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Abstract
Quantummeasurements are crucial for observing the properties of a quantum system,which,
however, unavoidably perturb its state and dynamics in an irreversible way.Herewe study the
dynamics of a quantum systembeing subjected to a sequence of projectivemeasurements applied at
random times. In the case of independent and identically distributed intervals of time between
consecutivemeasurements, we analytically demonstrate that the survival probability of the system to
remain in the projected state assumes a large deviation (exponentially decaying) form in the limit of an
infinite number ofmeasurements. This allows us to estimate the typical value of the survival
probability, which can therefore be tuned by controlling the probability distribution of the random
time intervals. Our analytical results are numerically tested for Zeno-protected entangled states, which
also demonstrate that the presence of disorder in themeasurement sequence further enhances the
survival probability when the Zeno limit is not reached (as it happens in experiments). Our studies
provide a new tool for protecting and controlling the amount of quantum coherence in open complex
quantum systems bymeans of tunable stochasticmeasurements.

1. Introduction

A striking aspect of the dynamical evolution of quantum systems that distinguishes it from that of the classical
ones is the strong influence on the evolution caused bymeasurements performed on the system. Indeed, in the
extreme case of a frequent enough series ofmeasurements projecting the systemback to the initial state, its
dynamical evolution gets completely frozen, i.e. the survival probability to remain in the initial state approaches
unity in the limit of an infinite number ofmeasurements. This effect, known as the quantumZeno effect (QZE),
wasfirst discussed in a seminal paper by Sudarshan andMisra in 1977 [1], and can be understood intuitively as
resulting from the collapse of thewave function corresponding to the initial state due to the process of
measurement. It was later explored experimentally in systems of ions [2], polarized photons [3], cold atoms [4]
and dilute Bose–Einstein condensed gases [5]. In noisy quantum systems, both the Zeno effect and the
acceleration due to an anti-Zeno effect [6, 7] have been demonstrated and also proposed for thermodynamical
control of quantum systems [8], and for quantum computation [9]. The so-called quantumZeno dynamics
(QZD) that generalizesQZE is obtainedwhen one applies frequent projectivemeasurements onto amulti-
dimensionalHilbert subspace [10]. In this case, the systemdoes evolve away from its initial state, but
nevertheless remains confined in the subspace defined by the projection itself [11]. TheQZDhas been recently
demonstrated in an experiment with a rubidiumBose–Einstein condensate in afive-levelHilbert space [12]. The
evolution of physical observables can also be slowed downby frequentmeasurements (operatorQZE) even

OPEN ACCESS

RECEIVED

28 September 2015

REVISED

14December 2015

ACCEPTED FOR PUBLICATION

18December 2015

PUBLISHED

25 January 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/1/013048
mailto:shamikg1@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/1/013048&domain=pdf&date_stamp=2016-01-25
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/1/013048&domain=pdf&date_stamp=2016-01-25
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


while the quantum state changes randomlywith time [13]. Additionally, the Zeno phenomena have assumed
particular relevance in applications owing to the possibility of quantum control, whereby specific quantum
states (including entangled ones)may be protected fromdecoherence bymeans of projectivemeasurements
[14–16]. Indeed, QZE is also a physical consequence of the statistical indistinguishability of neighboring
quantum states [17]. Very recently, it has been shown that frequent observation of a small part of a quantum
system turns its dynamics from very simple to an exponentially complex one [18], thereby paving theway for
universal quantum computation.

While in its originalQZE formulation, themeasurement sequence is equally spaced in time, later treatments
have considered the case ofmeasurements randomly spaced in time (stochastic QZE) [19]. In the latter case, the
survival probability in the projected state becomes itself a randomvariable that takes on different values
corresponding to different realizations of themeasurement sequence. In particular, onewould expect that the
mean of the survival probability obtained by considering an average over a large (ideally infinite)number of
realizations of themeasurement sequence leads to the result obtained for an evenly spaced sequence, under some
constraints (e.g. themean of the time interval between consecutivemeasurements isfinite). An interesting
question, relevant both theoretically and experimentally, naturally emerges: is it possible to have realizations of
themeasurement sequence that give values of the survival probability significantly deviated from themean?
How typical/atypical are those realizations? Are there ways to quantify the probabilitymeasures of such
realizations? These questions assume particular importance in devising experimental protocols that on demand
may slow down or speed up efficiently the transitions of a quantum systembetween its possible states.

