not need to write it here.

So, starting from the BV action of the topological G/G principal chiral model, and
after doing a proper gauge fixing we get a topological action with the BRST charge
exactly equal to the superstring action. As it is conjectured in [36], this topological
action describes the zero-radius limit of the AdS5 x S° superstring which according to

the Maldacena conjecture is dual to the free N' =4 on d = 4 super-Yang-Mills theory.

The fact that this topological action and the A-model action are both obtained from
different gauge fixings of the same theory implies that they are describing the same
physics. Since the physical states explored by the second topological theory is defined
from the cohomology of its topological charge which is equal to pure spinor BRST
charge, so it is natural to say that this theory and the topological A-model theory are
both exploring the full cohomology of the pure spinor superstring on AdSs x S° in this
limit and not just its BPS sector. It seems puzzling and more understanding in this
direction deserves more consideration since it might help to give a better understanding

of a ’physical’ theory using a topological one.
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6.3 Consistent deformation of the G/G model

As we saw in section (5.5), the BV formalism gives the power to find consistent interac-
tions among fields keeping the original gauge invariance in the sense of the deformation

theory.

Indeed, we showed that having a consistent interaction, the solution S(© of the master

equation can be deformed as an expansion of the interaction parameter r as follows
S =280 4rsWM 44252 4 .. (6.3.1)

We observed that the local deformations are determined after studying the relative co-
homological groups HY(y|d) and H'(y|d). In fact, H°(vy|d) determines the first order
deformation and H'(y|d) determines whether the deformation continues or it is ob-
structed after the first order term. So, we have to study these cohomological groups
for the G/G principal chiral model. Note that, since the topological theories which are
obtained after the gauge fixing of the G/G model correspond to the zero radius limit of
the superstring on AdSs x S°, the deformation corresponds to the vertex operator for
the radius modulus and the perturbative parameter is proportional to the radius of the
AdS5 x S°.

The local deformation of a BV action has been studied mainly for Yang-Mills theories
in [76, 80, 77, 81, 82, 83]. It was shown as an example that for the case of Abelian
Chern-Simons theory the consistent interaction which one can add to the theory without
spoiling the BV gauge invariant structure is the non-abelian Chern-Simons terms. For
more general non-linear sigma models including the G /G principal chiral model the same

problem has been addressed partly in [78] for a bosonic compact group G.

We have to study the cohomology groups H(7) and then its relative cohomology group
H(~|d). The first step of calculating the cohomology is to define the field space in which
this calculation should be done. This space is named as jet space and is simply the
space whose coordinates are the fields and their corresponding antifields as well as their

subsequent partial derivatives
d = {44, g, , o = (A g*, C*Y , dD , dD*, --- (6.3.2)

Since the differential v commutes with the exterior derivative d, so the transformation

laws (6.1.24) can be applied globally to all the jet space.

In order to describe the y—cohomology it is convenient to find a set of jet space coor-

dinates in which it has more compact form. To do so, it was shown in [78] that after
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eliminating the trivial pairs the jet space can be coordinatized with the following fields
g9.C4 Ix*) (6.3.3)

where x4 = {J4 — A4, ®*} and according to (6.1.24) it transforms under ~ linearly as

follows
w* = (Tp)ZxsC” (6.3.4)

where T4 are the generators of the group GG. But actually we can define another set of

fields which are invariant under v transformation as follows
' =Ulg)sx” (6.3.5)

in which U(g) stands for the matrix representation of group element g. Because of the

following transformation 3

U (g) = —(—1)*¢WU(g)CT4 (6.3.6)

we have yx = 0.

We can take the following set of fields as a possible jet space coordinates which is also

consistent with the definition given in [84] for a good jet coordinate

jet space coordinates = {g, C4, [x“]} (6.3.7)

They transform with v as follows
19 =9C , 1C=-C*, 7[x]=0 (6.3.8)

where [Y] means x and all its subsequent ordinary derivatives.

It was shown in [78] that the most general solution for the cocycle condition ym = 0
is given as a polynomial in the gauge-invariant variables [x]| times a solution of yn = 0
which just depends on g and C'. So we have to compute the cohomology defined by the
first two equations of (6.3.8) which is done by relating it to the De Rham cohomology
of the supergroup manifold. The relation comes from the fact that we can identify
with the exterior derivative d, also one can identify the ghosts C' with the one-forms J

as follows

yed , CeJ (6.3.9)

3Here and everywhere eq(F) denotes the Grassmann parity of the field F.
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This way the de Rham cohomology is identified with the cohomology of the longitudinal

derivative ~.

