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“ And that inverted Bowl we call The Sky, Whereunder crawling coop’t we live and die,

Lift not your hands to It for help−for It. As impotently moves as you or I.”

Omar Khayym (11th century), Persian astronomer and poet, Rubiyt of Omar Khayym



Abstract
Sector of Elementary Particles

Scuola Internazionale Superiore di Studi Avanzati

Doctor of Philosophy

by Houman Safaai

A worldsheet interpretation of AdS/CFT duality from the point of view of a topological

open/closed string duality using the power of pure spinor formalism will be studied. We

will show that the pure spinor superstring on some maximally supersymmetric back-

grounds which admit a particular Z4 automorphism can be recasted as a topological

A-model action on a fermionic coset plus a BRST exact term. This topological model

will be interpreted as the superstring theory at zero radius. Using this decomposition

we will prove the exactness of the σ-model on these backgrounds. We then show that

corresponding to this topological model, there exist a gauged linear sigma model which

makes it possible to sketch the superstring theory in the small radius limit as the dual

limit of the perturbative gauge theory. Studying the branch geometry of this gauged

sigma model in different phases gives information about how the gauge/string duality

is realized at small radius from a similar point of view of the topological open/closed

conifold duality studied by Gopakumar, Ooguri and Vafa. Moreover, we will discuss

possible D-brane boundary conditions in this model. Using this D-branes, we will make

an exact check in the N = 4 SYM/AdS5 × S5 duality. We will show that the exact

computation of the expectation value of the circular Wilson loops in the gauge theory

side can be obtained from the amplitudes of some particular D-branes as the dual of the

Wilson loops in the superstring side. The next step will be to construct a BV action

for G/G principal chiral model with G ∈ PSU(2, 2|4), we will show that after applying

different gauge fixings of the model, we will get either a topological A-model theory

or a topological thery whose supersymmetric charge is equal to the pure spinor BRST

charge. Using this model one can explore the cohomology of the pure spinor action from

the topological BV model. Then we show that there exist a particular consistent defor-

mation of the G/G action equal to the pure spinor superstring action. In this way we

generate the superstring action on a non-zero radius AdS background as a perturbation

around a topological model corresponding to zero radius limit of the superstring theory.

Using this picture we will give an argument based on the worldsheet interpretation of

open/closed duality to give a worldsheet explanation for AdS/CFT duality. A better

understanding of this picture might give a prove of Maldacena’s conjecture. At the end

we will show that using the topological A-model, one can also give a prescription for

computing multiloop amplitudes in the superstring theory on AdS5 × S5 background.
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Chapter 1

Introduction

1.1 General gauge/string duality

One of the most attractive subjects of theoretical physics giving deeper understanding

of the string theory is the large N duality between gauge theories and string theories.

There are several examples of this duality in physics and mathematics. Most of these

dualities are motivated and studied from the target space point of view to relate the

string theory on the target space to the dual gauge theory. However, the original idea of

large N duality which originated from ’t Hooft was based on the worldsheet perspective

in his paper on 1974 [1]. According to ’t Hooft, we start with a U(N) gauge theory with

the following action

S =
1

g2
Y M

∫
L(A) (1.1.1)

where A is the gauge field and gY M is the coupling constant of the YM theory with

Lagrangian L(A). The gauge field takes value in the adjoint of the complex gauge group

U(N) and can be represented with two fundamental and antifundamental indices as Aj
iµ

where i, j = 1 to N and µ is the space-time index. In this notation the propagator

and all the interactions can be drawn as ribbon graph Feynman diagrams as is shown in

figure (1.1)1. Here an upper index is denoted with an incoming arrow and a lower index

by an outgoing arrow. The vertices’s consist of Kronecker delta functions connecting

upper and lower indices in which we do not need the explicit relation here. As usual,

all the amplitude and Green functions can be computed by considering all planar and

non-planar diagrams with their appropriate weight factor. An important observation

is that any loop, which exists whenever an index line closes, contributes a factor of N

1Here we just considered the propagator and vertices’s of the pure gauge fields for simplicity and do
not consider other matter degrees of freedom of the theory.

1
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Figure 1.1: Feynman diagrams as ribbon graphs.

to a particular scattering amplitude because of the multiplicity of that index for the

Kronecker delta

N∑

i=1

δi
i = N (1.1.2)

As it was shown in [1], we can classify the diagrams according to their powers of coupling

constant gY M and their powers of N . The next step is to realize this Feynman diagrams

as big connected surfaces. It was shown in [1] that for large N we can draw the diagrams

on closed surfaces as in figure (1.2).

Figure 1.2: A ribbon diagram drawn on a surface.

Then the next step is to fill each loop with a disk as follows

Figure 1.3: Filling each loop with a disk produce a Riemann surface.

This generates a surface which has g handles and h holes as is shown in figure (1.4)

where the number of holes is equal to the number of the loops of the corresponding

ribbon diagram.
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Figure 1.4: A ribbon diagram makes a surface with holes.

Each Feynman diagram with h faces or loops, V vertices’s and E propagators corre-

sponds a factor

r = (g2
Y M )−V +ENh (1.1.3)

to the amplitude. This is because each loop brings a factor N and each vertex contributes

a factor g2
Y M and each propagator a facto of g−2

Y M in the result.

This contribution can be also specified referring to the topology of the surface in which

the diagram is drawn. This can be seen after rewriting (1.1.3) as

r = (g2
Y M )−V +ENh = (g2

Y M )−V +E−h(g2
Y MN)h (1.1.4)

According to Euler formula for a surface with h holes, E edges and V vertices’s we have

h−E + V = 2− 2g (1.1.5)

where g is the genus of the surface. So (1.1.4) can be rewritten as

r = (g2
Y M )2g−2th (1.1.6)

where t = g2
Y MN is named as the ’t Hooft parameter.

The full amplitude is obtained after summing over all the ribbon graphs with the weight

factor (1.1.6)

FY M =
∞∑

g=0

∞∑

h=1

(g2
Y M )2g−2thFg,h (1.1.7)

where Fg,h is a function of the other parameters exsiting in the theory. We can rewrite

it as a sum over the genera

FY M =
∞∑

g=0

(g2
Y M )2g−2Fg(t) (1.1.8)
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where

Fg(t) =
∞∑

h=1

thFg,h (1.1.9)

In the large N limit, the graphs corresponding to low-genus dominate in the computa-

tions and taking t = g2
Y MN fixed, the expansion in 1

N becomes similar to the expansion

in g2
Y M .

On the other hand, we can write the free energy of the closed string theory as a sum over

the amplitudes correponding to connected closed worldsheets with genus g contributing

a factor g2g−2
s where gs is the string coupling constant. The free energy can be written

as the following expansion

Fs =
∞∑

g=0

g2g−2
s Fg(t) (1.1.10)

Here t is a geometric modulus of the target space. Comparing (1.1.8) and (1.1.10), we

can see that the two theories can be interpreted as they are computing the same thing

stating the ’t Hooft conjecture.

’t Hooft conjecture: There is a closed string theory whose g−loop amplitude is given

by Fg(t) = FY M (t) where the target space modulus is identified with the ’t Hooft

coupling t = g2
Y MN and the string coupling constant is related to the YM coupling

as gs = g2
Y M . The two theories are the dual descriptions of the same physical

theory.

This duality can be seen from a higher perspective as a duality between open and closed

string theories by considering the simple fact that the U(N) gauge theories can be

realized as the Chan-Paton degrees of freedom of open strings ending on a stack of N

D-branes.

A ribbon graphs has natural interpretation as describing open string worldsheet ending

on D-branes. The left figure in (1.5) is an open string describing a worldsheet in which

its end points carrying the indices i and j of the gauge group are on the D-brane making

the ribbon graph. On the other picture, the open surface with genus g and h holes is the

worldsheet of open string whose amplitude is equivalent to the scattering amplitude of

the corresponding ribbon graph in figure (1.4). Each open worldsheet amplitude which

has genus g and h holes like figure (1.5) is weighted with a factor g2g−2
s (Ngs)h where the

factor (Ngs)h comes from the Chan-Paton factors for each hole which is the intersection

of the worldsheet with D-branes. In fact, one can give a conjecture for the duality

between open and closed string theories in the sense that there is a closed string theory
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Figure 1.5: Ribbon graphs as the intersection of D-brane and worldsheet.

whose free energy Fg on a closed worldsheet with genus g is related to the amplitude of

the open string theory with fixed genus g as follows

Fg =
∞∑

h=1

(Ngs)hFg,h (1.1.11)

where Fg,h is the amplitude of open strings propagating on a worldsheet with genus g

and h holes like the one in figure (1.5). If we take the low energy limit, we get the

original ’t Hooft conjecture since the gauge theory can be realized as the low energy

limit of the open string theory in the presence of D-branes.

1.2 AdS/CFT correspondence

By now, several examples of large N dualities have been discovered including the famous

Maldacena’s AdS/CFT duality and the topological string dualities which we will briefly

discuss. We are going to relate them at least for some specific cases and we will show

that we can use the techniques and advantages of the topological string duality in the

more elaborated AdS/CFT correspondence.

In [2], Maldacena considered a system of N D-branes which according to different ways

of interpretation, give rise to different theories. If one takes the near horizon limit in

which the string coupling gs and N is fixed, while the length of strings goes to zero

ls → 0, the open and closed strings decouple and we get two decoupled descriptions

of the same physics. The first description is in terms of the closed strings which is a
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superstring theory on a AdS×X background with N units of flux on X and the second

description is in terms of open strings whose low energy limit is a superconformal gauge

theory on the boundary of the AdS space. In this sense it can be seen as a holographic

duality. In both sides of the duality the superstring and superconformal gauge theory

have equal supergroup as their super-isometry or super-conformal group.

Figure 1.6: Standard AdS/CFT duality.

The main three examples of AdS/CFT duality which was addressed by Maldacena is

listed in table (1.1). We should note that there is also a long list of non-conformal SYM

dualities which we are not referring them here.

Brane AdS theory dual SCFT Superisometry
M2-branes M-theory, AdS4 × S7 some 3d SCFT OSp(8|4)
D3-branes IIB superstring, AdS5 × S5 4d N = 4 SU(N) SYM PSU(2, 2|4)
M5-branes M-theory, AdS7 × S4 some 6d SCFT OSp(6, 2|4)

Table 1.1: Three main Maldacena AdS/CFT correspondences.

The most by far studied example of the AdS/CFT duality is the type IIB supersting on

AdS5 × S5 with N units of RR flux

∫

S5

F5 = N (1.2.1)

on the S5 with the N = 4 super Yang-Mills theory with SU(N) gauge group in four

dimensions which appears to be a conformal theory. The gauge theory amplitudes can

be expanded in powers of 1/N for large N at fixed ’t Hooft parameter t defined as

t = g2
Y MN . This ’t Hooft expansion corresponds to the string loop expansion in the

superstring side after the following identifications

R2 ↔
√

t , gs ↔ t

N
(1.2.2)
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where we take α′ to be one. The parameter R is the radius of the AdS5 and S5 which

should be the same in order to maintain worldsheet conformal invariance and gs is the

string coupling constant determined by the value of the dilaton field. The source of the

curvature lies in the nonzero value of the self-dual 5-form flux belonging to the SUGRA

multiplet.

To match conformal supersymmetry in 4d with AdS supersymmetry in 5d the symme-

try supergroups in both cases happen to coincide, as they should. There are 8N real

SUSY generators and the bosonic part consists of the conformal AdS group Spin(4, 2) ∼=
SO(4, 2) times an internal group SU(N )T ×U(1)A. For the case N = 4, we have 32 real

SUSY generators and an internal group SU(4)T × U(1)A. Now, SU(4) ∼= Spin(6) and

Spin(6) is the isometry group of S5 with spinorial fields. The bosonic spatial isometry

group of AdS5×S5 is SO(4, 2)×SU(4) which together with fermionic degrees of freedom

completes the supergroup PSU(2, 2|4).

In N = (2, 0) 10D IIB superstring theory, we have 32 real SUSY generators. However,

the bosonic spatial isometries with 55 generators in the flat case is now substituted by

SO(4, 2) × SU(4) with 30 generators. N = (2, 0) also has a U(1)R symmetry and this

is identified with U(1)A. The AdS5 × S5 superstring action was shown to be given as a

supercoset sigma model on PSU(2, 2|4)/SO(5) × SO(4, 1) [3] whose isometry group is

exactly the superconformal group of the dual SCFT.

The other important AdS/CFT duality which attracts many attentions during the last

two years is the type IIA/ABJM duality which is the first duality of table (1.1). This

duality got progressed because new achievments in understanding of the M2-brane sys-

tems. Bagger, Lambert and Gustavsson [4], followed a suggestion by Schwarz [5] to

use Chern-Simons theory, constructed a three-dimensional superconformal gauge theory

with N = 8 maximal supersymmetry based on the so called three-algebra structute.

Because of its special consistency condition, their construction works just only for the

gauge group SO(4) and so it does not provide the dual of M-theory on AdS4×S7 unless

for a very special case of N = 2.

The correct dual however was obtained by Aharony, Bergman, Jafferis and Maldacena

(ABJM) in [6]. They considered M-theory on the orbifold AdS4 × S7/Zk with N units

of flux which gives 3/4 supersymmetry for k > 2. The dual gauge theory which they

proposed was a supersymmetric N = 6 superconformal Chern-Simons theory which has

two Chern-Simons terms corresponding to a U(N)k×U(N)−k gauge group where k and

−k are the levels of the Chern-Simons terms. Because of a nontrivial property of the

quantum theory which was explained in [6], the supersymmetry increases to N = 8 for

k = 1, 2. The ABJM theory also includes bifundamental scalar and spinor fields. The ’t
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Hooft expansion of the gauge theory is defined as follows

t =
N

k
(1.2.3)

The difference with the previous case is that here the ’t Hooft parameter appears to be

a rational number.

The orbifold S7/Zk can be described as a circle bundle over a CP3 basis upon reduction

to string theory

S1 ↪→ S7

↓
CP3

(1.2.4)

The circle has radius R/k, where R is the radius of S7. In the limit k5 À N there is a

weakly coupled type IIA on AdS4 × CP3 with a string coupling given by

gs =
(

N

k5

)1/4

(1.2.5)

and upon the following identification with the dual superconformal gauge theory

R2 ↔
√

t , gs ↔ t
5
4 /N (1.2.6)

The difference which arise here with the maximally supersymmetric AdS5 × S5 case is

that in this case the construction of the action for AdS4×CP3 is more complicated as the

background preserves only 24 out of the 32 supersymmetries of the type IIA supergravity.

A supercoset space OSp(6|4)/U(3) × SO(1, 3) with 24 fermionic coordinates has been

used in [7, 8, 9, 10] to construct the superstring sigma model in AdS4 × CP3 but it

was shown in [11] that this supercoset is a subspace of the complete superspace and it

describes just a subsector of the full type IIA superstring theory in AdS4 × CP3. The

complete type IIA superspace with 32 fermionic coordinates in AdS4×CP3 background

is not a supercoset space and is more complicated as it was stated in [11].

The AdS/CFT correspondence gives a dictionary between the objects on the two sides of

the duality. For example we can relate n-point correlation functions in the gauge theory

to the corresponding quantities in the string theory side [12]. If one considers two-point

functions, the duality relates the energy Ea of a state |a〉 to the conformal dimension

∆a of the operator Oa which is defined as

〈OaOb〉 ≈ ∆ab

|x− y|2δa
(1.2.7)
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specifically the duality says

∆a(t, 1/N) = Ea(R2, gs) (1.2.8)

The studies on AdS/CFT have been pointed mainly to test the duality by finding,

comparing and matching similar objects on both sides of the duality. In this sense it is

an state/operator duality. Being a weak/strong duality, almost all the studies have been

done in the weak string theory side which corresponds to supergravity theory, because

from the target-space point of view in which most of the studies have been directed,

there is no possibility to explore the string theory in the strongly coupled regime.

As we saw before, the ’t Hooft parameter is proportional to the radius of the AdS

space and if one wants to obtain the ’t Hooft expansion in the gauge theory side which

corresponds to t → 0 as it is a perturbative expansion, one should study the string theory

in the corresponding limit which is the highly curved R → 0 limit. Since the string theory

sigma model coupling constant is proportional to the inverse of R2, this corresponds to

the strongly coupled regime of the sigma model and can not be discussed with usual

techniques. One has to find a good description of the theory which makes it possible to

explore superstring theory in the small radius limit. With a ”good” description we mean

the one in which the worldsheet quantum field theory is well-defined and can be used to

study the physics near R = 0 as the dual of the perturbative gauge theory side of which

we have a good perturbative description. This seems puzzling from the duality point

of view but as we will see later one can resolve this puzzle by defining a well-defined

description of the string theory in this limit. We can state this puzzle more clearly as

follows.

A puzzle in large N dualities: Usually in large N dualities, the ’t Hooft parameter

t is identified with a geometric modulus of the string theory target space and

the limit t → 0 leads to vanishing cycles and breakdown of the closed string

perturbation theory by leading to the divergence of some amplitudes. But, in the

dual side, this limit corresponds to a reliable perturbative regime. This seems

puzzling which should be overcomed by giving a better description to the string

theory side which does not breakdown in this limit.

1.3 Topological A-model conifold open/closed duality

Actually there is an example in which this good description was found and the duality

was proved. This is the case of topological gauge/string dualities which we will explain
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here. The first type of topological gauge/string dualities was discovered by Gopakumar

and Vafa [13] which states:

Topological gauge/string duality: Chern-Simons gauge theory in three dimensions

which can be obtained from the low energy limit of open string theory ending

on A-branes in a deformed CY3 is dual to a topological closed string theory with

A-twist in resolved CY3.

where the A-twisted topological string theory will be defined and discussed later and

the A-branes are consistent boundary conditions in the Calabi-Yau manifold which does

not spoil the supersymmetric structure of the topological A-model theory.

The correspondence is between open strings ending on D-branes on the deformed CY3

and closed strings on the resolved CY3 where deforming and resolving are two ways of

removing the singularity of the Calabi-Yau manifold which we take it to be the conifold.

There is also the mirror Version of this duality which was discovered by Dijkgraaf and

Vafa [14]. The topological theory in question is the B-model and the roles of the deformed

and resolved CY3 are exchanged.

In order to have a more precise statement of the duality, consider the Chern-Simons

theory on S3 with gauge group U(N)

S =
k

4π

∫
tr

(
A ∧ dA +

2
3
A ∧A ∧A

)
(1.3.1)

where k is the level of the Chern-Simons action and the gauge coupling constant is given

in terms of k and N as g2
Y M = i

k+N . The statement is that the large N expansion of

this Chern-Simons theory on S3 produces the closed A-model topological string theory

defined on the resolved conifold with string coupling constant gs = i
k+N .

The singular conifold is topologically a cone over S2 × S3 defined by the equation

4∑

i=1

z2
i = 0 (1.3.2)

in C4. We can remove the cone singularity in two ways as is shown in figure (1.7).

Either by blowing an S3 in the singularity or by replacing the singularity with a S2,

the first geometry is a deformed conifold which can be seen as the contangent bundle

T ∗S3 and the second one is the resolved superconfold which can be described as a sum

of line bundles over the base which is the S2 as O(−1) + O(−1) → P1. The more

detailed description of the geometries will given later when we will discuss the super

generalization of the conifold duality.
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Figure 1.7: Large N duality as a geometric transition between topological open string on
the defomred conifold and closed string theory on resolved conifld.

The base of the deformed conifold is S3 with radius t. It can be checked that it is a

Lagrangian submanifold and so it is a proper place to wrap the branes in the topological

A-model theory. Putting N D-branes on the base S3, it was shown by Witten [15], using

open string field theory, that the theory reduces to the Chern-Simons theory on S3 with

SU(N) gauge group. On the other hand, in the closed string side the complexified

Kähler class is given by t = iN/(k + N). This parameter corresponds to the size of

the S2 on the base. Since t is pure imaginary, this size is corresponding actually to a

non-vanishing NS-NS two-form field whose integral over the two-cycle is equal to |t|
∫

S2

B =
N

k + N
(1.3.3)

The duality is between the closed string theory with this flux and the open string theory

with the open strings wrapping the base. The duality converts the resolved and deformed

geometries and switches the branes into the flux. Since the theory is topological A-model

the action have the general form2

S = it

∫

Σ
{Q,V }+ t

∫

Σ
x∗(K) (1.3.4)

2Here the integration is over the worldsheet Σ and the explicit form of V and the pullback of the
Kähler form K, expressed as x∗(K), can be be found for example in [16].
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where Q is the conserved supersymmetry charge of the N = 2 topological A-model

theory and t is the Kähler modulus of the manifold which is identified with the ’t Hooft

parameter in the gauge/string duality. It can be shown that the topological string

amplitudes are independent of the Kähler parameter t and so we can in principle send

it to zero as is shown in figure (1.7). We can send the size of the S3 as the Kähler

parameter to zero in the open string side. On the other hand, in the closed string side,

in this t → 0 limit the string amplitudes diverges and string theory perturbation breaks

down. This is in accordance with the puzzle we addressed before for general large N

dualities.

Having a singularity in a theory usually means lacking some degrees of freedom whose

dynamics in the singular limit describes the theory. The idea proposed by Ooguri and

Vafa in [17] was to introduce a new sector in the theory containing a gauge field. The

non-linear
sigma-model

-singular

t → 0

adding new
degrees of freedom

-non-singular

t → 0

gauged linear
sigma model

6

?¾ IR

Figure 1.8: Adding a new sector to non-linear sigma model (1.3.4) gives a linear sigma
model which is no longer singular in the limit t → 0. The gauged linear sigma model gives the

non-linear action after the flow to infra-red.

basic idea is to start with the closed string side and use a ’good’ description of the

string theory being able to explore the physics in the t → 0 limit. This description was

proposed by Witten [18] to be the gauged linear sigma model which flows to the original

non-linear theory in the infra-red where the new degrees of freedom are integrated out.

The gauged linear sigma model in the case of the conifold duality contains one vector

multiplet V , and four chiral multiplet A1, A2, B1 and B2 which are charged differently

under the gauge group. The gauged linear sigma model action can be written as follows

S =
∫

d4κ

(
2∑

i=1

Āie
2V Ai +

2∑

i=1

B̄ie
−2V Bi +

1
e2

Σ2

)
+ t

∫
d2κ̃ TrΣ (1.3.5)

where Σ is the gauge field strength which is a twisted chiral superfield Σ = D̄DV and

e is the gauge coupling constant, the κ’s are the fermionic coordinates of the N = 2

supersymmetry on the worldsheet. We see that the Kähler parameter t corresponding

to the ’t Hooft coupling is appears here as a Fayet-Illiopoulos parameter.

It was shown by Witten in [15] that the vacuum of theory admits two branches corre-

sponding to different regimes of the t parameter. Here we consider a U(1) gauge field in

which the chiral superfields Ai and Bi have charge +1 and −1 respectively.
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In order to find the vacuum we should find the zero points of the scalar potential which

is given by

V = 2|σ|2 (|a1|2 + |a2|2 + |b1|2 + |b2|2
)

+
e2

2
(|a1|2 + |a2|2 − |b1|2 − |b2|2 − t

)2 (1.3.6)

where σ, ai and bi are the first components of the Σ, Ai and Bi superfields respectively.

Both e and σ have the dimension of mass on the worldsheet and in the infrared they can

be sent to infinity. We can study the classical solution V = 0 in two regimes separately

• t 6= 0:

In this case the condition V = 0 is satisfied when σ = 0 and with the following

constraint on the other fields

|a1|2 + |a2|2 − |b1|2 − |b2|2 = t (1.3.7)

modulo the gauge transformations

ai → aie
iθ , bi → bie

−iθ (1.3.8)

The space defined by this scalar fields as its coordinates can be shown to be the

resolved conifold. The S2 in the base of the resolved conifold is placed at bi = 0

with radius
√

t with coordinates ai and bi’s as the fiber coordinates over the base

S2. Expanding the gauged linear sigma model (4.1.5) in components one can see

that in this regime the gauge field get mass and in the infrared it can be integrated

out and the gauge symmetry gets broken. This phase of the theory is the Higgs

phase denoted by H. The physics in this phase is totally described with the chiral

superfields Ai and Bi which can be mapped to the fields of the corresponding

topological A-model non-linear sigma-model action.

• t → 0:

In this limit, it can be seen that the zero point of the potential can be obtained in

two ways and the theory develops two phases:

– Higgs phase:

This phase is similar to the previous case and is obtained by putting σ = 0

for ai 6= 0 and bi 6= 0 subject to (1.3.7). This solution defines the resolved

conifold as its target space and the gauge symmetry is broken because the

gauge field becomes massive. The physics is described with the matter fields

Ai and Bi which as we saw are related to the A-model non-linear sigma model

fields.
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– Coulomb phase:

On top of the Higgs phase, here we have another solution which obtained

for σ 6= 0 and putting ai = bi = 0. This is actually the new phase which

appears in the singular point of the theory and describes the physics in this

limit. One can check that the mass of the scalar fields are proportional to

|σ|2 and so in this phase they become massive and can be integrated out.

The physics is given only by the dynamics of the gauge field. The emergence

of the dynamics of this new degree of freedom removes the singularity of the

theory.

There is an important issue here that one can check that there is no energy gap

between these two phases and they can actually co-exist.

From the worldsheet point of view, the gauged linear sigma model tells us that the

singularity at t → 0 in the non-linear sigma-model action is due to the emergence of this

new Coulomb phase which does not have interpretation in terms of the geometry of the

conifold and physical content of the non-linear sigma model action. It was used to prove

the duality from a worldsheet perspective [17].

In order to proof the gauge/string duality as in the original idea of ’t Hooft, we start

writing the closed topological string theory and try to obtain the open string amplitudes

as an expansion in the ’t Hooft parameter for small t as we described before. A particular

g-loop topological closed string amplitude can be written as

Fg =
∫

Mg

〈
3g−3∏

i=1

∫

X
d2zηi(z)G−

L (z)
∫

X
d2zη̄i(z)G−

R(z)

〉
(1.3.9)

where Mg is the moduli space of the genus-g Riemann surfaces, G−
L and G−

R are N =

2 supersymmetry charges of the topological A-model and ηi and η̄i are the Beltrami

differentials of the Riemann surface X. In the corresponding path integral over the field

configuration, we have to do integration over the fields Ai and Bi corresponding to the

physical degrees of freedom of topological string theory on the resolved conifold, and

also over the new degree of freedom σ. Cosinsidering a particular field configuration on

a closed string worldsheet in the t → 0 limit, as we saw before the field configuration

separates into two parts. Either we have the fields in the Higgs phase or the Coulomb

phase according to the value of the σ, we can put a cutoff parameter σ0 to identify this
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phases on the worldsheet as follows

C domain = {z ∈ X : |σ(z)| > σ0} (1.3.10)

H domain = {z ∈ X : |σ(z)| < σ0}
Interface γ = {z ∈ X : |σ(z)| = σ0}

If we consider a genus-g Riemann surface as the worldsheet, it separates into h connected

pieces in the H-domain with genus gi, i = 1 to h and c pieces in the C-domain with genus

gj , j = 1 to c in which

h∑

i=1

gi +
c∑

j=1

gj = g (1.3.11)

all the pieces are connected to other pieces which is in a different branch with a circle

which we named as γ. We can present a particular closed worldsheet in figure (1.9).

Figure 1.9: The worldsheet splits into connected pieces, some in Coulomb branch and some
in the Higgs branch.

As we explained before, in the H-branch, the field configuration in the infrared is sup-

pressed with the string theory fields Ai and Bi which can be mapped to the non-linear

topological sigma-model fields. But in the C-branch, these physical fields get mass and

we can integrate them out and they do not appear in the functional integration on these

branch. In C-branch, the dynamical field is the gauge field and from the string theory

field content which is (Ai, Bi) these branches are like empty Riemann surfaces connected

to the worldsheet with Dirichlet boundary conditions ai = bi = 0. It is like that the

worldsheet is connected to D-branes, as we expect for an open string worldsheet. It is

a consequence of adding the new degree of freedom which generates holes on a closed

string worldsheet. So, starting from a closed string worldsheet without holes we obtain
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open string worldsheet with many holes and the next step is to generate the partition

function of the open string theory from this mechanism.

The functional path integral also decompose into the C and H-branches and we can do the

functional integration over the fields in these two separate branches. The contribution

from the C-branch is just comming from the dynamics of the σ field. It was observed

by Ooguri and Vafa [17] that the functional integration over the C-branches satisfies the

following properties

1. The only configuration of the C-branch contributing in the path integral is the

disk. The contribution of the other topologies with at least one hole is zero. This

is consistent from the way we realized the ’t Hooft expansion by filling any hole

with a disk and we did not have any other non-trivial topology. Starting from a

close Riemann surface as the worldsheet for the closed string theory, the worldsheet

partitions into open Riemann surfaces with h holes which can be interpreted as

the worldsheet of the open string theory side. The number of the holes is equal

to the number of the C-branches on the worldsheet and their contribution will be

shown to be a constant later.

The partition of a close Riemann surface into open Riemann surfaces with h holes

can be visualized as in figure (1.10).

Figure 1.10: The partition of a close Riemann surface into open Riemann surfaces with
holes.

The closed string amplitude for a worldsheet with genus g also partitions into open

string amplitudes with worldsheets with genus g and any number h of holes Fg, h

as follows

Fg =
∞∑

h=1

(
F (C)

)h
F (H)

g, h (1.3.12)

where F (C) is the contribution of the C-branch computed as a path integral just

over the gauge field in the Coulomb phase and F (H)
g, h is the amplitude corresponding

to H-branch on a Riemann surface with genus g and h holes.

2. Using A-model topological theory it can be shown that the contribution of any

C-branch can be computed exactly as a contour integral over the complex σ-plane
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around the boundary of the hole. Because of the topological localization, it was

shown in [17] that the boundary value σ0 does not have angular dependence and

so it is constant along the boundary as the Dirichlet boundary conditions. The

contribution from the C-branch was computed in [17] using the fact that in the

C-branch the theory becomes like a Landau-Ginzburg theory with superpotential

W = tΣ as follows

F (C) = t = g2
Y MN (1.3.13)

So, using (1.3.12) we see that we generate the ’t Hooft expansion as follows

Fg =
∞∑

h=1

thFg, h (1.3.14)

This is the direct consequence of the generation of the open string worldsheets from the

mechanism derived by gauged linear sigma-model for small ’t Hooft parameter.

Using the fact that the amplitude in the H-branch is independent of the Kähler parameter

t, it can be shown that the Fg, h is the amplitude of the open strings with D-branes

wrapping on the base S3 of the deformed conifold T ∗S3. It comes as a worldsheet proof

of the topological open/closed duality on conifold.

1.4 Towards a worldsheet proof of AdS/CFT duality

The proof of the topological open/closed duality was done using the power of the gauged

linear sigma-model which is useful when the ’t Hooft parameter is small. It would be

very interesting to find similar description for the case of superstring on AdS spaces

which might make it possible to give a similar proof for AdS/CFT duality in the regime

which is not accessible with the usual target space methods. AS we will see, this can

be done by using pure spinor superstring theory on some maximally supersymmetric

string theory on AdS backgrounds and a topological decomposition of their action. The

similarity between Chern-Simon and N = 4 d = 4 SYM comes actually not surprising

because, using pure spinor formalism, the d = 10 SYM action which can be reduced

to the four-dimensional one upon dimensional reduction can be written in the Chern-

Simons form as follows [19]

S =
∫ 〈

V QV +
2
3
V 3

〉
(1.4.1)
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where Q is the pure spinor BRST operator and V is the super-Yang-Mills vertex operator.

One would expect to find a similar worldsheet derivation for large N duality like in the

case of CS/conifold duality.

The first step towards having this description was done by Berkovits. Using pure spinor

formalism for superstring on AdS5×S5, he found that there is a particular limit in which

the sigma-model reduces to a topological A-model constructed from fermionic N = 2

superfields. In an AdS5×S5 background, one can write the sigma model action in terms

of a supercoset as follows3

S =
1

R2

∫
d2z

[
1
2
ηabJ

aJ̄b + ηαβ̂

(
J β̂ J̄α − 1

4
J̄ β̂Jα

)
+ pure spinor contribution

]
(1.4.2)

where Ja with a = 0 to 9 are bosonic and (Jα, J α̂) with α, α̂ = 1 to 16 are the fermionic

left-invariant currents construct from J = g−1dg where g belongs to the supercoset

g ∈ PSU(2,2|4)
SO(5)×SO(4,1) which was used by Matsaev and Tseytlin [3] to construct the world-

sheet Green-Schwarz superstring action. The ηab and ηαβ̂ are the bilinear metrics of

the supercoset. The pure spinor part of the superstring was introduced by Berkovits

[20] in order to give a covariant quantization of the superstring theory. Unlike Green-

Schwarz formalism in which the κ−symmetry gauge fixing is poorly understood even in

a flat background unless in some particular gauges like the light-cone gauge, the pure

spinor formalism as we will describe it better in the next chapter of the thesis give a

quantization scheme, using a BRST charge which is constructed after introducing the

ghost degrees of freedom (λα, λ̂α̂) and their conjugate momenta (wα, ŵα̂) subject to pure

spinor constraints

λγaλ = 0 , λ̂γaλ̂ = 0 (1.4.3)

These constraints leaves eleven complex degrees of freedom in ten dimensions. On

top of many advantages of the pure spinor formalism we are interested to a particular

application which is the construction of a topological theory based on superstring on

AdS5×S5 [21] or as it was shown in [10] on any supercoset background which admits a

particular Z4 automorphism.

Superstring on AdS5 × S5 has a limit which is the d = 10 flat space limit in which the

radius of the AdS5 × S5 goes to infinity or in a covariant way one can do the limit by
3We put always α′ = 1.
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rescaling the metric gαβ̂ = ηαβ̂ and g[ab][cd] = η[ab][cd]
4as

gαβ̂ = Rηαβ̂ , g[ab][cd] = R2η[ab][cd] (1.4.4)

also the structure constants of the PSU(2, 2|4) supergroup should be rescaled consis-

tently. In the AdS5 × S5 background, the torsions Tαa
β̂ and Tαβ

b are proportional to

the corresponding structure constants and they satisfy Tαa
β̂ηββ̂ = Tαβ

bηab but in the

flat background Tαa
β̂ = 0. The rescaling of the structure constants and the metric used

by Berkovits implies the following rescaling of the torsion

Tαβ
bηab

Tαa
β̂ηββ̂

= R (1.4.5)

where in the R →∞ limit implies Tαa
β̂ = 0 as it should be for the flat background. Also

the left invariant one-forms of the supergroup simplify after this rescaling as follows

Ja = ∂xa + θγa∂θ + θ̂γa∂θ̂ , Jα = ∂θα , J α̂ = ∂θ̂α̂ , J [ab] = 0 (1.4.6)

which after putting back into the pure spinor action (1.4.2) gives the pure spinor super-

string action for flat background5

S =
1

R2

∫ [
1
2
ηab∂xa∂̄xb − pα∂̄θα − p̂α̂∂θ̂α̂ + wα∂̄λα + ŵα̂∂λ̂α̂

]
(1.4.7)

On top of this limit, Berkovits showed [21] that there is another rescaling sending R → 0

which giving a topological theory corresponding to highly curved AdS5×S5 superstring.

To go to this limit we have to apply another rescaling for the metric and the structure

constants as follows

gab = R−1ηab , g[ab][cd] = R−1η[ab][cd] (1.4.8)

When R → 0, the structure constants fA
αβ → 0. This implies that the 32 fermionic

isometries become Abelian. In this limit the supercoset splits into its bosonic and

fermionic parts. The Bosonic part composed of the coset SU(2,2)
SO(4,1) which parametrizes

AdS5 and the coset SU(4)
SO(5) which parametrizes the sphere S5, The fermionic part of the

supercoset is parametrized with two matrices θα+
and θ̂α− where θα+

= θα + iθ̂α̂ and
4The generators of the PSU(2, 2|4) are represented by (T[ab], Ta, Tα, Tα̂) where T[ab] are the generators

of the SO(5) × SO(4, 1) group and Tα, Tα̂ are the fermionic generators and Ta are the translation
generators for a, b = 0 to 9 and α, α̂ = 1 to 16.

5Note that eventhough it looks like the flat superstring action, it is different from the flat superstring
theory quantum mechanically since it does not exist any continous deformation of the PSU(2, 2|4)
supergroup into the super Poincaré group since they have different number of generators.
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θ̂α− = θα − iθ̂α̂ are the upper-right and lower-left blocks of the supergroup elements as

we will discuss it better later.

near-Flat
pure spinor

Topological
A-model

¡
¡

¡
¡

¡ª

@
@

@
@
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R À 0 R → 0

AdS5 × S5

pure spinor

Figure 1.11: Taking a particular rescaling, Berkovits showed that the zero radius limit of

the pure spinor superstring theory on AdS5 × S5 gives a topological A-model.

This rescaling (1.4.8) implies Tαβ
a = 0 but since the usual construction of supergravity

backgrounds assumes that Tαβ
a = γa

αβ so this limit does not correspond to a standard

supergravity background as we expected since we are exploring the strongly coupled

regime of superstring theory.

It was shown by Berkovits that after taking the limit the superstring action can be

written as a N = 2 worldsheet action in terms of fermionic superfields Θα+
and Θ̂α− as

follows

S =
1

R2

∫
d2zd4κ

[
Θ̂Θ− 1

2
Θ̂ΘΘ̂Θ +

1
3
Θ̂ΘΘ̂ΘΘ̂Θ + · · ·

]

=
∫

d2zd4κTr
[
log

(
1 + Θ̂Θ

)]
(1.4.9)

where κ’s are the N = 2 worldsheet supersymmetry coordinates and fermionic chiral

superfields Θα+
and Θ̂α− can be expanded as follows

Θα+
= θα+

+ κ+Zα+
+ κ−Ŷ α+

+ κ+κ−fα+
(1.4.10)

Θ̂α− = θ̂α− + κ̄+Ẑα− + κ̄−Y α− + κ̄+κ̄−f̂α−

where θ and θ̂ are the fermionic degrees of freedom of the superspace and Z and Y fields

are bosonic twisted variables constructed from the bosonic degrees of freedom of the

superspace and the pure spinors and their conjugate momenta. The fields fα+
and f̂α−

are auxiliary fields. The fact that there are 11 complex independent pure spinor degrees

of freedom is a very crucial fact which make it possible to construct such unconstrained

twisted-like variables as follows

Zα+
= fα+

mβ+Hmλβ+
, Ẑα− = fα−

mβ−Hmλ̂β− (1.4.11)

Ŷ α+
= fα+

mβ+Hmwβ+
, Y α− = fα−

mβ−Hmŵβ−
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where Hm = (Ha,Ha′) are the bosonic cosets and fα+

mβ+ and fα−
mβ− are structure constants

of the supergroup.

The matching of the bosonic and fermionic degrees of freedom appears as follows





10 R xm

11 C λα, λ̂α̂

16 C θα, θ̂α̂

←→
{

16 C Zα+
, Ẑα−

16 C θα+
, θ̂α−

(1.4.12)

where m = 1 to 9 and α, α̂ = 1 to 16.

In fact the chiral fermionic superfield Θ belongs to the fermionic supercoset

Θ ∈ PSU(2, 2|4)
SU(4)× SU(2, 2)

(1.4.13)

for the case of AdS5 × S5.

The action (1.4.9) is an A-model topological action which after expanding its Kähler

potential and integrating over the auxiliary fields we get the following action

S =
∫

d2z
[
ηαβ̂JαJ̄ β̂−ηα−α+Y α−∇̄Zα+

+ηα−α+ Ŷ α+∇Ẑα−−[Y, Z]m[Ŷ , Ẑ]m
]

(1.4.14)

which as we will see later in this thesis and in [22] it has the right structure of an

A-twisted topological action.

Actually it was shown in [23] for AdS5 × S5 and in [10] for a general maximally super-

symmetric supercoset background which admits a particular Z4 automorphism that this

A-model topological action is related to the pure spinor action with a BRST trivial term

and one can split the pure string action as follows

Spure spinor = SA-model + QΩ (1.4.15)

where Q is the pure spinor BRST charge. Note that the topological charge of the A-

model action is different from Q and so this decomposition gives the ability to explore

the BPS sector of the superstring theory using the A-model action.

A symmetry argument were used in [23] and [10] to find this decomposition. Being an

element of the supercoset PSU(2, 2|4)/SU(4)× SU(2, 2), the A-model action preserves

all the PSU(2, 2|4) supergroup but it has a ’bonus’ U(1) symmetry which does not exist

in AdS5 × S5 background. It appears that after expanding the A-model action (1.4.14)

in terms of the pure spinors and left-invariant Cartan one-forms, the fermionic currents
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appear as the following kinetic term in the Z4 grading language

1
2
J1J̄3 − 1

2
J̄1J3 (1.4.16)

It is clear that there is a U(1) symmetry which switches the fermionic currents J1 ↔ J3

and under this U(1) the currents J1 + iJ3 and J1 − iJ3 have opposite charges.

However, this symmetry does not exist in the AdS5×S5 action because the corresponding

fermionic currents appear as follows

3
4
J1J̄3 − 1

4
J̄1J3 (1.4.17)

In order to relate the pure spinor action and the A-model action, we add a BRST-trivial

term Sbonus = QX to the pure spinor action which forces the pure spinor action to

preserve this U(1) symmetry

S′pure spinor −→ Spure spinor + Sbonus (1.4.18)

Then using BRST transformation rules of the pure spinor formalism, one can check that

S′pure spinor − SA-model is a BRST trivial term which proves (1.4.15).