In this paper, by exploiting tools fromprobability theory, we propose a framework that allows an effective
addressing of the questions posed above. In particular, we adapt thewell-established theory of large deviations
(LD) to quantify the dependence of the survival probability on the realization of themeasurement sequence, in
the case of independent and identically distributed (i.i.d.) time intervals between consecutivemeasurements.
Our goal is twofold: (1) adapt and apply the LD theory to discuss theQZEby transferring tools and ideas from
classical probability theory to the arena of quantumZeno phenomena, (2) analytically predict the corresponding
survival probability and exploit it for a new type of control based on the stochastic features of the applied
measurements.

The LD theory concerns the asymptotic exponential decay of probabilities associatedwith largefluctuations
of stochastic variables. Originally developed in the realmof probability theory [20–23], an increasing interest in
recent years has led to several studies of large deviations in both classical and quantum systems. In the latter case,
the LD formalism has been discussed in the context of quantum gases [24], quantum spin systems [25], quantum
information theory [26], among others. An interesting recent application pursued in [27–30]has invoked the LD
theory to develop a thermodynamic formalism for the study of quantum jump trajectories [31, 32] of open
quantum systems [33–35]. Indeed, they have addressed thermodynamic issues for quantum systems, e.g.
quantum stochastic thermodynamics for the quantum trajectories of a continuouslymonitored forced
harmonic oscillator coupled to a thermal reservoir [36], thework statistics in a driven two-level system coupled
to a heat bath [37], and stochastic thermodynamics of a quantumheat engine [38]. Recently, in the case of
continuousmeasurements, a phase space stochastic path integral formalism has been developed to analyze rare
events using actionmethods, without deriving a large deviation form for the distribution of the probability of
finding the system in a given state [39]. Also, the underlying dynamics of ourmodelmay be characterized by the
generalmethod based on a densitymatrix formalismproposed in [40].

Here, we consider a general quantum systemwith unitary dynamical evolution that is subject to a sequence
ofmeasurements projecting it into a fixed (initial) state. Thesemeasurements are separated by time intervals that
are i.i.d. randomvariables.We analytically show that in the limit of a large numberm ofmeasurements, the
distribution of the survival probability to remain in the initial state assumes a large deviation form, namely, a
profile decaying exponentially inmwith a positivemultiplying factor, the so-called rate function, which is a
function only of the survival probability. The value at which the function attains itsminimumgives out of all
possible outcomes themost probable or the typical value of the survival probability. Our analytical results are
supported by numerical studies in the case of Zeno-protected entangled states. They show that the presence of
disorder in the sequence of time intervals between consecutivemeasurements is deleterious in reaching the Zeno
limit. Nevertheless, the disorder does enhance the survival probability when the latter is not exactly one, which,
interestingly enough, corresponds to the typical experimental situation.

The layout of the paper is as follows. In section 2, we introduce our framework applied to a generic quantum
systemwith unitary dynamics and subjected to a sequence of projectivemeasurements performed at random
times.We then discuss in section 3 the statistics of the survival probability of the system to remain in an initial
pure state. In section 4, we consider the case of a d-dimensional Bernoulli probability distribution for the time
intervals between consecutivemeasurements, and analyze the statistics of the survival probability in the limit of a
large number ofmeasurements bymeans of the LD formalism.We also generalize our results to the case of a
continuous probability distribution. In section 5, we confirmour analytical results by numerical studies on
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Zeno-protected entangled states for a generic three-level quantum system. In section 6, we discuss how to
analytically recover the exact quantumZeno limit. Conclusions and outlook follow in section 7. Some of the
technical details of our analysis are provided in the four appendices.