The corresponding of the 7 transformation yC' = —C? and vg = ¢gC is given by the
Maurer-Cartan equations and the definition of the left-invariant Cartan one-forms as

follows
dJ=—-JNJ , dg=gJ (6.3.10)

There is a point here that since we are studying a supergroup, the one-forms J have
fermionic components J* and J¢, correspondingly we have also bosonic ghosts C® and

C% but the identification seems to work in the same way.

Taking the De Rham group to be Hpgr(G) with the basis wy(g,JJ) and denoting by
w(g,C) the function obtained after inserting C' in place of J, a general cocycle solving

~vm = 0 has the following form

m=> P'([%],dz)w(g,C) +n (6.3.11)
I

where P! is an arbitrary polynomial in ¥ and its ordinary derivatives.

In fact the spacetime forms w(g, J) are related to the y—cocycles w(g, C) by the descent
equations as it was shown in [81]. To write the descent equations we can expand @y =

wr(g,J + C) according to ghost number and form degree [78] as follows

wr = w§0’2) + wgl’l) + w?’o) (6.3.12)

The first superscript stands for the form degree and the second one is the ghost number.

They are limited to be less than or equal two since we are working on the worldsheet.

The @ has to be annihilated ¥ = v + d by construction
Fwr =0 (6.3.13)

This is named as Russian formula [78, 85].
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After using the expansion (6.3.12) we get the following descent equations for each ghost

degree

dw® — 0 (6.3.14)
1@ 4 gD = g (6.3.15)
oD 4 g0 — g (6.3.16)

w0 (6.3.17)

where its solution gives the cohomology group H (7).

We can see from (6.3.14) that the integral

/ w{®? (6.3.18)
b

is gauge-invariant since its integrand is gauge-invariant up to a total derivative term.
So we can add this term to the action without spoiling the gauge invariance of the
theory. But, on the other hand, since w®? is locally exact, the topological term (6.3.18)
does not modify the equations of motion and this is a consistent deformation of the BV
action. These terms are called winding number terms and they are consistent with the
topological observables which we expect to get from our G/G theory since its gauge

fixed form gives an A-model topological action as we saw before.

The next step is to find a solution for the descent equations (6.3.14-6.3.17) to find the
deformation term (6.3.18) for the G/G principal chiral model. We assume that we
can use this construction also for the case of supergroup as in our case for AdSs x S°

supercoset.

6.3.1 Descent equations

The longitudinal differential along the gauge orbits v can be written using the transfor-

mation laws (6.1.24) as follows

0 0 0

+CA 9 +CA 4 +OAT =

A Y A
¥ = O HOO A O+ O O 5o (6319
o o
A~B
FinC C gce +dagpe

which squares identically to zero.

In order to find a consistent deformation, we start solving the descent equations from the
bottom equation (6.3.17) and go up until we solve the upper descent equation (6.3.14)

which its integral over the worldsheet gives the deformation for G/G action.
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Here we propose the following solution but we should admit that here we are not con-
sidering the fact that the supergroup G is a non-compact supergroup, and this should

enlarge the general solution of the descent equations.

There exist a ghost number two as a solution for the bottom equation of the descent

equations as a function of g and C' is follows
w0 =y pCACB (6.3.20)

This scalar function satisfies (6.3.17). We take the invariant bilinear nap to be the

metric of the supergroup PSU(2,2|4) supergroup Since C!%! and C are fermionic and

(2,0)

Nab)[cd] @0d 7)qp are symmetric, the only possibility for w is the following component

w0 =y 00C? (6.3.21)

1,1)

Putting this in (6.3.16) we can solve for w1 as follows

WD = 5oa ((J — A)2CY + C(J — A)%) + naa((J — A)CY + CY(J — A)Y)  (6.3.22)
Using the Maurer-Cartan equation
dJ =—-JNJ (6.3.23)
and the fact that the currents J transform as

vJ = dC +[J,C] (6.3.24)

we can see that the (6.3.15) has the following solution for w(®:2)

WO = magea (J — AT = A)ld gy (7 — A)°(T - A (6.3.25)

bima(T = A0 = A~ L (T - (g - 4y

Off course one can add any y—trivial term to w(%2) which doesn’t change the cohomology.