Using this topological decomposition, one can use similar techniques in the AdS/CFT

duality as in the topological CS/conifold duality which we discussed before to explore

AdS/CFT duality from a worldsheet point of view. The first tool which we need is a

gauged linear sigma model for the topological AdS5 × S5 superstring theory. Based on

an observation in [24, 25] it was shown in [23, 10] that there is a gauged linear sigma

model corresponding to the nonlinear topological A-model defined on the Grassmannian
PSU(2,2|4)

SU(4)×SU(2,2) by gauging the theory under a U(4) gauge group after introducing the

following vector, chiral and antichiral superfields in the N = (2, 2) superspace

V R
S (z, z̄, κ+, κ−, κ̄+, κ̄−) , ΦR

Σ(z, z̄, κ+, κ−) , Φ̄Σ
R(z, z̄, κ̄+, κ̄−) (1.4.19)

where the indices R, S correspond to the gauge indices of the U(4) group and the index

Σ = (I, A) is a global SU(4) × SU(2, 2) index where A is a SU(2, 2) and I is a SU(4)

index. The difference here with the CS/conifold duality is that the chiral superfields can

be eihter fermionic or bosonic according to their global index as follows

{
ΦR

I −→ bosonic

ΦR
A −→ fermionic

(1.4.20)
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They are related to the non-linear sigma model fields Θ as follows

ΘA
J = ΦA

R(ΦJ
R)−1 , Θ̂J

A = Φ̄R
A(Φ̄R

J )−1 (1.4.21)

where we used the matrix notation of Θ superfields.

The gauged linear sigma model can be written as follows

S =
∫

d2z

∫
d4κ

[
Φ̄S

Σ(eV )R
S ΦΣ

R − tV R
R

]
(1.4.22)

which after integrating out the gauge field V it produces the non-linear action (1.4.9) in

the infra-red.

Having the gauged linear sigma-model one can study study the theory in the t → 0

limit in which we have not access from the non-linear sigma model. The Vacua of the

gauged linear sigma model of AdS5×S5 and also for more general backgrounds including
OSp(6|4)

SO(6)×Sp(4) was studied in [23] and [10] and it was shown that in t → 0 on top of the

Higgs branch corresponding to the phase in which the gauge field is integrated out,

we have the emergence of a Coulomb branch in which the gauge field is dynamical and

produces holes on the worldsheet. In principle, one can use the same technique of Ooguri

and Vafa for the case of CS/conifold [17] to prove the AdS/CFT duality.

The branch geometry in the case of PSU(2,2|4)
SO(5)×SO(4,1) and OSp(6|4)

SO(6)×Sp(4) supercosets were stud-

ied in [23, 10] and it was shown that it produces the following geometries as the target

space of the topological model





PSU(2,2|4)
SO(5)×SO(4,1) =⇒

(
CP(3|4)

)4
//S4

OSp(6|4)
SO(6)×Sp(4) =⇒ (

S(5|4)
)3

//S3 × Z2

(1.4.23)

where the double slash is used to stress the fact that it is not the S4 or S3×Z2 orbifold

but it is the set of maximal S4 or S3×Z2 orbits, meaning that the orbits whose elements

are not fixed by any non-trivial subgroup of S4 or S3 × Z2.

Also it was shown that the open sector of this topological A-model corresponds to the

free N = 4 SYM theory. It would be very interesting to try to accomplish the same

analysis of the worldsheet CS/conifold duality for AdS/CFT using this construction.

For example, one has to see if it is possible to produce the ’t Hooft expansion from the

worldsheet picture and the emergence of the holes on the closed string worldsheet by

checking if any hole produce a factor of t in path integral. A possible prescription will

be given later together some other applications of the topological construction which

will be addressed some of them here in this thesis.
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Conformal exactness of the background: One can check easily by computing the

Ricci scalar of the topological A-model action (1.4.9) as the one-loop conformal anomaly

that the A-model does not have conformal anomaly at one loop.

R = log det(∂∂̄(1 + ΘΘ̂)) = 0 (1.4.24)

Being an N = 2 supersymmetric theory, the conformal anomaly and ghost anomaly

belong to the same superfield and the vanishing of the conformal anomaly at one loop

ensures its vanishing at any loop. So the A-model action is an exact conformal theory.

Since the A-model and the pure spinor action are related through a BRST trivial term, It

ensures also the exactness of any superstring background which admits such a topological

decomposition.

An exact check of AdS/CFT duality: One can use the A-model to do some exact

check in the N = 4/AdS5×S5 correspondence. As an example we will explore an exact

check between some D-brane amplitudes and the exact result for the expectation value

of circular Wilson loops in gauge theory side which their exact value was computed to

be given by Gaussian matrix model. In order to check the duality we use the topological

A-model to compute the correponding dual objects of the circular Wilson loop in the

superstring side. We first consider the A-model for closed strings on AdS5 × S5 and

its gauged linear σ- model in the limit of small Fayet-Illiopoulos which corresponds to

the large curvature regime. In this limit as we saw the model reduces to the invariant

quotient
(
ĈP(3|4)

)4

//S4. Its maximal orbit under the cyclic permutation is isomorphic

to a single copy of the superprojective space ĈP(3|4)
. We can consider then a mirror of

such a geometry in the form of a deformed fermionic conifold, dubbed superconifold [26].

This is actually the cotangent bundle over S(1|2) and we get the closed B-model with

N -units of flux along the S(1|2). We can follow then the theory in a dual formulation

after a geometric transition analogous to the Dijkgraaf-Vafa one [14, 27]. In the super-

conifold case one calculates the minimal resolution as the resolved superconifold over

ĈP(0|1)
=

{
C(1|1) \ (0, 0)

}
/C∗. This will be discussed in detail in this thesis. Here the

dual theory is that of N D-branes wrapping the base manifold and therefore the theory

is described by the dimensional reduction of the holomorphic U(N) Chern-Simons the-

ory to the branes [15]. This results to be the hermitian N ×N Gaussian matrix model

similar to the purely bosonic case [14].

In order to generate gauge invariant observables in the topological string, let us return

to the gauged linear σ-model of AdS5 × S5 and look for the A-branes there. These are

wrapped around special Lagrangian’s of the supercoset and their geometry is dictated
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AdS5 × S5

A-model

N units of flux

-Mirror

uv − ηχ = 1− e−t

Deformed
Super-conifold

B-model

N units of flux

-Geometric Transition

Resolved sconifold
B-model

N D-branes
⇓

Gaussian Matrix
Model

Figure 1.12: The duality chain: the mirror symmetry maps to the B-model on the deformed
superconifold and the geometric transition to the resolved one corresponding to the Gaussian

matrix model.

by the possible supersymmetric boundary conditions. On top of the AdS4 branes con-

sidered in [23], there are also other possibilities among which we choose that of the real

supercoset OSp(4∗|4)/SO∗(4)×USp(4). As such, the choice of Dirichlet boundary con-

ditions for open strings on such a submanifold breaks the original U(2, 2|4) isometry to

Osp(4∗|4). Notice that this is the same symmetry breaking which corresponds to placing

1/2-BPS circular Wilson loops in Minkowski space as in [28]. These D-branes can be

shown to correspond to D5-branes wrapping AdS2 × S4 geometries [29]. As such, these

states realize the Wilson loops in an alternative way – suitable for the large curvature

regime – compared to the string world-sheet with boundary condition along the loop

on the AdS5 boundary. Analogue constructions were actually elaborated in [30] (and

references therein) from the point of view of the effective Dirac-Born-Infeld theory, while

it is obtained here directly for the microscopic theory.

We have then to follow these D-branes along the duality map described above (see Figure

1.13). Actually the Lagrangian cycle is mapped to a transverse non-compact holomor-

phic cycle in the superconifold geometry. Therefore, the computation of the correspond-

ing topological string amplitude gets mapped to the computation in the Gaussian matrix

model of the corresponding observables. The relevant observables are obtained by inte-

grating over the open strings with mixed boundary conditions similar to [31].

AdS2 × S4 branes
Osp(4∗|4) -Mirror

Non-compact
branes -Geometric Transition

Non-compact
branes
⇓

Matrix model
observables

Figure 1.13: The duality chain for the AdS2 × S4-branes. Following them we obtain
Gaussian matrix model amplitudes.

This construction therefore leads to express the topological string amplitudes for the

A-model on the fermionic quotient with AdS2 × S4-branes boundary conditions as cor-

relators of Wilson loops in the Gaussian matrix model. As such, these amplitudes should

obey the holomorphic anomaly equations of BCOV [32]. It has been actually proved

that it is indeed the case in [33]. This not only applies to the construction in [14], but
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more in general also to the ones given in [34]. This consistency check strongly supports

the validity of our derivation. This problem will be addressed more in detail in chapter

(4).

Multiloop amplitudes computation: Having a topological A-model theory as

the theory which is exploring the BPS sector of the superstring theory, there is the

possibility to use the well-defined multiloop amplitude computations of the topological

theory in order to give a multiloop amplitude prescription for the pure spinor superstring

on AdS5 × S5 since we can construct a general n-point topological amplitude for genus

g > 1 as follows

Ag
i1,...in

=
∫

Σg

d2z

∫

Mg

〈
Oi1 ...Oin

3g−3∏

k=1

(b, µk)(b̄, µ̄k)

〉
(1.4.25)

. where Oi’s are observables and b and µ are the b-field and the Beltrami differential

respectively. We have to integrate over the moduli space of Riemann surfaces with genus

g, which is denoted as Mg.

Here in this work using the topological A-model of the AdS5 × S5 we try to give a

prescription for worldsheets with g = 0, g = 1 and g > 1 by introducing appropriate

picture changing operators to soak up the sigma-model fields. The main difference which

arise from the usual topological A-model sigma models is that here we have a fermionic

target space and the zero modes of the fields are different from the bosonic case.

This is one of the important possible applications of this construction in which we will try

to address a little bit in chapter (7). A more clear construction is very appealing since a

multiloop amplitude computation of the superstring on Ramond-Ramond backgrounds

is not known.

1.5 G/G principal chiral model and its deformation

Another step towards a better understanding of the zero radius limit of pure spinor

superstring on AdS5×S5 was started by Berkovits in [35] by showing that the topological

A-model corresponding to this limit can be obtained from a gauge-fixed version of the

G/G principal chiral model with G = PSU(2, 2|4) with the following action

SG/G = Str
∫

d2z ηAB(J −A)A(J̄ − Ā)B (1.5.1)
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where J and J̄ are the left and right components of the one-form J = g−1dg with

respect to the worldsheet derivatives ∂ and ∂̄ and g is a group element of the PSU(2, 2|4)

supergroup and (A, Ā) are PSU(2, 2|4) gauge groups on the worldsheet.

Using the same G/G topological action it was proposed in [36] that there exist another

gauge fixing in which we get a topological theory which its supersymmetric charge is

equal to the pure spinor BRST charge of the AdS5 × S5 superstring

Qtopological = Qpure spinor BRST (1.5.2)

Here in this thesis, based on a work in progress [22], the Batalin-Vilkovisky version of

the G/G principal chiral model will be constructed as follows

SBV = SG/G+
∫

d2z

[
A∗A(dC+[A, C])A+Ā∗A(d̄C+[Ā, C])+g∗ACA− 1

2
C∗

A [C, C]A
]
(1.5.3)

where CA are the ghosts6 and the fields with the star are the antifields corresponding

to the fields. These are new ingredients of the BV formalism which make it possible to

have a covariant description of the gauge-fixing based on the BRST quantization as we

will explain more clearly later.

Having the BV action of the G/G model, we can define different gauge fixing fermions Ψ

which are projecting the field space into a Lagrangian submanifold Σ in the field-antifield

space as the gauge fixing orbit by putting the following constraint on a particular antifield

Φ∗,

Σ : Φ∗ =
∂Ψ
∂Φ

(1.5.4)

Here we take two different gauge fermions ψ1 and ψ2 which their resulting gauge fixing

produce two different topological theories, one is the A-model topological action which

we got from the decomposition of AdS5 × S5 pure spinor action with a topological su-

percharge which is different from the pure spinor BRST charge. On the other hand,

following the second gauge fixing we will show that it will produce a topological action

with a topological charge equal to the BRST charge of the pure spinor superstring the-

ory on AdS5×S5 as the gauge fixed G/G model. The fact that the topological A-model

and the second topological model are the gauge fixed version of the same BV theory

means that they are describing the same physics. Since the second theory is exploring

the cohomology of the Qpure spinor this means that all the physical states of the super-

string action might be encoded in the cohomology of the A-model action too. One can

in principle study the cohomology of the superstring using the topological A-model after
6The index A = {[ab], a.α, α̂} is a PSU(2, 2|4) index.
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Topological A-model
Qtop 6= Qps

Topological theory
Qtop = Qps

¡
¡

¡
¡

¡ª
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Gauge-fixing1 Gauge-fixing2

G/G model
QBV

Figure 1.14: Upon different gauge-fixings, the G/G principal chiral model gives either an
A-model topological action or another topological action with the same supersymmetry charge

as the BRST charge of pure spinor superstring.

passing through the bridge sketched in figure (1.14) from the A-model to the other topo-

logical theory whose supersymmetric charge is equal to the pure spinor BRST charge.

In principle we can use the cohomological techniques of the BV formalism including the

homological perturbation theory to analyze the cohomology of the superstring theory

in this topological language. The BRST charge splits according to a grading which is

named as the antighost number as follows

Q = δ + d + ”more terms” (1.5.5)

where δ is the Koszul-Tata differential with antighost number −1 and d is the differential

with antighost number 0 which their form we will give later. It happens that for G/G

model the expansion stops after the second term. One can use this decomposition of

the BRST charge to simplify the computations of the cohomology using homological

perturbation theory.

Another important issue is to study whether there exist possible consistent deformations

for the G/G principal chiral model. For a general BV action we can expand around a

particular classical solution of the master equation as follows

S = S(0) + rS(1) + r2S(2) + · · · (1.5.6)

where r is the perturbative parameter.

In order to find the first order deformation of the BV action we have to study the

relative cohomology group H(δ|d) at ghost number zero as we will see later. A particular

deformation of the BV action is obtained after solving a set of descent equations. We

will see later that for the case of the BV action of the G/G principal chiral model with

G ∈ PSU(2, 2|4), there is a particular deformation which after the gauge fixing upon

the second gauge fixing in figure (1.14), it produces exactly the AdS5 × S5 pure spinor
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superstring action and the action of the topological theory deforms as follows

Stopological −→ Stopological + R2Spure spinor (1.5.7)

where R is the radius of the AdS space. This deformation corresponds to turning on the

radius modulus of the AdS by inserting an integrated vertex operator which is equal to

the superstring action. In this way the topological theory which is the zero radius limit of

superstring extended with a perturbative term to the small radius limit of the superstring

theory on AdS5 × S5. This small radius superstring action with the BRST charge of

the pure spinor superstring theory is dual to the perturbative limit of the gauge theory

side which we know it produces the ’t Hooft expansion. We will discuss the possible

modification of the large N gauge/string duality from the original ’t Hooft idea which

we explained before by adding these vertex operators to the worldsheet. Getting a more

clear understanding of this picture might help to give an exact worldsheet proof of the

AdS/CFT duality.

1.6 Résumé of the thesis

In this thesis we will try to build a new way of studying and understanding of the most

important examples of the gauge/string duality which is AdS/CFT correspondence. In

particular we will focus more on the particular example of N = 4 SYM/AdS5 × S5

duality and try to find a way of extracting more information about this duality from a

worldsheet perspective. We will see that using pure spinor formalism we can trade the

AdS/CFT duality into a duality which is similar to a topological open/closed duality.

One can then use the better known understanding of the topological string theory to

get deeper information about the superstring on the backgrounds which admit this

construction like AdS5×S5 and also to study or even prove the AdS/CFT duality using

the techniques of the topological open/closed duality.

In chapter (2) we will review the pure spinor formalism of string theory. First we

discuss the Green-Schwarz formalism of superstrings and then we introduce the pure

spinor formalism for flat and curved backgrounds. In particular we will explore the

action for the supercoset backgrounds which admit a Z4 automorphism like AdS5 × S5

we will see that we can write the action in a simple form in terms of the left-invariant

Cartan one-forms of the super-isometry group of the background.

In chapter (3) we will show how the pure spinor action on the maximally supersymmetric

backgrounds which admit a particular Z4 automorphism decomposes into a topological

A-model action plus a BRST trivial term. We use a simple symmetry argument which
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was explained briefly in the introduction to find the map from the A-model action to

the superstring action. At the end it will be shown how this topological decomposition

can be used to proof the conformal exactness of these backgrounds.

In chapter (4), we start using the topological A-model as the theory which explores the

BPS sector of the superstring action and as the zero radius limit of the superstring action

towards studying the gauge/string duality. First we will show that we can write a gauged

linear sigma model based on the non-linear topological A-model action. This makes it

possible to study the physics in the limit R → 0 of the superstring side corresponding

to the perturbative regime in the gauge theory. We will study the vacuo of the gauged

linear sigma model and explore its branch geometry. We will see that the emergence

of the Coulomb branch will produce holes with Dirichlet boundary conditions on the

closed string worldsheet which makes it possible to give a worldsheet interpretation to

the AdS/CFT duality as a closed/open duality. We then explore the open string sector

of the theory both for AdS5 × S5 and the ˜AdS4 × CP3 supercosets7. At the end we

will do an exact check on AdS/CFT duality by showing that an exact result in the

gauge theory side, namely the expectation value of some circular Wilson loops, can be

computed exactly from the scattering amplitudes of some D-branes in the superstring

action using the topological A-model.

Chapter (5) is an introductory to the Batalin-Vilkovisky quantization of gauge theories.

After introducing the Faddeev-Popov and BRST quantization procedures, we will give

a detailed introduction to BV antifield formalism. At the end we will see how one can

find a consistent deformation of a particular BV action which does not spoil the gauge

structure of the theory.

In chapter (6), we will write a BV action for the G/G principal chiral model with

G ∈ PSU(2, 2|4). Then we will study two different gauge fixings of G/G and will

see that one of them produces the topological A-model action and the other one gives a

topological action whose supersymmetry charge is equal to the pure spinor BRST charge.

We will then explore the possible deformation of this G/G BV action and we will see

there exist a particular deformation which in the second gauge fixing produces the pure

spinor superstring action on AdS5 × S5. In this way we will produce the pure spinor

superstring as a deformation over a topological theory with the perturbation parameter

which is equal to the radius of the AdS space. We will give an argument to sketch the

AdS/CFT duality from the worldsheet point of view similar to the analysis of Ooguri

and Vafa on topological conifold duality.

7From now on, whenever we refer to ˜AdS4×CP3 we mean the supercoset OSp(6|4)
SO(1,3)×Sp(4)

as a subspace

of the full superspace of the AdS4×CP3. We specify the difference with the tilde which we put on AdS4
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In chapter (7), we will show that using A-model topological action we can give a possible

prescription to compute multiloop amplitudes in the pure spinor superstring on AdS5×
S5.

In the last chapter we will briefly discuss the possible open questions and problems on

this construction and also the possible extensions and applications of the following work

will be reviewed.

The contents of chapter (3) is based on [10], chapter (4) and part of chapter (2) are

based on the paper [37] and chapters (6) and (7) are based on [22].





Chapter 2

Pure spinor formalism of

superstring theory

Before 2001 there were mainly two standard formalisms to describe the superstring

theory, the Ramond-Neveu-Schwarz (RNS) and Green-Schwarz (GS) formalisms. Al-

though the RNS formalism has a manifest N=1 worldsheet supersymmetry, it lacks

manifest target-space supersymmetry makes a lot of problems for some applications.

For example, to compute amplitudes involving more than four external fermions, it is

almost impossible to compute in a Lorentz-covariant manner because of the complexity

of picture-changing operators and the bosonization procedure [38]. The other important

problem of this formalism is that there is not a well defined description for superstring

theory in the presence of Ramond-Ramond fluxes using this formalism. This is usually

the case for most of the backgrounds which we are discussing in the gauge/string duality

like superstring AdS5 × S5 with N units of flux as the dual of N = 4 SU(N) SYM in

four dimensions.

On the other hand, in the GS formalism the target-space supersymmetry is manifest,

but we do not know how to realize the worldsheet supersymmetry. This prevents to

have a quantization of the theory except in light-cone gauge. Although we can use the

light-cone gauge to determine the physical spectrum of the theory, it is difficult to use it

to compute scattering amplitudes because of the lack of manifest Lorentz covariance and

the need to introduce interaction-point operators and contact terms. For these reasons,

only four-point tree and one-loop amplitudes have been explicitly computed using the

GS formalism [39]. Furthermore, the necessity of choosing light-cone gauge means that

quantization is only possible in those backgrounds which allow a light-cone gauge choice.

As will be discussed in this chapter, a new formalism for the superstring was proposed

by Berkovits [20] which combines the advantages of the RNS and GS formalisms.

33
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This new formalism was inspired, among other things, by the so called superembedding

description of superparticles, superstrings and superbranes. The superembedding ap-

proach was first proposed in [40, 41]. In these works, on examples of superparticles in

D = 3, 4, 6 and 10 dimensions, it was shown that the kappa-symmetry is a somewhat

weird realization of the conventional N-extended worldsheet supersymmetry N = 8 in

D = 10 dimensions. As a result corresponding irreducible set of Lorentz-covariant first-

class fermionic constraints was obtained by projecting the fermionic covariant momenta

Dα along commuting spinor variables λα which are superpartners of θ. Berkovits was

the first who noticed these results and generalized them to the heterotic superstring in

[42]. It was shown later in [43], that the pure spinor condition is part of a so called

superembedding condition which is the key fundamental condition of the superembed-

ding formalism [44]. Later, Berkovits proposed the pure spinor formalism as a covariant

approach of quantizing superstring [20]. The superembedding origin of the pure spinor

formalism for the heterotic string was demonstrated in [45].

In pure spinor formalism, the worldsheet action is quadratic in a flat background so

quantization is as easy as in the RNS formalism. Since we have D=10 super-Poincaré

covariance, we can compute covariant tree-amplitudes and also we can quantize Ramond-

Ramnod backgrounds. It will also be shown how this approach can be used to quantize

the superstring in an AdS5 × S5 background with Ramond-Ramond flux in particular.

We will see in the next chapters how the pure spinor formalism enables us to give a

topological realization of the superstring theory on some RR background which makes

it possible to give a worldsheet approach to study gauge/string duality and Maldacena’s

conjecture. This power originates from the new degrees of freedom which is used in this

formalism, namely the pure spinors.



Chapter 2. Pure spinor formalism of superstring theory 35

2.1 Green-Schwartz formalism of superstrings

The classical type II Green Schwarz (GS) superstring [46] describes the embedding of a

string worldsheet into a target type II superspace with coordinates

xM ≡ (xm, θα, θ̂α̂) (2.1.1)

The bosonic coordinates xm locally parametrize the ten-dimensional spacetime manifold,

while the fermionic coordinates θα and θ̂α̂ have dimension of Majorana Weyl spinors

which is 16 real for the 10−dimensional critical superstring theory. In the flat case,

where one can identify the manifold with its tangent space, the θ’s are the spinors. In

the context of a curved supermanifold that we will treat later on, this will not be the

case a priori.

The difference between type IIA and IIB arises from the presence or absence of the

left-right chiral symmetry meaning to require either θ̂α̂ ≡ θ̂α for type IIA or θ̂α̂ ≡ θ̂αfor

type IIB.

In Green-Schwarz formalism we can manifestly observe the N = 2 supersymmetry. The

target space supersymmetry in flat space-time can be written in this way

δθα = εα , δθ̂α̂ = ε̂α̂ (2.1.2)

δxm = εγmθ + ε̂γmθ̂

where γ’s are the ten-dimensional gamma matrices. In order to write a supersymmetric

sigma-model on the superspace we can write the superspace vielbein one-forms of the

target space

EA ≡ dxME A
M =

(
dxm + dθγmθ + dθ̂γmθ̂, dθ, dθ̂

)
(2.1.3)

Their pullback on the worldsheet can be written as follows

ΠA
z ≡ ∂xME A

M , ΠA
z̄ ≡ ∂̄xME A

M (2.1.4)

whose bosonic components are known as supersymmetric momentum can be written as

follows

Πm
z ≡ ∂xm + ∂θγmθ + ∂θ̂γmθ̂ , Πm

z̄ ≡ ∂̄xm + ∂̄θγmθ + ∂̄θ̂γmθ̂ (2.1.5)

The Green-Schwarz superstring action can be constructed from the square of this super-

symmetric momentum as its kinetic term plus a Wess-Zumino term which is quadratic
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in the derivatives of the fields and is necessary to maintain the conformal invariance

of the worldsheet theory. It also establishes a fermionic gauge symmetry named as

κ−symmetry.

The GS action gets the following form in conformal gauge

SGS =
1
2

∫

Σ
d2zηmnΠm

z Πn
z̄ +

∫

M
Ω3 (2.1.6)

where Σ is the worldsheet and M is a 3-manifold which ∂M = Σ. The second term is

the WZ term which to construct it we can write the general N = 2 supersymmetry and

SO(9, 1) invariant closed three-form in flat space which is

Ω3 = fMNP EM ∧ EN ∧ EP (2.1.7)

with some constant fMNP and one-forms EM which were defined in (2.1.3).

This three-form is closed and Lorentz invariant only for the following choice as it was

shown in [46]

Ω3 = Em ∧ dθ̂γm ∧ dθ (2.1.8)

It appears that not only Ω3 is closed (dΩ3 = 0) but also it is exact, namely

Ω3 = dΩ2 (2.1.9)

where

Ω2 = −1
2
Πm

z

(
θγm∂̄θ − θ̂γm∂̄θ̂

)
+

1
2
(θγm∂θ)(θ̂γm∂̄θ̂)− (z ↔ z̄) (2.1.10)

This should be integrated over the worldsheet to generate the WZ term.

The GS action (2.1.6) is covariant and spacetime supersymmetric. It is the difference

with respect to RNS formalism in which we have manifest worldsheet supersymmetry

since we build the model using worldsheet fermions but then we lost the covariance

and the spacetime supersymmetry. However the problem of GS formalism is related

to its quantization which does not let to find a covariant way of quantization with the

standard BRST quantization. The reason for this is related to the existence of second

class constraints which we will discuss here.

Let pzα be the conjugate momentum of θα which can be written in terms of other phase

space variables as pα = δL/δ∂θα. The Dirac constraints corresponding to this relation
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is given by the field dα with the following explicit form

dα ≡ pzα − (γmθ)α

(
∂xm − 1

2
θγm∂θ − 1

2
θ̂γm∂θ̂

)
(2.1.11)

One can use the canonical commutation relations to find the Poisson bracket

{dα, dβ} = 2γm
αβΠm (2.1.12)

Because of the Virasoro constraint

T = −1
2
ΠmΠm = 0 (2.1.13)

the non-closure of the Poisson algebra (2.1.12), because of (2.1.13), implies that eight

of dα constraints are first-class and the other eight are second-class constraints. The

eight first class constraints correspond to the fermionic κ−symmetry. Since the anti-

commutator of the second class constraints dα is proportional to an operators Π instead

of a number, we can not use the standard Dirac quantization since it needs inserting

some operators. Except in a special frame in which the right hand side of (2.1.12)

becomes a constant like in the light-cone gauge, we can not easily quantize the covariant

GS superstring action.

In order to get ride of this problem, Siegel [47] made the open algebra of (2.1.12) to be a

closed algebra by adding the generators which arise via the Poisson bracket. This leads

to the following centrally extended but closed algebra

{dzα, Πm} = 2(γm)αβ∂θβ (2.1.14)

{Πzm, Πzn} = ηmn (2.1.15){
dzα, ∂θβ

}
= δβ

α (2.1.16)

The important observation is that this closed algebra can be obtained from a free-field

action

Sfree =
∫

d2z[
1
2
∂xmηmn∂̄xn + ∂̄θαpzα + ∂θ̂α̂p̂z̄α̂] (2.1.17)

=
∫

d2z[
1
2
Πa

zηabΠb
z̄ + LWZ

︸ ︷︷ ︸
LGS

+∂̄θαdzα + ∂θ̂α̂d̂z̄α̂]

which coincide with the GS action (2.1.6) for dα = d̂α̂ = 0. This reformulation does

not remove the mixed first-second class constraints of dα but it gives a simple free-field
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action which make it trivial to compute the following OPE’s

xm(y)xn(z) → −2ηmn log |y − z| , pα(y)dβ(z) → δβ
α(y − z)−1 (2.1.18)

dα(y)dβ(z) → − 1
(y − z)

γm
αβΠm(z) , dα(y)Πm(z) → 1

(y − z)
γm

αβ∂θβ(z)

Using these OPE’s we can compute the conformal anomaly of the model and also the

ghost degree needed to cancel this anomaly. The pair (pα, θα) contributes a factor of

−32 to the conformal anomaly, there is another 10 coming from ten xm’s. The total

conformal anomaly appears to be −22 which should be canceled with an appropriate

ghost sector which we will discuss in the next section the one suggested by Berkovits

[48]. Furthermore, looking into the Lorentz currents of the Siegel approach which are

Mmn = pγmnθ, we can compute their OPE and it appears that they produce a double

pole with a numerator which is +4. In order that this matches with the RNS formalism

which is 1, the ghost sector should have Lorentz currents which produce a double pole

with a factor of −3 in the numerator. We will see that the pure spinors of Berkovits are

in fact the appropriate ghost sector which satisfies the above requirements.

One can also write the generalization of the flat space-time GS action to a curved

background as follows

S =
1

4πα′

∫
d2z (GMN + BMN ) ∂xM∂xN (2.1.19)

where GMN and BMN corresponds to the background superfields.

Since we are interested to study superstring theory on maximally supersymmetric back-

grounds like AdS5 × S5 and ˜AdS4 ×CP31 and because it was shown that the theory on

these backgrounds can be formulated as sigma models on supercosets [3, 7, 8, 9, 10], here

we give the prescription to write the superstring theory on such supercoset backgrounds.

2.1.1 Structure of AdS5 × S5 and ˜AdS4 × CP3 supercosets

Two examples we are considering here are superstring theory on AdS5×S5 and AdS4×
CP3 which as we said before the superstring on these backgrounds was shown to be

written completely in terms of the following supercosets

AdS5 × S5 −→ PSU(2, 2|4)
SO(5)× SO(4, 1)

(2.1.20)

˜AdS4 × CP3 −→ Osp(6|4)
SO(6)× Sp(4)

(2.1.21)

1By ˜AdS4×CP3 we mean a subsector of the AdS4×CP3 superstring which captured by the supercoset
Osp(6|4)

SO(6)×Sp(4)
sigma model. Even though it is not the full superspace of the superstring on AdS4 × CP3,

it is a particular subsector of it which deserves studying.
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which we investigate their Lie algebra separately here.

The algebra of the psu(2, 2|4) supergroup is the algebra of 8× 8 matrices with bosonic

diagonal blocks and fermionic off-diagonal blocks as follows

M =

(
A X

Y B

)
(2.1.22)

which A, B, X and Y are 4× 4 matrices which satisfy trA = trB = 0. The operation of

transposition for supermatrices is defined as follows

M t =

(
At Y t

−Xt Bt

)
(2.1.23)

that is compatible with the supertrace which is defined as StrM = trA−trB and satisfies

Str(MN) = Str(NM) (2.1.24)

The super antihermiticity M † = −M for the psu(2, 2|4) implies [49, 50]

M † ≡ ΣMΣ−1 =

(
σA†σ −iσY †

−iX†σ B†

)
= −M (2.1.25)

where Σ is a block diagonal matrix defined as

Σ =

(
σ 0

0 i1l

)
(2.1.26)

satisfying Σ2 = 1l and Σ† = Σ. The condition (2.1.25) implies

A = −σA†σ , B = −B† , X = iσY † (2.1.27)

Choosing

σ =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




(2.1.28)

implies that A ∈ su(2, 2) and B ∈ su(4).

For the case of Osp(6|4) supergroup the bosonic blocks A and B are 4 × 4 and 6 × 6

matrices and the fermionic blocks X and Y are 4×6 and 6×4 matrices respectively. The
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supermatrices instead of anti-hermiticity condition (2.1.25) should satisfy the following

orthosymplecticity condition [50]

ΩMΩ−1 = −M t (2.1.29)

HMH−1 = −M−1

where

Ω =

(
Ω(4×4) 0

0 Ω(6×6)

)
, H =

(
H(4×4) 0

0 H(6×6)

)
(2.1.30)

where the block matrices satisfy

Ω2
(4) = −1l(4) , Ωt

(4) = −Ω(4) , Ωt
(6) = Ω(6) (2.1.31)

Using (2.1.30), (2.1.29) implies the following conditions on the blocks of M

AtΩ(4) + Ω(4)A = 0 , BtH(6) + H(6)B = 0 (2.1.32)

then (2.1.31) means that A ∈ sp(4) and B ∈ o(6).

It appears that this supergroups admit a particular Z4 automorphism which will become

very important in our construction of the action. This Z4 automorphism is generated

by the following conjugation

M → Ω(M) ≡ Ω−1MΩ (2.1.33)

where Ω is a matrix with eigenvalues equal to ik for k = 0 to 3 and Ω4(M) = M . For

the case of psu(2, 2|4) it can be realized by the following matrix presentation [51]

M =

(
A X

Y B

)
→ Ω(M) ≡

(
JAtJ −JY tJ

JXtJ JBtJ

)
(2.1.34)

where

J =

(
0 −1l2×2

1l2×2 0

)
(2.1.35)

This is a Lie algebra automorphism which is compatible with the antihermiticity condi-

tion of psu(2, 2|4).
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The action of this Z4 automorphism decomposes the Lie algebra G of the supergroups

PSU(2, 2|4) and Osp(6|4) as follows

G = H0 +H1 +H2 +H3 (2.1.36)

where each subspace Hk is the eigenspace of the operator Ω with eigenvalue ik. The

subspaces H0 and H2 are bosonic while H1 and H3 are fermionic which are related

through hermitian conjugation for the PSU(2, 2|4) group.

Since Z4 is an automorphism of the Lie algebra, the decomposition (2.1.36) satisfies

[Hm,Hn] ⊂ Hm+n (mod 4) (2.1.37)

Also the bilinear form is Z4 invariant an so we have

〈Hm,Hn〉 = 0 unless n + m = 0 (mode 4) (2.1.38)

the more illustrative realization of this Z4 will be given later separately for the generators

of supercosets we will study.

2.1.2 Sigma model action for supercosets with Z4 automorphism

Consider a supercoset G/H which admits the Z4 discussed before with G as the Lie alge-

bra of G and H ∈ H0. As in the flat space case, the sigma model for such backgrounds

is constructed from two terms, the kinetic term Skin and the Wess-Zumino term SWZ

as

S =
∫

Σ
d2zLkin +

∫

M
d3zW (2.1.39)

where ∂M = Σ and dW = 0.

In order to satisfy G invariance, both Lkin and W should be constructed in terms of the

left-invariant Cartan one-forms J = g−1dg valued in the Lie algebra G for g ∈ G and

can be expanded in the supergroup basis J = JATA where TA are the generators of the

supergroup G. This comes from the fact that under the action of an arbitrary element

of the isometry supergroup G, the Vielbein transforms as tangent vectors of the stability

group H

J(y)g = J(y′)h (2.1.40)
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for g ∈ G and h ∈ H. So any invariant of the stability group H constructed in terms of

J will be automatically invariant under the full group G.

To write the kinetic term for the supercoset, we can gauge the kinetic term of the G

sigma model with a gauge field A which takes value in H0 as follows

Skin = R2

∫
d2zStr(J −A)2 (2.1.41)

which is the most general quadratic action can be written in terms of the left-invariant

one-forms and the gauge field A to be invariant under G.

Let us decompose J in two pieces J0 ∈ H0 and JG ∈ (G\H0). We can take the following

metric on G as

〈A, B〉 = Str(AB) (2.1.42)

where together with (2.1.38) implies

Str(JGJ0) = 0 (2.1.43)

This means that under the gauge transformation g(z) → g(z)h(z) the currents JG and

J0 transform as

JG → h−1JGh , J0 → h−1J0h + h−1dh (2.1.44)

where the term h−1dh can be canceled with a gauge transformation of the gauge field

A → h−1Ah + h−1dh and so the action is invariant under this gauge transformation.

Because of (2.1.43) the action decomposes into two terms, one with the Lagrangian J2
G

and the other as (J0 − A)2. Integrating out the gauge field will cancel the second term

and we end with the following action for the supercoset

S
G/H
kin = R2

∫
d2zStr(J2

G) (2.1.45)

The action (2.1.45) is not conformal in general and its conformal anomaly is proportional

to the Ricci tensor. So in order to make conformal theory as a string theory one should

add a Wess-Zumino term which compensates this conformal anomaly.

The general structure of the Wess-Zumino term for a supergroup is constructed from

a closed 3-form W which can be written in terms of the left-invariant one-forms of the

supergroup as follows

W = Str(J ∧ [J ∧ J ]) = fABCJA ∧ JB ∧ JC (2.1.46)



Chapter 2. Pure spinor formalism of superstring theory 43

where fABC = gADfD
BC are the structure constants of the supergroup and gAB is a G

invariant bilinear form on the supergroup manifold.

In order to construct an exact three-form one can use the Maurer-Cartan equations of

the supergroup

dJA = −1
2
fA

BCJB ∧ JC (2.1.47)

The possibility of constructing the exact three-form which arises from a two-form is very

specially depend on the fact that the supergroup has the Z4 automorphism. This action

has been written in [3, 52] for the case of AdS5 × S5 but it can be generalized to any

maximally supersymmetric supergroup manifold which admits the Z4 automorphism.

The reasoning is simply related to the fact that if we denote the projections of the

Cartan one-form J on the subspaces Hk as

Jk = J |Hk
(2.1.48)

and because of (2.1.37), using the fact that W should be invariant under H ∈ H0,

then it comes out that the only three-form W which can be composed of the currents

JG ∈ {H1,H2,H3} and stay in H0 is the following one

W = Str(αJ1 ∧ J1 ∧ J2 + βJ3 ∧ J3 ∧ J2) (2.1.49)

because any combination of three form Jm ∧ Jn ∧ Jp ∈ Hm+n+p (mod) 4 and one can see

that (1, 1, 2) and (3, 3, 2) is the only way of partitioning a number into 0 (mod) 4 out of

the numbers {1, 2, 3}.

Using the Maurer-Cartan equations and the fact that W should be closed

dW = 0 (2.1.50)

forces the coefficients α and β to satisfy α = −β. Then we can check easily that W is

also a d-exact three-form

W = dStr(J1 ∧ J3) ≡ dW(2) (2.1.51)

The sigma model action (2.1.39) can be written as follows

S =
R2

2

∫
d2z Str(J2J̄2 + (1 + k)J1J̄3 + (1− k)J̄1J3) (2.1.52)

where k is the overall factor of the Wess-Zumino term and is determined after considering
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the conformal invariance of the background. Using background field method, the one-

loop conformal anomaly of the model was computed in [51] to be zero for k = ±1/2

where the difference between and plus signs is just to change the role of the J1 and J3 as

covariant holomorphic or antiholomorphic currents. So we can take k = 1/2 and write

the sigma-model action for these backgrounds as follows

S = R2

∫
d2z Str(

1
2
J2J̄2 +

3
4
J1J̄3 +

1
4
J̄1J3) (2.1.53)
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2.2 Pure spinor action for flat background

As we have seen the main problem of the GS formalism were related to the fact that

we could not find a covariant way of quantizing the theory because of the presence of

second class constraints. Berkovits [48] implemented the constraints cohomologically

with a BRST operator disregarding its non-closure. He proposed the following left

and right-moving BRST operators which are constructed simply from the structure

Q = (ghost× constraint) as follows

Q =
∮

λαdα , Q̂ =
∮

λ̂α̂dα̂ (2.2.1)

Also the non-closure of the second class constraints dα implies a lack of the nilpotency

of the BRST operator, we can maintain the nilpotency

Q2 =
1
2
{Q,Q} = −1

2

∮
dz(λγmλ)Πm (2.2.2)

by putting the following constraints on the bosonic ghosts

λαγm
αβλβ = 0 , λ̂α̂γm

α̂β̂
λ̂β̂ = 0 (2.2.3)

These are named as pure spinors which are bosonic ghost degrees of freedom. They

are ten independent constraints and so the pure spinor has eleven complex degrees of

freedom which exactly compensate the -22 conformal anomaly of the GS action. We can

also introduce the conjugate momenta wα and ŵα̂ corresponding to these ghosts and

add the ghost sector to the action (2.1.17) to get the following worldsheet action for the

flat background

S =
∫

d2z[
1
2
∂xmηmn∂̄xn + ∂̄θαpα + ∂θ̂α̂p̂α̂ − wα∂̄λα − wα̂∂λ̂α̂] (2.2.4)

The pure spinor constraints (2.2.3) prevents a direct computation of the OPE’s between

λ and w but we can solve the pure spinor constraint by Wick-rotating the Lorentz

group SO(10) into a SU(5) × U(1) subgroup [48]. The sixteen complex components

of the λα splits into (λ+, λab, λ
a) for a, b = 1 to 5 which transform as (1 5

2
, 1̄0 1

2
, 5− 3

2
) of

the SU(5) × U(1) group. We can solve the pure spinor constraints (2.2.3) with eleven

complex degree of freedom γ and uab transforming as 15 and 1̄0−2 respectively as follows

λ+ = γ , λab = γuab , λa = −1
8
γεabcdeubcude (2.2.5)

which satisfies the pure spinor constraints.
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Using the solution (2.2.5) we can compute the OPE’s of the theory. Although the OPE’s

of the unconstrained variables are not manifestly Lorentz-covariant, all the OPE’s and

other computations involving the pure spinors λ can be written in a manifestly Lorentz-

covariant way.