2. Themodel

Consider a quantummechanical systemdescribed by afinite-dimensional Hilbert space, whichmay be taken
to be a direct sumof r orthogonal subspaces k( ) , as k

r k
1⨁ ( ) = = .We assign to each subspace a projection

operator P k( ), i.e. P k k( ) ( ) = . An initial quantum state described by the densitymatrix 0r undergoes a
unitary dynamics to evolve in time t to t tH Hexp i exp i0( ) ( )r- , where H is a generic systemHamiltonian. In this
work, we set the reduced Planck’s constantÿ to unity.

In ourmodel, startingwith a 0r that belongs to one of the subspaces, say subspace r r1, 2 ,¯ Î ¼ , so that
P Pr r

0 0
(¯) (¯)r r= and PTr 1r

0[ ](¯)r = , we subject the system to an arbitrary but fixed numberm of consecutive
measurements separated by time intervals ; 0j jm m > , with j= 1,K,m. During each interval jm , the system
follows a unitary evolution described by theHamiltonian H, while themeasurement corresponds to applying
the projection operator P r(¯).We take the jm s to be independent and identically distributed (i.i.d.) random

variables sampled from a given distribution p ( )m , with the normalization pd 1( )ò m m = .We assume that p ( )m
has a finitemean, denoted by m. For simplicity, in the followingwe represent P r(¯) and r(¯) by P and P ,
respectively. The (unnormalized)densitymatrix at the end of evolution for a total time

, 1
j

m

j
1

( ) åmº
=

corresponding to a given realization of themeasurement sequence j m; 1, 2, ,j j{ } { }m mº = ¼ , is given by

W PU PU PU PU

R R , 2

m j m m

m j m j

1 0 1

0

({ }) ( ) ( ) ( ) ( )

({ }) ({ }) ( )

† †

†

m r

m r m

º ¼ ¼

=

wherewe have defined

R PU P, 3m j
j

m

j
1

({ }) ( )m º
=

and

U Hexp i . 4j j( ) ( )mº -

To obtain equation (2), we have used P P† = , P P0 0r r= , and P P2 = . Note that  is a randomvariable that
depends on the realization of the sequence j{ }m . The survival probability, namely, the probability that the system
belongs to the subspace P at the end of the evolution, is given by

W R RTr Tr , 5j m j m j m j0({ }) [ ({ })] [ ({ }) ({ })] ( )† m m m r mº =

while thefinal (normalized)densitymatrix is

R R
. 6j

m j m j

j

0({ })
({ }) ({ })

({ })
( )

†


r m

m r m

m
=

Note that the survival probability j({ }) m depends on the systemHamiltonian H, the initial densitymatrix 0r ,
and also on the probability distribution p ( )m .

3. Statistics of the survival probability

In this section, we obtain the distribution of the survival probability j({ }) m with respect to different

realizations of the sequence j{ }m .We suppose that the system is initially in a pure state 0∣y ñbelonging to P , so

that 0 0 0∣ ∣r y y= ñá , and assume that the projection operator is P 0 0∣ ∣y yº ñá . In this way, starting with a pure
state, the system evolves according to the following repetitive sequence of events: unitary evolution for a random
interval, followed by ameasurement that projects the evolved state into the initial state. Note that our analysis
can be easily generalized to the case of initiallymixed states and for other choices of the projection operator.
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The survival probability j({ }) m can be evaluated by using equation (5) to get

q , 7j
j

m

j
1

({ }) ( ) ( ) m m=
=

wherewe have defined the probability q j( )m as

q U , 8j j0 0
2( ) ∣ ∣ ∣ ∣ ( )m y yº á ñ

which takes on different values depending on the randomnumbers jm . Note that being a probability, possible
values of q ( )m lie in the range q0 1( ) m< . The distribution of q j( )m is obtained as

P q p
q

d

d
, 9j j

j

j

( ( )) ( )
( )