A general local deformation of the BV action (6.1.13) is given by (6.3.25),

SS — St + R / d*z W2 (6.3.26)

which is a ghost number zero integrated vertex operator.

In the second gauge fixing which gives the topological model with Qiop. = Qpure spinor

after we add the insertion (6.3.18) with w®? as (6.3.25) the auxiliary field equations for
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the fields Al and A% get contribution also from the deformation term

A[ab] _ (1 + R2)J[ab] + N[ab] 7 A[ab] _ (1 + R2)j[ab] + N[ab]
A" = (14 BRI+ f20Do OO N dys A% = (14 B J = f3°DsCP — Nl dy
A% = (14 R*)J* , AY=(1+R»J® (6.3.27)

which after putting back in the BV action and keeping just the first order terms in R?

we get the following deformation action

Sdef :RQ/dQZ[UQbJan%—naB(;JO‘J’@—;JaJB)—DOﬁCa+Dd6C&—n[ab}[Cd}N[ab}N[‘Edl}
(6.3.28)
This is the original pure spinor action for the AdSs x S° background after applying
the identification (6.2.59). So we get the pure spinor action as a deformation over the
topological theory. This is the consequence of giving nonzero expectation value to the
radius modulus in the topological theory which corresponds to the zero radius limit of

the superstring on AdSs x S° background.
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6.4 A worldsheet description of AdS/CFT duality

Using the observation that the superstring action for small radius can be seen as pertur-
bation over a topological theory, one can explore AdS/CFT from a worldsheet point of
view similar to the topological open/closed duality an example of which we studied for
the case of CS/conifold duality in which the 't Hooft expansion of the gauge theory side
was obtained from a topological closed string theory. The difference in the case of AdS
duality is that in the superstring theory we have also propagating degrees of freedom
and local deformations on both sides of the duality which they should be mapped to each
other. As we emphasized in the introductory chapter, in the AdS/CFT correspondence,
any state in the gravity side relates to an operator in the gauge theory side. Actually
this map should be exactly one-to-one since this is the way we can produce the correct
't Hooft expansion from the gravity side. Here, In our topological G/G construction
of the superstring theory we observed that the topological theory as the dual to free
gauge theory, can be consistently deformed with a vertex operator which is the result
of giving the radius of the AdS geometry a non-zero value. This non-zero value of the

(0:2) corresponds to an operator in the

radius generated with the vertex operator [, d?zw
gauge theory side which makes the SYM theory an interacting theory with a pertur-
bative coupling 932/ » = t/Nwhich is proportional to the radius parameter in the string
theory side. One might try to follow the technique used by Ooguri and Vafa in proving
the topological conifold duality from a worldsheet point of view for AdS/CFT duality
considering the fact that here we have also some local vertex insertions in the closed
string side located in the Coulomb branches or holes on the worldsheet. These vertices’s

correspond to some D-brane operators at the boundary of the hole in accordance with

the state/operator correspondence.

So starting from a closed string worldsheet, we end with a partition over open string
worldsheets with h holes. After the emergence of the Coulomb branch, on top of the
"holes’ which appear as the regions in which the gauge field of the linear gauged sigma-
model becomes dynamical, we have also some punctures, as the insertion points of the
gravitational vertex operators in the closed string theory. In order to do so, let’s consider
that Séf} is the gauge fixed version of the fz d?2w(02) according to the first gauge fixing
which produces the A-model topological action from G/G, then the A-model action

deforms as follows
2 o(A)
SA-model ’ SA-model + R Sdef (641)

this is equivalent to inserting an exponential set of closed string vertex operators in the

closed string side. Starting from a closed string theory, the free energy is partitioned
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into a sum over the worldsheets with genus g and p vertex insertions with a weight factor

f(R) for each insertion as follows

F = sz,ggg 2Fyp (6.4.2)

g=0 p= 0
where F, , is the amplitude corresponding to a worldsheet with genus g and p punctures.