Because of the pure spinor constraints, the conjugate momenta of the pure spinors

contain the gauge transformation

δwα = Λm(γmλ)α , δŵα̂ = Λ̂m(γmλ̂)α̂ (2.2.6)

Because of this gauge symmetry, five out of the sixteen components of wα can be gauged

away and since we want to preserve the Lorentz invariance, the momenta wα and ŵα̂

can only appear in the gauge-invariant combinations which are the Lorentz current and

the ghost current defined as follows

Nmn =
1
2
wα(γmn) α

β λβ , J = wαλα (2.2.7)

N̂mn =
1
2
ŵα̂(γmn) α̂

β̂
λ̂β̂ , Ĵ = ŵα̂λ̂α̂

Using the solution (2.2.5), one can find the following Lorentz-covariant OPE’s

Nmn(y)λα(z) → (γmnλ)α

2(y − z)
, J(y)λα(z) → λα

(y − z)
(2.2.8)

Nkl(y)Nmn(z) → ηm[lNk]n − ηn[lNk]m

(y − z)
− 3ηn[kηl]m

(y − z)2

J(y)Nmn(z) → regular , J(y)J(z) → −4
(y − z)2

Nmn(y)T (z) → Nmn

(y − z)2
, J(y)T (z) → J(z)

(y − z)2
− −8

(y − z)3

where

T = −1
2
∂xm∂̄xm − pα∂θα + wαλα (2.2.9)

is the left-moving stress-energy tensor of the pure spinor flat superstring theory. We

can see from these OPE’s (2.2.8) that levels for the Lorentz and ghost currents are -3

and -4 respectively and the ghost anomaly is -8. From the first OPE it is obvious that

the pure spinor λ transforms as a spinor under the action of the Lorentz current. We

can also see that the stress-energy tensor (2.2.9) has vanishing central charge because

the (10-32) contribution of (xm, θα, θ̂α̂) cancels with +22 from the eleven (λα, wα) ghost

variables.

In order to define physical states of the theory we naturally use the BRST operator
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(2.2.1) and the physical vertex operators would be the ghost-number one elements of

the cohomology of Q. Note that we assign ghost number one to λ and zero to all the

rest. In this way easily we can show that the most general unintegrated ghost number

1 and (1,1) operators are the following ones for open and closed superstring theory

Vopen = λαAα(x, θ) (2.2.10)

Vclosed = λαλ̂α̂Aαα̂(x, θ, θ̂) (2.2.11)

where Aα(x, θ) and Aαα̂(x, θ, θ̂) are spinor and bispinor superfields depending only on

the worldsheet zero modes of the xm, θα and θ̂θ̂.

These operators are in the cohomology of the BRST operator satisfying QVopen =

QVclosed = 0 as their equation of motion and also they transform as δV = QΛ un-

der gauge symmetry. This implies for the open vertex operator using the fact that

λαλβ ∝ (λγmnpqrλ)γαβ
mnpqr , the following equation

QVopen =
∮

dzλαdαλβAβ = λαλβDαAβ = 0 (2.2.12)

where the OPE

dα(y)f(x(z), θ(z)) → Dαf

(y − z)
(2.2.13)

is used in which the covariant derivative is defined as

Dα =
∂

∂θα
+

1
2
θβγm

αβ∂m (2.2.14)

The gauge variation reads as δAα = DαΛ for the spinor superfield.

The relation λαλβDαAβ = 0 implies

DαAβ + DβAα = γm
αβAm (2.2.15)

for some vector superfield Am which transforms under the gauge symmetry as δAm =

∂mΛ.

Using (2.2.15), and the gauge invariance of the spinor and vector superfields, it was

shown [53] that there is the following solution for Aα and Am

Aα(x, θ) = eikx(
1
2
am(γmθ)α − 1

3
(ξγmθ)α + · · · ) (2.2.16)

Am(x, θ) = eikx(am + (ξγmθ) + · · · ) (2.2.17)
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where k2 = kmam = km(γmξ)m = 0. These, as the ghost-number one elements of the

BRST operators, were shown to coincide exactly with the super-Maxwell multiplet and

so this BRST operator produces correctly the massless spectrum of the open superstring.

One can write the integrated massless vertex operators as follows

Vopen =
∫

dz[∂θαAα + ΠmAm + ”more”] (2.2.18)

where the ”more” terms are needed to get BRST invariance.

Similarly we can investigate the massless closed string vertex operator by imposing

QVclosed = Q̄Vclosed = 0 which implies the following equations

γαβ
mnpqrDαAβγ̂ = 0 , γα̂β̂

mnpqrDα̂Aγβ̂ = 0 (2.2.19)

whose solutions can be written as follows

Anγ̂ = −1
8
Dαγαβ

n Aβγ̂ (2.2.20)

Aγn = −1
8
D̂α̂γα̂β̂

n Aγβ̂ (2.2.21)

Amn =
1
64

DαD̂γ̂γαβ
m γγ̂δ̂

n Aβδ̂ (2.2.22)

where the covariant derivatives are defined as follows

Dα =
∂

∂θα
+

1
2
θβγm

αβ∂m , Dα̂ =
∂

∂θ̂α̂
+

1
2
θ̂β̂γm

α̂β̂
∂m (2.2.23)

which are the N = 2 D = 10 supersymmetric derivatives. These solutions are the

linearized N = 2 supergravity equations of motion which is written in terms of superfield

Aαβ̂ and the linearized supergravity connections in terms of Aαβ̂ [54].

In order to construct the sigma model for the type II superstring, it is useful to construct

the integrated vertex operator as follows

Vclosed =
∫

d2z[∂θα∂̄θ̂β̂Aαβ̂ + ∂θαΠ̄mAαm + Πm∂̄θ̂α̂Amα̂ + ΠmΠ̄nAmn + ”more”]

(2.2.24)

this is similar to the Green-Schwarz type II superstring vertex operator except the

”more” term which is necessary for this to be BRST invariant. The superstring closed

vertex operator (2.2.24) can be seen as the square of the open vertex operator (2.2.18)

for the left and right movers because the theory is holomorphic-antiholomorphic for

flat background. This holomorphicity does not exist for more general backgrounds like
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AdS5 × S5 and the closed supergravity vertex operator can not be seen as the product

of the open string left and right vertex operators [36].



Chapter 2. Pure spinor formalism of superstring theory 50

2.3 Pure spinor formalism for curved backgrounds

The pure spinor formalism for a general curved background which is constructed either

by adding the closed superstring vertex operator (2.2.24) to the flat background and then

covariantizing with respect to the N = 2 D = 10 super-reparametrization invariance or

by writing the most general action constructed from the worldsheet variables and retain

its worldsheet conformal invariance as follows

S =
1

2πα′

∫
d2z[

1
2
(GMN (Z) + BMN (Z))∂ZM ∂̄ZN (2.3.1)

+ Pαβ̂(Z)dαd̂β̂ + Eα
M (Z)dα∂̄ZM + Eα

M (Z)d̂α̂∂ZM

+ +ΩMα
β(Z)λαwβ ∂̄ZM + Ω̂Mα̂

β̂(Z)λ̂α̂ŵα̂∂ZM

+ Cβγ̂
α (Z)λαwβ d̂γ̂ + Ĉ β̂γ

α̂ (Z)λ̂α̂ŵβ̂dγ + Sβδ̂
αγ̂(Z)λαwβλ̂γ̂ŵδ̂

+
1
2
α′Φ(Z)r] + Sλ + Sλ̂

where Sλ and Sλ̂ are the action for pure spinors, r is the worldsheet curvature, and

(GMN = ηcdE
c
MEd

N , BMN , Eα
M , Eα̂

M , ΩMα
β, Ω̂Mα̂

β̂, Pαβ̂, Cβγ̂
α , Ĉ β̂γ

α̂ , Sβδ̂
αγ̂ , Φ) are

the background superfields. Putting their value which comes from their supergravity

equations of motion, will give the pure spinor action for that curved background. The

superfields EA
M , BMN and Φ are the supervielbein, two-form potential and dilaton super-

fields, Pαβ̂ is the superfield whose lowest components are the Type II Ramond-Ramond

field strengths and the fields Cβγ̂
α and Ĉ β̂γ

α̂ are related to N = 2 D = 10 dilatino and

gravitino field strengths. It was shown in [54] that one can get all the supergravity

constraints from the type II pure spinor superstring integrability conditions.

We saw in the previous section how to construct Green-Schwarz action on the back-

grounds which are constructed on supercosets like AdS5×S5 and ˜AdS4×CP3 whose Lie

algebra admits a particular Z4 automorphism. Here we use that construction and write

the pure spinor action for those backgrounds, but we have to add the corresponding

ghost sector to the action in order to make it BRST invariant.

The worldsheet action here has also the pure spinor ghost sector on top of the matter

sector of the Green-Schwarz sigma model action. The matter fields are written in terms

of the left-invariant Cartan one-forms J = g−1dg where g : Σ → G is the map from the

worldsheet to the superisometry group. The currents J and J̄ decomposes exactly like

(2.1.48) into graded components.

The pure spinor ghosts and their conjugate momenta can also be expanded into the

generators of the supergroup and also according to the Z4 grading [55, 56] as follows

λ = λαTα , w = wαηαα̂Tα̂ , λ̂ = λ̂α̂Tα̂ , ŵ = ŵα̂ηαα̂Tα (2.3.2)
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where Tα and Tα̂ are the generators of G taking their value in the Lie algebras H1 and

H3 respectively and ηαα̂ is the inverse of the Cartan metric.

The Lorentz currents are defined to be

N = −{λ, w} , N̂ = −{λ̂, ŵ} (2.3.3)

which take value in H0.

The sigma model, being a G/H supercoset sigma model is invariant under the global

transformation δg = Σg where Σ is a constant element of G. The left invariant currents

J and J̄ are invariant by their definition. The sigma model is also invariant under the

following gauge transformation

δgJ = ∂Ω + [J,Ω] , δgλ = [λ,Ω] , δgw = [w, Ω] (2.3.4)

where Ω ∈ H0 which is an element of the Lorentz group.

one can check that the most general action invariant under the local symmetry (2.3.32)

and the global symmetry G has the following form [55]

S = R2

∫
d2zStr(αJ2J̄2 + βJ1J̄3 + γJ3J̄1 + w∂̄λ + ŵ∂λ̂ + NJ̄0 + N̂J0 + aNN̂)

(2.3.5)

As we saw before, the pure spinor theory is invariant under a BRST symmetry which is

generated with the following BRST operator written in the Z4 grading

Q =
∮

dz Str(λJ3) +
∮

dz̄ Str(λ̂J̄1) (2.3.6)

This generates the following BRST transformations. Note that Q takes value in H0 and

so does not change the Z4 equivalence class. The BRST transformations can be written

in the following way

δbλ = 0 , δbλ̂ = 0 , δbw = −J3 , δbŵ = −J̄1 (2.3.7)

δbJ0 = [J3, λ] + [J1, λ̂] , δbJ1 = ∂λ + [J0, λ] + [J2, λ̂]

δbJ2 = [J1, λ] + [J3, λ̂] , δbJ1 = ∂λ̂ + [J2, λ] + [J0, λ̂]

δbN = {J3, λ} , δbN̂ = {J̄1, λ̂}

Requiring (2.3.5) to be invariant under the transformations (2.3.7) and using the fact

that {N,λ} = {N̂ , λ̂} = 0 because of the pure spinor constraints, one can solve for the
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coefficients α, β, γ and a as follows [55]

α =
1
2

, β =
1
4

, γ =
3
4

, a = −1 (2.3.8)

which produces the following action

S = R2

∫
d2zStr(

1
2
J2J̄2 +

1
4
J1J̄3 +

3
4
J3J̄1 + w∂̄λ + ŵ∂λ̂ + NJ̄0 + N̂J0 −NN̂)

= SGS + Sghost (2.3.9)

where the Green-Schwarz action SGS was given in (2.1.53) and using the definition of

the currents N and N̂ , the ghost action can be rewritten in this way

Sghost = R2

∫
d2zStr(w∇̄λ + ŵ∇λ̂−NN̂) (2.3.10)

where the covariant derivative is defined as follows

∇X = ∂X + [J0, X] , ∇̄X = ∂̄X + [J̄0, X] (2.3.11)

Using this general construction, in the next two subsections, we will explore more in

detail the form of the pure spinor action for the AdS5×S5 and ˜AdS4×CP3 backgrounds.

2.3.1 Pure spinor action for superstring on AdS5 × S5

To write the explicit form of the action for the AdS5 × S5 background we should first

study the structure of the G
H = PSU(2,2|4)

SO(5)×SO(4,1) supercoset which was shown to produce

the correct sigma model for this background [3]. The action is written in terms of

the left-invariant currents JA = (g−1dg)A where g takes value in the supercoset and

A = ([ab], a, α, α̂) is the index of the generators of the supergroup PSU(2, 2|4).

The 30 bosonic and 32 fermionic generators of the supergroup can be represented as

(T[ab], Ta, Tα, Tα̂) where a = 0 · · · 9 is an index of the bosonic SO(5)× SO(4, 1) Lorentz

and SO(6)
SO(5)× SO(4,2)

SO(4,1) translation generators which are denoted by T[ab] and Ta respectively

and α, α̂ = 1 · · · 16 are the indices for the fermionic generators Tα and Tα̂. The bosonic

generators Ta are the coset representatives for the bosonic manifolds AdS5 for a = 0 · · · 4
and S5 for a = 5 · · · 9 respectively.
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The non-zero structure constants of the supergroup PSU(2, 2|4) for the following super-

algebra

{Tα, Tβ} = fa
αβTa, {Tα̂, Tβ̂} = fa

α̂β̂
Ta, {Tα, Tβ̂} = f

[ab]

αβ̂
T[ab]

[Ta, Tb] = f
[cd]
ab T[cd], [Ta, Tα] = f β̂

aαTβ̂, [Ta, Tα̂] = fβ
aα̂Tβ[

T[ab], T[cd]

]
= f

[ef ]
[ab][cd]T[ef ],

[
T[ab], Tα

]
= fβ

[ab]αTβ,
[
T[ab], Tα̂

]
= f β̂

aα̂Tβ̂

(2.3.12)

can be written in terms of the ten-dimensional γ matrices γa which are the 16 × 16

off-diagonal blocks of the Weyl representation of the 32× 32 10-dimensional Γ matrices

as follows

fa
αβ = γa

αβ , fa
α̂β̂

= γa
α̂β̂

(2.3.13)

f
[mn]

αβ̂
=

1
2
(γmn)γ

αηγβ̂ , f
[m′n′]
αβ̂

= −1
2
(γm′n′)γ

αηγβ̂

f β̂
αa = (γa)αβηββ̂ , fβ

α̂a = −(γa)α̂β̂ηββ̂

f
[ef ]
[ab][cd] =

1
2
(ηcdδ

[g
d δ

h]
f − ηcfδ

[g
d δh]

e + ηdfδ[g
c δh]

e − ηdeδ
[g
c δ

h]
f )

ff
[cd]e = ηe[cδ

f
d] , fβ

[cd]α =
1
2
(γcd)β

α , f β̂
[cd]α̂ =

1
2
(γcd)β̂

α̂

where m,n = 0 · · · 4 and m′, n′ = 5 · · · 9. The non-zero components of the metric

ηAB = 〈TA, TB〉 = Str(TATB) are given by

ηab = ηba , ηαβ̂ = −ηβ̂α = (γ01234)αβ̂ (2.3.14)

η[mn][pq] =
1
2
ηm[pηq]n , η[m′n′][p′q′] = −1

2
ηm′[p′ηq′]n′

where ηab is the Euclidean and Minkowski metric for a, b = 0, · · · , 4 and a, b = 5, · · · , 9

corresponding to coordinates of S5 and AdS5 respectively. The matrix γ01234 is defined

as the product of γ−matrices γ01234 = γ0γ1γ2γ3γ4. Any group index can be raised or

lowered with the metric ηAB or its inverse ηAB satisfying ηABηBC = δC
A .

As we see from the superalgebra (2.3.12), the supergroup PSU(2, 2|4) admits the pre-

viously mentioned Z4 automorphism which can be realized easily. The generators can

be classified according to the Z4 grading as follows

T[ab] ∈ H0 , Tα ∈ H1 , Ta ∈ H2 , Tα̂ ∈ H3 (2.3.15)

Using (2.3.12) and (2.3.14), one can see that they satisfy

[Hm,Hn} = Hm+n (mod) 4 (2.3.16)

〈Hm,Hn〉 = 0 unless m + n = 0 (mod) 4
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To write the superstring sigma-model action we can either use the general type II Green-

Schwarz action of (2.3.1) and generalize it to pure spinor formalism or to use the fact

that AdS5 × S5 is a maximally supercoset background which admits a Z4 in which we

wrote their sigma model action in the previous section. We will review both derivations

both in brief here.

Let us start with the following Green-Schwarz action for a curved background

SGS =
R2

2

∫
d2z(GMN + BMN )∂ZM ∂̄ZN (2.3.17)

where ZM = (xm, θµ, θ̂µ̂) are the coordinates of the target space with m = 0 · · · 9 and

µ, µ̂ = 1 · · · 16. The background metric and two form B can be written in terms of the

Vielbeins as follows

GMN = ηabE
a
MEb

N , BMN = EA
MEB

NBAB (2.3.18)

in which A = (a, α, α̂) are tangent superspace variables and ηAB is the bilinear metric of

the PSU(2, 2|4) supergroup and M = (m,µ, µ̂) are coordinate variables. The Vielbeins

can be written in terms of the left-invariant one-forms J = g−1dg as

JA = EA
M∂ZM , J [ab] = ω

[ab]
M ∂ZM (2.3.19)

where ω[ab] is the spin connection and the one-form J was expanded in the PSU(2, 2|4)

basis

J = J [ab]T[ab] + JaTa + JαTα + J α̂Tα̂ (2.3.20)

The non-zero components of the BAB were computed from the supergravity equations

to be given as follows [3, 51]

Bαβ̂ = Bβ̂α =
1
2
(γ01234)αβ̂ ≡

1
2
ηαα̂ (2.3.21)

Putting (2.3.18) and (2.3.21) into the action (2.3.17) one finds the Green-Schwarz action

for the AdS5 × S5 as follows

SGS =
R2

2

∫
d2z(J2J̄2 +

1
2
J1J̄3 +

1
2
J3J̄1) (2.3.22)

using the Z4 grading (2.3.15).

In order to generalize this GS action to pure spinors, we can add the canonical momenta

(dα, d̂α̂) for (θα, θ̂θ̂) fermionic variables and also the pure spinor ghosts and their mo-

menta (λα, wα) and (λ̂α̂, ŵα̂) which can be expanded according to the Z4 grading [55, 56]
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with the following action [36]

S = SGS+R2

∫
d2z(−dαJ̄α+d̂α̂J α̂+dαd̂α̂Fαα̂−wα∇̄λλ+ŵα̂∇λ̂α̂+RabcdN

[ab]N̂ [cd])

(2.3.23)

where Fαα̂ is the bispinor Ramond-Ramond background fields strength which for AdS5×
S5 background is given by

Fαα̂ = (γ01234)αα̂ = ηαα̂ (2.3.24)

and Rabcd is the curvature of the supercoset which for a particular supercoset G/H is

given by [57, 51]

RÃB̃C̃D̃ + (B̃ ↔ C̃) =
1
4
ηẼF̃ f Ẽ

ÃB̃
f F̃

C̃D̃
+ ηIJf I

ÃB̃
fJ

C̃D̃
+ (B̃ ↔ C̃) (2.3.25)

where the covariant derivative is defined with respect the Lorentz currents

∇̄λα = ∂̄λα + fα
[ab]β J̄ [ab]λβ , ∇λ̂α̂ = ∂λ̂α̂ + f α̂

[ab]β̂
J [ab]λ̂β̂ (2.3.26)

The (Ã, B̃, · · · ) are indices for the generators ofH algebra which here is SO(5)×SO(4, 1)

with generators T[ab] and (I, J, · · · ) are indices for G\H generators which are (Ta, Tα, Tα̂)

for AdS5 × S5.

Computing (2.3.25) explicitly for the symmetric supergroup PSU(2, 2|4) gives

Rabcd = ±ηa[cηd]b ≡ η[ab][cd] (2.3.27)

where the + sign is for the S5 directions a, b = 0 to 4 and the − sign is for the AdS5

directions a, b = 5 to 9.

Putting these back into the action (2.3.23) and considering the fact that the momenta

dα and d̂α̂ fields are auxiliary because of the non-vanishing Ramond-Ramond flux, we

can integrate them out and get the following action

S = SGS+R2

∫
d2z

(
1
2
ηαβ̂(JαJ̄ β̂−J β̂J̄α)−wα∇̄λλ+ŵα̂∇λ̂α̂−η[ab][cd]N

[ab]N̂ [cd]

)

= SGS + SGF + Sghost (2.3.28)

where SGF is the κ−gauge fixing part of the action defined as follows

SGF =
R2

2

∫
d2zηαβ̂(JαJ̄ β̂−J β̂ J̄α) (2.3.29)
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The gauge-fixing action breaks the fermionic κ-symmetry and adds kinetic terms of the

fermions and the coupling to the Ramond-Ramond flux and Sghost is the pure spinor

ghost part of the action.

The action (2.3.28) can be written in Z4 grading as follows

S = R2

∫
d2z(

1
2
J2J̄2 +

1
2
J1J̄3 − 1

4
J3J̄1) + Sghost (2.3.30)

As we saw before, the pure spinor theory is invariant under a BRST symmetry which is

generated with the following BRST operator written in the Z4 language

Q =
∮

dzλαdα +
∮

dz̄λ̂α̂d̂α̂ =
∮

dzηαα̂λαJ α̂ +
∮

dz̄λ̂α̂J̄α (2.3.31)

Q =
∮

dz Str(λJ3) +
∮

dz̄ Str(λ̂J̄1)

which generates the BRST transformations (2.3.7). Note that the operator Q is H0

invariant and so does not change the Z4 grading of any field it acts on. The sigma model,

as a supercoset sigma model on the supercoset PSU(2,2|4)
SO(5)×SO(4,1) is invariant under the global

transformation δg = Σg where Σ is a constant element of PSU(2, 2|4) supergroup. The

Cartan one-forms J and J̄ are invariant by their definition. The sigma model is also

invariant under the following gauge transformation

δgJ = ∂Ω + [J,Ω] , δgλ = [λ,Ω] , δgw = [w, Ω] (2.3.32)

where Ω ∈ H0 = SO(5)× SO(4, 1) which is the Lorentz group.

Actually, as it was shown in [36] and [56], the action (2.3.30) is the unique action which

has the global and local symmetries which were mentioned and is invariant under BRST

charge (2.3.31).

2.3.2 Pure spinor action for superstring on ˜AdS4 × CP3

Here in this section we use similar techniques to construct the pure spinor superstring

sigma model action on the ˜AdS4×CP3 as a subspace of AdS4×CP3 background which

got many attentions after it was discovered that they are related in somehow to the string

theory compactification of the M2-brane backgrounds. As we will see this background

has many similarities with the AdS5 × S5 background, one of which is that its sigma

model can also can be represented with a supercoset which admits a Z4 automorphism.

We will use this grading in order to construct the sigma model action. Here in this

section we will construct the pure spinor formalism on this background and we will

study and solve the corresponding pure spinor constraints according to [7, 8, 9, 10].
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By the superstring on ˜AdS4×CP3 we mean the superstring on the supercoset Osp(6|4)
U(3)×SO(1,3)

which as it was shown in [7, 8, 9, 10] it is a subspace of the full superspace of the

superstring on AdS4 × CP3 background.

Its Maurer-Cartan left invariant 1-forms can be expanded into the generators of Osp(6|4)

as follows

J =Jaγa+JIJT IJ+JIJTIJ+Habγab+H J
I T I

J +J α
I Q I

α+J α̇
I Q I

α̇+JIαQIα+JIα̇QIα̇(2.3.33)

where (TIJ , T IJ , T I
J ) are the generators of SO(6), T[AB] with A,B = 1 . . . 6 decomposes

according to irreducible representations of U(3) as it will be explained later, and T I
J

are the generators of U(3). Then, JIJ and JIJ are the Maurer-Cartan forms associated

to the generators of the coset SU(4)
U(3) and H J

I are the corresponding spin connections of

the coset. Similarly, (γa, γab) with a, b = 1 . . . 4 are the generators of the anti de Sitter

group SO(2, 3) which as is shown in [9] they all turn out to be given by real symplec-

tic matrices and γab are the generators of the Lorentz group SO(1, 3). The matrices

Q α
I , Q α̇

I , Q I
α and Q I

α̇ are the 24 fermionic generators where we split the symplectic in-

dices x = 1 . . . 4 into SO(1, 3) spinorial indices α, α̇ = 1, 2. The Maurer-Cartan 1-forms

of the symplectic group Sp(4,R) are related to the Maurer-Cartan of SO(2, 3) with

the relation Jxy = Jaγxy
a + Habγxy

ab . The fermionic 1-forms Jx
A are real and transform

in the fundamental 4-dimensional representation of sp(4,R) and in the fundamental 6-

dimensional representation of so(6) with the symplectic invariant antisymmetric metric

εxy = iσ1 ⊗ 1l.

Notice that ηab is the invariant metric on AdS4 and gIJ̄ is the U(3) invariant metric

on P3 and we denote by kIJ̄ as the Kähler form on P3. The index I can be raised and

lowered with the inverse metric gĪJ as J Ī J̄ = gĪKgJ̄LJKL which is independent of JIJ ,

similarly we can make JĪJ̄ out of JIJ .

The osp(6|4) algebraH admits a Z4 grading with decompositionH =
∑3

i=0Hi as follows2

H0 =
{

Hαβ, Hα̇β̇,H J
I

}
, H1 =

{
JαI , J α̇Ī

}
,

H2 =
{

Jαα̇, JIJ , JIJ
}

, H3 =
{

J α
I , J α̇

Ī

}
. (2.3.34)

satisfying

[Hm,Hn] ⊂ Hm+n (mod 4) (2.3.35)

2Sometimes the notation Ĵ will be used to denote the currents of the subset H3.
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We can check that the bilinear metric is also Z4 invariant. Recall that the invariant

supermetric for Osp(6|4) is given by

Str(TABTCD) = δACδDB − δADδCB , (2.3.36)

Str(Txy Tzt) = εxzεty + εxtεzy ,

Str(Tx Ty) = εxy ,

Str(Qx
AQy

B) = δABεxy .

where TAB and Txy are the generators of the bosonic subgroups SO(6) and Sp(4,R), and

Qx
A are the fermionic generators of the supergroup. It is convenient to adopt a complex

basis for the generators of SO(6). We can define TAB = U IJ
ABTIJ +U I

J,ABT J
I +UIJ,ABT IJ

where U IJ
AB, U I

J,AB, UIJ,AB are the Clebsh-Gordon matrices mapping from 15 of SO(6)

to the representations 3(−1), 8(0), 3∗(+1) of U(3), respectively. In the same way, we

decompose the fermionic generators into Qx
I and QxI of 3(−1) and 3∗(1), respectively.

The metric of the supergroup can be written explicitly as follows

Str(TIJTKL) = δ K
I δ L

J − δ K
J δ L

I , (2.3.37)

Str(T J
I T L

K ) = δ L
I δ J

K ,

Str(Qx
I QyJ) = δJ

I εxy .

while the other traces vanish. This means that the bilinear metric is Z4 invariant,

satisfying

〈Hm,Hn〉 = Str(HmHn) = 0, unless m + n = 0 mod 4 (2.3.38)

Using this Z4 automorphism similar to the AdS5×S5 sigma model action, it was shown

that the pure spinor sigma model action can be decomposed in the following way

S = SGS + SGF + Sghost (2.3.39)

where SGS is the Green-Schwarz action was shown in [7, 8, 9, 10] to exhibit the usual

quadratic form after using the fact that it is possible to write the Wess-Zumino term as

a total derivative in this background which produces the following term as an integral

over a two-form on the worldsheet

SGS = R2

∫
d2zStr

[
1
2
J2J̄2 +

1
4

(
J1J̄3 − J3J̄1

)]
(2.3.40)

Here Ji = J |Hi are the projections of the MC left invariant currents into different

subclasses according to Z4 automorphism as it was defined in (2.3.34). The action can
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be written in terms of the left-invariant currents of the coset in the following form

SGS = R2

∫
d2z[εxyJ

xJ̄y +
1
2
JIJ J̄IJ +

1
4
(JαI J̄

αI +Jα̇Ī J̄
α̇Ī−JαĪ J̄

αĪ−Jα̇I J̄
α̇I)] (2.3.41)

To this, one has to add a term which breaks κ−symmetry and adds kinetic terms for

the target-space fermions and the coupling to the RR flux. This gauge fixing action SGF

was shown to be given by [9]

SGF = R2

∫
d2z

(
JαĪ J̄

αĪ + Jα̇I J̄
α̇I

)
, (2.3.42)

which gives the following action

S = SGS + SGF (2.3.43)

= R2

∫
d2z[εxyJ

xJ̄y +
1
2
JIJ J̄IJ +

1
4
(JαI J̄

αI + Jα̇Ī J̄
α̇Ī) +

3
4
(JαĪ J̄

αĪ + Jα̇I J̄
α̇I)]

In order to write the pure spinor ghost part of the action, we introduce the pure spinors

(λ α
I , λ α̇

Ī
), (λ̂αI , λ̂α̇Ī) and their conjugate momenta (w I

α , w Ī
α̇ ), (ŵαI , ŵα̇Ī), belonging to

the H1 and H3 respectively. The pure spinor constraints can be written as follows





λα
I λα̇I = 0

λα
I εαβλβ

J = 0

λα̇Iεα̇β̇λβ̇J = 0

,





λ̂αI λ̂α̇
I = 0

λ̂Iαεαβλ̂βJ = 0

λ̂α̇
I εα̇β̇λ̂β̇

J = 0

(2.3.44)

To solve this constraint, we can use the following ansatz

λ α
I = λαuI , λα̇I = λα̇vI , (2.3.45)

λ̂αI = λ̂αûI , λ̂ α̇
I = λ̂α̇v̂I ,

subject to the following gauge transformations

λα → 1
ρ
λα, λα̇ → 1

σ
λα̇, uI → ρuI , vI → σvI , (2.3.46)

λ̂α → 1
ρ̂
λ̂α, λ̂α̇ → 1

σ̂
λ̂α̇, ûI → ρ̂ûI , v̂I → σ̂v̂I ,

where ρ, σ, ρ̂, σ̂ ∈ C∗.

Inserting these factorization into (2.3.44), we arrive to the following constraints

uIv
I = 0, v̂I û

I = 0 . (2.3.47)
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So, the counting of the degrees of freedom gives 2 × (2 + 3 − 1) − 1 = 7 complex for

λ and the same for λ̂. The geometry of the pure spinor space can be easily described.

Using the gauge symmetries ρ and σ we can fix the norm of uI and vI as such uI ū
I = 1

and vI v̄I = 1. Then, together the constraint uIv
I = 0, the matrix (uI , v̄I , εIJK ūJvK)

is an SU(3) matrix. In addition, using the remaining phases of the gauge symmetries

ρ and σ, we see that the variables uI and vI parametrize the space SU(3)/U(1)× U(1)

which is the space of the harmonic variables of the N = 3 harmonic superspace (It is

also known as the flag manifold F (1, 2, 3)).

Another way to solve the constraints (2.3.44) is decomposing the pure spinor into λα
I =

(λα
a , λα) and λα̇I = (λα̇a, λα̇) where a = 1, 2. It is easy to show that the pure spinor

constrains become λα
aλα̇a + λαλα̇ = 0, det(λα

a ) = 0, det(λα̇
a ) = 0, λα

a εαβλβ = 0 and

λα̇
a εα̇β̇λβ̇ = 0. The first set of constraints implies that we can solve 3 parameters in

terms of the rest and we get a consistency condition det(λα
a ) det(λα̇

a ) = 0. This is solved

by imposing the second and the third conditions. The latter also imply the existence of a

solution for the forth and for the fifth constraints. Again the counting of the parameters

gives 7 complex numbers.

The pure spinor constraints are first class constraints and they commute with the Hamil-

tonian, therefore they generate the gauge symmetries on the antighost fields w’s. In

particular if we denote by ηαα̇, ηIJ , ηIJ and by καα̇, κIJ , κIJ the infinitesimal parameters

of the gauge symmetries we have that

δwI
α = ηαα̇λα̇I + 2ηIJεαβ λβ

J , δwα̇I = ηαα̇λα
I + 2ηIJεα̇β̇ λβJ ,

δŵαI = καα̇λ̂α̇
I + 2κIJεαβ λ̂βJ , δŵI

α̇ = καα̇λ̂αI + 2ηIJεα̇β̇ λ̂β
I .

(2.3.48)

One can introduce pure spinor Lorentz generators (N = −{w, λ}, N̂ = −{ŵ, λ̂}) ∈ H0,

bringing the couplings between the pure spinor fields and matter fields, as follows

Nαβ = wI
(αλβ)I , N̂αβ = wI(αλI

β) , (2.3.49)

Nα̇β̇ = w(α̇Iλ
I
β̇)

, N̂α̇β̇ = ŵI
(α̇λ̂β̇)I ,

N J
I = wI

αλα
I + wIα̇λIα̇ ,

N̂ J
I = ŵα

I λ̂I
α + ŵIα̇λ̂Iα̇ .

They are gauge invariant under the transformations (5.1.5). Finally, we can write the

pure spinor ghost piece of the action

Sghost = R2

∫
d2z

(
wI

α∇̄λα
I + wα̇I∇̄λα̇I + ŵαI∇λ̂Iα + ŵI

α̇∇λ̂α̇
I (2.3.50)

− η(αβ)(γδ)NαβN̂αδ − η(α̇β̇)(γ̇δ̇)Nα̇β̇N̂γ̇δ̇ − ηI K
J LN J

I N̂ L
K

)
,
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where the bilinear metrics η are given from (2.3.36) and (2.3.37) as

η(αβ)(γδ) = εαγεβδ + εαδεβγ , ηI K
J L = δ I

L δ K
J . (2.3.51)

Putting everything together we get the pure spinor action for ˜AdS4 × CP3 background

as follows

S = R2

∫
d2z

[
εxyJ

xJ̄y +
1
2
JIJ J̄IJ (2.3.52)

+
1
4

(
JαI J̄

αI + Jα̇Ī J̄
α̇Ī

)
+

3
4

(
JαĪ J̄

αĪ + Jα̇I J̄
α̇I

)

+ wI
α∇̄λα

I + wα̇I∇̄λα̇I + ŵαI∇λ̂Iα + ŵI
α̇∇λ̂α̇

I

− η(αβ)(γδ)NαβN̂γδ − η(α̇β̇)(γ̇δ̇)Nα̇β̇N̂γ̇δ̇ − ηI K
J LN J

I N̂ L
K

]

The theory admits a BRST transformation with the following BRST charge

Q + Q̄ =
∮ 〈

dzλJ3 + dz̄λ̂J̄1

〉
(2.3.53)

=
∮

dz
(
λIαĴαI + λα̇I Ĵα̇I

)
+

∮
dz̄

(
λ̂αI J̄αI + λ̂α̇

I J̄I
α̇

)
.

The BRST transformation (2.3.7) for a general supercoset background admitting the Z4

automorphism can be written in the following form for the ˜AdS4 × CP3 background

δBJαβ = −2λ(αI Ĵ
I
β) − 2J(αI λ̂

I
β) , δBJα̇β̇ = −2λI

(α̇Ĵβ̇)I − 2JI
(α̇λ̂β)I , (2.3.54)

δBĴαI = (∇λ̂)αI + JIJλα
J + Jα

α̇λα̇I , δBĴ α̇
I = (∇λ̂)α̇

I + JIJλα̇J + J α̇
α λα

I

δBJα
I = (∇λ)α

I + JIJ λ̂αJ + Jα
α̇λ̂α̇

I , δBJ α̇I = (∇λ)α̇I + JIJ λ̂α̇
J + Jα

α̇λ̂α̇I ,

δBJαβ̇ = λαIJ
I
β̇

+ JαIλ
I
β̇

+ Ĵβ̇I λ̂
I
α + λ̂β̇I Ĵ

I
α ,

δBJIJ = 2 εαβλα[IJJ ]β + 2 εα̇β̇ Ĵα̇[I λ̂J ]β̇ ,

δBJIJ = 2 εαβλ[I
α J

J ]
β + 2 εα̇β̇ Ĵ

[I
α̇ λ̂

J ]

β̇
,

δBωI
α = −ĴI

α , δBωα̇I = −Ĵα̇I ,

δBω̂αI = −JαI , δBω̂I
α̇ = −JI

α̇ ,

the variations of Nαβ , Nα̇β̇, N̂αβ , N̂α̇β̇ can be easily derived by their definitions (2.3.49).

Using this notation, we can assign a further quantum number by assigning 0 to Jαα̇, +1

to JIJ , −1 to JIJ , −1/2 to JαI , Ĵα̇,I and +1/2 to ĴαI , Jα̇,I . This is the center of U(1)

inside of U(3). Notice that the symmetry is a Z5 symmetry. The action, the BRST

transformations and the pure spinor conditions respect such a symmetry. It would be

nice to see if this symmetry corresponds to some geometric symmetry in the background

or can be used to simplify the superstring formulation.





Chapter 3

Topological decomposition of

pure spinor superstring action

In this chapter we show that the same way Berkovits and Vafa [23] obtained the embed-

ding of the A-model action in the pure spinor superstring on AdS5 × S5 background,

we can obtain the existence of such an embedding and decomposition for any super-

scoset background admitting a Z4 automorphism, as is the case also for the ˜AdS4×CP3

supercoset.

3.1 Topological A-model on a Grassmannian

Let’s consider the following Kähler potential defining a topological theory on a fermionic

Grassmannian coset G/H [58]

K(Θ, Θ̄) =
1
2
ln det

(
ξ̄(Θ̄)ξ(Θ)

)
(3.1.1)

The ξ(Θ) ∈ G/H is a representative of the fermionic coset G/H where for any h ∈ H

and g ∈ G satisfies

gξ(Θ) = ξ(Θ′)h(Θ, g) (3.1.2)

For G/H = PU(2,2|4)
SU(4)×SU(2,2) coset and for G/H = Ops(6|4)

SO(6)×Sp(4) , we can present the coset

representative in the following form

63
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G/H =
Ops(6|4)

SO(6)× Sp(4)
ξ =

(
1l4×4 Θ

Θ̄ 1l6×6

)
, ξ̄ =

(
1l4×4 Θ

−Θ̄ 1l6×6

)
(3.1.3)

G/H =
PU(2, 2|4)

SU(4)× SU(2, 2)
ξ =

(
1l4×4 Θ

Θ̄ 1l4×4

)
, ξ̄ =

(
1l4×4 Θ

−Θ̄ 1l4×4

)
(3.1.4)

where here Θ and Θ̄ are fermionic matrices.

Using the convention iΘ̄ = Θ†, the Kähler potential (3.1.1) can be written as

K(Θ, Θ̄) =
1
2
lndet

[(
1l Θ

Θ̄ 1l

)(
1l Θ

−Θ̄ 1l

)]

=
1
2
lndet

[(
1l−ΘΘ̄ 0

0 1l + Θ̄Θ

)]

=
1
2
ln

[
det(1l−ΘΘ̄)× det(1l + Θ̄Θ)

]

= Tr ln(1l + Θ̄Θ) (3.1.5)

which in the last line we used the fact that

Tr(ΘΘ̄)n = −Tr(Θ̄Θ)n, for n > 0 , (3.1.6)

This Kähler potential gives the following action which after writing the explicit form

of the superfields Θ and Θ̄ it will produce the same topological A-model action as it

was found by Berkovits from a particular limit of the superstring and was proposed to

correspond to the zero radius limit of the superstring as we explained in the introduction.

The action of the A-model topological theory can be written as follows

S =
∫

d2zd4κTr
[
log

(
1 + ηα+α−Θ̄α−Θα+

)]
(3.1.7)

where κ’s are the N = 2 worldsheet supersymmetry coordinates and fermionic chiral

superfields Θα+
and Θ̂α− can be expanded as follows

Θα+
= θα+

+ κ+Zα+
+ κ−Ȳ α+

+ κ+κ−fα+
(3.1.8)

Θ̄α− = θ̄α− + κ̄+Z̄α− + κ̄−Y α− + κ̄+κ̄−f̄α−

where θ and θ̄ are the fermionic degrees of freedom of the superspace and Z and Y fields

are bosonic twisted variables constructed from the bosonic degrees of freedom of the
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superspace and the pure spinors and their conjugate momenta. The fields fα+
and f̄α−

are auxiliary fields. The fact that there are 11 complex independent pure spinor degrees

of freedom is a very crucial fact which make it possible to construct such unconstrained

twisted-like variables as follows

Zα+
= fα+

mβ+Hmλβ+
, Z̄α− = fα−

mβ−Hmλ̂β− (3.1.9)

Ȳ α+
= fα+

mβ+Hmwβ+
, Y α− = fα−

mβ−Hmŵβ−

where Hm = (Ha,Ha′) are the bosonic cosets corresponding to the geometry of the

background1 and fα+

mβ+ and fα−
mβ− are structure constants of the supergroup.