( )m m
m

m
=

where equation (8) gives

q
HU

d

d
2 . 10

j

j
j0 0

( )
∣ ∣ ∣ ∣ ( )

m

m
y y= á ñ

From equation (7), one then derives the distribution of as

P p qd . 11
j

m

j j
j

m

j
1 1

( ) ( ) ( ) ( ) ò m m d m= -
= =

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

In particular, onemay be interested in the average value of the survival probability, where the average
corresponds to repeating a large number of times the protocol ofm consecutivemeasurements interspersedwith
unitary dynamics for random intervals jm . One gets:

p qd . 12
j

m

j j j
1

( ) ( ) ( ) ò m m má ñ =
=

Here and in the following, wewill use angular brackets to denote averagingwith respect to different realizations
of the sequence j{ }m . Additionally, let us note that writing q ( )m as

q 1 ; 0 1, 13( ) ( ) ( ) ( )m d m d m= - <

wehave

k
H

i
, 14

k

k
k

1

2

( ) ( )
!

( )åd m
m

=
-

á ñ
=

¥

with

kH H ; 0, 1, 2, . 15k k
0 0∣ ∣ ( )y yá ñ º á ñ = ¼

In particular, considering 1m  , one has, to leading order in 2m , the result

, 16
Z

2

2
( ) ( )d m

m
t

=

where Zt is the so-called Zeno time [11]:

H, 17Z
2 2 ( )t º D-

H H H . 182 2 2 ( )D º á ñ - á ñ

4. Large deviation formalism for the survival probability

Let us now employ the LD formalism to discuss the statistics of the survival probability j({ }) m in the limit
m  ¥. In this limit, equation (1) gives

m , 19( ) má ñ =

wherewe have used the fact that the jm s are i.i.d. randomvariables and m is afinite number.
To proceed further, let us consider p ( )m to be a d-dimensional Bernoulli distribution, namely,μ takes on d

possible discrete values , , , d1 2( ) ( ) ( )m m m¼ with corresponding probabilities p p p, , , d1 2( ) ( ) ( )¼ , such that

p 1
d

1
( )å =a
a

=
. The average value of the survival probability is then obtained by using equation (12) as
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m p qexp ln . 20
d

1

( ) ( )( ) ( ) å má ñ =
a

a a

=

⎛
⎝⎜

⎞
⎠⎟

In order to introduce the LD formalism for the survival probability, first consider

n qln ln , 21j j

d

1

({ }) ( ({ })) ( ) ( )( )  åm m mº =
a

a
a

=

where na is the number of times ( )m a occurs in the sequence j{ }m . Noting that j({ }) m is a sumof i.i.d. random
variables, its probability distribution is given by

P
m

n n n
p p

n q

m

n n n
p

ln

, 22

n n n n m d

n d n

d

d

d
n

, , : 1 2

1

1

1 2 1

d
d

d

1 2 1

1( ) !
! ! !

( ) ( )

( )

!
! ! !

( ) ( )

( ) ( )

( )

( )





å

å



d m

=
¼

¼

´ -

=
¢ ¢ ¼ ¢

å

a
a

a

a

a

¼ =

=

=

¢

a a

a

=

⎛
⎝⎜

⎞
⎠⎟

where, as indicated, the summation in the first equality is over all possible values of n n n, , , d1 2 ¼ subject to the

constraint n m
d

1å =a a=
. In the second equality, n ¢as are such that

n m, 23
d

1

( )å ¢ =
a

a
=

n qln . 24
d

1

( ) ( )( ) å m¢ =
a

a
a

=

Starting from equation (22), and considering the limit m  ¥, a straightforwardmanipulation (see
appendix A) leads to the following LD form for the probability distribution P m( ) , as

P m mI mexp , 25( ) ( ( )) ( ) » -

where the function I(x), i.e. the so-called rate function [23], is given by

I x f
f

p
ln ; 26

d

1

( ) ( ) ( ) ( )( )
( )