After defining F, as
oo
we can rewrite (6.4.2) as a sum over amplitudes for a particular genus F; as follows

F= Z 9272F, (6.4.4)

On the other side, in the open string side, we have the following expansion over the open
worldsheets with A holes and p punctures with the D-brane boundary states as dual to

the vertex insertions in the closed string side, where each contributes a factor R?f(R)*

F= Z Z ( h >(932/MN)h(RQf)p(912/M)2g *Fyhp (6.4.5)
g=0 h=1 p=0

where the number coefficient is determined from the partitioning of p punctures and h

"holes’ into H = h + p holes and is given by (I;T}g)!. One can rewrite (6.4.6) as a sum

over H = h + p as follows

F = Z Z (g5 u N + B2 (g300)* *Fyn (6.4.6)
g=0 H=1
where we defined
h+p=H
Fon= Y Fynp (6.4.7)
h,p

4As it stated in [36], each puncture contributes a factor R? but after inserting the vertices’s, the cor-
responding D-brane operator on the boundary of the hole corresponding to the puncture will contribute
a R*f(R) factor.
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Similar to the original 't Hooft idea we explained in the introduction, this can written

as a sum over genus as follows
[e.e]
F=> (g5u) °F, (6.4.8)
g=0
with the following definition for Fj,
o0
Fy=> (""" Fyu (6.4.9)
H=1

where t' is the shifted 't Hooft parameter
' = g2y N+ R:f (6.4.10)

The shift of the 't Hooft parameter is a consequence of the insertion of the vertex
operators in the closed string side and their corresponding D-brane operators in the

open string side.

As we see in figure (6.1) here the partition of the closed string worldsheets contains also
the puncture insertions on top of the usual holes originated from the emergence of the

A)

coulomb branch. Using the explicit form of the vertex operator in the A-model Sc(lef’

T T T 7T T T T T puncture
;4’/,,,,,-*”/’\\/ N.\'\_/) - ™. - r /}A\ 'y > /?‘\
(; M /)‘).2 1 '\ A I . H=h+ p‘\
- ) E : / ,_-l 2 : |
I\\ Ty ( {__ § " e /
g AN i hel
Hehep 7 DAl ™
e T o hole/ h h - -

FIGURE 6.1: A close worldsheet partitions into open worldsheets in which some of them have
D-brane operators corresponding to the vertex operator in the closed string side.

one should compute the exact value of the function f(R) which is necessary to find the
explicit perturbation expansion in the gauge theory side in terms of the radius of the
AdS. Note that if one can show that f(R) = R?, this implies that ' = R* for N = 0
and so the relation ¢t = R* would be valid both for small and large radius. Computing

explicit form of the factor would be an important next step towards a perturbative proof
of the AdS/CFT duality.



Chapter 7

Amplitudes computation

Here in this chapter we will show that one can use the power of topological A-model
action in order to give a multiloop prescription for the amplitude computations of pure
spinor superstring on AdSs x S°. We just sketch the first steps towards this computation

and a better understanding of the problem seems very appealing and important to us.

7.1 Pure spinor amplitude for AdSs x S°

The next step towards understanding superstring theory on a Ramond-Ramond back-
ground is to give a prescription to compute the string amplitudes for a generic multiloop
worldsheet. It can also help to give a better understanding to the gauge/string du-
ality since the perturbative Yang-Mills correlation functions should be generated from
the topological AdS5 x S° closed string amplitudes as the zero radius version of the

superstring on this background.

In order to give a prescription for the amplitude computation on a particular back-
ground we have to find the zero mode measure factor of the pure spinor formalism. A
prescription for multiloop amplitude computation for the flat background was proposed
in [53]. But for the case of AdS5 x S° it was shown in [35] and [36] that a simplification
in pure spinor measure factor makes the computation easier than the flat background.
For instance in flat background the zero mode measure factor of the pure spinors satisfy

the following relation at tree level

(A" (A"0) (Ay"0) (0mnpt)) = 1 (7.1.1)

while using the fact that 77)\5\ is in the cohomology of the pure spinors, and A\* and

A% can be interpreted as complex conjugate, a new simple measure factor for the pure

167
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spinors on AdSs x S° was given in [35] and [36] satisfying
((MaaA*A)?) =1 (7.1.2)

One can regularize the pure spinor measure by restricting zero-modes of A and A to
satisfy 77)\5\ = A for some positive A. The dependence on A can be absorbed by shifting
the coupling constant e? — A~3¢% which gives the following zero mode integration for

tree amplitudes
(f(z,0,),0,)) = / d'z / d*%0d'50 Sdet(E3;) / dONVONf(z,0,0,0,))  (7.1.3)
For the supergravity vertex operator
V =22\, (7.1.4)
one can write the three-point supergravity tree amplitudes as follows

A Ie% dAA 2 3
A= / 0 / d'%0d'%0 Sdet(E4,)T(@5)( ﬁv)>A§é{(X)Aég(X)A§g(X) (7.1.5)

note the integration over 16(0f)’s here instead of over 5(00)’s for the flat case.