The action (3.1.7) is an A-model topological action which after expanding its Kähler

potential and integrating over the auxiliary fields we get the following action

S =
∫

d2z
[
ηαβ̂JαJ̄ β̂−ηα−α+Y α−∇̄Zα+

+ηα−α+ Ȳ α+∇Z̄α−−[Y, Z]m[Ȳ , Z̄]m
]

(3.1.10)

For the case of AdS5 × S5 the fermionic chiral superfield Θ belongs to the fermionic

supercoset

Θ ∈ PSU(2, 2|4)
SU(4)× SU(2, 2)

(3.1.11)

which can be expanded in terms of the bosonic fields Z and Y as follows

ΘA
J (κ+, κ−) = θA

J + κ+ZA
J + κ−Ŷ A

J + κ+κ−fA
J (3.1.12)

Θ̄J
A(κ̄+, κ̄−) = θ̂J

A + κ̄+Z̄J
A + κ̄−Y J

A + κ̄+κ̄−f̂J
A

where A = 1 to 4 and J = 1 to 4 label fundamental representation of SU(2, 2) and

SU(4) respectively. The θA
J and θ̄J

A are the fermionic coordinates of the AdS5 × S5

superspace. The fields fA
J and f̄J

A are auxiliary fields and the other fields are twistor-like

variables encoding the bosonic and the pure spinor and their conjugate momenta degrees

of freedom expanded as follows

ZA
J = HA

A′(x)(H̃−1(x̃))J ′
J λA′

J ′ , Z̄J
A = (H−1(x))A′

A H̃J
J ′(x̃)λ̂J ′

A′ (3.1.13)

Ȳ A
J = HA

A′(x)(H̃−1(x̃))J ′
J ŵA′

J ′ , Y A
J = (H−1(x))A′

A H̃J
J ′(x̃)wJ ′

A′

where A′ = 1 to 4 and J ′ = 1 to 4 are SO(4, 1) and SO(5) spinor index respectively.

The HA
A′ is a coset representative of SU(2,2)

SO(4,1) corresponding to AdS5 with coordinates x̃m̃

1The bosonic cosets are either Ha = SO(6)
SO(5)

and Ha′ = SO(4,2)
SO(4,1)

or Ha = SO(6)
U(3)

and Ha′ = Sp(4)
SO(3,1)

for

AdS5 × S5 and ˜AdS4 × CP3 backgrounds respectively.
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and HJ
J ′ is a coset representative of the coset SU(4)

SO(5) corresponding to S5 with coordinates

xm.

The matching of the bosonic and fermionic degrees of freedom can be represented as

follows




10 R xm, x̃m̃

11 C λA
J , λ̂J

A

16 C θA
J , θ̄J

A

⇐⇒
{

16 C ZA
J , Z̄J

A

16 C θA
J , θ̄J

A

(3.1.14)

where m = 0 to 4, m̃ = 5 to 9 and α, α̂ = 1 to 16. The bosonic degrees of freedom

(xm, x̃m̃) corresponding to the coordinates of AdS5 and S5 together with 11 complex

pure spinors (λα, λ̂α̂) are encoded in the sixteen complex degrees of freedom of (ZA
J , Z̄J

A).

The worldsheet variables for this Kähler N=2 sigma-model on ˜AdS4×CP3 are fermionic

superfields Θx
A and Θ̄A

x belong to the following Grassmannian coset

Θ =
Osp(6|4)

SO(6)× Sp(4)
(3.1.15)

where A = 1, . . . , 6 and x = 1, . . . , 4 label fundamental representations of SO(6) and

Sp(4) respectively.

These N = 2 chiral and anti-chiral superfields can be expanded in terms of the fields of

the pure spinor superstring theory as follows

Θx
A(κ+, κ−) = θx

A + κ+Zx
A + κ−Ȳ x

A + κ+κ−fx
A , (3.1.16)

Θ̄A
x (κ̄+, κ̄−) = θ̄A

x + κ̄+Z̄A
x + κ̄−Y A

x + κ̄+κ̄−f̄A
x ,

where (κ+, κ̄+) are left-moving and (κ−, κ̄−) are right-moving Grassmannian parameters

of the worldsheet N=2 supersymmetry. The matching of the bosonic and fermionic

degrees of freedom can be represented as follows





10 R xA, xP

7 C λx
A, λ̄A

x

24 R θx
A, θ̄A

x

⇐⇒
{

24 R ZA
J , Z̄J

A

24 R θx
A, θ̄A

x

(3.1.17)

The 24 lowest components θx
A and θ̄A

x are 24 fermionic coordinates of the Osp(6|4)
U(3)×SO(1,3)

supercoset. The 24 bosonic variables Zx
A and Z̄A

x which are twistor-like variables com-

bining the 10 spacetime coordinates of AdS4 and CP3 with pure spinors (λx
A, λ̄A

x ) which

the number of their degrees of freedom was calculated in [9, 10] to be 14.
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The twistor-like variables can be expressed explicitly as follows

Zx
A = Hx

x′(xA)(H̃−1(xP ))A′
A λx′

A′ , Z̄A
x = (H−1(xA))x′

x H̃A
A′(xP ) λ̄A′

x′ (3.1.18)

Here Hx
x′(xA) is a coset representative for the AdS4 coset Sp(4)

SO(1,3) and H̃A
A′(xP ) is a coset

representative for the CP3 coset SO(6)
U(3) . Similarly, the conjugate twistor-like variables

Y A
J and Ȳ J

A are constructed from the conjugate momenta to the pure spinors and fx
A

and f̄A
x are auxiliary fields.

3.1.1 From Kähler action to topological A-model action

Here we will see how we can get the A-model action from the Kähler action defined on

the Grassmannian discussed before. To do so we have to expand the Kähler potential

and integrate over the fermionic coordinated of the worldsheet supersymmetry.

The Kähler action (3.1.7) for the case of AdS5 × S5 can be written as follows

S =
∫

d2z

∫
d4κTr

[
log

(
1 + Θ̄Θ

)]
(3.1.19)

We can expand chiral Θ and antichiral Θ̄ superfields in terms of their components as

follows [18] as follows

Θα+
(z, z̄, κ+, κ−)= θα+

(y)+κ+Zα+
(y)+κ−Ȳ α+

(y)+κ+κ−fα+
(y) (3.1.20)

Θ̄α−(z, z̄, κ̄+, κ̄−) = θ̄α−(ȳ)+κ̄+Z̄α−(ȳ)+κ̄−Y α−(ȳ)+κ̄+κ̄−f̄α−(ȳ) (3.1.21)

where their components depend on coordinates (y, ȳ), instead of the usual worldsheet

coordinates (z, z̄, κ, κ̄), defined as follows

y = z̄ + iκσκ̄ , ȳ = z − iκσ̄κ̄ (3.1.22)

where 2× 2 matrices σ and σ̄ are defined as

σ = σ1 + iσ2 =

(
0 0

1 0

)
, σ̄ = σ1 − iσ2 =

(
0 1

0 0

)
(3.1.23)

and σ1 and σ2 are the following Pauli matrices

σ1 =
1
2

(
0 i

i 0

)
, σ2 =

1
2

(
0 1

−1 0

)
(3.1.24)



Chapter 3. Topological decomposition of pure spinor superstring action 68

This implies

y = z̄ + κ−κ̄+ , ȳ = z − κ+κ̄− (3.1.25)

Using this new set of coordinate makes it possible to expand around z and z̄ and integrate

over the fermionic worldsheet supersymmetric coordinates. Defining

Ψα+ ≡ Θα+
(z, z̄, κ+, κ−)− θα+

(y) , Ψ̄α− ≡ Θ̄α−(z, z̄, κ̄+, κ̄−)− θ̄α−(ȳ) (3.1.26)

which are linear in κ and κ̄, implies that

Ψα+
Ψβ+

Ψγ+
= 0 , Ψ̄α−Ψ̄β−Ψ̄γ− = 0 (3.1.27)

So at most two Ψ and two Ψ̄ can appear in any expansion around z and z̄.

We can expand these superfields as a function of y and ȳ around z and z̄ as follows

Ψα+
(z, z̄, κ, κ̄) = κ+Zα+

(z, z̄)+κ−Ȳ α+
(z, z̄)+κ+κ−fα+

(z, z̄) (3.1.28)

+ κ+κ−κ̄+∂̄Zα+
(z, z̄)+κ+κ̄−∂̄θα+

(z, z̄)

Ψ̄α−(z, z̄, κ, κ̄) = κ̄+Z̄α−(z, z̄)+κ̄−Y α−(z, z̄)+κ̄+κ̄−f̄α−(z, z̄) (3.1.29)

+ κ̄−κ+κ̄+∂Z̄α−(z, z̄)+κ−κ̄+∂θ̄α−(z, z̄)

Using (3.1.27), a general Kähler potential K(Θ, Θ̄) can be Taylor expanded as follows

K(Θ̄, Θ)=K(θ̄, θ)+Kα+Ψα+
+Kα−Ψ̄α−+

1
2
Kα−,β−Ψ̄α−Ψ̄β−+

1
2
Kα+,β+Ψα+

Ψβ+

+Kα+,β−Ψα+
Ψ̄β−+

1
2
Kα+,β+,α−Ψα+

Ψβ+
Ψ̄α−+

1
2
Kα−,β−,α+Ψ̄α−Ψ̄β−Ψα+

+
1
4
Kα+,β+,α−,β−Ψα+

Ψβ+
Ψ̄α−Ψ̄β− (3.1.30)

where we used the following definitions

Kα+ =
∂

∂θα+ K(θ̄, θ) , Kα− =
∂

∂θ̄α−K(θ̄, θ) , Kα+,α− =
∂

∂θα+∂θ̄α−K(θ̄, θ)(3.1.31)

and also similar other definitions as derivatives of the Kähler potential for Kα+β+ , Kα−β−

and Kα+β−α+ and so on.

In order to integrate over the fermionic coordinates κ and κ̄, we have to expand the

Kähler potential (3.1.19) using (3.1.28), (3.1.29) and (3.1.30) and keep only the terms

which has a factor κ+κ−κ̄+κ̄−. The κ+κ−κ̄+κ̄− components of (3.1.30) can be obtained
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using the following identities

Ψα+
Ψβ+ |κ+κ−κ̄+κ̄−=0 (3.1.32)

Ψ̄α−Ψ̄β− |κ+κ−κ̄+κ̄−=0

Ψα+
Ψ̄β− |κ+κ−κ̄+κ̄−=Y β− ∂̄Zα+

+Ȳ α+
∂Z̄β− + fα+

f̄β−+∂̄θα+
∂θ̄β−

Ψα+
Ψβ+

Ψ̄α− |κ+κ−κ̄+κ̄−=Zα+
Ȳ β+

f̄α− + Ȳ α+
∂̄θβ+

Z̄α−

Ψ̄α−Ψ̄β−Ψα+ |κ+κ−κ̄+κ̄−=Z̄α−Y β−fα+
+ Y α−∂θ̄β−Zα+

Ψα+
Ψβ+

Ψ̄α−Ψ̄β− |κ+κ−κ̄+κ̄−=Zα+
Ȳ β+

Z̄α−Y β−

Putting (3.1.32) into the Kähler potential (3.1.30) we get the following sigma-model

action

S =
∫

d2z
[
Kα+,β− ∂̄θα+

∂θ̄β− +
1
4
Kα+,β+,α−,β−Zα+

Ȳ β+
Z̄α−Y β− (3.1.33)

+ Kα+,β−(Y β− ∂̄Zα+
+Ȳ α+

∂Z̄β− + fα+
f̄β−)

+
1
2
Kα−,β−,α+(Z̄α−Y β−fα+

+ Y α−∂θ̄β−Zα+
)

+
1
2
Kα+,β+,α−(Zα+

Ȳ β+
f̄α− + Ȳ α+

∂̄θβ+
Z̄α−)

]

The equations of motion for auxiliary fields fα+
and f̄α− can be written as follows

fα+
= −1

2
Kα+,α−Kδ+,β+,α−Zδ+

Ȳ β+
, f̄α− =

1
2
Kα+,α−Kδ−,β−,α+Z̄δ−Y β− (3.1.34)

where Kα+,α− is the inverse of Kα+,α− .

Putting (3.1.34) in (3.1.33) we get the following action

S =
∫

d2zKα+,β−
[
∂̄θα+

∂θ̄β− + Ȳ α+∇Z̄β− + Y β−∇̄Zα+
(3.1.35)

+
1
4
Kα+,β−Kδ+,β+,α−,δ−Zδ+

Ȳ β+
Z̄α−Y δ−

]

where the covariant derivatives are defined as follows

∇ = ∂ +
1
2
ηδ+β−Kα+,δ−Kδ+,β+,δ− ∂̄θβ+

(3.1.36)

∇̄ = ∂̄ +
1
2
ηα+α−Kδ+,β−Kα−,δ−,δ+∂θ̄δ− (3.1.37)

For a general Kähler potential K, the second derivative

Kα+,α− =
∂

∂θα+∂θ̄α−K(θ̄, θ) (3.1.38)
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is the Kähler metric of the manifold whose coordinates are θ and θ̄. The metric is

invariant under the Kähler transformation

K(θ, θ̄) → K(θ, θ̄) + g(θ) + ḡ(θ̄) (3.1.39)

The coefficient of the quartic term ZZ̄Y Ȳ in the action is actually the curvature of the

corresponding Kähler manifold with metric (3.1.38).

The explicit expression for derivatives of the Kähler potential can be obtained after

using K = Tr log(1 + θ̄θ), for example

Kα+,α− = [(1 + θ̄θ)−1]α+ ⊗ [(1 + θθ̄)−1]α− (3.1.40)

Also we can write the curvature term.

The next step is to relate the A-model action (3.1.35) with the one we wrote before as

a sigma model on the Grassmannian PSU(2,2|4)
SU(2,2)×SU(4) . We have to relate the Kähler metric

and curvature to the supercoset geometry.

The left-invariant one-forms J = g−1dg for g ∈ PSU(2, 2|4) can be expanded into the

generators of the PSU(2, 2|4) supergroup as follows

J = JMTM + Jα+
Tα+ + Jα−Tα− (3.1.41)

where (TM , Tα+ , Tα−) are generators of PSU(2, 2|4) supergroup. The bosonic generators

TM for M = ([ab], a) with a = 0 to 9 are the diagonal block generators corresponding

to SU(4)×SU(2, 2) group and the fermionic generators Tα+ and Tα− are related to the

usual Tα and Tα− generators as follows

Tα+ ≡ Tα + iTα̂ , Tα− ≡ Tα − iTα̂ (3.1.42)

In (4 + 4)× (4 + 4) matrix representation of PSU(2, 2|4) a supergroup element can be

represented as follows

G =

(
A4×4 X4×4

Y4×4 B4×4

)
(3.1.43)

the generators Tα+, Tα− and TM correspond to the upper-right, lower-left and the block-

diagonal matrices respectively. Hence, we have the following algebra for PSU(2, 2|4)

[TM , Tα+ ] = fβ+

Mα+Tβ+ , [TM , Tα− ] = fβ−
Mα−Tβ− (3.1.44)

{Tα+ , Tβ−} = fM
α+β−TM , [TM , TN ] = fP

MNTP
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The non-zero components of the metric are the symmetric and antisymmetric tensors

ηMN and ηα+β− respectively.

An element of the Grassmannian PSU(2,2|4)
SU(2,2)×SU(4) instead can be represented as follows

g(θ) = exp

(
0 ζ

ζ̄ 0

)
(3.1.45)

where each block is a 4× 4 matrix. This can be written as follows

g(θ) =

(
(1 + θθ̄)

1
2 θ

θ̄ (1 + θ̄θ)
1
2

)
(3.1.46)

where

θ = ζ
sinh

√
ζ̄ζ

ζ̄ζ
, θ̄ = ζ̄

sinh
√

ζ̄ζ

ζ̄ζ
(3.1.47)

and θ and θ̄ are the fermionic coordinates of the target superspace. The inverse of the

group element is obtained as follows

g−1(θ) = g(−θ) =

(
(1 + θθ̄)

1
2 −θ

−θ̄ (1 + θ̄θ)
1
2

)
(3.1.48)

Using (3.1.46) and (3.1.48), we can write the left-invariant one-forms as follows

JM = fM
α+α− θ̄α− ∂̄θα+

(3.1.49)

J̄M = −fM
α+α−θα+

∂θ̄α− (3.1.50)

Jα+
= fα+α−

M [(1 + θθ̄)
1
2 ]M∂θ̄α− (3.1.51)

J̄α− = fα−α+

M [(1 + θ̄θ)
1
2 ]M ∂̄θα+

(3.1.52)

One can check that the kinetic term of (3.1.35) can be written in terms of Maurer-Cartan

one-forms as follows

Kα+,α− ∂̄θα+
∂θ̄β− = ηα+α−Jα+

J̄α− (3.1.53)

Also we can check that

JM =
1
2
ηα+α−Kδ+,β−Kα−,δ−,δ+∂θ̄δ− (3.1.54)

J̄M =
1
2
ηδ+β−Kα+,δ−Kδ+,β+,δ− ∂̄θβ+

(3.1.55)

putting all these in the action we can reproduce the following A-model action

S =
∫

d2z
[
ηαβ̂JαJ̄ β̂−ηα−α+Y α−∇̄Zα+

+ηα−α+ Ŷ α+∇Ẑα−−[Y, Z]m[Ŷ , Ẑ]m
]

(3.1.56)
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where the covariant derivatives are defined as follows

∇ = ∂ + J (3.1.57)

∇̄ = ∂̄ + J̄ (3.1.58)

This is the A-model action which is capturing the zero radius limit of AdS5×S5 super-

string.



Chapter 3. Topological decomposition of pure spinor superstring action 73

3.2 Pure spinor superstring on supercosets with Z4 auto-

morphism and the “bonus“ symmetry

Consider a supercoset G/H which admits a Z4 automorphism under which its generators

can be decomposed into invariant subspacesHi, i = 0 · · · 3. The matter fields of the sigma

model can be written in terms of the left-invariant currents J = g−1∂g, J̄ = g−1∂̄g,

where g ∈ G. The left-invariant currents are decomposed according to the invariant

subspaces of the Z4 into J = J0 + J1 + J2 + J3 as follows

H0 H1 H2 H3

J [AB] Jα JM J α̂
(3.2.1)

where the left-invariant current J = g−1∂g is expanded by the generators of the super-

algebra as

J =
3∑

i=0

Ji = J [AB]T[AB] + JmTm + JαTα + J α̂Tα̂ , (3.2.2)

here, J [AB] ∈ H are the spin connections of the supercoset and Jm and (Jα, J α̂) are the

bosonic and fermionic components of the supervielbein respectively. The generators of

the supercoset are (T[AB], Tm, Tα, Tα̂) which are the Lorentz generators, translations and

fermionic generators respectively with the following non-zero structure constants

f [AB]
mn , f

[EF ]
[AB][CD] , f

[AB]

αβ̂
, f m

αβ , (3.2.3)

The sigma model is invariant under the global transformations δg = Σg, Σ ∈ G and

under the BRST transformations, using the fact that 〈AB〉 6= 0 only for A ∈ Hi and

B ∈ H4−i. It can be written in the following form

S = R2

∫
d2z

〈
1
2
J2J̄2 +

1
4
J1J̄3 +

3
4
J3J̄1 + w∂̄λ + ŵ∂λ̂ + NJ̄0 + N̂J0 −NN̂

〉
,

(3.2.4)

for any supercoset admitting a Z4 automorphism including AdS5 × S5 and ˜AdS4 ×CP3

examples as discussed also before (see also [59, 55] for non-critical examples based on

different sets of pure spinor variables).

On top of the global bosonic isometry group Gb of the supergroup G, the A-model

action has a ’bonus’ chiral symmetry exchanging left and right movers which appears

in the sigma model as a symmetry between left and right moving fermions Jα and J α̂.

Apparently (3.2.4) does not have such a symmetry because of the different coefficients

of J1J̄3 and J3J̄1 terms. To promote the symmetry of (3.2.4), one can add an additional
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term to the action including a −1
2J3J̄1 to cancel the asymmetry of the fermionic currents

together with its appropriate companion in order that the whole term stays a BRST-

closed term

Strivial=Sm + Sg

=
R2

2

∫
d2z

(
CmnJmJ̄n − 〈J3J̄1〉+ 〈ω∇̄λ + ω̂∇λ̂−NN̂〉

)
(3.2.5)

=
R2

2

∫
d2z

(
CmnJmJ̄n + ηαβ̂J β̂ J̄α + ωα∇̄λα + ω̂α̂∇λ̂α̂ − η[AB][CD]N

[AB]N̂ [CD]
)

where Sg = R2

2

∫
d2z(ω∇̄λ + ω̂∇λ̂−NN̂) is exactly the ghost part of the original action

(3.2.4) and ηXY = 〈TX , TY 〉 = Str(TXTY ). The requirement of BRST invariance of the

Strivial will determine the unknown coefficients Cmn.

Using the classical equations of motion

∇λ̂− [N, λ̂] = 0, ∇̄λ− [N̂ , λ] = 0 , (3.2.6)

and the identities [N, λ] = [N̂ , λ̂] = 0 coming from the pure spinor constraints, it can be

shown that under the BRST transformations, Sg and Sm vary as follows

δB(Sg) =
R2

2

∫
d2z〈−J3∂̄λ− J̄1∂λ̂− J3[J̄0, λ]− J̄1[J0, λ̂]〉

=
R2

2

∫
d2z ηαβ̂(−J β̂∇̄λα + J̄α∇λ̂β̂) (3.2.7)

δB(Sm) =
R2

2

∫
d2z

[
Cmn

(
Jαλβf m

αβ +J α̂λ̂β̂f m
α̂β̂

)
J̄n+CmnJm

(
J̄αλβf n

αβ +J̄ α̂λ̂β̂f n
α̂β̂

)

− ηαβ̂

(
∇λ̂β̂ + Jmλβf β̂

mβ

)
J̄α + ηαβ̂J β̂

(
∇̄λα + J̄nλ̂α̂f α

nα̂

) ]
(3.2.8)

which gives

1
R2

δB(Strivial) =
1
2
CmnJmJ̄αλβf n

αβ +
1
2
ηαβ̂JmJ̄αλβf β̂

mβ , (3.2.9)

+
1
2
CmnJ̄nJ β̂λ̂α̂f m

β̂α̂
+

1
2
ηαβ̂ J̄nJ β̂λ̂α̂f α

nα̂

+
1
2
CmnJ̄nJαλβf m

αβ +
1
2
CmnJmJ̄ α̂λ̂β̂f n

α̂β̂

= 0 ,

which admits the following solution for δB(Strivial) = 0 after using the Jacobi identities

for the structural constants

Cmn =
1
2

ηαβ̂(λ̂α̂f α
nα̂ )(λβf β̂

mβ )

ηαβ̂λαλ̂β̂
. (3.2.10)
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The first and the second lines of (3.2.9) vanish because of the identity ηβα̂ = Str (TβTα̂) =

f n
αβf α

nα̂ and the terms in the last line vanish because of the following Jacobi identity,

f m
αγ f β̂

mβ + f m
αβ f β̂

mγ = f m
βγ f β̂

mα , (3.2.11)

which implies

λβλγ
(
f m

αγ f β̂
mβ + f m

αβ f β̂
mγ

)
= 0 . (3.2.12)

So Strivial of (3.2.5) with Cmn given in (3.2.10) is BRST-closed. We should also show

that it is really a BRST-trivial term satisfying Strivial = QQ̄X, up to the equations of

motion. In order to do that, we introduce the antifields w∗α and ŵ∗α̂ which after adding

the term

R2

∫
d2zηαβ̂w∗αŵ∗

β̂
, (3.2.13)

the full action stay invariant under the new BRST transformations,

Q′wα = −ηαα̂J α̂, Q̄′wα = w∗α , (3.2.14)

Q′ŵα̂ = ŵ∗α̂, Q̄′ŵα̂ = −ηα̂αJ̄α ,

Q′w∗α = ηαα̂(∇λ̂α̂ − [N, λ̂]α̂), Q̄′w∗α = 0 ,

Q′ŵ∗α̂ = 0, Q̄′ŵ∗α̂ = ηα̂α(∇̄λα − [N̂ , λ]α) ,

Q′N = [J3, λ], Q̄′N = [w∗, λ] ,

Q′N̂ = [J̄1, λ̂], Q̄′N̂ = [ŵ∗, λ̂] ,

These BRST transformations are nilpotent off-shell.

Now, considering the following identities we can make a BRST-close term which its

BRST variation produces Strivial.

Q′Q̄′ (CmnJmJ̄n
)

= Cmn

{
Q′Q̄′(Jm)J̄n + Q′(Jm)Q̄′(J̄n)

}

+ Cmn

{
Q̄′(Jm)Q′(J̄n) + JmQ′Q̄′(J̄n)

}

= Cmn

{
∇λ̂α̂ λ̂β̂f m

α̂β̂
J̄n + Jm∇̄λα λβf n

αβ

}

+ Cmn

{
JpJ̄nλαλ̂β̂f α̂

pα f m
α̂β̂

+ JmJ̄pλαλ̂β̂f α̂
pα f n

α̂β̂

}

+ Cmn

{
JαJ̄ α̂λβλ̂β̂f m

αβ f n
α̂β̂

+ J α̂J̄αλ̂β̂λβf m
α̂β̂

f n
αβ

}

= 2CmnJmJ̄n(ηλλ̂) , (3.2.15)



Chapter 3. Topological decomposition of pure spinor superstring action 76

also we have

Q′Q̄′
(
NN̂

)
= Q′Q̄′(N)N̂ + Q′(N)Q̄′(N̂) + Q̄′(N)Q′(N̂) + NQ′Q̄′(N̂)

= [(∇λ̂− [N, λ̂]), λ]N̂ + [J3, λ][J̄1, λ̂]

+ [w∗, λ][ŵ∗, λ̂] + N [(∇̄λ− [N̂ , λ]), λ̂] (3.2.16)

and,

Q′Q̄′
(
(ωλ)(ω̂λ̂)

)
= Q′Q̄′(ωλ)(ω̂λ̂) + Q′(ωλ)Q̄′(ω̂λ̂)

+ Q̄′(ωλ)Q′(ω̂λ̂) + (ωλ)Q′Q̄′(ω̂λ̂)

=
1
2
[(∇λ̂− [N, λ̂]), λ](ŵλ̂) +

1
4
[J3, λ][J̄1, λ̂] +

1
4
[w∗, λ][ŵ∗, λ̂]

+
1
2
(wλ)[(∇̄λ− [N̂ , λ]), λ̂] (3.2.17)

to get these identities, we used the equation of motions, (3.2.9), (3.2.11) and (3.2.12)

together with the following Jacobi identity

f
β

Mα f
γ

Nβ − f
β

Nα f
γ

Mβ = f P
MN f

β

Pα (3.2.18)

where M, N, · · · = {m, [mn]} and α, β, · · · = {α, α̂}. From (3.2.15), (3.2.16) and (3.2.17)

one can see that there exists a linear combination of them such that Strivial = QQ̄X up

to the anti-ghost term, that is up to the momenta equations of motion

X =
1
2

∫
d2z

1

ηαα̂λαλ̂α̂

[
1
4
CmnJmJ̄n +

1
4
(ωλ)(ω̂λ̂)− 1

8
NN̂

]
(3.2.19)

The sigma model action after adding Strivial to the pure spinor action becomes

Sb =
R2

2

∫
d2z

[

1

2

ηαβ̂(λ̂α̂f α
nα̂ )(λβf β̂

mβ )

ηαβ̂λαλ̂β̂
+ ηmn


JmJ̄n (3.2.20)

+
1
2
〈J3J̄1 − J1J̄3 + ω∇̄λ + ω̂∇λ̂−NN̂〉

]

The analysis follows the considerations in the literature, but it is derived in a very

general way.
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3.3 Mapping pure spinor superstring action to topological

A-model action

In order to relate Sb and the A-model action, we should relate the supercoset element

g(x, θ, θ̄) ∈ G
H with the Grassmannian coset element G(θ, θ̄) ∈ G

Gb
.

We can define the following bosonic twisted variables out of the bosonic coset elements

H(x) ∈ Gb
H and the pure spinors as follows

Zα = [H, λ] = H [AB](x)λβf α
[AB]β (3.3.1)

Z̄α̂ = [H−1, λ̂] = (H−1)[AB](x)λ̂β̂f α̂
[AB]β̂

Y α̂ = [H−1, w] = (H−1)[AB](x)ηββ̂wβf α̂
[AB]β̂

Ȳ α = [H, ŵ] = H [AB](x)ηββ̂ŵβ̂f α
[AB]β

The supercoset element g can be parametrized as follows

g(x, θ, θ̄) = G(θ, θ̄)H(x) (3.3.2)

where G(θ, θ̄) = eθαTα+θ̄α̂Tα̂ and H(x) = exmTm in which (Tm, Tα, Tα̂) are the generators

of the supercoset G/H.

According to (3.3.2), we can also decompose the left-invariant currents J = g−1∂g. The

pure spinor action can be written into H and G components, corresponding to the purely

bosonic part and purely fermionic part of the supercoset as follows

J = H−1∂H + H−1(G−1∂G)H (3.3.3)

Its components J = JmTm + J [AB]T[AB] + JαTα + J α̂Tα̂ can be written as

JM = (H−1∂H)M + (H−1)M (G−1∂G)P HQf R
NP f M

RQ (3.3.4)

Jα = (H−1)M (G−1∂G)βHNf
γ

Mβ f
α

γN (3.3.5)

where M,N, · · · = {m, [AB]} and α, β, · · · = {α, α̂}.

The A-model action can be written in terms of the fermionic superfields (Θα, Θ̄α̂) which

was defined before as S =
∫

Trln[1 + Θ̄Θ]. Here we assume that for the Grassmannian

supercoset G/Gb, there exist a gauging in which the supercoset elements G can be

written in the following form

Gm = 1l, G[AB] = 1l, Gα = θα, Gα̂ = θ̄α̂ (3.3.6)
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Finally, the A-model action, after integration over the auxiliary fields can be written in

this form

SA = t

∫
d2z

[
(G−1∂G)(G−1∂̄G) + Y ∇̄Z + Ȳ∇Z̄ − (Y Z)(Z̄Ȳ )

]
(3.3.7)

= t

∫
d2z[ηαα̂(G−1∂G)α(G−1∂̄G)α̂ + ηMN (G−1∂G)M (G−1∂̄G)N

+ ηαα̂Y α̂(∇̄Z)α + ηαα̂Ȳ α(∇Z̄)α̂

− ηmnf m
αα̂ f n

ββ̂

[
(Y α̂Zα)(Z̄ β̂Ȳ β) + (ZαY α̂)(Ȳ βZ̄ β̂)

]
]

where,

(∇̄Z)α = ∂̄Z + [G−1∂̄G, Z] (3.3.8)

= ∂̄Zα + (G−1∂̄G)[AB]Zβf α
[AB]β

(∇Z̄)α̂ = ∂Z̄ + [G−1∂G, Z̄]

= ∂Z̄α̂ + (G−1∂G)[AB]Z β̂f α̂
[AB]β̂

To relate the pure spinor action (3.2.20) and the A-model action (6.2.17), we use the

explicit form of the twisted variables (3.3.1).

Using (3.3.1) and Jacobi identity (3.2.18), one can write

Y ∂̄Z = [H−1, w]∂̄ ([H, λ]) (3.3.9)

= [H−1, w]
(
[∂̄H, λ] + [H, ∂̄λ]

)

= w∂̄λ + [H−1∂̄H, wλ]

= w∂̄λ + [H−1∂̄H, wλ] + [H−1(G−1∂̄G)H, wλ]− [H−1(G−1∂̄G)H, wλ]

= w∂̄λ + [J̄ , wλ]− [(G−1∂̄G), Y Z]

which after using (3.3.8), we get

Y ∇̄Z = w∂̄λ + [J̄ , wλ] (3.3.10)

= wα∂̄λα + J̄ [AB]wαλβf α
[AB]β + ηmnηαβ J̄mwαλγf n

γβ

= wα∇̄λα + ηmnηαβJ̄mwαλγf n
γβ

similarly, one can see that

Ȳ∇Z̄ = ŵ∂λ̂ + [J, ŵλ̂] (3.3.11)

= ŵα̂∂λ̂α̂ + J [AB]ŵα̂λ̂β̂f α̂
[AB]β̂

+ ηmnηα̂β̂Jmŵα̂λ̂γ̂f n
γ̂β̂

= ŵα̂∇λ̂α̂ + ηmnηα̂β̂Jmŵα̂λ̂γ̂f n
γ̂β̂
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The last term simplifies as follows

(Y Z)(Z̄Ȳ ) =
(
[H−1, w][H, λ]

) (
[H−1, λ̂][H, ŵ]

)
(3.3.12)

= (wλ)(ŵλ̂)

= η[AB][CD]
(
f β

α[AB]wβλα
)(

ŵβ̂λ̂α̂f β̂
α̂[CD]

)

− ηmn

(
ηαγf m

αβ wγλβ
)(

ηα̂γ̂f n
α̂β̂

ŵγ̂ λ̂β̂
)

Putting everything together, we obtain the A-model action in terms of the pure spinor

fields as follows

SA = t

∫
d2z

[1
2
ηαβ̂(J β̂ J̄α − JαJ̄ β̂) + w∇̄λ + ŵ∇λ̂−NN̂ (3.3.13)

+ηαβ J̄mwαλγf α
mγ + ηα̂β̂Jmŵα̂λ̂γ̂f α̂

mγ̂

− ηmn

(
ηαγf m

αβ wγλβ
) (

ηα̂γ̂f n
α̂β̂

ŵγ̂ λ̂β̂
) ]

The equations of motion for w and ŵ comes from the variation of the action under the

transformations δwα = f m
αβ λβΛm and δŵα̂ = f m

α̂β̂
λ̂β̂Λ̃m can be written as follows

(f δ̂
mαλα)

(
J̄m − ηβ̂γ̂f m

β̂α̂
ŵγ̂ λ̂α̂

)
= 0 (3.3.14)

(f δ
mα̂λ̂α̂)

(
Jm − ηβγf m

βα wγλα
)

= 0 (3.3.15)

After inserting these equations (3.3.13), the second line of (3.3.13) produces the following

kinetic term for the bosonic Maurer-Cartan currents,

t

∫
d2z

[1
2

ηαβ̂(λ̂α̂f α
nα̂ )(λβf β̂

mβ )

ηαβ̂λαλ̂β̂
+ ηmn

]
JnJ̄m (3.3.16)

Then the action (3.3.13), becomes

SA = t

∫
d2z

[

1

2

ηαβ̂(λ̂α̂f α
nα̂ )(λβf β̂

mβ )

ηαβ̂λαλ̂β̂
+ ηmn


JnJ̄m +

1
2
ηαβ̂(J β̂J̄α − JαJ̄ β̂)

+w∇̄λ + ŵ∇λ̂−NN̂
]

(3.3.17)

which coincides with the action (3.2.20) after identifying t = 1
2R2.

We conclude that the pure spinor superstring action on supercoset backgrounds which

admit a particular Z4 automorphism can be decomposed into a topological A-model

action and a BRST trivial term as follows

Spure spinor = SA−model + QQ̄X (3.3.18)
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Since the supersymmetric charge of the topological A-model theory is different from

the BRST charge of the pure spinor formalism, the cohomologies of the two theories

are not coincide2 but the topological theory captures at least the BPS sector of the

superstring theory. In principle, one can study the BPS sector of the superstring theory

using the topological A-model theory. The A-model topological theory was conjectured

to describe the superstring theory at zero AdS radius which is the dual of the free gauge

theory. We will see that we can extend this picture by adding some vertex operators

to the topological theory which turn on the radius modulus in the string theory side,

corresponding to turning on a nonzero coupling constant in the gauge theory side. This

picture will be used to study AdS/CFT duality from a worldsheet point of view.

2Actually as we will see later the two theories can be seen as different gauge fixings of the same
theory, so the cohomologies seems to be related non trivially.
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3.4 On conformal exactness of superstring backgrounds

Using the A-model action defined on the fermionic Grassmannian, we can compute the

one loop conformal anomaly of the A-model as its Ricci scalar which is given as follows

R = log det(∂Θ∂Θ̄K) (3.4.1)

where

K(Θ, Θ̄) = tr log(1 + Θ̄Θ) (3.4.2)

Writing the superfields with their matrix indices as Θrj and Θ̄jr where (r, s) and (i, j)

are different kind of indices corresponding to upper and lower diagonal blocks of the

supergroup element. Then we can write

∂Θks∂Θ̄rj
K = ∂Θks

[
Θrl[(1 + Θ̄Θ)−1]jl

]
(3.4.3)

= δr
s [(1 + Θ̄Θ)−1]jk −Θrl[(1 + Θ̄Θ)−1]ml Θ̄ms[(1 + Θ̄Θ)−1]jk

but we have

δr
s −Θrl[(1 + Θ̄Θ)−1]ml Θ̄ms = [(1 + ΘΘ̄)−1]rs (3.4.4)

which implies

∂Θks∂Θ̄rj
K = [(1 + ΘΘ̄)−1]rs[(1 + Θ̄Θ)−1]jk (3.4.5)

This a tensor product of two matrices with different kind of indices. We can compute

the Ricci scalar using the fact that

tr log(M) = log det(M) (3.4.6)

So we have

R = log det(∂Θ∂Θ̄K) (3.4.7)

= log det[(1 + ΘΘ̄)−1] + log det[(1 + Θ̄Θ)−1]

= −tr log(1 + ΘΘ̄)− tr log(1 + Θ̄Θ)

We can write the Taylor expansion for the logarithm as follows

log(1 + T ) =
∞∑

n=1

(−1)n+1

n
Tn (3.4.8)
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Then (3.4.7) can be written as follows

R = −tr

[ ∞∑

n=1

(−1)n+1

n

(
(ΘΘ̄)n + (Θ̄Θ)n

)
]

= 0 (3.4.9)

where in the last step we used the fact that

Tr(ΘΘ̄)n = −Tr(Θ̄Θ)n, for n > 0 , (3.4.10)

since Θ and Θ̄ are fermionic.

So the A-model is conformal at one-loop. Being a N = 2 supersymmetric model in

two dimensions, ensures the cancellation of the all-loop conformal anomaly since the

conformal anomaly and the ghost anomaly belong to the same multiplet. The pure

spinor superstring action and the A-model action are related through a BRST-exact

term then the N = 2 supersymmetry non-renormalization theorem implies its all-loop

conformal invariance in the A-model term, this conformal exactness in the A-model also

implies the conformal exactness in the superstring theory.



Chapter 4

An exact check of AdS/CFT

duality using the topological

A-model

4.1 Gauged linear sigma-model for the superstring action

AS we saw in the introduction, to prove the open/closed duality for the d = 3 Chern-

Simons/resolved conifold duality, we used the fact that sigma model could be written

as a gauged linear sigma model in which the Kähler modulus t of the A-model becomes

the Fayet-Illiopoulos parameter. This is useful when we want to study the limit t → 0

limit in which the nonlinear A-model becomes unable to explore the physics. On the

other hand the gauged linear sigma model for the resolved conifold can develop both a

Coulomb phase and a Higgs phase, and the Coulomb phase was interpreted as D-brane

holes which corresponds to loops in the Feynman diagrams of the Chern-Simons gauge

theory.

In this section, we suggest that a similar technique which might be useful to give a

worldsheet derivation of the Maldacena’s conjecture as a duality between N = 4 d=4

super-Yang-Mils and the AdS5 × S5 sigma model. We will write the A-model action of

AdS5 × S5 studied in the previous chapter as a gauged linear sigma model with a U(4)

worldsheet gauge field. Then, we will argue that in the limit where t → 0, a Coulomb

phase develops which can be interpreted as D-brane holes. Furthermore, it will be argued

that these D-brane holes are associated with gauge-invariant N = 4 d=4 super-Yang-

Mills operators. In particular an exact check in the AdS/CFT will be discussed using

this construction.

83
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4.1.1 Gauged linear sigma-model of AdS5 × S5 background

The worldsheet variables are fermionic superfields ΘA
J and Θ̄J

A where A = 1 to 4 and

J = 1 to 4 label fundamental representations of SU(2, 2) and SU(4) respectively. These

N = 2 chiral superfields can be expanded in components as

ΘA
J (κ+, κ−) = θA

J + κ+ZA
J + κ−Ȳ A

J + κ+κ−fA
J (4.1.1)

Θ̄J
A(κ̄+, κ̄−) = θ̄J

A + κ̄+Z̄J
A + κ̄−Y J

A + κ̄+κ̄−f̄J
A

where (κ+, κ̄+) are left-moving and (κ−, κ̄−) are right-moving Grassmannian parameters.

The 32 lowest components θA
J and θ̄J

A are related to the 32 fermionic coordinates of the
PSU(2,2|4)

SU(2,2)×U(4) supercoset which parametrizes the AdS5 × S5 superspace. The 32 bosonic

variables ZA
J and Z̄J

A are twistor-like variables combining the 10 spacetime coordinates

of AdS5 and S5 with 11 pure spinors (λA
J , λ̄J

A) of the pure spinor formalism. They can

be expressed explicitly as follows

ZA
J = HA

A′(x)(H̃−1(x̃))J ′
J λA′

J ′ (4.1.2)

Z̄J
A = (H−1(x))A′

A H̃J
J ′(x̃)λ̄J ′

A′

where the pure spinors are written in SO(4, 1) × SO(5) notation. Here HA
A′ is a coset

representative for the AdS5 coset SU(2,2)
SO(4,1) where A′ = 1 to 4 is an SO(4, 1) spinor index

and H̃J
J ′(x̃) is a coset representative for the S5 coset SU(4)

SO(5) where J ′ = 1 to 4 is an SO(5)

spinor index. Similarly, the conjugate twistor-like variables Y A
J and Ȳ J

A are constructed

from the conjugate momenta to the pure spinors and fA
J and f̄J

A are auxiliary fields.