( )å m
m

=
a

a
a

a
=

⎛
⎝⎜

⎞
⎠⎟

f
q x

d q q
d

ln

1 ln ln
; 1, , 1 , 27

d

d
( ) ( )

( )[ ( ) ( )]
( ) ( )( )

( )

( ) ( )m
m
m m

a=
-

- -
= ¼ -a

a

f f1 . 28d
d

1

1

( ) ( ) ( )( ) ( )åm m= -
a

a

=

-

The approximate symbol≈ in equation (25) stands for the fact that there are subdominantm-dependent factors
on the right-hand side of the equation. An alternative form to equation (25) that involves an exact equality and
can be considered as the equation defining the function I(x) is

m
P m I mlim

1
. 29

m
( ) ( ) ( ) - =

¥

It is evident from equation (26) that the rate function I x( ) is the relative entropy or theKullback–Leibler
distance between the set of probabilities f{ ( )}( )m a and the set p ;{ }( )a it has the property to be positive and
convex, with a single non-trivialminimum [41]. Equation (25) implies that the value at which the function
I m( ) isminimized corresponds to themost probable value of as m  ¥. Using

I m q dln 0; 1, ,( ) ( )∣( )  m a¶ ¶ = = ¼a
= , we get (seeappendix B)

m p qln . 30
d

1

( ) ( )( ) ( ) å m=
a

a a

=
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As for the distribution of the survival probability, onemay obtain a LD form for it in the followingway:

P P

m P m m

m mI m m

m I m

d ln

d ln

d exp ln

exp min , 31m: ln

/

( ) ( ) ( )

( ) ( ) ( )

( ) ( ( )) ( )

( ( )) ( )

    

   

   

  

ò
ò
ò

d

d

d

= -

= -

» - -

» - =

where in the third stepwe have considered largem and have used equation (25), while in the last stepwe have
used the saddle pointmethod to evaluate the integral.We thus have

P m J J I mlim ln ; min . 32
m

m: ln/( ( )) ( ) ( ) ( ) ( )     - = º
¥

=

The value at which J ( ) takes on itsminimumvalue gives themost probable value of the survival probability in
the limit m  ¥, whichmay also be obtained by utilizing the relationship between and ; one gets

m p qexp ln , 33
d

1

( ) ( )( ) ( )  å m=
a

a a

=

⎛
⎝⎜

⎞
⎠⎟

whichmay be comparedwith the average value (20). In otherwords, while the average value á ñ is determined
by the logarithmof the averaged q ( )( )m a , themost probable value  is given by the average performed on the
logarithmof q ( )( )m a . The latter is the so-called log-average or the geometricmean of the quantity q ( )( )m a with
respect to theμ-distribution. A straightforward generalization of equation (33) for a generic (continuous)μ-
distribution is

m p qexp d ln , 34( )( ) ( ) ( )  ò m m m=

while that for the average reads

m p qexp ln d . 35( )( ) ( ) ( ) ò m m má ñ =

Using the so-called Jensen’s inequality, namely, x xexp exp( ) ( )á ñ á ñ , it immediately follows that

, 36( )  á ñ

with the equality holding onlywhen no randomness inμ (that is, only a single value ofμ exists) is considered.
The difference between  and á ñcan be estimated in the followingway in experiments. First, we perform a
large numberm of projectivemeasurements on our quantum system. The value of the survival probability to
remain in the initial state that ismeasured in a single experimental runwill very likely be close to , with
deviations that decrease fast with increasingm. On the other hand, averaging the survival probability over a large
(ideally infinite)number of experimental runswill yield á ñ.

All the derivations abovewere based on the assumption of afixed numberm ofmeasurements, so that the
total time interval  —see equation (1)—is a quantityfluctuating between different realizations of the
measurement sequence. To obtain the LD formalism,we eventually letm approach infinity, which in turn leads
to an infinite á ñ (unless 0m  )—see equation (19).We now consider the situationwherewe keep the total
time  fixed, and letmfluctuate between realizations of themeasurement sequence. In this case, in contrast to
equation (22), we have the joint probability distribution

P
m

n n
p

n q n

,

ln . 37

m n n n n m d

d
n

d d

, , , : 1 1

1 1

d
d

1 2 1

( ) !
! !