A prescription to compute amplitudes with higher genus was also proposed by Berkovits
in [36]. One should insert (3g —3) b and b ghosts and N integrated vertex operators into
the functional integral. Then we should integrate over the zero modes of (x,0, 9, A, 5\)
and g zero modes of the spin-one fields w, and wg. There is another way of writing and
comparing the prescription of Berkovits by doing the computation from the topological
A-model action in which because of the topological property of the theory we know how

to compute a multiloop amplitude.
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7.2 Topological A-model amplitude

A general A-model action with BRST charge Q4 = Q_ + Q. can be written as

S =t / d’z (gg@aqbi@%j — 9L DX’ + 9i502D2X + 0i0kgptpix X (7.2.1)

g7 FLF] = gD FIpk — g9 FL ok )

The Kéhler metric can locally be written as g;; = 0;,0; K (¢, B ) for a Kahler potential
K (z',27) and the covariant derivative is defined from the Levi-Civita connection I‘;‘-k =

g’; 0jgy; for a flat world-sheet as follows
D:x' = 0:x" + F?gla%ﬁkal (7.2.2)
DX’ = 0.+ Th0.6M

Four supersymmetry generators Q+ and Q4 of the A-model can be generated by the

following operator
o= i€+Q_ - ’iG_Q+ - i€+Q_ + iE_Q+, (723)

where (Q*)" and §T = —§. All the generators are nilpotent and they compromise the
N = 2 supersymmetry algebra. They have opposite charged under the R symmetry

group.

The operator (7.2.3) generates the following off-shell transformations

5o = —e_pltex (7.2.4)
3ot = ex' —epl

o' = —2ie,d_¢' + e Fl

5\ = —2ie_0.¢' + e F!

6pL = 2ie_0,¢' + e, F!

5p2 = 2ie+a_¢z+€_Fz

One can also write the Euler-Lagrange equations as follows
Oad’ + €apJi0% ¢ =0 (7.2.5)

where J is the complex structure of the worldsheet Riemann surface. It is the equation

for a holomorphic map ¢ : ¥ — M, which is called a worldsheet instanton.
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We can rewrite the action (7.2.1) in a more covariant by introducing the following
auxiliary fields F and F!

Fi = Fi—plli x™ (7.2.6)
The action (7.2.1) simplifies as follows

S=t / @2 (95000077 — gi3plD=X’ + 9,30ED-X7 + Rgappixx' — g FLFY)
(7.2.7)

After integrating over the auxiliary fields F! and FZZ using their equations of motion

FL = plly, X" (7.2.8)

F. = pllx™
we get the following action

S=t / d*z (gijﬁaqb"@“cﬁj — 95572 D=x" + 9550-D2x + Rigiptpix’ x’) (7.2.9)

One can check that the action (7.2.7) is Q) 4-exact. Using BRST transformations (7.2.4),

One can show that
S = {QAat/d2Zgij (pzﬁé +pLFl — piD.y — piszj)} (7.2.10)

therefore the theory is topological since this implies that the energy-momentum tensor

is also Q) g-exact.

It appears that the BRST cohomology obtained from Q4 = Q_+Q corresponds exactly
to the de Rham cohomology classes obtained from d = 0 + 0 after identifying x* < d¢’
and XE > dgf)g.

For each form
A=aj,. i (9)do™ A ... Adgm (7.2.11)

on the target space, there is a topological operator

OV = a, i (@)X (7.2.12)
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of the A-model and the operation of BRST charge @4 is identified with the exterior

derivative

{Q4a,04} = Oua (7.2.13)

Because of the splitting of the tangent bundle of M = T™1-0) g 701 we can associate to

any observable @4 an element in the Dolbeault cohomology group H (Pk:dk).