As discussed before, the U(2, 2|4) invariant action for the topological A-model can be

written in the N = (2, 2) superfield notation as follows

S = t

∫
d2z

∫
d4κTr

[
log(δJ

K + Θ̄J
AΘA

K)
]

(4.1.3)

where t is a constant parameter proportional to the σ-model coupling R2
AdS5

/α′.

This A-model is based on a Grassmannian coset U(2,2|4)
U(2,2)×U(4) and as it was shown before,

a nonlinear σ-model action based on a Grassmannian can be obtained as the Higgs phase

of an appropriate gauged linear σ-model.

This is obtained by introducing a U(4) worldsheet gauge field V R
S , together with an

appropriate set of matter fields transforming in the fundamental representation of the

gauge group

ΦΣ
R(z, z̄, κ+, κ−), Φ̄R

Σ(z, z̄, κ̄+, κ̄−) (4.1.4)
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where R, S = 1 to 4 are local gauge U(4) indices, and Σ = (A, J) is referred to the

global A and J indices for U(2, 2) and U(4) respectively. Note that ΦA
R is a fermionic

superfield whereas ΦJ
R is a bosonic superfield. The gauged linear sigma model can be

written in U(2, 2|4) , N = (2, 2) and gauge invariant notation as

S =
∫

d2z

∫
d4κ[Φ̄S

Σ (eV )R
S ΦΣ

R − tTrV ] (4.1.5)

where t enters as the Fayet-Illiopoulos parameter. When t is nonzero, one can show

using the equations of motion that the action (4.1.5) is equivalent to the A−model

action (4.1.3) with the following parametrization for the chiral and antichiral superfields

ΘA
J and Θ̄J

A as follows

ΘA
J ≡ ΦA

R(ΦJ
R)−1, Θ̄J

A ≡ Φ̄R
A(Φ̄R

J )−1 (4.1.6)

As it will be shown later, in the small t regime, the above gauged linear σ-model is

equivalent by applying an observation at the end of [25], to the geometric quotient(
ĈP(3|4)

)4

//S4. we will concentrate on the twisted sector corresponding to the cyclic

permutation. This is equivalent to a single copy of the twistorial space ĈP(3|4)
.

4.1.2 Gauged linear sigma-model of ˜AdS4 × CP3 background

The nonlinear A-model action of this background was studied in the previous chapter.

Similar to AdS5×S5 background, we can write a gauged linear sigma model correspond-

ing to this background. The two-dimensional N=(2,2) linear gauged sigma model can be

described by a set of matter fields which are chiral and antichiral superfields ΦΣ
R and Φ̄R

Σ

gauged under the real worldsheet superfield V R
S taking value in the SO(6) gauge group

where R,S, ... = 1, . . . , 6 are gauge field indices and Σ = (x,A) is a global Osp(6|4)

index. We can take Φx
R to be fermionic while ΦA

R are bosonic superfields.

The gauged linear sigma model action can be written in a Osp(6|4) invariant way as

S =
∫

d2z

∫
d4κ

[
Φ̄S

Σ(eV )R
S ΦΣ

R + t TrV +
1
e2

Σ2

]
(4.1.7)

where Σ = D̄DV is the field strength of the gauge field V and is a twisted chiral

superfield.

As it is clear from the matter content of the theory, it contains 24 fermions and 36 bosons

and so the theory actually has conformal anomaly if we ask the bosons and fermions to

be gauged in the same representation of the gauge group as we did. But still the theory

has a conformal IR fixed point corresponding to the large volume and gauge coupling
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limit which after integrating out the auxiliary equations of motion for the gauge field

we obtain the non-linear sigma model (when e →∞)

S = t

∫
d2z

∫
d4κTr

[
Φ̄R

ΣΦΣ
S

]
(4.1.8)

which can be rewritten in terms of the meson fields Θx
A and Θ̄A

x defined as

Θx
A ≡ Φx

R(Φ−1)R
A, Θ̄A

x ≡ (Φ̄−1)A
RΦ̄R

x (4.1.9)

which gives exactly the A-model sigma model which was obtained from the pure spinor

string for ˜AdS4 × CP3 as

S = t

∫
d2z

∫
d4κTr ln

[
1 + Θ̄Θ

]
(4.1.10)

The FI parameter corresponds to the Kähler parameter of the supercoset Grassmannian

target space Osp(6|4)
SO(6)×Sp(4) .
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4.2 Vacua of the gauged linear sigma-model

The small radius limit of the gauged linear sigma-model is convenient to study the

perturbative regime of the gauge theory since the introduction of the Coulomb branch.

The presence of the gauge group which is an additional degree of freedom in the gauged

linear sigma model with respect to non-linear sigma model, resolves the singularity of

the non-linear sigma-model in the small radius limit. To study different phases of the

theory, we should solve the D-term equations of the gauged linear sigma-model. It is

enough to focus on the fields which have conformal weight zero because they are the only

fields which can get non-zero expectation value. We analyze the gauged linear σ-model

following the standard techniques of [18] and [60].

The gauge superfield V R
S in Wess-Zumino gauge can be expanded as follows

V R
S = σR

S κ+κ̄− + σ̄R
S κ+κ̄+ + . . . + κ+κ−κ̄+κ̄−DR

S (4.2.1)

Similarly we can expand the fermionic and bosonic superfields as follows

ΦΣ
R = φΣ

R + κ+ψΣ
R + . . . , Φ̄R

Σ = φ̄R
Σ + κ̄−ψ̄R

Σ + . . . (4.2.2)

where we just kept the components which have zero conformal weight after the A-twist

because they are the only fields which can attain nonzero expectation value and so can

appear in the D-term equations. Here the index Σ refers to both x and A indices. Note

that (φA
R, ψx

R, φ̄R
A, ψ̄R

x ) are bosonic and (φx
R, ψA

R, φ̄R
x , ψ̄R

A) are fermionic fields.

Using the vector superfield and the usual superderivatives D± and D̄±, one can define

the covariant superderivatives as follows

D± = e−V D±e+V , D̄± = e+V D̄±e−V (4.2.3)

Then the field strength Σ which is a twisted chiral superfield is constructed as follows

Σ = {D̄+,D−} (4.2.4)

= σ + . . . + κ+κ−κ̄+κ̄−(DmDmσ + [σ, [σ, σ̄]] + i[∂mvm, σ])

which produces the following gauge field kinetic term in the Lagrangian

Lgauge = − 1
e2

∫
d4κTrΣ̄Σ (4.2.5)

=
1
e2

Tr

(
−Diσ̄Diσ − 1

2
[σ, σ̄]2 + . . .

)
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Also we have the following FI term LD,θ

LD,θ = it

∫
dκ+dκ̄−TrΣ

∣∣∣∣
κ−=κ̄+=0

− it̄

∫
dκ−dκ̄+TrΣ̄

∣∣∣∣
κ+=κ̄−=0

(4.2.6)

= Tr

(
−rD +

θ

2π
v01

)

Now we can consider the matter part of the gauged linear sigma model consisting of

the kinetic terms for the fermionic and bosonic superfields which carries the kinetic and

interaction terms for the bosonic and fermionic fields as follows

Lb
kin =

∫
d4κΦ̄R

AeV ΦA
R (4.2.7)

= −(D̄jφ̄
R
A)(DjφA

R) + F̄R
A FA

R − φ̄S
A{σ, σ̄}R

S φA
R + φ̄S

ADR
S φA

R + . . .

Similarly we can write the kinetic term for the fermionic chiral superfields,

Lf
kin =

∫
d4κΦ̄R

x eV Φx
R (4.2.8)

= −(D̄jφ̄
R
x )(Djφx

R) + F̄R
x F x

R − φ̄S
x{σ, σ̄}R

S φx
R + φ̄S

xDR
S φx

R + . . .

We can see that {σ, σ̄} appears as the mass for the matter fields and so whenever σ gets

VEV, the matter fields become massive and can be integrated out in the effective theory

as it happens in the Coulomb phase.

The potential of the theory can be written as,

LV =
1

2e2
TrD2 − rTrD + φ̄S

xDR
S φx

R + φ̄S
ADR

S φA
R (4.2.9)

− 1
2e2

Tr[σ, σ̄]2 − φ̄S
x{σ, σ̄}R

S φx
R − φ̄S

A{σ, σ̄}R
S φA

R

After eliminating the D-field by using the following D-term equation

DS
R = φ̄S

xφx
R + φ̄S

AφA
R − rδS

R (4.2.10)

one obtains the potential

V =
e2

2
[
φ̄S

xφx
R + φ̄S

AφA
R − rδS

R

] [
φ̄R

x φx
S + φ̄R

AφA
S − rδR

S

]
(4.2.11)

+
1

2e2
Tr[σ, σ̄]2 + φ̄S

x{σ, σ̄}R
S φx

R + φ̄S
A{σ, σ̄}R

S φA
R

The space of the classical vacua is given by putting the potential to zero up to gauge

transformations. We can study the vacua in two regimes, when r > 0 and not small,

the constraint V = 0 implies that σ = 0 which implies the following condition as the

classical vacua for the matter fields
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The space of the classical vacua is given by putting the potential to zero up to gauge

transformations. We can study the vacua in two regimes, when r > 0 and not small,

the constraint V = 0 implies that σ = 0 which implies the following condition as the

classical vacua for the matter fields

DS
R = φ̄S

xφx
R + φ̄S

AφA
R − rδS

R = 0 (4.2.12)

For the OSp(6|4)
SO(6)×Sp(4) it means actually that the vectors (φx

R, ψA
R) for any R = 1, ..., 4 are

orthonormal. Any such vector, after diagonalization, is subject to the constraint

6∑

A=1

φ̄AφA +
4∑

x=1

φ̄xφx = r (4.2.13)

which defines a supersphere S(5|4).1 The space of classical vacua is the gauge invariant

subspace of the product of such vectors [25] giving the orbit space

(S(5|4))3//S3 × Z2 (4.2.14)

obtained by dividing the action of S3 ×Z2 on the three copies, where Z2 is the simulta-

neous reflection. This phase corresponds to the Higgs phase of the theory because the

gauge symmetry completely breaks.

For the gauged linear sigma-model of AdS5 × S5 one can rewrite the D-term equation

as follows
4∑

A=1

φ̄AφA +
4∑

J=1

φ̄JφJ = r (4.2.15)

where J and A are SU(4) and SU(2, 2) indices respectively. This D-term equation

defines a projective space CP(3|4). The space of classical vacua is the gauge invariant

subspace of the product of such vectors [10] divided by the S4 permutations over the

four copies. The Higgs phase is given by the following superspace

(
CP(3|4)

)4
//S4 (4.2.16)

If one looks into r → 0 limit, on top of the above Higgs phase, one can have another

possibility as it is explained in [17] and [23]. In this phase, the σS
R is unconstrained but

the matter variables are constrained to satisfy

OS
R = φ̄S

xφx
R + φ̄S

AφA
R = 0 (4.2.17)

1The conditions for a supermanifold of being a super-Ricci flat are discussed in [61].
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The mass term for the fermions and bosons are written as

φ̄S
x{σ, σ̄}R

S φx
R + φ̄S

A{σ, σ̄}R
S φA

R (4.2.18)

And so whenever the σ gets expectation value the matter fields become massive and one

can integrate them out from the theory. One can easily compute the 1-loop correction

to the condition (4.2.17) which should be proportional to r by doing the path integral

with a cut-off µ,

〈O〉1-loop = −
6∑

A=1

∫
d2p

1
p2 + {σ, σ̄} +

4∑

x=1

∫
d2p

1
p2 + {σ, σ̄} (4.2.19)

= − 1
2π

log
({σ, σ̄}

2µ2

)
= r

which has a solution as

{σ, σ̄} = 2µ2 exp (−2πr) (4.2.20)

After integrating over all the matter fields, the classical vacua V = 0 is given by condition

Tr[σ, σ̄]2 = 0 which together with (4.2.20) gives the following solution,

σ = σ0µ exp (−2πr) (4.2.21)

where here σ0 is an orthogonal 6×6 or 4×4 constant matrix for OSp(6|4) and PSU(2, 2|4)

supergroups respectively. This means that σ can be diagonalized and for each diagonal

component of the σ in the small radius regime, one gets a copy of the S(5|4) or CP(3|4)

in each case as it was seen before.
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4.3 Open sector and D-branes

Let us now pass to the discussion of observables and D-branes which are made after

putting consistent boundary conditions on the fields in our theory. In order to discuss

open strings and D-branes we have to see how to put the boundary conditions.

4.3.1 Open sector of topological AdS5 × S5

We take the boundary conditions for open strings in the coset σ-model as follows 2

(Θ̄t)A
J = εA

BΘ∗B
KδK

J (4.3.1)

where 3 δ and ε are four by four constant matrices such that ε = aε−1 and δ = bδ−1

with a and b complex numbers such that ab = −1.

In order to preserve the correct 1/2 supersymmetry, we chose

δ =

(
1 0

0 1

)
⊗

(
0 −1

1 0

)
and ε =

(
1 0

0 1

)
⊗

(
1 0

0 −1

)
(4.3.2)

This breaks the U(2, 2|4) isometry to OSp(4∗|4).

Notice that this remnant symmetry is exactly the same symmetry preserved by 1/2 BPS

circular Wilson loops in N = 4 SYM of Drukker and Gross [28].

These A-branes wrap the Lagrangian submanifolds of the target space, as

OSp(4∗|4)
SO∗(4)× USp(4)

−→ U(2, 2|4)
U(2, 2)× U(4)

(4.3.3)

which is the fixed locus under the anti-involution

Θ̄ → δtΘ†εt and Θ → ε∗−1Θ̄†δ∗−1 (4.3.4)

which is explicitly a symmetry of the σ-model action since δ−1 = δ† = −δ and ε−1 =

ε† = ε in our case. Recall that SO∗(4) = SU(1, 1) × SU(2) and USp(4) = SO(5) (see

[62]).

2Note that these boundary condition are different from the ones which was used in [23] as (Θ̄t)A
J =

εA
BΘB

KδK
J . It can be shown that these two type of boundary conditions are producing different types of

D-branes.
3We work in the conventions Θ† = iΘ̄, Θ̄† = iΘ and (ψζ)† = −ζ†ψ† for fermionic ψ and ζ.
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In the gauged linear σ- model the boundary conditions (4.4.81) become

(Φ†)R
J δtJ

I = κ†
R
S Φ̄S

I and (Φ†)R
AεtA

B = κ†
R
S Φ̄S

B (4.3.5)

which is the fixed point of the transformation

ΦI
R → (δ†)I

J(Φ̄†)J
SκS

R and ΦA
R → (ε†)A

B(Φ̄†)B
S κS

R (4.3.6)

while (eV ) → κeV κ† and κ is, because of the reality condition on the fields, a constant

element in O(4). This breaks the gauge symmetry to ones preserving κ, namely Λ ∈ U(4)

such that ΛtκΛ = κ.

4.3.2 Open sector of the topological ˜AdS4 × CP3

For the supercoset Osp(6|4)/SO(6)×Sp(4), we reduce it as follows: the bosonic subcoset:

SO(6)×Sp(4) is reduced to U(3)×Sp(2) and the fermionic part is halved. This achieved

by using the boundary conditions

ΘαI = δα
α̇ J I

J Θ̄α̇J , Θ̄α̇
I = δα̇

α J J
I Θα

J , (4.3.7)

where J I
j is the complex structure on P3. The tensor δα̇

α reduce the subgroup Sp(4) to

Sp(2). We recall that using the symplectic matrices Λ of Sp(4,R) as the 4× 4 matrices

satisfying ΛT εΛ = ε where ε = i σ2 ⊗ 1l, we can see immediately the two subgroups

Sp(2,R) × Sp(2,R). In the above equation, we have selected the diagonal subgroup

Sp(2,R). The above equations are invariant under Sp(2,R)×U(3). Notice that we have

identified on the boundary of the Riemann surface the fermionic variables of the subset

H1 = {ΘαI , Θα̇
I } with those of the other subset H3 = {Θ̄α

I , Θ̄α̇I}. This simply reduces

the 24 fermions to 12 ones. The new set of states can be represented in terms of the

supercoset
SU(3|1, 1)

U(3)× SU(1, 1)
(4.3.8)

(where we have used the isomorphism Sp(2,R) ' SL(2,R) ' SU(1, 1)). The 6 fermions

are in the (3, 2) or in the (3̄, 2) representation of the bosonic subgroup.

In addition, we have to recall SL(2,R) ' AdS3, which can be seen by parameterizing a

group element of SL(2,R) as follows

g =

(
X−1 + X1 X0 −X2

−X0 −X2 X−1 −X1

)
(4.3.9)
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with the condition det g = X2
−1 − X2

1 + X2
0 − X2

2 = 1 which shows that the SL(2,R)

group manifold is a 3-dimensional hyperboloid. The metric on AdS3 is given by ds2 =

−dX2
−1 +dX2

1 −dX2
0 +dX2

2 , which is the invariant metric on the group manifold. Then,

we have that these boundary conditions imply a boundary theory of the type N = 6

super-YM/Chern-Simons on AdS3 space.

There is another possibility which is given by the following boundary conditions

ΘαI = δα
α̇ δI

J Θ̄α̇J , Θ̄α̇
I = δα̇

α δJ
I Θα

J , (4.3.10)

In this case the supergroup Osp(6|4) is broken to Osp(6|2)× SO(2). Notice that using

the delta δJ
I in place of J J

I we do not break the SO(6). In addition, the subgroup

Sp(4) is broken to Sp(2) × SO(2). Now, using the isomorphism SU(4) ' SO(6), we

can see the coset SO(6)× SO(2)/SU(3)× U(1) ' S7/Zp where p defines how the U(1)

is embedded in the groups of the numerator. This observation would help us to lift

the D-branes solution to KK monopoles of M-theory. The fermions are halved by the

boundary conditions. So, the boundary open topological model can be described as the

Grassmannian
Osp(6|2)× SO(2)

U(4)× Sp(2)
. (4.3.11)

This solution deserves more attention.
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4.4 An exact check in AdS5 × S5/N = 4, d = 4 SYM duality

As we have seen, the AdS5×S5 string admit a formulation in the pure spinor framework

[20, 56]. In particular we have shown that to calculate 1/2-BPS string amplitudes, one

can use a topologically A-twisted version of theN = (2, 2) σ-model on the fermionic coset

U(2, 2|4)/U(2, 2) × U(4) [21, 23, 37, 10]. This non-linear sigma-model can be obtained

by an auxiliary gauged linear one which has been proposed as the correct framework to

describe the string theory in the large curvature regime.

Here in this section we collect a set of arguments which lead to reproduce the known

perturbative gauge theory results alluded above by making use of this topological de-

composition proposal. Our line of reasoning goes as it was explained in the introduction

chapter. Here we will do the steps more in detail and will show that there are some par-

ticular Wilson loops in the gauge theory side which can be computed as the amplitude

of some D-branes in the string theory side.

4.4.1 Mirror symmetry, superconifold and matrix model

AS we showed before, the BPS sector of the superstring on AdS5 × S5 can be studied

by a topological A-model theory defined on four products of the superprojective space

CP(3|4). Here we consider a particular sector of the superstring theory which is captured

by just one of these four copies. We start from the closed topological A-model theory

on the super Calabi-Yau CP(3|4), passing through a duality map which was explained

in the introduction chapter, first we obtained its closed topological B-model theory by

using mirror symmetry, then we use the geometric transition to go to the open B-model

theory and at then end we will show that this open topological theory can be reduced to

a Gaussian matrix model. We will show that there are some particular D-branes in this

topological theory whose amplitudes computed as observables of the Gaussian matrix

model produce exactly the result of their dual objects in the gauge theory side which

are the circular Wilson loops whose expectation value was computed exactly and was

shown to be given by a Gaussian matrix model. This will serve as an exact check on

AdS/CFT duality.

4.4.1.1 Mirror symmetry

The first step is to use mirror symmetry to relate the A-model which we get from the

superstring action to a B-model theory. This has been already calculated in [63] and

further elaborated in [26] for the case at hand. The mirror symmetry is an equiva-

lence between two topological N = 2 string theories which are defined on on different
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Calabi-Yau manifolds as the proper target spaces for topological string theories. We will

discuss in more detail about the structure of topological string theories mainly a class

of the namely the A-model later but here we take as granted that we have two types

of topological string theories named as A-model and B-model according to the way we

do the topological twist which is explored in [64]. As we see from figure(4.1), mirror

symmetry is a symmetry between A-model theories and B-model theories and also the

proper boundary conditions of these two theories can be related by mirror symmetry

too which are Lagrangian submanifolds for the A-model and holomorphic cycles for the

B-model [64].

A-model
Calabi-Yau X

-¾

Mirror symmetry

?
Topological theories B-model

Calabi-Yau Y

A-branes
Lagrangian’s

-¾Boundary conditions B-branes
holomorphic cycles

Figure 4.1: Mirror symmetry as a symmetry between topological theories and their bound-
ary conditions.

The idea behind mirror symmetry is very similar to the T-duality, it is an equivalence

between two ways of writing an effective action for a mother theory. Starting from

the mother theory which is a worldsheet supersymmetric sigma-model, we can write an

effective theory in two different ways which since they are all effective description of the

same theory, they are equivalent theories in this sense.

In order to realize this T-duality let us consider the following mother Lagrangian as the

starting point

LM =
∫

d4κ

(
e2QV +B − 1

2
(Y + Ȳ )B

)
− 1

2

∫
d2κ̃ tΣ (4.4.1)

where (κ−, κ+, κ̄−, κ̄+) are the N = 2 superspace coordinates and V is a N = 2 vector

superfield which in the Wess-Zumino gauge can be expanded as follows

V = κ−κ̄−(v0 − v1) + κ+κ̄+(v0 + v1)− κ−κ̄+σ − κ+κ̄−σ̄ (4.4.2)

+ i
√

2κ−κ+(κ̄−λ̄− + κ̄+λ̄+) + i
√

2κ̄+κ̄−(θ−λ− + θ+λ+) + 2κ−κ+κ̄+κ̄−D

where D is the D-term which is an auxiliary field.

In (4.4.1), the field B is a real superfield and Y is a twisted chiral superfield and Σ is

the twisted chiral field strength superfield. For the twisted chiral superfield Y and real
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chiral superfield B we have

D̄+Y = D−Y = 0, , D̄+B = D̄−B = 0 (4.4.3)

where D± and D̄± are the N = 2 supersymmetry derivatives

D± =
∂

∂κ±
− iκ̄±

(
∂

∂x0
± ∂

∂x1

)
, D̄± = − ∂

∂κ̄±
+ iκ±

(
∂

∂x0
± ∂

∂x1

)
(4.4.4)

The superfields B and Y are expanded into their components as follows

B = b +
√

2κ+ψ+ +
√

2κ−ψ− + 2κ+κ−F + · · · (4.4.5)

Y = y +
√

2κ+χ̄+ +
√

2κ−χ− + 2κ+κ̄−G + · · · (4.4.6)

where F and G are auxiliary fields and ” · · · ” involves only the derivatives of the com-

ponent fields.

We can now write an effective theory for the Lagrangian (4.4.1) in two ways, which we

investigate them here separately following the lines of [63] as we can see schematically

in figure(4.2).

”mother” theory
LM (Y, B)

©©©©©©©¼

HHHHHHHj
A theory
LA(Y )

integrating out
B fields

B theory
LB(B)

integrating out
Y fields

Figure 4.2: Mirror symmetry as different descriptions of the same mother theory.

First description: First we can integrate over Y which gives the following constraints

on the real chiral superfield B as its equations of motion

D̄+D−B = D+D̄−B = 0 (4.4.7)

These has the following solution

B = Ψ + Ψ̄ (4.4.8)

for a chiral superfield Ψ.

Inserting (4.4.8) into the Lagrangian (4.4.1) we get the following effective Lagrangian

L =
∫

d4κ e2QV +Ψ+Ψ̄ − 1
2

∫
d2κ̃ tΣ (4.4.9)
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which after using the redefinition

Φ = eΨ (4.4.10)

it becomes

LA =
∫

d4κΦe2QV Φ̄− 1
2

∫
d2κ̃ tΣ (4.4.11)

This is the gauged linear sigma model action with Fayet-Illiopoulos parameter t and as

we will see is defined on a particular super Calabi-Yau. This is the action which we

got from the A-model action of the pure spinor superstring theory and will be used to

find the dual of the certain gauge theory observables. The target space of the theory

is determined by looking into the D-term equations and the vacua of the theory which

will was explored before.

The proper boundary conditions, as D-branes, in this A-model action which are pre-

serving the N = 2 supersymmetry structure were shown to be given by the Lagrangian

submanifolds of the Calabi-Yau which are half-dimensional subspace with vanishing

symplectic form.

Second description: To get the second description of the mother action (4.4.1)

which is the mirror dual of the linear gauged sigma model we integrate over the real

chiral superfield B using the following equations of motion

B = −2QV + log
(

Y + Ȳ

2

)
(4.4.12)

inserting this into the mother action (4.4.1) gives the following action

LB = −1
2

∫
d4κ(Y + Ȳ ) log

(
Y + Ȳ

)
+

1
2

∫
d2κ̃Σ(Y − t) (4.4.13)

which is the dual theory of the linear gauged sigma model (4.4.11). As we can see, the

chiral superfield of (4.4.11) is playing the role of the neutral chiral superfield Y which

couples to the field strength Σ.

We can see from (4.4.8) and (4.4.12) that the superfield Φ of the linear gauged sigma

model is related to the Y field with the following relation

Re Y = 2Φ̄e2QV Φ (4.4.14)

This is the map between the dual fields.
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Hori and Vafa showed that the superpotential of the action (4.4.13) is subject to instan-

tonic non-perturbative corrections which is given by e−Y and the exact superpotential

becomes

W̃ = Σ (Y − t) + e−Y (4.4.15)

for a theory with n chiral superfield, we get the following dual superpotential

W̃ =
n∑

i=1

(Yi − t)Σ + e−Yi (4.4.16)

integrating out Σ gives

n∑

i=1

Yi = t (4.4.17)

which is dual of the D-term equation for the A-model action. Putting this back in the

superpotential gives the following superpotential

W̃ =
n∑

i=1

e−Yi (4.4.18)

The theory with the superpotential (4.4.15) defines a Landau-Ginzburg theory which is

the mirror dual of the linear gauged sigma model we obtained as the first description.

Up to now we just considered that the chiral superfields are bosonic meaning that their

first components are bosonic fields, which means that the target space which is specified

from the D-term equation of the action (4.4.11) is a bosonic manifold. But as the linear

gauged sigma model which we got from the A-model action of the pure spinor formalism

is a super Calabi-Yau, we should generalize these results to this case. Starting with a

linear gauge sigma model with A bosonic chiral superfields Φ and S fermionic chiral

superfields Ψ, the dual fields in the B-model side would be the bosonic fields Xi and Y j

in which

Re Y i = |Φi|2 , i = 1 to A (4.4.19)

Re Xj = |Ψj |2 , j = 1 to S

It was shown in [63] that in this case, on top of these bosonic fields we need to add also

some pairs of fermionic variables (η, χ) to the dual Landau-Ginzburg superpotential

in order to preserve the superdimension which is the difference of the number of the

bosonic and fermionic coordinates. These fermionic fields contribute as follows to the



Chapter 4. An exact check of AdS/CFT duality using the topological A-model 99

superpotential

W̃ =
A∑

i=1

e−Y i
+

S∑

j=1

e−Xj
(1 + ηjχj) (4.4.20)

which gives the Landau-Ginzburg dual of the linear gauged sigma model for the case of

supermanifolds, where we have also fermionic coordinates.

We have observed that these two theories, the A-model linear gauged sigma model and

the B-model Landau-Ginzburg with superpotential (4.4.15), are the mirror duals. We

will use this mirror dual to do computations in the B-model side for the topological

A-model of the AdS5 × S5 superstring theory.

In order to relate the geometries on which the two theories are defined, as we will see

later, we have start from the path-integral of one of them and after integrating over

some family of fields, we will get some delta functions in the path integral which define

constraints over the coordinates of the dual theory. These constraints are translated as

the geometry of the mirror theory.

Here we start with the linear gauge sigma model and use the mirror symmetry to inves-

tigate the mirror of the linear gauged sigma model of the AdS5 × S5 following [37].

As we saw before, the Coulomb branch of the linear gauged sigma model of AdS5×S5 is

equal to four copies of the super projective Calabi Yau CP(3|4)’s but since we are going to

consider some observables which are coupled just with a particular sector of the theory

which can be explained just by just one of these four CP(3|4)’s we consider the linear

gauged sigma model on the CP(3|4) and will follow the duality map which was explained

before before.

Let us consider the A-model on the ĈP(3|4)
with bosonic and fermionic coordinates φI

and φA which are the first components of the chiral superfields Φ in (4.4.10). Since all

the fields have charge one under the remnant U(1) gauge group, the D-term equation

can be written, in terms of the first components of the superfields, as

4∑

I=1

|φI |2 +
4∑

A=1

|φA|2 = r (4.4.21)

subject to the following symmetry

φI → eiaφI , φA → e−iaφA (4.4.22)



Chapter 4. An exact check of AdS/CFT duality using the topological A-model 100

The fields φI and φA are corresponding to the coordinates of the super Calabi-Yau

ĈP(3|4)
. The twistor space ĈP(m|n)

is defined as

ĈP(m|n)
=

{
C(m+1|n) \ {(0, 0)}

}
/C∗ (4.4.23)

where {(0, 0)} is the origin in C(m+1|n). This space describes the vacua of the gauged

linear sigma-model with m+1 bosonic chiral multiplets ΦM and n fermionic ones ΦN all

of them with unit charge under the Abelian U(1) gauge symmetry. Its defining equation

is
∑

M |φM |2 +
∑

N |φN |2 = r modulo the U(1) action φΣ → eiαφΣ. We can trade the

D-term equation for a complexification of the group action and obtain the symplectic

quotient ĈP(m|n)
as defined above. In the mathematical literature, one defines the

superprojective space CP(m|n) =
{
C(m+1|n) \ {

C(0|n)
}}

/C∗, where C(0|n) is sitting at

the origin ΦM = 0 of the commuting variables. This is a supermanifold contained

in ĈP(m|n)
. It is clear that the choice of the sublocus containing the origin one has

to remove, makes the difference between the two spaces. The gauged linear σ-model

chooses the sublocus closed under the action of the global U(m + 1|n) symmetry of the

D-term equations, namely the origin of the whole space. For more formal issues related

to supergeometries and all that, see for example [65] and references therein.

The first step to get the mirror dual is to define the dual fields which appear in the

mirror theory as follows

Re Y I = |φI |2 (4.4.24)

Re XA = −|φA|2

The superpotential for the mirror Landau-Ginzburg description results to be

W̃ =
4∑

I=1

e−Y I
+

4∑

A=1

e−XA
(1 + ηAχA) (4.4.25)

where the fermionic fields η and χ were added to the bosonic field X to match the

central charge of the original σ-model and to ensure the exact matching of the effective

superpotentials. To find the mirror we can follow the lines of [26] by starting with the

path integral for the mirror Landau-Ginzburg model as follows

∫ 4∏

I=1

dY I
4∏

A=1

dXAdηAdχAδ

(
4∑

I=1

Y I −
4∑

A=1

XA − t

)
e

(∑4
I=1 e−Y I

+
∑4

A=1 e−XA
(1+ηAχA)

)

(4.4.26)

where the delta function is specifies the dual of the D-term equation of the linear gauged

sigma model. The delta function can be solved by integrating over one of the fields for

example X1, in terms of the other fields.
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The path integral then becomes

∫ 4∏

I=1

dY I
4∏

A=1

dηAdχA
4∏

A=2

dXA (4.4.27)

exp

(
4∑

I=1

e−Y I
+ et

4∏

I=1

e−Y I
4∏

A=2

e−XA
(1 + η1χ1) +

4∑

B=2

e−XB
(1 + ηBχB)

)

The next step is to integrate over the fermionic fields ηA and χA, one by one, except η4

and χ4 to get the following path integral

∫ 4∏

I=1

dY Ie−Y I
4∏

A=2

dXAeX4
dη4dχ4 (4.4.28)

exp

(
4∑

I=1

e−Y I
+ et

4∏

I=1

e−Y A
3∏

A=2

e−XA
+

3∑

A=2

e−XA
+ e−X4

(1 + η4χ4)

)

After the following field redefinition

xA = e−XA
, y1 = e−Y 1

, yJ = eXJ−Y J
for J = 2, 3, 4 (4.4.29)

we get the following path integral

∫ 4∏

I=1

dyI
4∏

A=2

dxA dx4

x4
dη4dχ4 (4.4.30)

exp

(
y1 +

4∑

J=2

yJxJ + et
4∏

I=1

yI +
4∑

A=2

xA + x4(1 + η4χ4)

)

The factor 1
x4 in the path integral can be rewritten after introducing the auxiliary bosonic

variables u and v as follows

1
x4

=
∫

dudveuvx4
(4.4.31)

then we can write the path integral in terms of the new variables as

∫ 4∏

I=1

dyI
4∏

A=2

dxAdη4dχ4dudv (4.4.32)

exp

(
y1

(
1 + et

4∏

I=2

yI

)
+

4∑

J=2

xJ(yJ + 1) + x4(1 + η4χ4 + uv + y4)

)

Integrating over y1, x2, x3 and x4 gives

∫ 4∏

J=2

dyJdudvδ(1 + η4χ4 + uv + y4)
3∏

I=2

δ(yI + 1)δ(1 + et
4∏

I=2

yI) (4.4.33)



Chapter 4. An exact check of AdS/CFT duality using the topological A-model 102

The delta functions impose the following constraints

y4 = − e−t

y2y3

y2 = y3 = −1 (4.4.34)

0 = 1 + η4χ4 + uv + y4

These constraints can be solved together to obtain

1 + η4χ4 + uv = e−t (4.4.35)

For small t this gives

uv − ηχ = t (4.4.36)

where η ≡ χ4 and χ ≡ η4.

Therefore, we see that the geometry which is defined by (4.4.36) and is named as super-

conifold4 is the dual geometry of the ĈP3|4
and so as far as the calculation of 1/2 BPS

invariant observables in Type IIB String theory on AdS5×S5 concerns, one can use the

mirror geometry formulation for the A-model, which is the B-model on the superconi-

fold (4.4.36)in the regime t ∼ 0. The geometry in such a regime gets singular. In these

situations the string theory target space gets represented by a blown up geometry via

the conifold transition, like in the cases which were analyzed in [17] and [14]. One can

actually extend the geometric transition to this Grassmann odd version of the conifold.

We study the aspects of the singular superconifold by starting with the singular super-

conifold corresponding to t = 0 point

uv − ηχ = 0 (4.4.37)

we can use another parametrization of the coordinates which can show better the ge-

ometry. Using u = u1 + iu2 and v = u1 + iu2, the conifold equation (4.4.37) can be

rewritten as

u2
1 + u2

2 − ηχ = 0 (4.4.38)
4It is the generalization of the conifold

∑
i xi = 0 to supermanifolds in which we have also fermionic

coordinates.
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for complex bosonic variables u1 and u2. Now writing (4.4.38) in the real and complex

components

u1 = v1 + iw1 , u2 = v2 + iw2 (4.4.39)

η = η1 + iν1 , χ = η1 + iν1

we get the following equations from the real and imaginary parts of (4.4.38)

2∑

i=1

(v2
i − w2

i ) +
2∑

α=1

(νανα − ηαηα) = 0 (4.4.40)

2∑

i=1

viwi +
2∑

α=1

ηανα = 0 (4.4.41)

Using (4.4.40) and (4.4.41) we can see the supergeometry can be viewed as T ∗S(1|2)

where coordinates (wi, να) are parameterizing the fiber and (vi, ηα) are parameterizing

the base S(1|2) which is defined by
∑2

i=1 v2
i +

∑2
α=1 ηαηα = 0 on the base which has

zero radius here. As we see in figure(4.3), the singular superconifold can be seen as

a cone over S(1|2) × P(0|1). We can get ride of the singularity by blowing up into this

Figure 4.3: The singular superconifold.

supersphere to make it having a non zero radius. This means the t = r parameter in

(4.4.36) becomes nonzero too and this modifies (4.4.40) and (4.4.41) as follows

2∑

i=1

(v2
i − w2

i ) +
2∑

α=1

(νανα − ηαηα) = t (4.4.42)

2∑

i=1

viwi +
2∑

α=1

ηανα = 0 (4.4.43)

This supergeometry which has a S(0|1) projective space at the singular point is named

as the deformed superconifold.

One can observe that the base S(0|1) is a Lagrangian submanifold and so it is a proper

boundary condition for the topological A-model by looking into the symplectic form of
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Figure 4.4: The deformed superconifold.

the super Calabi-Yau which is given by [37, 26]

ω =
2∑

i=1

dvidwi +
2∑

α=1

dηαdνα (4.4.44)

which is zero on S(1|2). Also we can check that the imaginary part of the holomorphic

measure

Ω =
dudχdη

v
(4.4.45)

We can easily see that ω is zero on S(0|1) and so this submanifold is actually a special

Lagrangian submanifold.

Another way to cure the singularity of (4.4.37) is to define the so called resolved su-

perconifold which is defined by blowing a CP(0|1) into the singularity as we can see in

figure(4.4.1.1).

The resolved superconifold can be parametrized with the following relations

(
u η

χ v

) (
z

ζ

)
= 0 (4.4.46)

where (z, ζ) ∈ {
C(1|1) \ (0, 0)

}
/C∗ = ĈP(0|1)

. Away from the singularity it gets mapped

to the singular cone uv − ηχ = 0, the singularity being replaced by ĈP(0|1)
very much

like in the bosonic case. This space is covered by two patches which we now describe. If

z 6= 0, then we can fix our coordinates 5 at any given z0 6= 0 as (z0, ζ) which is a C(0|1)

patch, while if ζ 6= 0, then we can fix our coordinates at any given ζ0 6= 0 as (z, ζ0) which

is a C(1|0) patch. Clearly, on the intersection, the two patches are related by zζ = z0ζ0.

The last condition is the choice of representative upon the C∗ equivalent points exactly

as in the usual CP1.
5Notice that also in the usual bosonic geometric analog, one usually specifies the reference points to

z0 = 1, but this is not compulsory at all.
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Figure 4.5: The resolved superconifold.

So, following mirror symmetry, it was shown that the closed topological A-model theory

on CP3|4 is dual to the closed topological B-model on the deformed conifold. The

next step is to use geometric transition to relate the closed topological B-model on

the deformed superconifold to an open topological B-model on a particular background

which will be conjectured to be the resolved superconifold.

4.4.1.2 Geometric transition

As we have seen, we got the mirror dual of the closed string topological A-model on

CP(3|4) to be the closed topological B-model on the deformed superconifold. One can

trade this closed string theory to an open topological string theory by doing the so called

geometric transition an example of which was discussed in the case of the Ooguri-Vafa

duality. In that case it was shown that the closed topological A-model theory on the

resolved conifold is equivalent to an open topological A-model theory on the deformed

conifold as it was shown in the introduction.

Let us now apply the construction of the open string dual theory after geometric transi-

tion , by following [14], for the generalization to the superconifold. This is obtained by

realizing the fermionic resolved conifold geometry as a complex structure deformation

of the local super-K3 geometry, namely O(−2) ⊕O(0) over ĈP(0|1)
. The gluing condi-

tions among the northern and southern hemispheres which are bosonic and fermionic

respectively are

ζ ′z = ζ0z0 (4.4.47)

ζ ′ψ′ = zψ + z0φ

ζ0φ
′ = z0φ

where ψ′ and φ′ are fermionic while ψ and φ are bosonic variables. The complex structure

deformation is induced by the non-diagonal patching term in the second line. Let us call
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X this superCalabi-Yau space. The invariant three-form Ω on X can be defined in this

parametrization as follows

Ω = z0dφ dψ dz = ζ0 dφ′dψ′ dζ ′ (4.4.48)

in the two coordinate patches.

Similarly to the purely bosonic case, the geometry obtained by imposing the gluing rules

can be projected via the blow-down map

η = ζ0ψ (4.4.49)

χ = z0ψ
′

u = zψ

x = z0φ

which defines the following blown-down geometry

ηχ = ζ0ψz0ψ
′ (4.4.50)

= ζ ′zψψ′

= zψ(zψ + z0φ)

= u(u + x)

which is the singular superconifold (4.4.37) with v = u + x.

So, starting from the closed topological B-model superstring theory on deformed super-

conifold, we conjecture to get open topological B-model superstring theory on resolved

superconifold with the D-branes residing on the base of the resolved superconifold.

4.4.1.3 From open topological B-model superstring to holomorphic Chern-

Simons

After the geometric transition, we get the open topological B-model action on the de-

formed superconifold. In [15] it is explained how the Fock space of a particular topo-

logical open string theory can be explained in terms of a functional A which composed

of the Bose and Fermi zero modes, with other modes in their Fock vacuum. In order

to look at this construction let us remind first the general structure of a topological

B-model action.

The topological B-model sigma model governs maps from Riemann surface Σ as the

worldsheet to a target space X which would have a complex structure and in our case is
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the resolved superconifold. The B-model is well-defined on target spaces with vanishing

first Chern class c1(X) = 0 namely the Calabi-Yau’s. The fields of the B-model are sim-

ply maps Φ : Σ → X which can be described with functions φI(xα) as local coordinates

of the target space X. In the case we are discussing, the target space is a supermanifold,

so the coordinates φ can be either bosonic or fermionic fields.