( )

( ) ( )

( )

( ) ( )

 

 

å å 

å åd m d m

=
¼

´ - -

å a

a

a
a

a

a
a

a

¼ = =

= =

a a

a

=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

We thus have tofind the set of nαs, whichwe now refer to as n ¢as, such that the following conditions are satisfied:

n m, 38
d

1

( )å ¢ =
a

a
=

n qln , 39
d

1

( ) ( )( ) å m¢ =
a

a
a

=

n . 40
d

1

( )( ) å m¢ =
a

a
a

=
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The above equations have a unique solution only for d= 2, that is, when one has a Bernoulli distribution. In this
case, the solutions satisfy

m m q

q q

ln

ln ln
, 41

2

2 1

2

2 1

( )
( ) ( )

( )
( )

( ) ( )

( )

( ) ( )
 m
m m

m
m m

-
-

=
-

-

whichmay be solved form, for given values of and  and then used in equation (37) to determine P ,( )  .
In the limit m  ¥, provided themean m of p ( )m exists, equation (1) togetherwith the law of large

numbers9 gives:

m . 42( ) m=

In this case, for every d, one obtains an LD form for P ,( )  (seeappendix C):

P m
m m

, exp , , 43( ) ( ) 
 

» - ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

where

x y g
g

p
, ln , 44

d

1

( ) ( ) ( ) ( )( )
( )

( ) å m
m

=
a

a
a

a
=

⎛
⎝⎜

⎞
⎠⎟

g
m q x

q x y d q q

d

ln

ln 1 ln
;

1, , 1 , 45

d d

d d d
( ) ( ( ) )

( ( ) )( ) ( ) ( ( ) ( ))
( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( )m
m m

m m m m m
a

=
-

- - + -
= ¼ -

a
a a

g g1 . 46d
d

1

1

( ) ( ) ( )( ) ( )åm m= -
a

a

=

-

The rate function (44) is related to the rate function (26) as follows:

I m
m m

min , , 47m:( ) ( )
 

  = =á ñ ⎜ ⎟⎛
⎝

⎞
⎠

and similarly to equation (31), one has

P m m, exp , , 48( ) ( ( )) ( )   » -

where

m m m, min , . 49m: ln( ) ( ) ( )      º =

As in equation (34), themost probable value of the survival probability for a continuousμ-distribution is given
by

m p gexp d ln . 50( )( ) ( ) ( ) ( )  ò m m m=

5.Numerical results

In this section, in order to test our analytical results, we numerically simulate the dynamical evolution of a
generic n-level quantum system governed by the followingHamiltonian

H j j j j j j1 1 . 51
j

n

j
j

n

1 1

1

∣ ∣ (∣ ∣ ∣ ∣) ( )å åw= ñá + W ñá + + + ñá
= =

-

Here, j 0 ... 1 ... 0∣ ∣ñ º ñ, with 1 in the jth place and 0 otherwise, denotes the state for the jth level, ( j n1 ,...,= ),
with the corresponding energy jw , whileΩ is the coupling rate between nearest-neighbor levels. For simplicity,
we take n= 3, f2pW = , with f= 100 kHz, and f2j jw p= , with f 30 kHz1 = , f 20 kHz2 = and f 10 kHz3 = .

We choose the initial state 0∣y ñ to be the entangled (with respect to the bipartition 1 23∣ )pure state

1

2
100 001 . 520∣ (∣ ∣ ) ( )y ñ º ñ + ñ

Under these conditions, we obtain the survival probability as a function of the number ofmeasurements
m for a d-dimensional Bernoulli distribution for the jm s, with d 2, 3, 4= —see figure 1.Wefind a perfect
agreement between the numerical evaluation of equation (5) for a typical realization of themeasurement

9
The law of large numbers states that the sumof a large numberN of i.i.d. randomvariables, when scaled byN, tends to themean of the

underlying identical distributionwith probability one asN approaches infinity [42].
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sequence j{ }m and the asymptoticmost probable values obtained by using equation (33).Moreover, a

comparison between these two quantities for d= 2,m= 2000, and 100 typical realizations of themeasurement
sequence is shown infigure 2.Note that in the case of a bi-dimensional Bernoulli distributionwith probability p,
the quantity depends linearly on p—see figure 3.