The U(1) 4 is anomalous and its anomaly is given by the index of the Dolbault operator

which is given from the Hirzbruch-Riemann-Roch theorem as follows

ga = #(x zero modes) — #(p zero modes) = 2dimc M (1 — g) (7.2.14)

The correlation function of the physical operators is obtained as

<H (9¢> :/ D¢DxDpe ] O; (7.2.15)
=1 g My i=1

where M, is the moduli space of holomorphic maps at genus g.
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7.3 Topological A-model of AdSs x S°

The proposed A-model action for superstring theory on AdSs x S® can be obtained after

twisting an action similar to (7.2.7) in off-shell form as follows

S /fzhmxu“ff—ffﬁﬂ+pwvaﬁ—paﬁcf (7.3.1)

+ - - + ~ o E
+ nunfeMpe DL CY D, " —UMNFMFN]

here the difference with the previous sigma-model is that it is based on a fermionic Kahler
manifold parametrized by coordinates 6, so the Grassmann parity of all the fields are
reversed from the target space point of view. The fields Z and Y are bosonic while the
auxiliary fields are fermionic. After integrating over the auxiliary fields F and F we
will obtain the A-model action (6.2.17) which we got from the gauge fixing of the G/G

principal chiral model.

Comparing (7.2.1) and (7.2.7) we find that this action has the correct structure of an

A-twisted topological action after the following identifications

V<~ D, , V < D; (7.3.2)
J D¢, JY o D¢
Doﬂr — pZZ ) Doﬁ = pzz
Coz+ PN X'L’ 7 Ca_ PN XZ

The difference with the original A-model action is in the Grassmann parity of the fields.

The parity of all D, C' and F' fields are fermionic here.

Although SU(2,2[4) symmetry is manifest in this action, the N = (2,2) worldsheet
supersymmetry is not manifest but its supersymmetry generators can be constructed as

follows

Q= /dznoﬁ.a—CaJrJO‘_ , Q= /dzna—a+0a_ja+ (7.3.3)

b=D,J* | b=D,J*

The fact that D+ and D,- have conformal weight (1,0) and (0, 1) is consistent with the
fact that it is a A-twisted N = (2, 2) supersymmetry algebra which defines a topological
A-model.

Now, we want to compute topological amplitudes and to do this we look into the simplest

observables in a topological A-model theory which was discussed in the previous section.
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They are objects defined in H?(M,R) which correspond to infinitesimal deformations of
the Kéhler moduli k. Since our Grassmannian is symmetric, the only observables we can
compute are given by the pullback of k on the tangent space which can be represented

schematically as
O = X*(k)gto-C* C* (7.3.4)

which is both local and Q)-closed.

In order to compute the amplitudes, we have to give a prescription. The difference here
with the usual topological A-model action is in the way you have to soak up the zero
modes since now we have bosonic zero modes corresponding to bosonic fields Z and Y

in the observables.

A general n-point amplitude for genus g > 1 is given by

39—3
AT =/ dQZ/ <O¢1~.Oin (b, u’“)(bvu’“)> (7.3.5)
g My k=1

The Grassmannian U(2,2|4)/U(2,2) x U(4) has complex dimension sixteen and so the
anomaly (7.2.14) is equal to g4 = 16(g — 1). This anomaly is generated by the following

current
J=D,C* +D, C* (7.3.6)

We will consider different genera separately, starting from the tree level.

Before going to amplitude computation, let us look at the ghost measure factor. As we
saw before, the A-model action is obtained as a gauge fixed version of the G/G principal
chiral model. The ghost measure factor is also obtained from the gauge fixing of the

G /G measure factor which can be written as follows
[Tac¥ T]dco" [T dce [] dPa+ [ ] dDa- (7.3.7)
M at a~ at a~

where CM and C°" are the fermionic and bosonic ghosts and D,+ and D,- belong to

the non-minimal sector.

As we saw in section (6.2.1), after the first gauge fixing, we get the constraint (6.2.16)

between CM and C’ajE as follows

M _ovtoe = M cPeR (7.3.8)

ata~
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This constraint gives a solution for C™ in terms of C*" and they can be removed from

the theory after inserting the following delta function in the path integral
S((CMY2 4ot o) (7.3.9)

but we have

/dxé(f(:c)) -yt (7.3.10)

where x are solutions of f(z) = 0.