Writing an N = (2, 2) supersymmetric theory, we have to consider also the fermions

which accompany the bosonic fields of the sigma model. These fermionic fields in the

B-model include sections θī, ηī of the pullback Φ∗(T 0,1X) to the worldsheet and the

other way θi = gij̄θ
j̄ which gij̄ is the Ricci flat metric of the Calabi-Yau target space X

considering its complex structure. In order to complete the supersymmetric multiplet

we should add also a one-form fermionic field ρi taking value in Φ∗(T 1,0X) which they

transform as follows under supersymmetry [15]

δφi = 0 , δφī = iαηī (4.4.51)

δηi = δθi = 0 , δρi = −αdφi

We can define a BRST operator Q acting on any field as δΛ = −iα{Q,Λ}, then the

Lagrangian can be obtained as L = i{Q,V } for a suitable V , one gets the action for the

topological B-model sigma model as follows

L= t

∫

Σ

(
gIJ∂zφ

I∂z̄φ
J +iηī(Dzρ

i
z̄+Dz̄ρ

i
z)gīi+iθi(Dz̄ρ

i
z −Dzρ

i
z̄)+Rīijj̄ρ

i
zρ

j
z̄η

īθk̄
)
(4.4.52)

where Rīijj̄ is the curvature of the target space. Note that since the Lagrangian is

written as L = i{Q,V }, the t dependence and the metric dependence is of the form

{Q, · · · } which means that it does not change the BRST cohomology of the theory and

so the theory does not depend on the coupling t and the metric of the target space.

We can look into the Hamiltonian version of (4.4.52) for open strings. As it was shown

in [15], the Hilbert space H consists of some functionals A which depend on the maps

Φ from the worldsheet to the target space which the dependence comes from the rep-

resentation of the canonical anticommutation relations. This functional depends on the

zero modes of the fields φI , ηī as follows

A(φI , ηī) = c(φI) + ηīAī(φ
I) + ηīηj̄Bīj̄(φ

I) + · · · (4.4.53)

which because of the commutations relations [Q,φī] = −ηī and {Q, ηī} = 0, we can

interpret ηī as dφī and see (4.4.53) as a sum over (0, q) forms over X.

In order to give a space time interpretation to the B-model topological sigma model



Chapter 4. An exact check of AdS/CFT duality using the topological A-model 108

(4.4.52), Witten proposed a string field theory based on the functional A which is inter-

preted as a ghost number one element in the associative algebra B with a multiplication

law which is denoted as ? and a derivative Q of degree one satisfying Q2 = 0. There is

a functional
∫

: B → C which is non vanishing just for ghost number -3 operators and

obeying the following relation

∫
a ? b = (−1)deg a deg b

∫
b ? a (4.4.54)

and also we have
∫

Qb = 0 for any b ∈ B. Using the fact that A is a ghost number one

operator, Witten wrote the following Lagrangian using the properties of the ? and
∫

[15]

L =
1

2gs

∫ (
A ? QA+

2
3
A ?A ?A

)
(4.4.55)

This is invariant under the following gauge transformation

δA = Qα− α ?A+A ? α (4.4.56)

Actually we can associate Chan-Paton factors to the string fields A by considering to

take value in the space of N × N hermitian matrices and this way the theory defined

by (4.4.55) as the string field theory is describing open string theory with the boundary

conditions which is given from the Chan-Paton factors of the string fields A. In this

way the associative algebra B is the space of the open string states and the operations

? and
∫

are related to the string theory with the gluing of the open strings which we

don’t discuss it here. The operator Q of the open string field theory also is going to be

interpreted as the BRST charge of the string theory.

It was shown by Witten [15] that the string field theory action (4.4.55) describing open

strings ending on space-filling D-branes, meaning that no specific place for the boundary

condition is chosen, has a simpler realization in terms of a specific Chern-Simons theory

named as holomorphic Chern-Simons theory.

The boundary condition should preserve the supersymmetric structure of the sigma

model, for B-model this means that we should have

∂⊥Φ = 0 (4.4.57)

where ∂⊥ is normal derivative on ∂Σ. This condition means that θ|∂Σ = 0 and also it

implies the vanishing of pullback to ∂Σ of ?η where ? is the Hodge star product.

The string field should have ghost number one which is raised with the BRST operator

Q. Giving ghost number zero to the target space maps φ, one can see from (4.4.51) and
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so from (4.4.53) that we should keep only the linear term in the field η

A = ηīAī(φ
I) (4.4.58)

It is a one-form which takes value in the endomorphisms of some holomorphic vector

bundle E. Since the string field just depends on the bosonic and fermionic zero modes,

the star product ? becomes the wedge product of forms in Ω(0,p)(End(E)) and the

integration operator
∫

becomes ordinary integration over the forms on the target space

X wedged by the holomorphic form Ω which completes the functional form in order to

define a non-zero integral. We can write the following dictionary from the string field

theory to a field theory defined in terms of the one-form connection A on the target

space X

A → A , Q → ∂̄

? → ∧ ,
∫ → ∫

Ω∧
(4.4.59)

The string field action (4.4.55) after this identification becomes

S =
1

2gs

∫

X
Ω ∧ Tr

(
A ∧ ∂̄A +

2
3
A ∧A ∧A

)
(4.4.60)

where Ω is the invariant holomorphic three-form of the resolved superconifold we dis-

cussed before.

We have shown that the closed topological A-model string theory is equivalent to the

holomorphic Chern-Simons (4.4.60) on the resolved superconifold. This was obtained

with the assumption that the open strings are free and we have space-filling D-branes,

but as we know, in our case the D-branes which are the counterparts of the fluxes in

the closed string side, are reside just on the base of the superconifold and not in all the

target space. So in the next section we will modify the result by taking into account

this consideration.

4.4.1.4 Dimensional reduction and The Gaussian Matrix model

Here we consider the case in which the branes which as the end points of the open

strings wrap only the holomorphic two-cycles CP(0|1) as the base of the resolved super-

conifold we discussed before. We have to dimensionally reduce the action (4.4.60) on

the worldvolume of these branes in the Calabi-Yau

O(0)⊕O(−2) → CP(0|1) (4.4.61)
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in the geometry defined in (4.4.47). To do this dimensional reduction we follow the

passage of [14, 31] which was reviewed in [27]. For some comments on the Chern-Simons

theory on supermanifolds, see also [66].

We discussed before the geometry of the Calabi-Yau (4.4.61) which is described by the

gluing (4.4.47). Since we want to consider the branes wrapping CP(0|1), this means

that the gauge field A which is describing the field theory on the worldvolume of the

D-branes, splits into a gauge potential on the worldvolume of the branes and a Higgs

field which describes the motion along the noncompact, transverse direction of the fiber.

These Higgs fields Φ0 and Φ1 are actually sections of the corresponding normal bundles

O(0) and O(−2) respectively. One can decompose the gauge field as follows

A = a(z, φ, ψ) + Φ0(z)dφ + Φ1(z)dψ (4.4.62)

where a is a one-form residing on the base with coordinates z and (φ, ψ) are the coordi-

nates of the fibers as it was explained in (4.4.47). Assuming that we have N D-branes,

all the fields take value in the adjoint representation of U(N). Putting (4.4.62) into

(4.4.60) one gets the following action

S =
1

2gs

[∫

ĈP(0|1) Tr(Φ1D̄Φ0) +
∮

Tr W (Φ0)
]

(4.4.63)

where D̄ = ∂̄ +[a, ·] is the covariant derivative and W (x) = 1
2x2 is the complex structure

deformation which as we are working on a supermanifold which has fermionic coordi-

nates, the only possibility is a quadratic function. As we will see this quadratic complex

structure deformation gives rise to produce the hermitian Gaussian matrix model.

The gauge connection appear in the action as a Lagrange multiplier giving rise to the

constraint

[Φ0, Φ1] = 0 (4.4.64)

This means that we can diagonalize Φ0 and Φ1 simultaneously. Also we can integrate

out the other field Φ1 since it appears linearly in the action (4.4.63) which gives rise to

the following equation of motion for Φ0

∂̄Φ0 = 0 (4.4.65)

Since we are on CP(0|1), ∂̄-operator has just one constant zero mode and the solution

of (4.4.65) is a constant diagonal matrix. Notice the fact that here, although the base

geometry is half fermionic and half bosonic, this does not influence the endpoint result,

because as φ and ψ change statistics while patching, their propagating contributions
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continue to cancel against the ghost determinants. The important fact is that the ∂̄-

operator on scalars still has a single (constant) zero mode.

On the other hand, the equation of motion for Φ0 implies

∂̄Φ1 = W ′(Φ0)ω (4.4.66)

where ω is a (1, 1) form which can be taken to have unit volume on the CP(0|1). Note

that the integral of ∂̄Φ1 over CP(0|1) should be zero for non-singular Φ1 which leads to

the following relations after integrating (4.4.66)

Φ1 = W ′(Φ0) = 0 (4.4.67)

This means that the classical vacua are localized on the critical points of W (Φ0) which

is a quadratic function in our case.

Putting all these together and remembering the fact that W (x) = 1
2x2 for the superconi-

fold, we get the Gaussian hermitian N × N matrix model with the following measure

factor

µ = dΦ e
− 1

2gs
TrΦ2

(4.4.68)

where Φ is a N ×N matrix. This corresponds to the Drukker-Gross one if gs = g2
Y M as

predicted by gauge string duality. In the next section we will do explicit computations

on both side of the duality by using these Matrix models and we will see that there are

some particular observables producing exact result of the circular Wilson loops in the

gauge theory side.

4.4.2 Circular Wilson loop and its dual in topological model

Using the construction we did in the previous section, we saw that the closed topological

A-model string theory on the superprojective space CP(3|4) is equivalent to a Gaussian

hermitian matrix model. And, as we saw before this is a particular sector of the AdS5×S5

superstring and can be used in order to study the dual sector in the N = 4 D = 4 SYM

theory. The particular observables residing in the dual of this sector are proposed to

be the circular Wilson loops which from their symmetry we will argue that their duals

in the string theory side can be captured by particular observables in the topological

A-model on CP(3|4) or its equivalent matrix model. We start by studying briefly the half-

BPS circular Wilson loops which was studied in [28] and confirmed in [67] to produce

exactly a Gaussian matrix model. Then we go to the string theory side, using our

topological construction, we will show that the exact result of the gauge theory side can

be calculated in the string theory side. It is an exact check of the Maldacena conjecture.
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4.4.2.1 Circular Wilson loops in N = 4 d = 4 SYM

In gauge theory, a Wilson loop is a gauge-invariant observable obtained from the holon-

omy of the gauge connection around a given loop. In the classical theory, the collection

of all Wilson loops contains sufficient information to reconstruct the gauge connection,

up to gauge transformations [68].

If we consider a SU(N) gauge theory, the Wilson loop can be defined as the path-ordered

exponential of the gauge field as follows

W =
1
N

Tr P exp
(

i

∮
Aµdxµ

)
(4.4.69)

where the trace is defined in the fundamental representation. We can define this Wilson

loop for any closed path in the target space and they define a class of observables in

the gauge theory forming a complete basis of gauge invariant operators for pure Yang-

Mills theory. The Wilson loop is actually the phase of a quark in the fundamental

representation of the gauge group.

In N = 4 SYM we have the gauge field Aµ, six scalars φi for i = 1 to 6 and four Weyl

fermions λa, a = 1 to 4 in the adjoint representation of the SU(N) gauge group. This

theory does not have any quark in the fundamental representation and we have to use

the W-bosons to probe the theory and make the Wilson loops. To do this we consider a

non-zero expectation value for the six scalars and parametrize the vacuum expectation

values with a point θi on the unit five-sphere which is defined as θ2 = 1. The phase factor

associated to the trajectory of the W-boson in the path we defined gives the following

Wilson loop operator

W =
1
N

TrP exp i

∮
(Aµẋµ + iΦi|ẋ(s)|θ(s)) (4.4.70)

where s parametrizes the point on the five-sphere. This special loop is taken to be locally

supersymmetric.

We can write the expectation value of the Wilson loop (4.4.70) around some contour C
order by order in perturbation theory as follows

〈WC〉 =
∞∑

n=0

Anλn (4.4.71)

where λ = g2
Y MN is the ’t Hooft coupling. The first terms are computed as follows

A0 = 1 (4.4.72)

A1 =
1
2

∮
ds1

∮
ds2

1
N

Tr
(
−ẋµ

1 ẋν
2 〈Aµ(x1)Aν(x2)〉+ |ẋ1|θi

1|ẋ2|θj
2 〈Φi(x1)Φj(x2)〉

)
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We are working in R4 and all the propagators are translationally invariant because of

the symmetry of the background. Also, since N = 4 SYM in four space time dimension

is conformal invariant, the Wilson loop is also conformal invariant and in this way we

can relate the expectation values of the Wilson loops of the contours which are related

through a conformal transformation.

The contour which we are interested in is the circle in which we want to do explicit

computations. Since the circle and the line are related through a large conformal trans-

formation as we see in figure (4.4.2.1), so we use a conformal anomaly statement to

compute the value for the circle from the one of the straight line.

Figure 4.6: Line and circle are related through an inversion on the plane.

We start by computing the expectation value for the line. The line can be parametrized

on R4 as follows

xµ = (τ, 0, 0, 0) (4.4.73)

One can check that it preserves 16 out of 32 supersymmetries and so it is a 1/2-BPS

object. Using parametrization (4.4.73), it was shown [28] that the sum of the gluon and

scalar propagetors vanishes and so in the perturbative series (4.4.71) the only non zero

term is A0 = 1 and so we have the exact result

〈Wline〉R4 = 1 (4.4.74)

One reason for this simplicity is related to the fact that it is a BPS object which ensures

that there are no contributions to any order of λ in (4.4.71).

Instead, the circle can be parametrized as follows

xµ = R(sin τ, cos τ, 0, 0) (4.4.75)

It preserves a subgroup SU(1, 1) × SU(2) × SO(5) of the global symmetry, half of the

supersymmetries and so it is also a 1/2-BPS object but we can not apply the same

reasoning we used for the straight line because the difference of the gluon and scalar
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propagators is not zero here but it is a constant. In order to compute the value of

〈Wcircle〉R4 we use a simple conformal anomaly statement which relates the line and

circle thorough the large conformal transformation xµ → xµ/x2 and the fact that four-

dimensional N = 4 SYM is a superconformal theory. Note that even if the theory is a

superconformal theory, the inversion is not a symmetry of R4 but a symmetry of the S4.

We have that

〈Wline〉R4 6= 〈Wline〉S4 (4.4.76)

This comes from the fact that under the inversion the two end points of the line are

mapped to a single point on S4 and we are missing a point as it is seen in figure (4.4.2.1)

Figure 4.7: The two end points of the line are mapped to a single point under the inversion.

Noting that S4 = R4 ∪ {∞}, the difference between the Wilson loop of the line on R4

and S4 just comes from the point at infinity

〈Wline〉S4 = 〈Wline〉R4 + 〈Wline〉∞ (4.4.77)

where 〈Wline〉∞ is the contribution of the point at infinity.

On the other hand, a circle is mapped to a circle under inversion, also the line and the

circle are conformally the same on S4, so we have

〈Wcircle〉R4 = 〈Wcircle〉S4 = 〈Wline〉S4 (4.4.78)

Comparing (4.4.77) and (4.4.78) and using 〈Wline〉R4 = 1 we get

〈Wcircle〉R4 = 〈Wline〉∞ (4.4.79)

Which means that the result for the circle is equivalent to the result for a single point

at infinity which is like a 0-dimensional field theory, namely a matrix model. This was

shown in [28] and [67] that is computed through the following hermitian Gaussian matrix



Chapter 4. An exact check of AdS/CFT duality using the topological A-model 115

model

〈Wcircle〉R4 =
〈

1
N

Tr exp(M)
〉

=
1
Z

∫
DM

1
N

Tr exp(M) exp
(
− 2

g2
Y M

TrM2

)
(4.4.80)

with a set of observables expanded in the basis of the matrix model.

We will see in the next section that this result can be produced exactly with a set of

D-branes which we proposed to be the dual of this circular Wilson loops in the AdS5×S5

superstring side.

4.4.2.2 Dual of the circular Wilson loops in the superstring

Here we want to find the dual observables of the circular Wilson loops and to do the

computations in the superstring side. The dual objects which was proposed as the dual

of the Wilson loops in the superstring theory side were the D-branes which the Wilson

is realized as the loop which made by the D-brane on the boundary of the AdS5 [30, 69].

In section 4.3.1 we took the following boundary conditions for strings as the defining

equations of D-branes

(Θ̄t)A
J = εA

BΘ∗B
KδK

J (4.4.81)

We observed that for a particular choice of the matrices ε and δ as in (4.3.2), the D-brane

breaks the symmetry of the AdS5 × S5 coset to the following supercoset

OSp(4∗|4)
SO∗(4)× USp(4)

(4.4.82)

which can be shown to be correspond to D-branes wrapping AdS2×S4 geometries inside

AdS5×S5 [29]. As such, this states realize the circular Wilson loops in an alternative way

because they are preserving the same amount of suppersymmetry and global isometry.

It was also shown that the boundary conditions (4.4.81) translated into the following

boundary conditions in the gauged linear sigma model

(Φ†)R
J δtJ

I = κ†
R
S Φ̄S

I and (Φ†)R
AεtA

B = κ†
R
S Φ̄S

B (4.4.83)

where the matrix κ specifies to which twisted sector of the coulomb branch vacuum

(ĈP(3|4)
)4//S4 the D-branes couple. For the particular choice of κ

κ =




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0




(4.4.84)
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the gauge symmetry is maximally breaks and the D-branes are just couple with one copy

of ĈP(3|4)
because it commute with the permutation S4.

For this particular observables defined from the choice of (4.4.84) and the choice of δ and

ε as in (4.3.2) the boundary conditions can be explained as the boundary conditions in

the projective space ĈP(3|4)
. So we just need to study the D-branes in the topological A-

model on ĈP(3|4)
which is defined with the gauged linear sigma model with bosonic and

fermionic fields φI and ψA with I, A = 1 to 4 with the following boundary conditions

coming from (4.4.83)





φI = φ̄I

ψa = ψ̄′a
ψ′a = −ψ̄a

where I = 1 · · · 4, a = 1, 2 and ψ′1 ≡ ψ3, ψ′2 ≡ ψ4 (4.4.85)

these boundary conditions correspond to a Lagrangian submanifold because the Kähler

form

ω = dφIdφ̄I + dψadψ̄′a + dψa+2dψ̄′a+2 (4.4.86)

vanishes on this subspace because (4.4.85) sends ω → −ω whose fixed locus identifies

the Lagrangian cycle.

This Lagrangian cycle can be traced back in the mirror geometry as in [70]. Therefore,

applying to the mirror dual at hand, the Lagrangian submanifold in ĈP(3|4)
gets mapped

to the non compact holomorphic cycle defined as follows

η = 0 , uv − ηχ = t′ (4.4.87)

in the superconifold mirror picture. In the singular limit these turn out to be C(1|1) non

compact branes. Their fate after geometric transition is to stay non compact, so these

are along a fibration on the base ĈP(0|1)
via a complex curve in the fiber direction which

has to compensate the superdimension counting.

Therefore, if in the A-model we add M D5-branes, these correspond after the duality

to M B-branes along the above non-compact cycles. Now, the open string at hand

therefore, on top of the sector of N D-branes along the base, also has the open strings

connecting them with the dual image of the M D-branes. Correspondingly, the reduced

gauge field in the holomorphic Chern-Simons theory becomes

A =

(
A Y

Ỹ X

)
=⇒





A → open strings ending on compact branes

Y, Ỹ → open strings ending on both type of branes

X → open strings ending on non-compact branes

(4.4.88)
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where the gauge field components Y and Ỹ t are the M × N components with mixed

boundary conditions and A and X are N ×N and M ×M components for open strings

ending on just one type of branes with the following holomorphic Chern-Simons action

ShCS(A) =
1
gs

∫

X
Ω ∧ TrM+N

(
A ∧ ∂̄A+

2
3
A ∧A ∧A

)
(4.4.89)

Being the transverse branes non-compact, the relative gauge field has been kept frozen

because its contribution to the holomorphic CS action

1
gs

∫

X
Ω ∧ TrM

[
X ∧ ∂̄C +

2
3
X ∧X ∧X + Ỹ ∧X ∧ Y

]
(4.4.90)

is zero upon the reduction to the base ĈP(0|1)
because neither X nor Y has a ∂̄dz term

to complete the holomorphic three-form Ω and so the integral becomes identically zero

and we can just neglect the open strings in the non-compact M ×M sector since they

decouple from the rest.

Therefore the action gets reduced as

ShCS(A) = ShCS(A) +
1
gs

∫

X
Ω ∧ Y D̄AỸ (4.4.91)

where D̄A is the covariant ∂̄ operator.

Dimensionally reducing to the base and integrating the reduced (Y, Ỹ ) sector one gener-

ates the corresponding observable in the matrix model. In formulas, we have therefore

∫
dFe

− 1
2gs

TrF 2OM (F ) (4.4.92)

By expanding the observable in characters as

OM (F ) =
∑

i,{ni}
OM (i, {ni})

∏

i

TreniF (4.4.93)

one obtains the expansion of the D5-brane amplitudes in terms of 1/2 BPS circular Wil-

son lines (see Section 4 in [28]). The explicit dictionary needs a much deeper elaboration

on the specific form of the observables which will follow from the analysis of the reduced

theory on the base of the resolved superconifold. The prototype of such an analysis for

the usual conifold is in [17], although to be adapted to our case.

Here, we proposed a dual picture for the calculation of 1/2 BPS open string amplitudes

on AdS5×S5 with boundary conditions (4.4.81) in the large curvature regime. These has

been shown to reduce to observables in the hermitian Gaussian matrix model. Identifying
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gs = g2
Y M , we can interpret those topological string amplitudes as 1/2 BPS circular

Wilson loops.

There are two consistency checks of this result which are independent on the duality

chain we formulated. The first is a symmetry argument, which we already recalled, that

is the fact that AdS2×S4-branes break exactly the same 1/2 superconformal symmetry

as the 1/2 BPS circular Wilson loops do.

The second has to do with the ability of the matrix model to reproduce topological

strings amplitudes. Actually, in order for a candidate set of amplitudes to be compatible

with the topological gauge symmetry, these have to satisfy the consistency conditions

of BCOV [32], namely the holomorphic anomaly equations. This is a strict constraint

on any dual picture one might find for topological string amplitudes. The fact that this

proposed matrix model passes such a non trivial test is due to the analysis performed

in [33] where this was shown much more in general for the matrix models. Actually, the

D5-branes amplitudes then gets reduced to matrix integrals at finite N . The coinciding

genus expansion is consistent for the corresponding non local observable insertions which

we get in the form

TrenF =
∮

dx

2πi
enxTr

1
F − x

(4.4.94)

which is the natural form of the open string generated observables. It would be in-

teresting to further elucidate the properties of the specific realization via the Gaussian

hermitian matrix model also in direct comparison with the analysis in [71].



Chapter 5

The Antifield Lagrangian

quantization of gauge theories

5.1 Basics of gauge theories

Gauge theories are one of the most important ingredients of theoretical physics which

can be thought as a theory in which whose dynamical variables are specified with respect

to a reference frame in which one has the freedom to choose it arbitrary at any instant

of time. The physics is determined with the variables which are independent on the

choice of the local reference frame. This freedom to choose the local frame is the gauge

symmetry of the theory.

Gauge theories may be quantized by specialization of methods which are applicable to

any quantum field theory. However, because of the subtleties imposed by the gauge

constraints there are many technical problems to be solved which do not arise in other

field theories. At the same time, the richer structure of gauge theories allow simplification

of some computations: for example Ward identities connect different renormalization

constants. Here with quantization we mean the path integral quantization. A classical

mechanical theory is given by an action with the permissible configurations being the

ones which are extremal with respect to functional variations of the action. A quantum-

mechanical description of the classical system can also be constructed from the action of

the system by means of the path integral formulation. One should start from a physical

system with degrees of freedom labeled by φi, which for simplicity here we take them

to be bosons. On this configuration space of fields, an action S[φ] can be defined as a

functional over field configurations which governs the dynamics of the theory. One can

define the partition function as the path integral over all the possible field configurations

119
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as follows

Z[φ] =
∫

[dφ]e
i
~S[φ] (5.1.1)

where each configuration contributes with a phase which is determined with the action

for that field configuration.

The classical solution of the theory is determined as usual from the stationary surface

which is defined from the equations of motion or Euler-Lagrange equations given by

y(φi) =
δS

δφi
(5.1.2)

we assume that we are studying theories in which they have at least one classical solution.

The quantum solution is obtained after adding the quantum fluctuations around the

classical solution.

The next step is to enter some symmetry in the theory. Suppose there exist a set of

operators Ri
α[φ] with the following relation

yi(φ)Ri
α[φ]εα = 0 (5.1.3)

for any value of the parameter ε. For the case in which the parameter εα depends on

the target space coordinates, we have a gauge theory and the symmetry is local . The

Ri
α are the gauge generators.

A consequence of (5.1.3) is that there are some zero modes for the Hessian, namely

solutions for the following equation

→
δ

δφj

←
δ S[φl

0]
δφi

·Ri
α[φl

0] = 0 (5.1.4)

where the zero modes Ri
α[φl

0] impose the following infinitesimal transformation on the

stationary surface

yi(φl
0 + Rl

α[φk
0]ε

α) = 0. (5.1.5)

This maps a classical solution to another one.

For the case of the global symmetry where ε’s are independent of space-time, the sta-

tionary surface becomes a finite dimensional space but in the case of the local symmetry

we have an infinite dimensional space as the stationary surface since we can take a set of

parameters εα for any point in space-time. This is the very basic difference of the global

and local symmetries which shows itself already in the level of classical solutions. The
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global symmetries are relating a set of classical solutions but the existence of a local

symmetry means that not all field equations are independent and so not all the field

degrees of freedom are fixed by the equations of motion. There is an arbitrariness in the

field space which relates to the gauge degree of freedom. To get ride of this arbitrariness

one should impose some constraints in the field space which are named gauge fixing

conditions.

The next step after studying the classical solutions of a gauge theory is to quantize it.

Here, if simply exponentiate the action like (5.1.1) and sum over the field configurations

we will end with problems which are originating from the arbitrariness arises from the

gauge symmetry.

In order to quantify this problem more in detail, consider quantum fluctuations around

the classical solution which can be decomposed in two components

φi = φi
0 + δ‖φi + δ⊥φi (5.1.6)

here δ‖ and δ⊥ are the variations parallel and orthogonal to the stationary surface

respectively. One can see from (5.1.5) that δ‖φi = Ri
αεα. The measure of the path

integral also splits as follows

[dφ] → [dε][dδ⊥φ] (5.1.7)

The action is expanded around the classical solution as follows

S[φi] = S[φi
0] + δ⊥φj

←
δ

δφi

→
δ

δφj
S[φi

0]δ⊥φi. (5.1.8)

As we can see, the integrand of the path integral is independent of the gauge transfor-

mation parameters εα, so they can be factorized. This might lead to divergences which

should be cured with the methods which will be explained.

Another important property of the gauge systems is that the gauge transformations

usually form a gauge algebra. To study this consider the field φi has Grassmann parity

εi
G. Consider gauge generators Ri

α which satisfy

yiR
i
α = 0 (5.1.9)

εR
G = εi

G + εα
G
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where as before, y =
←
δ S
∂φ is the stationary surface equation. Suppose that the gauge

generators form a complete set, namely they satisfy

yiX
i
β̄(φ) = 0 ⇒ Xi

β̄(φ) = Ri
αεα

β̄(φ) + yjM
ij

β̄
(φ), (5.1.10)

for all possible Xi
β̄
. Where β̄ is an arbitrary set of indices. And where M ij

β̄
is graded

antisymmetric M ij

β̄
= (−1)εi

Gεj
G+1M ji

β̄
.

Using (5.1.10), we can find a relation which should be satisfied by Ri
α to maintain

consistent gauge transformations

←
δ Ri

α

δφj
Rj

β − (−1)εαεβ

←
δ Ri

β

δφj
Rj

α = Ri
γT γ

αβ(−1)εα − yjE
ji
αβ(−1)εi(−1)εα (5.1.11)

for some tensors T γ
αβ and Eji

αβ which classify the gauge algebra. In the case when Eji
αβ = 0

the algebra is closed and the T γ
αβ becomes the structure constants of the Lie algebra.

In [72] it was shown that always there exist a set of generators for the gauge algebra in

which it becomes closed.

Another important property of a gauge algebra is its reducibility. If operators Zα
β [φ0]

exist such that

Ri
α[φ0]Zα

β [φ0] = 0 (5.1.12)

on the stationary surface, this means that not all the zero modes (5.1.4) of the Hessian

are independent and so the gauge algebra is reducible. If there is no such Zα
β then the

gauge algebra is irreducible and all the zero modes are independent. This is the case in

some particular gauge theories we will explore in the next sections.
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5.2 Faddeev-Popov quantization procedure

On of the quantization methods was developed by L.D. Faddeev and V.N. Popov [73]

based on the path integral formulation of gauge theories. As we saw before, in the general

path integral for a gauge theory, in order not to get infinities, one should integrate

over whole configuration space, but over the space of gauge orbits. Gauge orbits are

subspaces of the configuration space which can be connected by gauge transformations

and therefore they have the same action. In order to get ride of the infinity each gauge

orbit should contribute once in the path integral. The procedure which selects just one

configuration on each gauge orbit is through introducing gauge fixing conditions which

selects just one particular configuration from each gauge orbit contributing in the path

integral.

To determine explicitly a gauge orbit we note that each gauge orbit is parametrized

with a set of parameters θα where its index is a gauge index running over all the gauge

symmetries parametrized by gauge generators Ri
α and so they have the same dimen-

sion. Different gauge orbits are connected with infinitesimal gauge transformations. A

particular gauge orbit is defined as follows

δφi(θ)
δθβ

= Ri
α[φl(θ)]λα

β(θ) (5.2.1)

for some unspecified function λα
β(θ) which relates to the fact that we can choose different

gauge generators Ri
α. As it comes from its definition, the action is equal for all the

configurations on a particular gauge orbit

δS[φi(θ)]
δθα

= yiR
i
αλα

β = 0 (5.2.2)

where the functions λα
β satisfy

δλα
β

δθγ
− δλα

γ

δθβ
+ tαµνλ

µ
βλν

γ = 0 (5.2.3)

which comes from the integrability of (5.2.1), namely the analogue of the Maurer-Cartan

equations

δ2φi(θ)
δθγδθβ

− δ2φi(θ)
δθβδθγ

= 0 (5.2.4)

different choices of λα
β give rise to different ways of defining the coordinates of the gauge

orbits.
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After defining the gauge orbits, the measure of the path integral splits naturally into

two pieces, over the space of gauge orbits and over the configurations of a particular

gauge orbit

[dφ] = [dΦi
0].

∏

l

[dθα
l ]. detλ (5.2.5)

where θα
l are the coordinates on the l-th orbit and [dθα

l ] is the measure for integrating

over the configurations which lie on a particular gauge orbit. The detλ just makes

the integration over the gauge orbits to be coordinate invariant. The first part of the

measure [dΦi
0] is the measure over the space of different orbits.

In order to render infinities which is made by integration over the gauge orbits, since

they encode the same field configuration, we can make use the fact that the action is

constant under the change of the gauge orbit coordinate θα. To do this, we choose just

one configuration on each orbit by using δ−functions and rewrite the measure over the

gauge orbits [dθα
l ] as follows

[dΦi
0]

∏

l

[dθl] detλ.
δ (θα

l −Θα
l )

det λ
= [dφ].

∏

l

δ (θα
l −Θα

l )
det λ

(5.2.6)

where Θα
l are the base coordinates for the configurations which is selected over l−th

gauge orbit. The more practical way to select one configuration over each gauge orbit is

by choosing a set of gauge fixing functions Fα(φi) which are as many as the coordinates

of the gauge orbit. Then we put delta functions δ(F iα(φi)− fα(φ)) in the path integral

for some function fα. This can be related to a δ−function in terms of the coordinates

as follows

δ (Fα(φ(θl))− fα) =
1

det M
δ (θα

l −Θα
l ) (5.2.7)

where here Θα
l is defined as the solution of Fα(φ(θl))− fα = 0 and the matrices Mα

β are

defined as

Mα
β =

δFα(φ(θ))
δθβ

(5.2.8)

After using (5.2.1) this can be rewritten as follows

Mα
β =

δFα(φ(θ))
δφi

Ri
γλγ

β (5.2.9)

Then one can write the measure of the path integral as follows

[dφ]
1

detλ
. detM.δ(Fα − fα) (5.2.10)
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ant the path integral becomes

Z =
∫

[dφ]
1

detλ
. detM.δ(Fα − fα).e

i
~S (5.2.11)

In order to make the determinant computable, we can enlarge the field space by adding

one pair of fields (bα, cα) of reverse Grassmann parity for every gauge generator Ri
α and

use the following identity

detM =
∫

[db][dc] exp
[

i

~
bαMα

β cβ

]
=

∫
[db][dc]e

i
~Sghost (5.2.12)

This new sector is the ghost sector in which cα and bα are the ghosts and antighosts

respectively. The action for the ghost sector Sghost can be defined after using λγ
βcβ

instead of cα as the ghost, then the action becomes

Sghost = bα
δFα

δφi
Ri

βcβ (5.2.13)

where now the Jacobian of the transformation λγ
βcβ → cα cancels the detλ factor in the

path integral (5.2.11).

Finally, in order to write the partition function in a way that is independent of the choice

of the functions fα, one can integrate over fα with a suitable factor W [f ] such that

∫
[df ]W [f ] = 1 (5.2.14)

Taking a Gaussian gauge fixing factor W [f ] = Ne
i

2~f2
we get the following partition

function

Z =
∫

[df ] Z W [f ]

=
∫

[dφ][db][dc] e
i
~Scomplete (5.2.15)

where the complete action splits into three terms, the original action, the ghost term

and the gauge fixing term

Scomplete = S0 + Sghost + Sgf

= S + bα
δFα

δφi
Ri

βcβ +
1
2
F 2 (5.2.16)

This was the basic ingredients of the first gauge quantization procedure. As we can see

the gauge fixed action (5.2.16) has no longer the gauge invariance anymore. However,

the gauge invariance is expected to be present also in the quantum theory and it is the

subject of the next section which studies the traded form of the gauge invariance into a
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global symmetry which exist during all the quantization procedure and is called BRST

symmetry. Also we can obtain the gauge fixed action using this symmetry.
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5.3 BRST quantization of gauge theories

Another quantization method which we are going to discuss in this section is the BRST

quantization which was developed by C. Becchi, A. Rouet, R. Stora and I.V. Tyutin in

[74]. It is based on the observation that the local gauge symmetry can be replaced with

a global symmetry which is present during all the quantization procedure and even for

the gauge fixed action. This is the basic procedure will be used to construct the antifield

formalism in the next section.

First, we start by introducing the BRST symmetry and then we see the construction of

the gauge fixed action of the quantum theory. It appears that the gauge fixed action

Scomplete is indeed invariant under the BRST symmetry.

We start from a classical action S0[φi] with a gauge symmetry which specified by the

generators Ri
α[φ]. In order to construct the BRST symmetry first we have to use the

BRST operator s which is a fermionic, linear differential operator acting from the right

as follows

s(X.Y ) = X.sY + (−1)εY sX.Y (5.3.1)

with the following action on the Fields

sφi = Ri
α[φ]cα (5.3.2)

where we introduced a ghost degree of freedom cα for every gauge generator with opposite

statistics. For function(al)s that depend on the classical fields, the BRST invariance

(5.3.2) is equivalent to gauge invariance, an example of which is the classical action

which is invariant under the BRST transformation as sS0 = yiR
i
αcα = 0.

The BRST operator should be nilpotent nilpotent which is related to the closure of the

corresponding gauge algebra, namely

s2 = 0 (5.3.3)

which is guaranteed by choosing the BRST transformation for the ghost fields as follows

scγ = T γ
αβ [φ]cβcα (5.3.4)

We can always enlarge the set of fields by pairs like Da and da named as trivial system

for an arbitrary set of indices a with the following BRST transformation rules

sDa = da , sda = 0 (5.3.5)
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Since the classical action we start with does not depend on Da fields, shifting these

fields is a local symmetry of the theory and the da fields are the associated ghost fields

corresponding to this gauge symmetry. The form of their BRST transformations (5.3.5)

ensures its nilpotency. Adding this trivial sector to theory will be shown to have useful

applications. An example of which is the Faddeev-Popov antighosts which are introduced

exactly in this way

sbα = λα , sλα = 0 (5.3.6)

We can assign a grading to each field which is called the ghost number with the following

assignments

gh(φi) = 0 , gh(cα) = 1 (5.3.7)

gh(bα) = −1 , gh(λα) = 0

The BRST operator itself carries a ghost number gh(s) = 1.

The next step after introducing the BRST operator is to use this operator to construct

the gauge fixed action. The claim is that there exist a functional Ψ which is named as

gauge fermion such that

Scomplete = S0 + sΨ (5.3.8)

The gauge fermion has ghost number −1 and odd Grassmann parity. Since φi and cα

have ghost number 0 and 1 respectively, we can not make a suitable gauge fermion out

of them. We should introduce a trivial pair (bα, λα) with gh(bα) = −1. It can be proved

that as long as Ψ leads to path integrals that are well-defined, means that they do not

have gauge invariance, the path integral is independent of the form of the gauge fermion.

This is an important consequence of the BRST quantization which admits systematically

to apply different gauge fixings of the theory which are useful for their specific purpose.

This will be used to find different gauge fixings of the G/G principal chiral model in

the next chapter. An example of gauge fermion is the one which produces the Faddeev-

Popov gauge fixed action by taking Ψ to be Ψ = bα (Fα − λαa) which gives the following

action

Scomplete = S0 + sΦ = S0 + bα

←
δ Fα(φ)

δφi
Ri

βcβ + Fαλα − aλ2(−1)εα (5.3.9)

This is equivalent to Faddeev-Popov gauge fixed action (5.2.16) after integrating over λ.

Since the gauge fixed action is written as (5.3.8), and the classical action S0 is invariant
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under the BRST transformations by construction, it is invariant under the BRST trans-

formation too because the BRST charge is nilpotent. The original gauge symmetry now

translates into the BRST symmetry which is manifest also for the gauge fixed action.

One can show easily that for an action which is invariant under the BRST transformation

we have

〈sX(φ)〉 =
∫

[dφ].sX.e
i
~S[φ] = 0 (5.3.10)

for any X(φ). These are the Ward identities which can be proved easily by using BRST

technique. Using these Ward identities it is possible to show that the gauge invariance is

replaced with the BRST symmetry also for the quantum theory. And the gauge invariant

observables can be characterized by conditions

s Ω[φ] = 0 (5.3.11)

which means they have to be BRST closed.

Using Ward identity it is possible to show that two functions which differ with a BRST

exact term, i.e. a BRST variation of something, like X2 = X1 + sΩ have the same

expectation value 〈X1〉 = 〈X2〉. Since the BRST operator is nilpotent we can conclude

the last two sentences in the following theorem

Theorem 5.1. The gauge invariant operators of the gauge theory are given with the

non-trivial cohomology classes of the BRST operator s at ghost number zero.

Namely if we define the cohomology group of the BRST differential as

H(s) =
ker s

Im s
(5.3.12)

where it can be splited in different sectors according to the ghost number grading as

H(s) =
∑

g H(g)(s), then we have

H(0)(s) = {classical gauge invariant observables} (5.3.13)

where H(0)(s) consists of the functions A with gh(A) = 0 such that

sA ≡ [A,S] = 0 (5.3.14)

where S is the BRST generator.

In the next sections we will explore more in detail the cohomology group of the BRST

operator and its elements for different ghost numbers.
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5.4 The BV antifield formalism

The antifield formalism is another way of quantization of gauge theories which is mainly

based on the BRST Lagrangian quantization which we discussed in the previous section.

It was developed by Batalin and Vilkovisky [75, 72]. In this approach the BRST sym-

metry of the theory is enlarged in a way that Schwinger-Dyson equations which are the

shift symmetries of the theory become Ward identities of the theory and one can have a

direct Lagrangian formalism of the theory without the need to pass to the Hamiltonian

formalism.Using Lagrangian formalism we have all the adapted covariance in hand. This

makes it easier to study and quantize the gauge theories.

Here again we start from a classical action S0[φ] depending on the fields φ which admits

a gauge symmetry which we assume to be irreducible and closed. We can construct the

nilpotent BRST operator in a way we spoke before acting on the extended set of fields

φA =
{
φi, cα, Da, da

}
including also the ghosts and the trivial pairs.

Another ingredient of the antifield formalism is an antibracket (·, ·) which replaces the

Poisson bracket of the Hamiltonian formalism which acts as a canonical transforma-

tion sA = [A, s]. Here the BRST transformation of the BV formalism is a canonical

transformation in the antibracket which acts as follows

sA = (A, S) (5.4.1)

where S is the generator of the BRST symmetry.

After introducing new degrees of freedom named as antifields for each field and ghost,

we can see that using this antibracket there is a symmetry between the fields and ghosts

on one hand and the antifields on the other side. This symmetry appears as a conjugate

relation between fields and antifields as follows

(φi, φ∗j ) = δi
j , (cα, c∗β) = δα

β (5.4.2)

where the φ∗A = {φ∗i , c∗α} is the antifield sector which we add in order to realize this

symmetry. The antifields are related to the variation of the action with respect to a

particular differential which we will speak later. They have also opposite Grassmann

parity with their corresponding field.