Furthermore, to test our analytical predictions for a continuousμ-distribution, we have considered the
following distribution for the jm s, namely, p 0 0

1( ) ( ( ) )m a m m m= a+ , with 0a > and ,0[ )m mÎ ¥ . The

corresponding survival probability shown infigure 4 further confirms our analytical predictions. Note that the
decrease offluctuations around themost probable valuewith increasingα is consistent with the concomitant
smallerfluctuations ofμ around the average m. In all the cases discussed here, we observe excellent agreement
with our estimate of themost probable value based on the LD theory.Moreover, our analytical predictions are
numerically confirmed also for any coherent superposition state a a100 0010 1 2∣ ∣ ∣y ñ º ñ + ñwith
a a 11

2
2

2∣ ∣ ∣ ∣+ = . Preliminary numerical studies show similar results for the numerical survival probability in
the context of theQZD, by taking into account the projector P 100 100 001 001∣ ∣ ∣ ∣= ñá + ñá that confines the

Figure 1. Survival probability  as a function of the number ofmeasurementsm for a d-dimensional Bernoulli distribution for the

jm s, with d 2, 3, 4= . Specifically, we have chosen for d= 4 the values p p p p0.3, 0.2, 0.05, 0.451 2 3 4( ) ( ) ( ) ( )= = = = , and
, 3 , 2 , 0.51

0
2

0
3

0
4

0
( ) ( ) ( ) ( )m m m m m m m m= = = = , with 10m = ns. For d= 3, the values are p p p0.3, 0.2, 0.51 2 3( ) ( ) ( )= = = ,

and , 3 , 21
0

2
0

3
0

( ) ( ) ( )m m m m m m= = = , while for d= 2, we have taken p p0.3, 0.71 2( ) ( )= = , and , 31
0

2
0

( ) ( )m m m m= = . Here,
the points denote the values obtained by evaluating equation (5)numerically for a typical realization of themeasurement sequence

j{ }m , while the lines denote the asymptoticmost probable values obtained by using equation (33).

Figure 2.Comparison between the survival probability  obtained by evaluating equation (5)numerically for 100 typical realizations
of themeasurement sequence (points) and themost probable value   (line) obtained by using equation (33), for the case d= 2 in
figure 1 and for the number ofmeasurementsm= 2000.
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system in theHilbert subspace spanned by the states 100∣ ñand 001∣ ñ. It will be further investigated in a
forthcomingwork.

Finally, wewant to address the following question.Does the presence of disorder in the sequence of
measurement time intervals enhance the survival probability? To address it, we consider a d-dimensional
Bernoulli p ( )m with d= 2, and a given fixed value of the average p p1 1 2 2( ) ( ) ( ) ( )m m m= + . Then, in the first
scenario, we applym projectivemeasurements at times equally spaced by the amount m, while in the second, we
sample this time interval from p ( )m . In the former case, one has

p , 53( ) ( ) ( )m d m m= -

so that equations (34) and (35) give

m qexp ln . 54( ( )) ( ) ( )   m m= á ñ = º

The absence of randomness on the values ofμ trivially leads to  = á ñ. In the second scenario, themost
probable value  is given by equation (33), hence

Figure 3. Survival probability  as a function of the probability p 1( ), with p p12 1( ) ( )= - , for a bi-dimensional Bernoulli distribution
for the jm s andm= 6400. The points denote the values obtained by evaluating equation (5)numerically for a typical realization of the
measurement sequence j{ }m , while the line denotes the asymptoticmost probable value obtained from equation (33). Here, we have
taken , 31

0
2

0
( ) ( )m m m m= = , with 10m = ns.