Using (7.3.10) we can see that we get the following measure factor for the ghosts cot

and C® after integrating over the ghosts C™ considering the delta function (7.3.9)

dC" {y dC*
11 o 11 o [1dP.+ [ 4Pa- (7.3.11)
at a~ at a~
The case g = 0: In tree-level we have an anomaly equal to g4 = 16 from the

measure of the path integral. In order to cancel the anomaly we have to insert the

following insertion in the path integral

0,..0 = [[[] x*(k)C" ¢ (7.3.12)

at a—

which saturates 16 units of ghost number coming from the measure of the path integral

since each such operator has ghost number —1.

Since C*" and C*" are bosonic fields, they have one zero mode on a g = 0 surface which

should be soaked up by inserting the following picture changing operators
T =[] sco) [ o s(c) (7.3.13)
at a~

which can be shown easily that is a BRST-invariant operator and does not depend on

(C*",C*"). The path integral now becomes

( IT xrtycereey I oo s(com o s(c)) (7.3.14)

at,a™ at,a™

The picture changing operators T cancel the zero modes of both C' and € fields.
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L in the measure (7.3.11),

Note that because of the presence of the factor [ | at.a- O% Ga=

we get the following integral over the bosonic ghosts
/ dCe15(c (7.3.15)

which is non-zero.

The 16 powers of the 6 in the picture changing operator also gives a factor one after
doing the Berezin integral over the fermionic coordinated § and f. The conformal weight
one fields D does not have any zero mode on a genus zero worldsheet. and Using this
construction we have a well-defined path integral which should be compared with the

tree level amplitude of the pure spinor formalism.

The case g = 1: In higher genera we have to insert as many (b, 1) insertions as
needed. For g = 1 we have to insert a factor of |(b, ut)|?

showed before it is from b = 9% D+ and b= 96* D, -.

in the path integral where as we

Since D’s are bosonic fields they will bring one zero mode on a genus one worldsheet

and also we have one zero mode for scalars C.

To soak up the zero modes of D’s we have to insert the following picture changing

operators
U= FMOP5(f5T Da ) FM OO 5(f7, Dy ) (7.3.16)
to cancel the corresponding zero modes.

The correct path integral with balanced number of zero modes and ghost number

anomaly becomes

16
(@Y (b, T 03) (7.3.17)
1

The insertion X*(k)C*" C* should be added to cancel the conformal anomaly at one-

loop.

Finally, the amplitude at one-loop can be written as follows

<w ’/59“1%;1‘ ‘/(wamaﬂ

[T x* k) ce )> (7.3.18)

at,a~
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The integral over the fermionic auxiliary fields ' and F having one zero mode in g =1

is the following non-zero Berezin integral

/ [dF)F (7.3.19)

The integral over the zero modes of the ghosts C' is similar to the one before. The
factor (C)!6 from the observable cancels the factor (é)w from the measure and the
delta function in the picture changing operator integrates to one. There are still some
C factors in the picture changing operator ¥ which together with the D factors in the
(b, ) terms give the contractions (C®",D,+) and (C* ,D,-). Also the integral over the
conformal weight-one fields D using the delta function in the picture changing operator

U becomes as follows

/ [dD]5(D) (7.3.20)
which is non-zero.

So the zero modes of the fields go away in the path integral and we end with the

contractions of (C®", D, +) and (C*,D,-) as the result of the amplitude computation.

The case g > 1: At higher genera, we have to insert 16(g — 1)of (b, u) operators.
Then to cancel the zero modes of the D’s which are inside b’s, we have to insert 16(g—1)
picture changing operators ¥ in the path integral to cancel the g zero modes of the D
fields. Note that we are on a 16C-dimensional Calabi-Yau and so the number of zero

modes for a scalar, a one-form and a two form are 16, g and 16(g — 1) respectively.

Then we have to insert the X*C" C*~ operators. In order to cancel the zero modes of

the C’s in the measure, we have to insert the picture changing operator Y.

All in all, the amplitude can be written as follows

/59“Daﬁ
(7.3.21)

The integral over the zero modes of the fields are done as the previous case and we end

with the contractions (C*", D+ )16~ and (C*, D, )16~ and also an integral over

16(g—1) 16(g—1)

<T\I/16(9_1)

/ 50° Do

I1 <X*<k>ca*ca>>

at,a—

the 0 fields which is related to the instanton counting of the particular solution of the

A-model solution.