We can assign the following ghost number to the fields, ghosts and antifields as follows

φi cα φ∗i c∗α
0 1 -1 -2

−→ ghost number (5.4.3)
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The definition of antibracket can be extended to any arbitrary functional X, Y of the

fields, ghost and the antifields as

(X, Y ) =
δRX

δzA
ωAB δLY

δzB
=

δRX

δφA

∂LY

δφ∗A
− δRX

δφ∗A

δLY

δφA
(5.4.4)

where zA =
{
φA, φ∗A

}
and ωAB(z) is the inverse of the symplectic form of the space of

fields and antifields ω = ωABdzAdzB which can be written explicitly in this way

ω = δφA ∧ δφ∗A (5.4.5)

and the variations are with respect to the BRST charge defined before.

Because of the parity and ghost number of the antibracket which can be seen from (5.4.2)

and (5.4.8), the generator of the BRST transformation S should have the following

Grassmann parity and ghost number

εG(S) = 0 , gh(S) = 0 (5.4.6)

The nilpotency of BRST operator s translated into the following condition

(S, S) = 0 (5.4.7)

this is named as the master equation. The problem of finding the BRST symmetry as a

canonical transformation in the antibracket becomes equivalent to the problem of finding

the solution of S of (5.4.7) with the consideration that it should produce the classical

action after putting the antifields to zero.

To solve the master equation is a crucial step of getting the gauge fixed action of the

theory. In order to do so, we should introduce another grading which as we will see

it has a natural geometric interpretation. This new grading is named as the antighost

number with the following assignment

φi cα φ∗i c∗α
0 0 1 2

−→ antighost number (5.4.8)

which then one can define the pure ghost number as pure gh = gh + antigh.

we can decompose everything including the BRST operator s and BRST generator S

according the antighost number as

s =
∑

n≥−1

s(n) , S =
∑

n≥0

S(n) (5.4.9)
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with

antigh(s(n)) = n , antigh(S(n)) = n (5.4.10)

The fact that we started from antighost number −1 for s is related to the important

theorem that we will discuss later when we will explore the cohomology of the theory.

The minimum antighost number for S is one more than the one of s because of (5.4.2)

since it implies antigh((A,S)) = antigh(S) + antigh(A)− 1 = antigh(sA) = antigh(s) +

antigh(A) which gives

antigh(S) = antigh(s) + 1 (5.4.11)

Here we assume that the BRST operator can be expanded explicitly as follows

s = δ + d + ”more” (5.4.12)

where δ is the Koszul-Tata differential with antighost number −1 and d is a differential

with antighost number zero which anticommutes with δ and is longitudinal exterior

derivative along the gauge orbits on the stationary surface. This splitting has many

influences in deriving the cohomology of BV action using the homological perturbation

theory.

We can use this form of BRST charge according to antighost number to solve the master

equation using the fact that any field-antifield pair transform under the Koszul-Tata

differentiate as follows

δφi = 0 , δφ∗i =
δS0

δφi
(5.4.13)

correspondingly we have the following transformations coming from (5.4.1)

(φi, S) = dφi + ”more” , (φ∗i , S) = δφ∗i + ”more” (5.4.14)

(cα, S) = dcα + ”more” , (c∗α, S) = δc∗i + ”more”

Since the differential d is the exterior derivative along the gauge orbits on the station-

ary surface, it just measures how the p−forms change as one moves along a particular

gauge orbit. It contains no information about the transverse directions and is such that

H0(d) = {gauge invariant functions}. It generates the following BRST transformations

coming from (5.3.2) and (5.3.4)

dF =
δF

δφi
Ri

αcα , dcα =
1
2
Tα

βγcβcγ (5.4.15)
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The differential d is actually the BRST differential which we used in the previous section.

Actually one of the effects of adding the antifields to the theory is to generalize the

BRST operator with terms which they are absent in the usual interpretation of the

BRST symmetry as the global extension of the local gauge symmetry.

The nilpotency of the BRST operator s translates into the following conditions

δ2 = 0 , dδ + δd = 0 (5.4.16)

taking the following gradings

pure gh(δ) = 0 , pure gh(d) = 1 (5.4.17)

antigh(δ) = −1 , antigh(d) = 0 (5.4.18)

Now we should solve the master equation (5.4.7) by using (5.4.14) using the expansion

(5.4.9), we get for each antifield degree of the expansion of the action the following

equations coming from the master equation

S(0) = S0 (5.4.19)

S(1) = φ∗i R
i
αcα (5.4.20)

S(2) =
1
2
Tα

βγc∗αcβcγ (5.4.21)

The next terms in S are then determined recursively by equations of this form

2δS(n) + H(n−1) = 0 (5.4.22)

where the local functional H(n−1) is the antighost number n − 1 component of the

(R(n−1), R(n−1)) where R(n−1) =
∑

k≤n−1 S(k). So as we saw, a solution for master

equation exists. Furthermore, in order to find it as local functional, the expansion of S

should stop at some antighost number i.e. ∃N, S(n) = 0 for n ≥ N because the number

of derivatives may increase with n. Therefore to have a local functional we should not

have infinite number of S(n)’s.

Finally we can write the first terms of S as the solution of master equation as an

expansion over antifield degree as follows

S = S0[φ] + φ∗i R
i
αcα +

1
2
T γ

αβc∗γcαcβ + ”more” (5.4.23)

where ”more” means possible terms with higher antighost number. This solution starts

from the classical action and continues as a polynomial in antifields.
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Always we have considered the gauge algebra to be irreducible and closed. For the cases

in which the gauge algebra is reducible or open, we have to add more terms in the

solution of the master equation to take into account the irreducibility.

The solution (5.4.23) of the master equation is not unique since because of (5.4.22) we can

always add a δ-exact term to S(n). Furthermore, we can always add to a given solution

further variables that are cohomologically trivial which don not modify the cohomology.

This trivial pairs construct the nonminimal solution of the master equation.

As we said before, the trivial pair (D, d) fulfill the following transformations

sDa = da , sda = 0 (5.4.24)

with the ghost numbers which are related as follows

gh(Da) = gh(da)− 1 (5.4.25)

These trivial pairs does not appear in the cohomology of the BRST operator, actually

the condition sF = 0 eliminates Da from the cohomology because of the nilpotency of

s, and since Da is not BRST closed. The further step in the cohomology eliminates d

which is BRST exact and its presence cancels in the Ker(s) and Im(s) and so does not

appear in the cohomology H(s) = Ker(s)
Im(s) .

We can add another trivial pair which let us to write a canonical action for the non-

minimal sector after introducing their antifields D∗s and d∗s which are conjugate to Da

and da satisfying the following antibrackets

(Da,D∗b ) = δa
b , (da, d∗b) = δa

b (5.4.26)

which implies also gh(D∗) = −gh(D)− 1 and gh(d∗) = −gh(d)− 1.

A possible non-minimal term in the action which produces (5.4.24) through the an-

tibracket of (D, S) = d and (d, S) = 0 is

Snm = D∗ada (5.4.27)

Using the antibrackets (5.4.26) it generates the following BRST transformations for their

antifields

sd∗ = D∗ , sD∗ = 0 (5.4.28)
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Finally the full action as the solution of the master equation is obtained after adding

the non-minimal sector

S = S0[φ] + φ∗i R
i
αcα +

1
2
T γ

αβc∗γcαcβ + ”more” +D∗ada (5.4.29)

The number of required extra trivial pairs depends on the gauge fixing conditions which

is desired as we will discuss later.

A very important property of S is that it is invariant under a set of gauge transforma-

tions. Let name collectively all the fields, ghosts and non-minimal fields as φA and their

antifields as φ∗A and the set of all fields and antifields as za = (φA;φ∗A). If we differentiate

the master equation (5.4.4) with respect to za we get

δRS

δza
Ra

c = 0 (5.4.30)

where Ra
c = ωab δLδRS

δzbδzc . This implies that the action S is invariant under the following

gauge transformation

δza = Ra
c ε

c (5.4.31)

The fact that the theory admits such a gauge symmetry means that the path integral

Z =
∫

[Dφ][Dφ∗]e
i
~S(φ,φ∗) (5.4.32)

where the integration is over all the filed and antifield space and is divergent and ill-

defined before gauge fixing. In order to get ride of this problem one can put some

constraints on the antifields in which in the space of field-antifields get projected to a

submanifold on which the divergent part of the measure factorizes and the rest become

a well defined path integral. This is a consequence of the gauge fixing (5.4.31) as it

appears as a symmetry between fields and antifields.

We can take the constraint to be a gradient in order to use Stokes theorem later

φ∗A =
δψ

δφA
(5.4.33)

which after using the Stokes theorem a general path integral over a general polynomial

of antifields V (φ, φ∗) = V0(φ) + V (1)φ∗ + V (2)φ∗2 + · · · becomes

∫
[Dφ][Dφ∗]V

(
φ, φ∗ =

δψ

δφ

)
=

∫
[Dφ]V (5.4.34)

the function ψ(φ) must have ghost number −1 and Grassmann parity 1 in order to

preserve the grading properties of the antifields and fields in (5.4.33), it is named as
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gauge fixing fermion since it project the field-antifield space to the gauge fixed subspace.

Another important thing which should be checked is the fact that the path integral

does not depend on the choice of the gauge fermion and it happens actually when the

Laplacian of the action vanishes since in order to get (5.4.34) we used the Stokes theorem.

So we should have

∆S = 0 (5.4.35)

where the Laplacian is defined as

∆ =
δR

δφA

δR

δφ∗A
(−)εA

G−1 (5.4.36)

here εA
G is the Grassmann parity of the field φA. This operator has the following prop-

erties

∆2 = 0 , εG(∆) = 1 (5.4.37)

One can check that the surface which is defined in the field-antifield space with the

equations

OA(z) ≡ φ∗A −
δψ

δφA
(5.4.38)

satisfies the following condition

(OA, OB) = 0 (5.4.39)

This means that the symplectic form (5.4.5) vanishes on this surface and since they

have half of the dimension of the field-antifield space because of their defining equation

(5.4.38), they are Lagrangian submanifolds of the field-antifield space.

In order to gauge fix the theory, we should define a Lagrangian submanifold on which

the path integral becomes well defied and its divergent part gets factorized.

The gauge fixed action can be written explicitly as the projection of the action to the

Lagrangian submanifold as follows

S|ψ = S0 +
δψ

δφi
sφi +

1
2
T γ

αβ

δψ

δcγ
cαcβ + ”more”|ψ (5.4.40)

Also the new BRST charge of the theory can be obtained as the projection of the original

BRST operator to the Lagrangian submanifold

sψφA = (sφA)
(

φ, φ∗A =
δψ

δφA

)
≡ δLS

δφ∗A

(
φ, φ∗A =

δψ

δφA

)
(5.4.41)
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under which the gauge fixed action is invariant

sψS|ψ = 0 (5.4.42)

It is nilpotent only on-shell

s|2ψφA = equations of motion (5.4.43)

In chapter (6) we will explore an example of the BV action, for the G/G principal chiral

model, and its different gauge fixings to produce the topological actions which are related

to pure spinor formalism and the A-model of the AdS5 × S5 will be explored.
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5.5 Consistent deformation of the BV action

The BV formalism gives the power to find consistent interactions among fields which

does not spoil the original gauge invariance of the theory in the sense of the deformation

theory.

Indeed, having a consistent interaction, the solution S(0) of the master equation can be

deformed as an expansion of the interaction parameter r as follows

S = S(0) + rS(1) + r2S(2) + · · · (5.5.1)

The master equation for a consistent deformation should also be satisfied which implies

(S, S) = 0 (5.5.2)

This splits according to different orders of the deformation parameter r as

(S(0), S(0)) = 0 (5.5.3)

(S(0), S(1)) = 0 (5.5.4)

2(S(0), S(2)) + (S(1), S(1)) = 0 (5.5.5)
...

The first equation is satisfied because we are deforming around a solution of the master

equation. The second equation (5.5.4) implies that S(1) is a cocycle for the BRST

operator s(0) = (·, S(0)).1 It can be shown [76] that if S(1) is a coboundary, it corresponds

to a trivial deformation which can be absorbed into S(0). This means that the nontrivial

deformations are elements of the cohomological space H0(s(0)) which is isomorphic to

the space of the observables of the original undeformed theory. From (5.5.5) we see that

the second order deformation S(2) exists if and only if the cocycle (S(1), S(1)) is trivial

in H1(s(0)). If not, there is no S(2) and the deformation gets obstructed at order r2.

It is the cohomological groups H0(s(0)) and H1(s(0)) which are giving the information of

the first-order deformations and the obstruction of continuing the deformation to higher

orders.

Here we are interested to find local deformations, deformations which can be expressed

as local functionals. Every term S(k) can be written as an integral over a n-form S(k) =∫ L(k) which depends on the fields, antifields and ghosts and a finite number of their

derivatives. A vanishing local functional A =
∫

a = 0 implies a = df where d is the

1It is the BRST operator we have always used before.
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space-time exterior derivative and
∮

f = 0. We can define an antibracket {a, b} for these

n-forms as

(A,B) =
∫
{a, b} (5.5.6)

which is defined up to d−exact terms.

One can rewrite the descent equations (5.5.3-5.5.5) as follows

s(0)L(1) = dj(1) (5.5.7)

s(0)L(2) + {L(1),L(1)} = dj(2) (5.5.8)
...

which implies again that the non-trivial local deformations are elements of the H0(s(0)|d)

which is the cohomology of s(0) modulo the exterior derivative d. The Second equation

(5.5.8) implies that S(2) exists if and only if the cocycle (S(1), S(1)) is trivial in H1(s(0)|d).

For a general theory, the BRST charge s contains all the fields and ghosts and solving

the descent equations (5.5.7-5.5.8) is not an easy task. In order to make it possible, one

can use the homological perturbation theory which relates the cohomology of s to the

cohomology of δ and γ. This relation goes through the following theorem [77]

Theorem 5.2. The cohomology group Hk(s|d) is given by

Hk(s|d) '
{

H−k(δ|d) k < 0

Hk(γ|d,H0(δ)) k ≥ 0
(5.5.9)

where ' means up to trivial terms and Hk(γ|d,H0(δ)) is the cohomology of Hk(γ|d) in

H0(δ).

Accordingly, in order to find the deformation space and to find H0(s|d) and H1(s|d), it

is enough to study their antifield independent components.

So, the next step is to find the cohomological group H(δ) of the G/G principal chiral

model as it was studied in [78] in order to find the possible deformations one can find

without spoiling the structure of the theory. This we will do in the next chapter after

introducing its BV action and we will see that the pure spinor superstring action arises

as a possible consistent interaction which one can add to the topological action.





Chapter 6

Towards a worldsheet description

of AdS/CFT duality

It was proposed by Berkovits in [35] and [36] that starting from a G/G principal chiral

model based on the supergroup PSU(2, 2|4) there are at least two different ways of

gauge fixing it which gives two topological models, the first is the A-model topological

action we described before, and the other is a topological theory whose supersymmetric

charge is equivalent to the pure spinor BRST charge

QSUSY = QBRST (6.0.1)

Here in this section based on an unpublished work [22], it will be explained that con-

structing the BV action for the G/G principal chiral model, in fact we can systemat-

ically gauge fix it and get two different topological theories. This topological theories

are conjectured to correspond to the zero radius limit of the pure spinor superstring

on AdS5 × S5 and so they are dual to the free N = 4 SYM. The connection of the

A-model and the other topological model with the same supersymmetry charge as the

BRST charge of the pure spinor hints that they have actually the same cohomology and

the topological model can explore all the physics of the pure spinor superstring and not

just its BPS sector. Next, we show that we can consistently deform the G/G model by

turning on the radius modulus and we see that the form of the deformation becomes

the pure spinor action itself as the vertex for this deformation. Using this picture one

might in principle apply the same analysis of Ooguri and Vafa for the case of conifold

and give a worldsheet proof for the Maldacena’s conjecture as we will comment later.

141
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6.1 BV action for the G/G principal chiral model

The G/G principal chiral model action can be written in this way

S0 = Str
∫

d2zηAB(J −A)A(J̄ − Ā)B (6.1.1)

where J and J̄ are the left and right components of the one-form J = g−1dg with respect

to the worldsheet ∂ and ∂̄ derivatives constructed from group elements of PSU(2, 2|4)

supergroup and (A, Ā) are PSU(2, 2|4) gauge groups on the worldsheet. They can be

expanded in the generators of the supergroup as follows

J = JATA , J̄ = J̄ATA (6.1.2)

where A here is a general PSU(2, 2|4) supergroup index.

An element g ∈ PSU(2, 2|4) can be represented in terms of the local coordinates hA on

the supergroup manifold as

g = ehATA (6.1.3)

The Cartan one-forms can be written in terms of the local coordinates too

JA = ωA
B(h)dhB (6.1.4)

The matrix ωA
B(h) is invertible because the Cartan forms JA form a basis for the super

algebra. One can find their inverse ωA
B(h) satisfying the following relation

ωA
B(h)ΩB

C(h) = δA
C (6.1.5)

The action is invariant under the following local symmetry transformations,

δA = dε + [A, ε] (6.1.6)

Which can be promoted to a BRST transformation after introducing the ghost fields C

taking value in the Lie algebra psu(2, 2|4).
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The nilpotent BRST transformation acts on the fields and the ghosts as follows,

sA = dC + [A,C] , (6.1.7)

sĀ = d̄C +
[
Ā, C

]

sJ = dC + [J,C]

sJ̄ = d̄C +
[
J̄ , C

]

sC = −1
2

[C,C]

To see the structure of these transformations we can use the Z4 automorphism grading

in which any field or ghost is decomposed in four classes (F0, F1, F2, F3) belong to Z4

equivalence classes (H0,H1,H2,H3). Because of the supergroup structure in which the

generators (T0 ∈ H0, T2 ∈ H2) are bosonic and (T1 ∈ H1, T3 ∈ H3) are fermionic,

different components of the fields and ghosts acquire the following Grassmann parities1

εG(A0, A2, J0, J2, C1, C3) = 0 (6.1.8)

εG(A1, A3, J1, J3, C0, C2) = 1

So the BRST transformations (6.1.7) can be rewritten in Z4 decomposition as follows

sA0 = dC0 + [A0, C0] + [A1, C3] + [A3, C1] + [A2, C2] , (6.1.9)

sA1 = dC1 + [A1, C0] + [A0, C1] + [A2, C3] + [A3, C2] ,

sA2 = dC2 + [A2, C0] + [A0, C2] + [A1, C1] + [A3, C3] ,

sA3 = dC3 + [A1, C2] + [A2, C1] + [A0, C3] + [A3, C0] ,

sC0 = −1
2

[C3, C1] ,

sC1 = −1
2

[C1, C0]− 1
2

[C3, C2] ,

sC2 = −1
2

[C2, C0] ,

sC3 = −1
2

[C3, C0] +
1
2

[C2, C1]

which is nilpotent off-shell. The BRST transformation of the left-invariant currents J

and J̄ are similar to the one of A and Ā replacing J with A.

The minimal BV action Smin(Φ, Φ∗) can be written as an expansion in powers of anti-

fields around the classical solution as we described in the previous chapter of this thesis,

Smin = S0 + Φ∗(i)sΦ
(i) (6.1.10)

1The Grassmann parity εG is zero for a boson and one for a fermion.
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where Φ(i) = (g, A,C) is the minimal set of fields and we introduced a set of their anti-

fields Φ∗(i) = (g∗, A∗, C∗) for them. The antifield of the group element g belongs to T ∗G

where G is the supergroup G = psu(2, 2|4). It and can be expanded as follows

g∗ = g∗ATAg−1 (6.1.11)

They satisfy the following antibracket actions,

(
Φ∗A, ΦB

)
= δB

A , (6.1.12)

(g∗A, g∗B) = −fC
ABg∗C ,

(g, g∗A) = −gTA

The minimal BV action can be written explicit for G/G as follows

Smin = SG/G+
∫

d2z

[
A∗A(dC+[A,C])A+Ā∗A(d̄C+[Ā, C])A+g∗ACA− 1

2
C∗

A [C,C]A
]

(6.1.13)

where A is a PSU(2, 2|4) index.

As we discussed before, we are allowed to add some cohomologically trivial pairs into

the action as the non-minimal sector. We take the non-minimal sector as follows

sDA = d∗A , sd∗A = 0, (6.1.14)

sdA = D∗A , sD∗A = 0,

(DA,D∗B) = δB
A , (dA, d∗B) = δA

B,

gh(D∗) = −gh(D)− 1 , gh(d∗) = −gh(d)− 1

with the following Grassmann parity in the Z4 grading

εG(D1,D3,D∗0,D∗2, d0, d2, d
∗
1, d

∗
3) = 0 (6.1.15)

εG(D0,D2,D∗1,D∗3, d1, d3, d
∗
0, d

∗
2) = 1

The action which its variation produces these BRST transformations is the following

non-minimal action

Snon−min =
∫

d2z D∗AdA (6.1.16)

The full action is obtained after adding the non-minimal action (6.1.16) to the minimal

action (6.1.13)

S = Smin + Snon−min (6.1.17)



Chapter 6. Towards a worldsheet description of AdS/CFT duality 145

The action (6.1.17) satisfies the master equation

(S, S) = 0 (6.1.18)

This can be written explicitly as follows

(S, S) =
δrS

δAA

δlS

δA∗A
− δrS

δA∗A

δlS

δAA
(6.1.19)

+
δrS

δcA

δlS

δc∗A
− δrS

δc∗A

δlS

δcA

+
δrS

δg
g

δlS

δg∗A
TA − δrS

δg∗A
TAg

δlS

δg

where each of line of which is vanishing identically.

In order that path integral be independent of the gauge fixing, one can check that the

action (6.1.13) also satisfies the following quantum master equation,

1
2

(S, S) = i~∆S (6.1.20)

where ∆ is defined as follows

∆S = (−1)εI
δl

δΦ∗I

δl

δΦI
S (6.1.21)

and εI = (0, 1) is the Grassmann parity of the field ΦI . Both sides of the identity (6.1.20)

is vanishing for the action (6.1.13).

Since the gauge transformation closes off-shell, we can split the the BRST charge ac-

cording to antighost degree starting from −1 for the Koszul-Tate differential δ and the

longitudinal differential γ as2

s = δ + γ, antigh(δ) = −1, antigh(γ) = 0 (6.1.22)

No extra terms of higher antighost number is needed in the G/G BV action and the

full BRST charge is given as the sum of Koszul-Tate differential δ and the longitudinal

derivative γ. The first application of this decomposition comes from the the fact that

the cohomology of s coincides with the cohomology of the longitudinal derivative γ

according to homological perturbation theory and so one can study the cohomology of

γ which might be easier instead of studying the cohomology of the full BRST charge.
2Before we used d as the longitudinal derivative but in this section d is used as the spacetime exterior

differential and for the longitudinal derivative we use γ.
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The BRST transformations (6.1.7) and their generalization to the antifield sector also

decompose into transformations under δ and γ separately using the fact that

δΦ = 0 , δΦ∗ =
δS0

δΦ
(6.1.23)

which gives the following transformations for γ and δ

γAA = dCA + fA
BCABCC , δAA = 0

γg = gTACA, δg = 0

γCA = −1
2fA

BCCBCC , δCA = 0

γA∗A = fB
ACA∗BCC , δA∗A = δS0

δAA

γg∗A = fB
ACg∗BCC , δg∗A = δS0

δhB ΩB
A(h)

γC∗
A = fB

ACC∗
BCC , δC∗

A = −dA∗A − fB
ACA∗BAC + g∗A

(6.1.24)

we will use the explicit form of the BRST transformations to compute the cohomological

groups H(s|d) of the BRST differential s modulo the spacetime exterior differential d,

in the space of local forms. As we explained in the previous chapter, these groups

characterize the counterterms in ghost degree zero, while in ghost degree one, they

classify the anomalies.

The longitudinal derivative γ is nilpotent off-shell. Therefore, we can analyze first the

γ-cohomology, H(γ), and the γ- cohomology modulo the exterior derivative d, H(γ|d),

in the space of all fields and antifields.

In the next chapter we will first explore the gauge fixing of this BV action for G/G

principal chiral model to gauge fix it.
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6.2 Gauge-fixing the G/G principal chiral model

In order to fix the gauge we do the usual procedure of the BV formalism explained before

to project the field-antifield sector to a Lagrangian submanifold whose symplectic form

is vanishing. To do so, one introduce the gauge fermion ψ and the projection to the

Lagrangian submanifold is defined by putting the following constraint for the antifields

Φ∗ =
δψ

δΦ
(6.2.1)

as it was explained in section (5.4).

Here we apply two different gauge fixings and we will see that corresponding to each

gauge fixing fermion, we will get either the topological A-model or a topological theory

with the BRST charge of the pure spinor action as its supersymmetric charge.

6.2.1 Gauge fixing to topological A-model

To define the first gauge fermion we use the set of {TM , Tα+ , Tα−} generators of the

PSU(2, 2|4) supergroup in which TM = {TSU(4), TSU(2,2)} are the bosonic generators

and Tα+ and Tα− are the fermionic generators which are related to the usual {Tα, Tα̂}
generators as follows

Tα+ ≡ Tα + iTα̂ , Tα− ≡ Tα − iTα̂ (6.2.2)

They satisfy the following anticommutation relations

{Tα+ , Tβ+} = 0 , {Tα− , Tβ−} = 0 (6.2.3)

These are the generators we already used in the introduction chapter to define the

topological A-model action.

In (4 + 4)× (4 + 4) matrix representation of g ∈ PSU(2, 2|4) supergroup as

g =

(
A4×4 X4×4

Y4×4 B4×4

)
(6.2.4)

the generators Tα+, Tα− and TM correspond to the upper-right, lower-left and the block-

diagonal matrices respectively. Hence, we have the following algebra for PSU(2, 2|4)

[TM , Tα+ ] = fβ+

Mα+Tβ+ , [TM , Tα− ] = fβ−
Mα−Tβ− (6.2.5)

{Tα+ , Tβ−} = fM
α+β−TM , [TM , TN ] = fP

MNTP
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The non-zero components of the metric are the symmetric and antisymmetric tensors

ηMN and ηα+β− respectively.

Any Lie algebra valued object can be expanded in terms of these generators and we have

the following contractions

XαY α + Xα̂Y α̂ =
1
2

(
Xα+Y α+ −Xα−Y α−

)
(6.2.6)

To do the first gauge fixing, we choose the following gauge fermion,

ψ1 =
∫

d2z
[
Dα+Aα+

+Dα−Āα− + CMdM

]
(6.2.7)

where

Aα+ ≡ Aα + iAα̂ , Āα− ≡ Āα − iĀα̂ (6.2.8)

The antifields are fixed on the Lagrangian submanifold with the following constraint

Φ∗ =
δψ1

δΦ
(6.2.9)

which gives the following conditions on the antifields

A∗M = 0, Ā∗M = 0,

A∗α+ = Dα+ , Ā∗α+ = 0,

A∗α− = 0, Ā∗α− = Dα− ,

g∗ = 0, D∗M = 0,

D∗α+
= Aα+

, D∗α− = Āα− ,

d∗α+
= 0, d∗α− = 0

d∗M = CM , C∗
M = dM ,

C∗
α+ = 0, C∗

α− = 0.

(6.2.10)

One can easily check that these conditions fixing half of the degrees of freedom and the

symplectic form

ω =
∑

A,Φ

δΦ∗A ∧ δΦA (6.2.11)

is vanishing on this subspace where Φ is a collective notation for all the fields and ghosts

and antighosts and Φ∗ is its antifield. The index A is a gauge index. The vanishing

of the symplectic form (6.2.11) for a half-dimensional subspace means that the gauge

fixing (6.2.7) defines a Lagrangian submanifold.
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The equations of motion for dα+ and dα− coming from the non-minimal action implies

D∗α+
= 0 , D∗α− = 0 (6.2.12)

which together with (6.2.7) fix the fermionic part of the gauge group as follows

Aα+
= 0 , Āα− = 0 (6.2.13)

Putting (6.2.7) and (6.2.13) back in the BV action (6.1.13) we obtain the following action

S =
∫

d2z[ηMN (J −A)M (J̄−Ā)N +
1
2
ηα+α−Jα+

J̄α−− 1
2
ηα+α−(Jα−−Aα−)(J̄α+−Āα+

)

+
1
2
Dα+

(
∂Cα+

+ fα+

Mβ+AMCβ+
)
− 1

2
Dα−

(
∂̄Cα− + fα−

Mβ−ĀMCβ−
)

(6.2.14)

− fM
α+α−dMCα+

Cα− − fM
PQdMCP CQ]

This is a gauge fixed action but still has some auxiliary degrees of freedom which one

can safely integrate them out using their equations of motion. The equations of motion

for AM , ĀM , Aα− , Āα+
reads as follows

AM = JM − 1
2
fMα−

β− Dα−Cβ− , ĀM = J̄M +
1
2
fMα+

β+ Dα+Cβ+
(6.2.15)

Aα− = Jα− , Āα+
= J̄α+

Also we can write the following equation of motion for dM

fM
α+α−Cα+

Cα− = −fM
PQ CP CQ (6.2.16)

This implies that one can solve for the ghost CP in terms of the ghosts Cα+
and Cα−

and since they do not appear anywhere else in the action, they will disappear from the

action. As we will see later, this constraint changes the correct measure of the bosonic

ghosts Cα+
and Cα− in the path integral.

Putting (6.2.15) and (6.2.16) back into (6.2.14) we obtain the following action

S =
∫

d2z
[
ηα+α−(Jα+

J̄α− − Jα− J̄α+
) (6.2.17)

+ Dα+∇Cα+ −Dα−∇̄Cα− +
[D+, C+

]
M

[D−, C−]M
]

where

[D+, C+
]
M

= fα+

Mβ+Dα+Cβ+
,

[D−, C−]
M

= fMα−
β− Dα−Cβ− (6.2.18)
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The covariant derivatives are defined as follows

∇Cα+
= ∂Cα+

+ fα+

Mβ+JMCβ+
, ∇̄Cα− = ∂̄Cα− + fα−

Mβ− J̄MCβ− (6.2.19)

The action (6.2.17) is the A-model action which we obtained as the zero radius limit of

the pure spinor superstring on AdS5 × S5 after the following identifications

Yα− → Dα− , Ȳα+ → Dα+

Zα− → Cα− , Z̄α+ → Cα+ (6.2.20)

The BRST transformation can be obtained from the following variation of the action

projected on the Lagrangian submanifold

QΦ =
δS

δΦ∗
|Φ∗= δS

δΦ
(6.2.21)

which is the gauge fixed BRST charge of the BV action (6.1.13) after putting (6.2.10)

into (6.1.24) we get

QJα+
= ∇Cα+

, QJα− = ∇̄Cα− (6.2.22)

QCα+
= 0 , QCα+

= 0

In order to compute the BRST variation of Dα+ and Dα− we should use the fact that

Dα+ = A∗α+ and Dα− = Ā∗α− from (6.2.10) and after using

QA∗α+ =fM
α+β−A∗MCβ−+fβ+

α+M
A∗β+CM+ηα+α− J̄α−=fβ+

α+M
Dβ+CM+ηα+α− J̄α− (6.2.23)

QĀ∗α−=fM
α−β+Ā∗MCβ+

+fβ−
α−M

Ā∗β−CM−ηα+α−Jα+
=fβ−

α−M
Dβ−CM−ηα+α−Jα+

(6.2.24)

from (6.1.24) and considering the fact that A∗M = 0, Dα+ = A∗α+ and Dα− = Ā∗α− on

the Lagrangian submanifold, finally we get

QDα+ = fβ+

α+M
Dβ+CM + ηα+α− J̄α− , QDα− = fβ−

α−M
Dβ−CM − ηα+α−Jα+

(6.2.25)

and the BRST charge can be written as follows

Q =
∫

dzηα+α−Cα+
J̄α− +

∫
dz̄ηα−α+Cα−Jα+

(6.2.26)

which is the BRST charge of the A-model of the pure spinor superstring on AdS5 × S5.
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6.2.2 Gauge fixing to a topological model with Qtop = Qpure spinor

In this section, we will see that there is another way of fixing the gauge symmetry of the

G/G principal chiral model which gives a BRST trivial action in which its BRST charge

coincides with the BRST charge of the pure spinor formalism on AdS5 × S5. The pure

spinors and their constraints also comes as the gauge fixing constraints imposed on the

BV ghosts CA.

Here we use the SO(5) × SO(4, 1) invariant representation of PSU(2, 2|4) supergroup

with generators
(
T[ab], Ta.Tα, Tα̂

)
which are Lorentz, translation and fermionic generators

respectively.

We use the non-minimal fields (DA, D̄A, dA, d̄A) together with their antifields which

transform under the BRST transformation as follows

QDA = dA , QdA = 0 (6.2.27)

Qd∗A = D∗A , QD∗A = 0

QD̄A = d̄A , Qd̄A = 0

Qd̄∗A = D̄∗A , QD̄∗A = 0

where A = ([ab], a, α, α̂) is a PSU(2, 2|4) index. The non-minimal fields have the fol-

lowing Grassmann parities

εG(Dα,Dα̂,D∗[ab],D∗a, d[ab], da, d
∗α, d∗α̂) = 0 (6.2.28)

εG(D[ab],Da,D∗α,D∗α̂, dα, dα̂, d∗[ab], d∗a) = 1

The dynamics of the non-minimal fields is defined by the following action

Snon-minimal =
∫

d2z[D∗AdA + D̄∗Ad̄A] (6.2.29)

Using BRST transformation (6.2.27), it can be shown that this non-minimal action is a

BRST trivial term

Snon-minimal =
∫

d2zQ(Ω) (6.2.30)

with

Ω = d∗AdA + d̄∗Ad̄A (6.2.31)

Being a trivial term making out of the cohomologically trivial pairs, the non-minimal

action (6.2.29) does not change the cohomology of the original theory.
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The next step is to gauge fix the theory by taking the following gauge fermion defining

a Lagrangian submanifold

ψ2 =
∫

d2z[DIN I
a (C)Aa +DI+5N̄ I

a (C)Āa + D̄IC
I + D̄I+5C

I+5 + D̄[ab]C
[ab]

+ Dα̂Aα̂ +DαĀα] (6.2.32)

where I = 0 to 4 and a = 0 to 9.

This gauge fermion putts the following constraints on the antifields of the theory

A∗[ab] = 0, Ā∗[ab] = 0,

A∗a = DIN I
a (C), Ā∗a = DI+5N̄ I

a (C),

A∗α = 0, Ā∗α = Dα,

A∗α̂ = D̄α̂, Ā∗α̂ = 0,

D∗I = N I
a (C)Aa, D∗I+5 = N̄ I

a (C)Āa,

D∗α = Āα, D̄∗α = 0,

D∗α̂ = Aα̂, D̄∗α̂ = 0,

D∗[ab] = 0, D̄∗[ab] = C [ab],

D̄∗a = Ca, d̄∗a = 0,

d̄∗α = 0, d̄∗α̂ = 0

d∗α = 0, d∗α̂ = 0

C∗
I = D̄I , C∗

I+5 = D̄I+5,

C∗
α = DI

∂N I
a (C)

∂Cα Aa, C∗
α̂ = DI+5

∂N̄ I
a (C)

∂Cα̂ Āa,

C∗
[ab] = D̄[ab], g∗ = 0

(6.2.33)

which defines a half-dimensional subspace in the field-antifield space. In order to have a

Lagrangian submanifold, the symplectic form (6.2.11) should be vanishing which implies

the following completeness and orthonormality conditions on matrices N and N̄

ηabN I
aN I

b = 0 , ηabN̄ I
a N̄ I

b = 0 (6.2.34)

In order to find a solution of (6.2.34) we can use the null vectors (γa)αβCαCβ and

(γa)α̂β̂Cα̂C β̂ satisfying

ηab
[
(γa)αβCαCβ

] [
(γb)δγCδCγ

]
= 0 , ηab

[
(γa)α̂β̂Cα̂C β̂

] [
(γb)δ̂γ̂C δ̂C γ̂

]
= 0 (6.2.35)

They decompose under SO(5)× SO(4, 1) into

ΦI = (γI)αβCαCβ , ΦĨ = (γĨ)αβCαCβ (6.2.36)

Φ̂I = (γI)α̂β̂Cα̂C β̂ , Φ̂Ĩ = (γĨ)α̂β̂Cα̂C β̂
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where I = 0 to 4 and Ĩ = 5 to 9.

There is another way of presenting the constraints (6.2.34) for matrices N I
a and N̄ I

a as

follows

(γa)αβCαCβ = (γI)δγCδCγN I
a , (γa)α̂β̂Cα̂C β̂ = (γI)δ̂γ̂C δ̂C γ̂N̄ I

a (6.2.37)

This is equivalent to (6.2.34) written in a ghost-dependent way. These matrices are the

same as the ones used in [79] to construct extended pure spinor formalism and also in

[36].

From the equations of motion for the non-minimal antighosts which implies

D∗A = 0 , D̄∗A = 0 (6.2.38)

Using the gauge fixing constraints (6.2.33), we get the following conditions on the gauge

fields and the fermionic ghost components

Aα̂ = 0 , Āα = 0 (6.2.39)

N I
a Aa = 0 , N̄ I

a Āa = 0

Ca = 0 , C [ab] = 0

The gauge fixing (6.2.33) kills half of the gauge degrees of freedom of Aa and half of the

Āa because of the rank of N and N̄ .

Putting the gauge fixing (6.2.33) back in the action (6.1.17) we get the following gauge-

fixed action

S =
∫

d2z[η[ab][cd](J −A)[ab](J̄ − Ā)[cd] + ηab(J −A)a(J̄ − Ā)b (6.2.40)

+ ηαα̂(J −A)α(J̄ − Ā)α̂ − ηαα̂J α̂J̄α

+ DIN I
a (∂Ca + fa

αβAαCβ) +DI+5N̄ I
a (∂̄Ca + fa

α̂β̂
Āα̂C β̂)

− Dα(∇̄ACα + fα
aβ̂

ĀaC β̂) +Dα̂(∇ACα̂ + f α̂
aβAaCβ)

− 1
2
f I

αβD̄IC
αCβ − 1

2
f I

α̂β̂
D̄I+5C

α̂C β̂ − 1
2
f

[ab]
αα̂ D̄[ab]C

αCα̂

+ N I
a AadI + N̄ I

a ĀadI+5]

where the covariant derivatives are defined with respect to the gauge connections as

∇ACα = ∂Cα + fα
[ab]βA[ab]Cβ , ∇̄Cα̂ = ∂̄Cα̂ + f α̂

[ab]β̂
Ā[ab]C β̂ (6.2.41)
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The third and fourth lines of (6.2.40) are the A∗(∂C + [A,C]) terms, the last two lines

are the non-zero C∗[C,C] terms and the non-minimal sector of the BV action (6.1.13)

respectively after imposing constraints (6.2.33).

The equations of motion for the anthighosts D̄[ab], D̄I and D̄I+5 coming from the action

(6.2.40) can be written as follows

f
[ab]
αα̂ CαCα̂ = 0, (6.2.42)

f I
αβCαCβ = 0,

f I
α̂β̂

Cα̂C β̂ = 0.

The last two are the pure spinor constraint for the ghosts Cα and Cα̂ since because of

(6.2.37) they imply

(γa)αβCαCβ = 0 , (γa)α̂β̂Cα̂C β̂ = 0 (6.2.43)

which are the usual ten-dimensional pure spinor constraints for the pure spinors Cα and

Cα̂.

The first equation of (6.2.42) implies that the pure spinors Cα and ηαα̂Cα̂ has to be

interpreted as complex conjugate and so this becomes a trivial equation whenever they

satisfy the pure spinor constraint. This is consistent with the observation in [36] that

the term ηλλ̂ is in the cohomology of the pure spinors.

Because of (6.2.37) and the pure spinor constraints (6.2.42) we get the following identities

fa
αβN I

a Cα = 0 , fa
α̂β̂
N̄ I

a Cα̂ = 0 (6.2.44)

Putting all these into (6.2.40), the action simplifies as follows

S =
∫

d2z[η[ab][cd](J −A)[ab](J̄ − Ā)[cd] + ηab(J −A)a(J̄ − Ā)b (6.2.45)

− ηαα̂J α̂J̄α + ηαα̂(J −A)α(J̄ − Ā)α̂

− Dα(∇̄ACα + fα
aβ̂

ĀaC β̂) +Dα̂(∇ACα̂ + f α̂
aβAaCβ)

+ N I
a AadI + N̄ I

a ĀadI+5]
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The action (6.2.45) implies the following equations of motion for the auxiliary fields

A[ab], Ā[ab], Aa, Āa, Aα̂ and Āα

A[ab] = J [ab] + N [ab] , Ā[ab] = J̄ [ab] + N̂ [ab]

Aa = Ja + faα
β̂
DαC β̂ − ηabN̄ I

b dI+5 , Āa = J̄a − faα̂
β Dα̂Cβ − ηabN I

b dI

Aα = Jα , Āα̂ = J̄ α̂ (6.2.46)

where we defined

N [ab] ≡ f
[ab]α
β DαCβ , N̂ [ab] ≡ −f

[ab]α̂

β̂
Dα̂C β̂ (6.2.47)

as the usual pure spinor Lorentz currents.

Putting back the equations of motion (6.2.46) into the action (6.2.45) we get

S =
∫

d2z[ηαα̂J̄αJ α̂ + η[ab][cd]N
[ab]N̂ [cd] (6.2.48)

− ηab(faα̂
β DαC β̂ − ηacN̄ I

c dI+5)(f bα̂
β Dα̂Cβ + ηbdN I

d dI)

− Dα(∇̄Cα + fα
[ab]βN̂ [ab]Cβ + fα

aβ̂
(J̄a − faα̂

β Dα̂Cβ − ηabN I
b dI)C β̂)

+ Dα̂(∇Cα̂ + f α̂
[ab]β̂

N [ab]C β̂ + f α̂
aβ(Ja + faα

β̂
DαC β̂ − ηabN̄ I

b dI+5)Cβ)

+ N I
a (Ja + faα

β̂
DαC β̂ − ηabN̄ J

b dJ+5)dI + N̄ I
a (J̄a − faα̂

β Dα̂Cβ − ηabN J
b dJ)dI+5]

where now the covariant derivatives are defined with respect to the left-invariant currents

as follows

∇̄Cα = ∂̄Cα + fα
[ab]β J̄ [ab]Cβ , ∇Cα̂ = ∂Cα̂ + f α̂

[ab]β̂
J [ab]C β̂ (6.2.49)

We can also integrate out the auxiliary fields dI and dI+5 using their equations of motion

dI = (R−1)IJN̄ J
a (J̄a − faα̂

β Dα̂Cβ) , dI+5 = (R−1)IJN J
a (Ja + faα

β̂
DαC β̂) (6.2.50)

where

RIJ ≡ ηabN I
a N̄ J

b (6.2.51)

Finally inserting back (6.2.50) in the action (6.2.48) and after using the following identity

N I
a (R−1)IJN̄ J

b = ηab (6.2.52)

we get the following action

S =
∫

d2z[JaN I
a R−1

IJ N̄ I
b J̄b+ηαα̂J̄αJ α̂−Dα∇̄Cα+Dα̂∇Cα̂−η[ab][cd]N

[ab]N̂ [cd]] (6.2.53)
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It is the topological action proposed in [36] as coming from a gauge fixing of the G/G

principal chiral model which was shown explicitly before.

The BRST transformation is the ”gauge fixed BRST charge” defined as follows

QΦ = (sΦ)
(

Φ, Φ∗ =
δψ

δΦ

)
(6.2.54)

The BRST transformation of the left-invariant currents and the ghosts C can be obtained

directly from (6.1.24) after using gauge fixing constraints (6.2.39) and (6.2.42),

QJa = fa
βαJβCα + fa

β̂α̂
J β̂Cα̂ , QJ [ab] = f

[ab]

αβ̂
JαC β̂ + f

[ab]
α̂β J α̂Cβ (6.2.55)

QJ̄α = ∇̄Cα + fα
aα̂J̄aCα̂ , QJ α̂ = ∇Cα̂ + f α̂

aαJaCα

QCα = 0 , QCα̂ = 0

To compute the BRST transformation of the antighosts D we should use from (6.2.33)

the fact that Dα = −Ā∗α and Dα̂ = A∗α̂ and so

QDα = −QĀ∗α = −[Ā∗, C]α − δS0

δĀα
= −fa

αβĀ∗aC
β + ηαα̂J α̂ = −fa

αβD∗I+5N̄ I
a Cβ + ηαα̂J α̂

= ηαα̂J α̂ (6.2.56)

QDα̂ = QA∗α̂ = [A∗, C]α̂ +
δS0

δAα̂
= fa

α̂β̂
A∗aC

β̂ − ηα̂αJ̄α = fa
α̂β̂
D∗IN I

a C β̂ − ηα̂αJ̄α

= ηαα̂J̄α (6.2.57)

where we used the gauge fixing constraints Aα̂ = 0 and Āα = 0 and (6.2.33) and the

fact that D∗I = D∗I+5 = 0 on-shell.

The BRST operator can be written as

Q =
∫

dzηαα̂CαJ α̂ +
∫

dz̄ηαα̂Cα̂J̄α (6.2.58)

It is exactly the AdS5 × S5 pure spinor BRST charge after the following identifications,

Cα → λα , Cα̂ → λ̂α̂ (6.2.59)

Dα → wα , D̄α̂ → ŵα̂

The action (6.2.53) is invariant under this ”gauge-fixed BRST charge”.

The action (6.2.53) is a topological action because as it was shown in [36], it can be

written as a trivial term

S =
∫

d2z Q(Ω) (6.2.60)
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for some Ω which its exact form was given in [36] and we do not need to write it here.

So, starting from the BV action of the topological G/G principal chiral model, and

after doing a proper gauge fixing we get a topological action with the BRST charge

exactly equal to the superstring action. As it is conjectured in [36], this topological

action describes the zero-radius limit of the AdS5 × S5 superstring which according to

the Maldacena conjecture is dual to the free N = 4 on d = 4 super-Yang-Mills theory.

The fact that this topological action and the A-model action are both obtained from

different gauge fixings of the same theory implies that they are describing the same

physics. Since the physical states explored by the second topological theory is defined

from the cohomology of its topological charge which is equal to pure spinor BRST

charge, so it is natural to say that this theory and the topological A-model theory are

both exploring the full cohomology of the pure spinor superstring on AdS5 × S5 in this

limit and not just its BPS sector. It seems puzzling and more understanding in this

direction deserves more consideration since it might help to give a better understanding

of a ’physical’ theory using a topological one.
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6.3 Consistent deformation of the G/G model

As we saw in section (5.5), the BV formalism gives the power to find consistent interac-

tions among fields keeping the original gauge invariance in the sense of the deformation

theory.

Indeed, we showed that having a consistent interaction, the solution S(0) of the master

equation can be deformed as an expansion of the interaction parameter r as follows

S = S(0) + rS(1) + r2S(2) + · · · (6.3.1)

We observed that the local deformations are determined after studying the relative co-

homological groups H0(γ|d) and H1(γ|d). In fact, H0(γ|d) determines the first order

deformation and H1(γ|d) determines whether the deformation continues or it is ob-

structed after the first order term. So, we have to study these cohomological groups

for the G/G principal chiral model. Note that, since the topological theories which are

obtained after the gauge fixing of the G/G model correspond to the zero radius limit of

the superstring on AdS5 × S5, the deformation corresponds to the vertex operator for

the radius modulus and the perturbative parameter is proportional to the radius of the

AdS5 × S5.

The local deformation of a BV action has been studied mainly for Yang-Mills theories

in [76, 80, 77, 81, 82, 83]. It was shown as an example that for the case of Abelian

Chern-Simons theory the consistent interaction which one can add to the theory without

spoiling the BV gauge invariant structure is the non-abelian Chern-Simons terms. For

more general non-linear sigma models including the G/G principal chiral model the same

problem has been addressed partly in [78] for a bosonic compact group G.

We have to study the cohomology groups H(γ) and then its relative cohomology group

H(γ|d). The first step of calculating the cohomology is to define the field space in which

this calculation should be done. This space is named as jet space and is simply the

space whose coordinates are the fields and their corresponding antifields as well as their

subsequent partial derivatives

Φ = {AA, g, CA} , Φ∗ = {A∗A, g∗, C∗A} , dΦ , dΦ∗ , · · · (6.3.2)

Since the differential γ commutes with the exterior derivative d, so the transformation

laws (6.1.24) can be applied globally to all the jet space.

In order to describe the γ−cohomology it is convenient to find a set of jet space coor-

dinates in which it has more compact form. To do so, it was shown in [78] that after
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eliminating the trivial pairs the jet space can be coordinatized with the following fields

g, CA, [χA] (6.3.3)

where χA = {JA − AA,Φ∗} and according to (6.1.24) it transforms under γ linearly as

follows

γχA = (TD)B
AχBCD (6.3.4)

where TA are the generators of the group G. But actually we can define another set of

fields which are invariant under γ transformation as follows

χ̃A = U(g)A
BχB (6.3.5)

in which U(g) stands for the matrix representation of group element g. Because of the

following transformation 3

γU(g) = −(−1)εG(χ)U(g)CATA (6.3.6)

we have γχ̃ = 0.

We can take the following set of fields as a possible jet space coordinates which is also

consistent with the definition given in [84] for a good jet coordinate

jet space coordinates = {g, CA, [χ̃A]} (6.3.7)

They transform with γ as follows

γg = gC , γC = −C2 , γ[χ̃] = 0 (6.3.8)

where [χ̃] means χ̃ and all its subsequent ordinary derivatives.

It was shown in [78] that the most general solution for the cocycle condition γm = 0

is given as a polynomial in the gauge-invariant variables [χ̃] times a solution of γn = 0

which just depends on g and C. So we have to compute the cohomology defined by the

first two equations of (6.3.8) which is done by relating it to the De Rham cohomology

of the supergroup manifold. The relation comes from the fact that we can identify γ

with the exterior derivative d, also one can identify the ghosts C with the one-forms J

as follows

γ ↔ d , C ↔ J (6.3.9)
3Here and everywhere εG(F ) denotes the Grassmann parity of the field F .
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This way the de Rham cohomology is identified with the cohomology of the longitudinal

derivative γ.

The corresponding of the γ transformation γC = −C2 and γg = gC is given by the

Maurer-Cartan equations and the definition of the left-invariant Cartan one-forms as

follows

dJ = −J ∧ J , dg = gJ (6.3.10)

There is a point here that since we are studying a supergroup, the one-forms J have

fermionic components Jα and J α̂, correspondingly we have also bosonic ghosts Cα and

Cα̂ but the identification seems to work in the same way.

Taking the De Rham group to be HDR(G) with the basis ωI(g, J) and denoting by

ω(g, C) the function obtained after inserting C in place of J , a general cocycle solving

γm = 0 has the following form

m =
∑

I

P I ([χ̃], dx) ω(g, C) + γn (6.3.11)

where P I is an arbitrary polynomial in χ̃ and its ordinary derivatives.

In fact the spacetime forms ω(g, J) are related to the γ−cocycles ω(g, C) by the descent

equations as it was shown in [81]. To write the descent equations we can expand ω̃I ≡
ωI(g, J + C) according to ghost number and form degree [78] as follows

ω̃I = ω
(0,2)
I + ω

(1,1)
I + ω

(2,0)
I (6.3.12)

The first superscript stands for the form degree and the second one is the ghost number.

They are limited to be less than or equal two since we are working on the worldsheet.

The ω̃ has to be annihilated γ̃ = γ + d by construction

γ̃ω̃I = 0 (6.3.13)

This is named as Russian formula [78, 85].
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After using the expansion (6.3.12) we get the following descent equations for each ghost

degree

dω(0,2) = 0 (6.3.14)

γω(0,2) + dω(1,1) = 0 (6.3.15)

γω(1,1) + dω(2,0) = 0 (6.3.16)

γω(2,0) = 0 (6.3.17)

where its solution gives the cohomology group H(γ).

We can see from (6.3.14) that the integral

∫

Σ
ω

(0,2)
I (6.3.18)

is gauge-invariant since its integrand is gauge-invariant up to a total derivative term.

So we can add this term to the action without spoiling the gauge invariance of the

theory. But, on the other hand, since ω0,2 is locally exact, the topological term (6.3.18)

does not modify the equations of motion and this is a consistent deformation of the BV

action. These terms are called winding number terms and they are consistent with the

topological observables which we expect to get from our G/G theory since its gauge

fixed form gives an A-model topological action as we saw before.

The next step is to find a solution for the descent equations (6.3.14-6.3.17) to find the

deformation term (6.3.18) for the G/G principal chiral model. We assume that we

can use this construction also for the case of supergroup as in our case for AdS5 × S5

supercoset.

6.3.1 Descent equations

The longitudinal differential along the gauge orbits γ can be written using the transfor-

mation laws (6.1.24) as follows

γ = CA ∂

∂A∗A
+(∂CA+[A,C]A)

∂

∂AA
+CA ∂

∂g∗A
+CA ∂

∂C∗
A

+CATA
∂

∂g
(6.3.19)

− fC
ABCACB ∂

∂CC
+dA

∂

∂D∗A

which squares identically to zero.

In order to find a consistent deformation, we start solving the descent equations from the

bottom equation (6.3.17) and go up until we solve the upper descent equation (6.3.14)

which its integral over the worldsheet gives the deformation for G/G action.
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Here we propose the following solution but we should admit that here we are not con-

sidering the fact that the supergroup G is a non-compact supergroup, and this should

enlarge the general solution of the descent equations.

There exist a ghost number two as a solution for the bottom equation of the descent

equations as a function of g and C is follows

ω(2,0) = ηABCACB (6.3.20)

This scalar function satisfies (6.3.17). We take the invariant bilinear ηAB to be the

metric of the supergroup PSU(2, 2|4) supergroup Since C [ab] and Ca are fermionic and

η[ab][cd] and ηab are symmetric, the only possibility for ω(2,0) is the following component

ω(2,0) = ηαα̂CαCα̂ (6.3.21)

Putting this in (6.3.16) we can solve for ω(1,1) as follows

ω(1,1) = ηαα̂((J −A)αCα̂ + Cα(J −A)α̂) + ηαα̂((J̄ − Ā)αCα̂ + Cα(J̄ − Ā)α̂) (6.3.22)

Using the Maurer-Cartan equation

dJ = −J ∧ J (6.3.23)

and the fact that the currents J transform as

γJ = dC + [J,C] (6.3.24)

we can see that the (6.3.15) has the following solution for ω(0,2)

ω(0,2) = η[ab][cd](J −A)[ab](J̄ − Ā)[cd] + ηab(J −A)a(J̄ − Ā)b (6.3.25)

+
1
2
ηab(J −A)α(J̄ − Ā)α̂ − 1

2
ηαα̂(J̄ − Ā)α(J −A)α̂

Off course one can add any γ−trivial term to ω(0,2) which doesn’t change the cohomology.

A general local deformation of the BV action (6.1.13) is given by (6.3.25),

S
(0)
BV −→ S

(0)
BV + R2

∫
d2z ω(0,2) (6.3.26)

which is a ghost number zero integrated vertex operator.

In the second gauge fixing which gives the topological model with Qtop. = Qpure spinor

after we add the insertion (6.3.18) with ω0,2 as (6.3.25) the auxiliary field equations for
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the fields A[ab] and Aa get contribution also from the deformation term

A[ab] = (1 + R2)J [ab] + N [ab] , Ā[ab] = (1 + R2)J̄ [ab] + N̂ [ab]

Aa = (1 + R2)Ja+faα
β̂
DαC β̂−ηabN̄ I

b dI+5 , Āa = (1 + R2)J̄a−faα̂
β Dα̂Cβ−ηabN I

b dI

Aα = (1 + R2)Jα , Āα̂ = (1 + R2)J̄ α̂ (6.3.27)

which after putting back in the BV action and keeping just the first order terms in R2

we get the following deformation action

Sdef =R2

∫
d2z

[
ηabJ

aJ̄b+ηαβ̂(
3
2
JαJ̄ β̄−1

2
J̄αJ̄ β̂)−Dα∂̄Cα+Dα̂∂Cα̂−η[ab][cd]N

[ab]N̂ [cd]

]

(6.3.28)

This is the original pure spinor action for the AdS5 × S5 background after applying

the identification (6.2.59). So we get the pure spinor action as a deformation over the

topological theory. This is the consequence of giving nonzero expectation value to the

radius modulus in the topological theory which corresponds to the zero radius limit of

the superstring on AdS5 × S5 background.
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6.4 A worldsheet description of AdS/CFT duality

Using the observation that the superstring action for small radius can be seen as pertur-

bation over a topological theory, one can explore AdS/CFT from a worldsheet point of

view similar to the topological open/closed duality an example of which we studied for

the case of CS/conifold duality in which the ’t Hooft expansion of the gauge theory side

was obtained from a topological closed string theory. The difference in the case of AdS

duality is that in the superstring theory we have also propagating degrees of freedom

and local deformations on both sides of the duality which they should be mapped to each

other. As we emphasized in the introductory chapter, in the AdS/CFT correspondence,

any state in the gravity side relates to an operator in the gauge theory side. Actually

this map should be exactly one-to-one since this is the way we can produce the correct

’t Hooft expansion from the gravity side. Here, In our topological G/G construction

of the superstring theory we observed that the topological theory as the dual to free

gauge theory, can be consistently deformed with a vertex operator which is the result

of giving the radius of the AdS geometry a non-zero value. This non-zero value of the

radius generated with the vertex operator
∫
Σ d2zω(0,2) corresponds to an operator in the

gauge theory side which makes the SYM theory an interacting theory with a pertur-

bative coupling g2
Y M = t/Nwhich is proportional to the radius parameter in the string

theory side. One might try to follow the technique used by Ooguri and Vafa in proving

the topological conifold duality from a worldsheet point of view for AdS/CFT duality

considering the fact that here we have also some local vertex insertions in the closed

string side located in the Coulomb branches or holes on the worldsheet. These vertices’s

correspond to some D-brane operators at the boundary of the hole in accordance with

the state/operator correspondence.

So starting from a closed string worldsheet, we end with a partition over open string

worldsheets with h holes. After the emergence of the Coulomb branch, on top of the

’holes’ which appear as the regions in which the gauge field of the linear gauged sigma-

model becomes dynamical, we have also some punctures, as the insertion points of the

gravitational vertex operators in the closed string theory. In order to do so, let’s consider

that S
(A)
def is the gauge fixed version of the

∫
Σ d2zω(0,2) according to the first gauge fixing

which produces the A-model topological action from G/G, then the A-model action

deforms as follows

SA-model −→ SA-model + R2 S
(A)
def (6.4.1)

this is equivalent to inserting an exponential set of closed string vertex operators in the

closed string side. Starting from a closed string theory, the free energy is partitioned
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into a sum over the worldsheets with genus g and p vertex insertions with a weight factor

f(R) for each insertion as follows

F =
∞∑

g=0

∞∑

p=0

fp

p!
g2g−2
s Fg,p (6.4.2)

where Fg,p is the amplitude corresponding to a worldsheet with genus g and p punctures.

After defining Fg as

Fg =
∞∑

p=1

fp

p!
Fg,p (6.4.3)

we can rewrite (6.4.2) as a sum over amplitudes for a particular genus Fg as follows

F =
∞∑

g=0

g2g−2
s Fg (6.4.4)

On the other side, in the open string side, we have the following expansion over the open

worldsheets with h holes and p punctures with the D-brane boundary states as dual to

the vertex insertions in the closed string side, where each contributes a factor R2f(R)4

F =
∞∑

g=0

∞∑

h=1

∞∑

p=0

(
h + p

h

)
(g2

Y MN)h(R2f)p(g2
Y M )2g−2Fg,h,p (6.4.5)

where the number coefficient is determined from the partitioning of p punctures and h

’holes’ into H = h + p holes and is given by (h+p)!
p!h! . One can rewrite (6.4.6) as a sum

over H = h + p as follows

F =
∞∑

g=0

∞∑

H=1

(g2
Y MN + R2f)H(g2

Y M )2g−2Fg,H (6.4.6)

where we defined

Fg,H =
h+p=H∑

h,p

Fg,h,p (6.4.7)

4As it stated in [36], each puncture contributes a factor R2 but after inserting the vertices’s, the cor-
responding D-brane operator on the boundary of the hole corresponding to the puncture will contribute
a R2f(R) factor.
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Similar to the original ’t Hooft idea we explained in the introduction, this can written

as a sum over genus as follows

F =
∞∑

g=0

(g2
Y M )2g−2Fg (6.4.8)

with the following definition for Fg

Fg =
∞∑

H=1

(t′)HFg,H (6.4.9)

where t′ is the shifted ’t Hooft parameter

t′ = g2
Y MN + R2f (6.4.10)

The shift of the ’t Hooft parameter is a consequence of the insertion of the vertex

operators in the closed string side and their corresponding D-brane operators in the

open string side.

As we see in figure (6.1) here the partition of the closed string worldsheets contains also

the puncture insertions on top of the usual holes originated from the emergence of the

coulomb branch. Using the explicit form of the vertex operator in the A-model S
(A)
def ,

Figure 6.1: A close worldsheet partitions into open worldsheets in which some of them have
D-brane operators corresponding to the vertex operator in the closed string side.

one should compute the exact value of the function f(R) which is necessary to find the

explicit perturbation expansion in the gauge theory side in terms of the radius of the

AdS. Note that if one can show that f(R) = R2, this implies that t′ = R4 for N = 0

and so the relation t = R4 would be valid both for small and large radius. Computing

explicit form of the factor would be an important next step towards a perturbative proof

of the AdS/CFT duality.



Chapter 7

Amplitudes computation

Here in this chapter we will show that one can use the power of topological A-model

action in order to give a multiloop prescription for the amplitude computations of pure

spinor superstring on AdS5×S5. We just sketch the first steps towards this computation

and a better understanding of the problem seems very appealing and important to us.

7.1 Pure spinor amplitude for AdS5 × S5

The next step towards understanding superstring theory on a Ramond-Ramond back-

ground is to give a prescription to compute the string amplitudes for a generic multiloop

worldsheet. It can also help to give a better understanding to the gauge/string du-

ality since the perturbative Yang-Mills correlation functions should be generated from

the topological AdS5 × S5 closed string amplitudes as the zero radius version of the

superstring on this background.

In order to give a prescription for the amplitude computation on a particular back-

ground we have to find the zero mode measure factor of the pure spinor formalism. A

prescription for multiloop amplitude computation for the flat background was proposed

in [53]. But for the case of AdS5×S5 it was shown in [35] and [36] that a simplification

in pure spinor measure factor makes the computation easier than the flat background.

For instance in flat background the zero mode measure factor of the pure spinors satisfy

the following relation at tree level

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1 (7.1.1)

while using the fact that ηλλ̂ is in the cohomology of the pure spinors, and λα and

λ̂α̂ can be interpreted as complex conjugate, a new simple measure factor for the pure

167
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spinors on AdS5 × S5 was given in [35] and [36] satisfying

〈(ηαα̂λαλ̂α̂)3〉 = 1 (7.1.2)

One can regularize the pure spinor measure by restricting zero-modes of λ and λ̂ to

satisfy ηλλ̂ = Λ for some positive Λ. The dependence on Λ can be absorbed by shifting

the coupling constant eφ → Λ−
3
2 eφ which gives the following zero mode integration for

tree amplitudes

〈f(x, θ, λ, θ̂, λ̂)〉 =
∫

d10x

∫
d16θd16θ̂ Sdet(EA

M )
∫

d10λd10λ̂f(x, θ, λ, θ̂, λ̂) (7.1.3)

For the supergravity vertex operator

V = λαλ̂α̂Aαα̂ (7.1.4)

one can write the three-point supergravity tree amplitudes as follows

A =
∫

d10x

∫
d16θd16θ̂ Sdet(EA

M )T ((αβγ)(α̂β̂γ̂))A
(1)
αα̂(X)A(2)

ββ̂
(X)A(3)

γγ̂ (X) (7.1.5)

note the integration over 16(θθ̂)’s here instead of over 5(θθ̂)’s for the flat case.

A prescription to compute amplitudes with higher genus was also proposed by Berkovits

in [36]. One should insert (3g−3) b and b̄ ghosts and N integrated vertex operators into

the functional integral. Then we should integrate over the zero modes of (x, θ, θ̂, λ, λ̂)

and g zero modes of the spin-one fields wα and ŵα̂. There is another way of writing and

comparing the prescription of Berkovits by doing the computation from the topological

A-model action in which because of the topological property of the theory we know how

to compute a multiloop amplitude.
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7.2 Topological A-model amplitude

A general A-model action with BRST charge QA = Q− + Q̄+ can be written as

S = t

∫
d2z

(
gij̄∂αφi∂αφj̄ − gij̄ρ

j̄
zDz̄χ

i + gij̄ρ
i
z̄Dzχ

j̄ + ∂i∂k̄gjl̄ρ
i
z̄ρ

k̄
zχ

jχl̄ (7.2.1)

− gij̄F
i
z̄F

j̄
z − gjj̄Γ

j
ikχ

iF j̄
z ρk

z̄ − gjj̄Γ
j̄

īk̄
χīF j

z̄ ρk̄
z

)

The Kähler metric can locally be written as gij̄ = ∂i∂j̄K(xi, xj̄) for a Kähler potential

K(xi, xj̄) and the covariant derivative is defined from the Levi-Civita connection Γi
jk =

gij̄∂jgkj̄ for a flat world-sheet as follows

Dz̄χ
i = ∂z̄χ

i + Γi
kl∂z̄φ

kχl (7.2.2)

Dzχ
ī = ∂zχ

ī + Γī
j̄ l̄∂zφ

k̄χl̄

Four supersymmetry generators Q± and Q̄± of the A-model can be generated by the

following operator

δ = iε+Q− − iε−Q+ − iε̄+Q̄− + iε̄−Q̄+, (7.2.3)

where (Q±)† and δ† = −δ. All the generators are nilpotent and they compromise the

N = 2 supersymmetry algebra. They have opposite charged under the R symmetry

group.

The operator (7.2.3) generates the following off-shell transformations

δφi = −ε−ρi
z̄ + ε+χi (7.2.4)

δφī = ε̄−χī − ε̄+ρī
z

δχi = −2iε̄+∂−φi + ε−F i
z̄

δχī = −2iε−∂+φī + ε̄+F ī
z

δρi
z̄ = 2iε̄−∂+φi + ε+F i

z̄

δρī
z = 2iε+∂−φī + ε̄−F ī

z

One can also write the Euler-Lagrange equations as follows

∂αφi + εαβJ i
j∂

βφj = 0 (7.2.5)

where J is the complex structure of the worldsheet Riemann surface. It is the equation

for a holomorphic map φ : Σ → M , which is called a worldsheet instanton.
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We can rewrite the action (7.2.1) in a more covariant by introducing the following

auxiliary fields F̃ i
z̄ and F̃ ī

z

F̃ i
z̄ = F i

z̄ − ρj
z̄Γ

i
jmχm (7.2.6)

F̃ ī
z = F ī

z − ρj̄
zΓ

ī
j̄m̄χm̄

The action (7.2.1) simplifies as follows

S = t

∫
d2z

(
gij̄∂αφi∂αφj̄ − gij̄ρ

j̄
zDz̄χ

i + gij̄ρ
i
z̄Dzχ

j̄ + Rik̄jl̄ρ
i
z̄ρ

k̄
zχ

jχl̄ − gij̄F̃
i
z̄F̃

ī
z

)

(7.2.7)

After integrating over the auxiliary fields F i
z and F ī

z̄ using their equations of motion

F i
z̄ = ρj

z̄Γ
i
jmχm (7.2.8)

F ī
z = ρj̄

zΓ
ī
j̄m̄χm̄

we get the following action

S = t

∫
d2z

(
gij̄∂αφi∂αφj̄ − gij̄ρ

j̄
zDz̄χ

i + gij̄ρ
i
z̄Dzχ

j̄ + Rik̄jl̄ρ
i
z̄ρ

k̄
zχ

jχl̄
)

(7.2.9)

One can check that the action (7.2.7) is QA-exact. Using BRST transformations (7.2.4),

One can show that

S =
{

QA, t

∫
d2zgij̄

(
ρj̄

zF̃
i
z̄ + ρj

z̄F̃
ī
z − ρi

z̄Dzχ
j̄ − ρī

zDz̄χ
j
)}

(7.2.10)

therefore the theory is topological since this implies that the energy-momentum tensor

is also QA-exact.

It appears that the BRST cohomology obtained from QA = Q−+Q̄+ corresponds exactly

to the de Rham cohomology classes obtained from d = ∂ + ∂̄ after identifying χi ↔ dφi

and χī ↔ dφī.

For each form

A = ai1,...,in(φ)dφi1 ∧ ... ∧ dφin (7.2.11)

on the target space, there is a topological operator

O(0)
A = ai1,...,in(φ)χi1 ...χin (7.2.12)
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of the A-model and the operation of BRST charge QA is identified with the exterior

derivative

{QA,OA} = OdA (7.2.13)

Because of the splitting of the tangent bundle of M = T (1,0)⊕T (0,1) we can associate to

any observable OA an element in the Dolbeault cohomology group H(pk,qk).

The U(1)A is anomalous and its anomaly is given by the index of the Dolbault operator

which is given from the Hirzbruch-Riemann-Roch theorem as follows

qA = #(χ zero modes)−#(ρ zero modes) = 2dimCM(1− g) (7.2.14)

The correlation function of the physical operators is obtained as

〈
n∏

i=1

Oi

〉

g

=
∫

Mg

DφDχDρe−S
n∏

i=1

Oi (7.2.15)

where Mg is the moduli space of holomorphic maps at genus g.
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7.3 Topological A-model of AdS5 × S5

The proposed A-model action for superstring theory on AdS5×S5 can be obtained after

twisting an action similar to (7.2.7) in off-shell form as follows

S =
∫

d2z
[
ηα+α−(Jα+

J̄α− − Jα− J̄α+
) +Dα+∇Cα+ −Dα−∇̄Cα− (7.3.1)

+ ηMNfα+M
α− fα−N

α+ Dα+Cα−Dα−Cα+ − ηMN F̃M ¯̃FN
]

here the difference with the previous sigma-model is that it is based on a fermionic Kähler

manifold parametrized by coordinates θ, so the Grassmann parity of all the fields are

reversed from the target space point of view. The fields Z and Y are bosonic while the

auxiliary fields are fermionic. After integrating over the auxiliary fields F̃ and ¯̃F we

will obtain the A-model action (6.2.17) which we got from the gauge fixing of the G/G

principal chiral model.

Comparing (7.2.1) and (7.2.7) we find that this action has the correct structure of an

A-twisted topological action after the following identifications

∇ ↔ Dz , ∇̄ ↔ Dz̄ (7.3.2)

Jα+ ↔ Dzφ
ī , J̄α− ↔ Dz̄φ

i

Dα+ ↔ ρi
z̄ , Dα− ↔ ρī

z

Cα+ ↔ χi , Cα− ↔ χī

The difference with the original A-model action is in the Grassmann parity of the fields.

The parity of all D, C and F fields are fermionic here.

Although SU(2, 2|4) symmetry is manifest in this action, the N = (2, 2) worldsheet

supersymmetry is not manifest but its supersymmetry generators can be constructed as

follows

Q =
∫

dzηα+α−Cα+
Jα− , Q̄ =

∫
dz̄ηα−α+Cα− J̄α+

(7.3.3)

b = Dα+Jα+
, b̄ = Dα− J̄α−

The fact that Dα+ and Dα− have conformal weight (1, 0) and (0, 1) is consistent with the

fact that it is a A-twisted N = (2, 2) supersymmetry algebra which defines a topological

A-model.

Now, we want to compute topological amplitudes and to do this we look into the simplest

observables in a topological A-model theory which was discussed in the previous section.
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They are objects defined in H2(M,R) which correspond to infinitesimal deformations of

the Kähler moduli k. Since our Grassmannian is symmetric, the only observables we can

compute are given by the pullback of k on the tangent space which can be represented

schematically as

O = X∗(k)ηα+α−Cα+
Cα− (7.3.4)

which is both local and Q-closed.

In order to compute the amplitudes, we have to give a prescription. The difference here

with the usual topological A-model action is in the way you have to soak up the zero

modes since now we have bosonic zero modes corresponding to bosonic fields Z and Y

in the observables.

A general n-point amplitude for genus g > 1 is given by

Ag
i1,...in

=
∫

Σg

d2z

∫

Mg

〈
Oi1 ...Oin

3g−3∏

k=1

(b, µk)(b̄, µ̄k)

〉
(7.3.5)

The Grassmannian U(2, 2|4)/U(2, 2)× U(4) has complex dimension sixteen and so the

anomaly (7.2.14) is equal to qA = 16(g− 1). This anomaly is generated by the following

current

J = Dα+Cα+
+Dα−Cα− (7.3.6)

We will consider different genera separately, starting from the tree level.

Before going to amplitude computation, let us look at the ghost measure factor. As we

saw before, the A-model action is obtained as a gauge fixed version of the G/G principal

chiral model. The ghost measure factor is also obtained from the gauge fixing of the

G/G measure factor which can be written as follows

∏

M

dCM
∏

α+

dCα+
∏

α−
dCα−

∏

α+

dDα+

∏

α−
dDα− (7.3.7)

where CM and Cα± are the fermionic and bosonic ghosts and Dα+ and Dα− belong to

the non-minimal sector.

As we saw in section (6.2.1), after the first gauge fixing, we get the constraint (6.2.16)

between CM and Cα± as follows

fM
α+α−Cα+

Cα− = −fM
PQ CP CQ (7.3.8)
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This constraint gives a solution for CM in terms of Cα± and they can be removed from

the theory after inserting the following delta function in the path integral

δ((CM )2 + Cα+
Cα−) (7.3.9)

but we have

∫
dxδ(f(x)) =

∑
x0

1
f ′(x0)

(7.3.10)

where x0 are solutions of f(x) = 0.

Using (7.3.10) we can see that we get the following measure factor for the ghosts Cα+

and Cα− after integrating over the ghosts CM considering the delta function (7.3.9)

∏

α+

dCα+

Cα+

∏

α−

dCα−

Cα−

∏

α+

dDα+

∏

α−
dDα− (7.3.11)

The case g = 0: In tree-level we have an anomaly equal to qA = 16 from the

measure of the path integral. In order to cancel the anomaly we have to insert the

following insertion in the path integral

O1...O16 =
∏

α+

∏

α−
X∗(k)Cα+

Cα− (7.3.12)

which saturates 16 units of ghost number coming from the measure of the path integral

since each such operator has ghost number −1.

Since Cα+
and Cα+

are bosonic fields, they have one zero mode on a g = 0 surface which

should be soaked up by inserting the following picture changing operators

Υ =
∏

α+

θα+
δ(Cα+

)
∏

α−
θα−δ(Cα−) (7.3.13)

which can be shown easily that is a BRST-invariant operator and does not depend on

(Cα+
, Cα−). The path integral now becomes

〈
∏

α+,α−
(X∗(k)Cα+

Cα−)
∏

α+,α−
θα+

δ(Cα+
)θα−δ(Cα−)〉 (7.3.14)

The picture changing operators Υ cancel the zero modes of both C and θ fields.
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Note that because of the presence of the factor
∏

α+,α−
1

Cα+
1

Cα− in the measure (7.3.11),

we get the following integral over the bosonic ghosts

∫
[dCα+

]δ(Cα+
) (7.3.15)

which is non-zero.

The 16 powers of the θ in the picture changing operator also gives a factor one after

doing the Berezin integral over the fermionic coordinated θ and θ̄. The conformal weight

one fields D does not have any zero mode on a genus zero worldsheet. and Using this

construction we have a well-defined path integral which should be compared with the

tree level amplitude of the pure spinor formalism.

The case g = 1: In higher genera we have to insert as many (b, µ) insertions as

needed. For g = 1 we have to insert a factor of |(b, µ)|2 in the path integral where as we

showed before it is from b = ∂θα+Dα+ and b̄ = ∂θα−Dα− .

Since D’s are bosonic fields they will bring one zero mode on a genus one worldsheet

and also we have one zero mode for scalars C.

To soak up the zero modes of D’s we have to insert the following picture changing

operators

Ψ = F̃MCβ+
δ(fβ+

α−M
Dβ+) ¯̃FMCβ−δ(fβ−

α+M
Dβ−) (7.3.16)

to cancel the corresponding zero modes.

The correct path integral with balanced number of zero modes and ghost number

anomaly becomes

〈ΨΥ |(b, µ)|2
16∏

1

Oi〉 (7.3.17)

The insertion X∗(k)Cα+
Cα− should be added to cancel the conformal anomaly at one-

loop.

Finally, the amplitude at one-loop can be written as follows

〈
ΨΥ

∣∣∣∣
∫

δθα+Dα+µ

∣∣∣∣
∣∣∣∣
∫

δθα−Dα− µ̄

∣∣∣∣
∏

α+,α−
(X∗(k)Cα+

Cα−)

〉
(7.3.18)
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The integral over the fermionic auxiliary fields F̃ and ¯̃F having one zero mode in g = 1

is the following non-zero Berezin integral

∫
[dF̃ ]F̃ (7.3.19)

The integral over the zero modes of the ghosts C is similar to the one before. The

factor (C)16 from the observable cancels the factor
(

1
C

)16 from the measure and the

delta function in the picture changing operator integrates to one. There are still some

C factors in the picture changing operator Ψ which together with the D factors in the

(b, µ) terms give the contractions 〈Cα+
,Dα+〉 and 〈Cα− ,Dα−〉. Also the integral over the

conformal weight-one fields D using the delta function in the picture changing operator

Ψ becomes as follows

∫
[dD]δ(D) (7.3.20)

which is non-zero.

So the zero modes of the fields go away in the path integral and we end with the

contractions of 〈Cα+
,Dα+〉 and 〈Cα− ,Dα−〉 as the result of the amplitude computation.

The case g > 1: At higher genera, we have to insert 16(g − 1)of (b, µ) operators.

Then to cancel the zero modes of the D’s which are inside b’s, we have to insert 16(g−1)

picture changing operators Ψ in the path integral to cancel the g zero modes of the D
fields. Note that we are on a 16C-dimensional Calabi-Yau and so the number of zero

modes for a scalar, a one-form and a two form are 16, g and 16(g − 1) respectively.

Then we have to insert the X∗Cα+
Cα− operators. In order to cancel the zero modes of

the C’s in the measure, we have to insert the picture changing operator Υ.

All in all, the amplitude can be written as follows

〈
ΥΨ16(g−1)

∣∣∣∣
∫

δθα+Dα+µ

∣∣∣∣
16(g−1) ∣∣∣∣

∫
δθα−Dα− µ̄

∣∣∣∣
16(g−1) ∏

α+,α−
(X∗(k)Cα+

Cα−)

〉

(7.3.21)

The integral over the zero modes of the fields are done as the previous case and we end

with the contractions 〈Cα+
,Dα+〉16(g−1) and 〈Cα− ,Dα−〉16(g−1) and also an integral over

the θ fields which is related to the instanton counting of the particular solution of the

A-model solution.

Here we just put the first steps toward a topological prescription for multiloop amplitude

computations of the pure spinor on AdS5 × S5.. There many things to be done, one
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should first check the tree level amplitude given here with the one of the pure spinors

and then to see if higher loop prescription can be related to the pure spinor superstring

multiloop amplitudes.





Chapter 8

Open questions and outlook

We have seen that the pure spinor formalism might be useful to give a new perspective

on the gauge/string dualities. There are many open questions related to issues we have

discussed. For the basic problem of constructing a pure spinor formalism, there are many

things to be done since the knowledge of the pure spinor space is limited to very particular

backgrounds. The construction of the pure spinor formalism on less supersymmetric

backgrounds and also more general backgrounds which can not be expressed fully as a

supercoset background like the AdS4×CP3 is an open question which should be studied

later.

There are many open questions regarding the topological decomposition we will present

in the thesis. It is interesting to find other backgrounds which admit this decomposition

in order to use the topological construction to explore large N gauge/string dualities on

these backgrounds.

It is clear that the reduction of the calculation of specific perturbative SYM amplitudes

via a topological string model on the twistor space ĈP
(3|4)

recalls the duality for MHV

amplitudes which started in [86]. The relation with this analysis of what it has been

discussed here could led to a better understanding of the features and limits of topological

string approach to the string realization of the perturbative gauge theory.

In particular, we focused on a particular twisted sector of the string on the geometric

quotient
(
ĈP

(3|4)
)4

//S4, while the complete theory has all the other sectors too. The

SYM dual interpretation of those sectors has to be understood and found. Also, as

we have discussing, there are different possible choices of BPS boundary conditions

parametrized by the ε and δ matrix parameters which are corresponding to different

D-brane configurations. These could be used also to produce lower BPS sectors to be

implemented in the gauge/string correspondence as lower BPS Wilson loops [87] which

179
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some of them have been described as D-brane configurations. Also one can combine

different D-brane configurations to get less supersymmetric objects, an example of which

can be obtained by combining the AdS4 boundary conditions in [23] and [37] which one

may generate lower BPS D-branes configurations. Moreover, a precise analysis of the

D5-branes observables (4.4.93) has to be performed in order to produce a detailed D-

branes / circular Wilson loops dictionary. This analysis passes by the complete reduction

to the base of the holomorphic Chern-Simons theory on the resolved superconifold. In

particular, this passes by the calculation of the determinant of the relevant ∂̄A-operator

on supermanifolds.

Another interesting issue to study would also be the clarification of how to add non per-

turbative contributions in the topological strings to get the instanton corrected version

of 1/2 BPS circular Wilson loops [88] [67]. The gauge amplitude contains, on top of

the matrix model integral, also the inverse of the gauge group volume and an instanton

contribution. The first should be calculated in the complete topological string by the

contribution of the pure Coulomb phase, very much like as in [89]. The instanton con-

tribution should be obtained by including D-instantons in the Berkovits-Vafa context.

Let us stress that we conjectured here that the conifold transition extends to superge-

ometries. As such, one should be able to test it for the A-model too, along the lines of

[89, 17, 13]. That is one should be able to recast in such a different case, the amplitudes

in the Chern-Simons theory on S(1|2) in terms of the gauged linear σA-model amplitudes

on the resolved superconifold. This is another open issue we are letting for future works.

In the G/G principal chiral model construction and its relation to the pure spinor su-

perstring on AdS5 × S5, there are many open questions. In particular it would be

very interesting to explore more in detail the cohomology of the G/G principal chiral

model which it seems to produce all the physical states of the superstring theory. Also

it is interesting to see if there are other gauge fixings which they might give simpler

interpretation of the superstring on AdS5 × S5.

The worldsheet description of the AdS/CFT duality using the topological decomposition

of the superstring action is one of the most appealing applications of this construction.

One can see if in more explicit way as we will see in this thesis, it is possible to produce the

perturbative gauge theory ’t Hooft expansion from a particular closed string amplitude

computation. This way one might be able to give a worldsheet proof of Maldacena’s

conjecture.

The next problem is related to the multiloop amplitude computation to give a more clear

prescription to compute the superstring amplitudes using the known A-model topological
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amplitude computations and to compare it with the pure spinor superstring amplitudes

on AdS5 × S5.

There are many open problems to be studied further in this direction. It seems that using

pure spinor formalism give us the power to explore more explicitly the understanding

we have of the superstring backgrounds and their correspondence to gauge theories.
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