Here we just put the first steps toward a topological prescription for multiloop amplitude

computations of the pure spinor on AdSs x S°.. There many things to be done, one
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should first check the tree level amplitude given here with the one of the pure spinors
and then to see if higher loop prescription can be related to the pure spinor superstring

multiloop amplitudes.






Chapter 8
Open questions and outlook

We have seen that the pure spinor formalism might be useful to give a new perspective
on the gauge/string dualities. There are many open questions related to issues we have
discussed. For the basic problem of constructing a pure spinor formalism, there are many
things to be done since the knowledge of the pure spinor space is limited to very particular
backgrounds. The construction of the pure spinor formalism on less supersymmetric
backgrounds and also more general backgrounds which can not be expressed fully as a
supercoset background like the AdS,; x CP? is an open question which should be studied

later.

There are many open questions regarding the topological decomposition we will present
in the thesis. It is interesting to find other backgrounds which admit this decomposition
in order to use the topological construction to explore large N gauge/string dualities on

these backgrounds.

It is clear that the reduction of the calculation of specific perturbative SYM amplitudes
via a topological string model on the twistor space CAP(3|4) recalls the duality for MHV
amplitudes which started in [86]. The relation with this analysis of what it has been
discussed here could led to a better understanding of the features and limits of topological

string approach to the string realization of the perturbative gauge theory.

In particular, we focused on a particular twisted sector of the string on the geometric
quotient (CAP(3‘4)>4 //S4, while the complete theory has all the other sectors too. The
SYM dual interpretation of those sectors has to be understood and found. Also, as
we have discussing, there are different possible choices of BPS boundary conditions
parametrized by the € and é matrix parameters which are corresponding to different
D-brane configurations. These could be used also to produce lower BPS sectors to be

implemented in the gauge/string correspondence as lower BPS Wilson loops [87] which

179
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some of them have been described as D-brane configurations. Also one can combine
different D-brane configurations to get less supersymmetric objects, an example of which
can be obtained by combining the AdS,; boundary conditions in [23] and [37] which one
may generate lower BPS D-branes configurations. Moreover, a precise analysis of the
D5-branes observables (4.4.93) has to be performed in order to produce a detailed D-
branes / circular Wilson loops dictionary. This analysis passes by the complete reduction
to the base of the holomorphic Chern-Simons theory on the resolved superconifold. In
particular, this passes by the calculation of the determinant of the relevant 04-operator

on supermanifolds.

Another interesting issue to study would also be the clarification of how to add non per-
turbative contributions in the topological strings to get the instanton corrected version
of 1/2 BPS circular Wilson loops [88] [67]. The gauge amplitude contains, on top of
the matrix model integral, also the inverse of the gauge group volume and an instanton
contribution. The first should be calculated in the complete topological string by the
contribution of the pure Coulomb phase, very much like as in [89]. The instanton con-

tribution should be obtained by including D-instantons in the Berkovits-Vafa context.

Let us stress that we conjectured here that the conifold transition extends to superge-
ometries. As such, one should be able to test it for the A-model too, along the lines of
[89, 17, 13]. That is one should be able to recast in such a different case, the amplitudes
in the Chern-Simons theory on S1?) in terms of the gauged linear o A-model amplitudes

on the resolved superconifold. This is another open issue we are letting for future works.

In the G/G principal chiral model construction and its relation to the pure spinor su-
perstring on AdSs x S°, there are many open questions. In particular it would be
very interesting to explore more in detail the cohomology of the G/G principal chiral
model which it seems to produce all the physical states of the superstring theory. Also
it is interesting to see if there are other gauge fixings which they might give simpler

interpretation of the superstring on AdSs x S°.

The worldsheet description of the AdS/CFT duality using the topological decomposition
of the superstring action is one of the most appealing applications of this construction.
One can see if in more explicit way as we will see in this thesis, it is possible to produce the
perturbative gauge theory 't Hooft expansion from a particular closed string amplitude
computation. This way one might be able to give a worldsheet proof of Maldacena’s

conjecture.

The next problem is related to the multiloop amplitude computation to give a more clear

prescription to compute the superstring amplitudes using the known A-model topological
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amplitude computations and to compare it with the pure spinor superstring amplitudes
on AdSs x S°.

There are many open problems to be studied further in this direction. It seems that using
pure spinor formalism give us the power to explore more explicitly the understanding

we have of the superstring backgrounds and their correspondence to gauge theories.
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