Figure 4. Survival probability  as a function of the number ofmeasurementsm for the distribution p 0 0
1( ) ( ( ) )m a m m m= a+ , with

0a > and ,0[ ]m mÎ ¥ . Here, 0m is a time scale set to 1 ns. Besides, we choose values ofα such that p ( )m has a finitemean and a
finite secondmoment, i.e. 2a > . As in the preceding figures, the points denote the values obtained by evaluating numerically
equation (5) for a typical realization of themeasurement sequence j{ }m , while the lines denote the asymptoticmost probable values
obtained by using equation (34).
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m p q p q

p

p

exp ln 1 ln ;

. 55

1 1 1 2

2
1 1

2

( [ ( ) ( ) ( )])

( )

( ) ( ) ( ) ( )

( )
( ) ( )

( )

  m m

m
m m

= + -

=
-

Now the question arises as towhether for givenfixed m and 1( )m a random sequence ofmeasurement yields a
larger value of the survival probability than the one obtained by performing equally spacedmeasurements. For
theHamiltonian (51) and the initial state (52), we show infigure 5 the behavior of  as a function of p 1( ) at
fixed values of 2.4 0m m= and 1

0
( )m m= , with 100m m= s. A comparisonwith ( ) m shows thatwhile in the

Zeno limit, such a disorder is deleterious, there are instances where randommeasurements are beneficial in
enhancing the survival probability. Infigure 6,moreover, we show the behavior of the ratio ( )  m as a
function of P 1( )( )m atfixed values of p 0.991( ) = ,m= 100 and 2.4 1( )m m= , with ns1, 2501 [ ]( )m Î . An
effective survival probability enhancement is reached in every dynamical evolution regime, except that in the
Zeno limit (inset—figure 6). Interestingly enough, these regimesmight be particularly relevant from the
experimental sidewhen the ideal Zeno condition is only partially achieved.

Figure 5.Most probable value (red lines) of the survival probability   in (55) for a d-dimensional Bernoulli distribution p ( )m with
d= 2, given fixed values of the average p p1 1 2 2( ) ( ) ( ) ( )m m m= + and 1( )m ,m= 100. The black line denotes the value   in (54) in the
case of projectivemeasurements equally spaced in time, withm= 100.We have considered 2.4 0m m= , 1

0
( )m m= , and 100m m= s.

Figure 6.Ratio ( )  m (red lines) for a d-dimensional Bernoulli distribution p ( )m with d= 2 atfixed values of the probability
p 0.991( ) = ,m= 100 and 2.4 1( )m m= , with ns1, 2501 [ ]( )m Î . The black line represents the value of ( )  m in case of projective
measurements equally spaced in time.
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6.QuantumZeno limit

Following the analysis in section 4, we nowdiscuss how to recover the exactQZ limit. Let us considerm
projectivemeasurements at times equally separated by an amount m, so that one has the result (54) for the
survival probability, while equation (19) gives

m . 56( )  má ñ = =

Combining these two expressions, we get

qexp ln . 57( ) (( ) ( )) ( ) m m m=

To recoverQZE, in the limit 0m  withfinite  and using equations (13) and (16), one indeed obtains

Hexp 1, 582( ) ( ) ( ) m m» - D »

provided H2D is finite, as is the case for a finite-dimensionalHilbert space.
Let us nowdiscussQZE for a general p ( )m . Note that in this case, it is natural in experiments to keep the

number ofmeasurementsm fixed at a large value, with the total time  fluctuating between different sequences
ofmeasurements j{ }m . From equations (34) and (35), with the use of equation (13), and the Taylor expansion of

xlog 1( )+ for x 1< , we get

m
n

mexp exp , 59
n

n

1

( ) ( )  å
d

d= -
á ñ

» - á ñ
=

¥⎛
⎝⎜

⎞
⎠⎟

m
n

mexp exp , 60
n

n

1

( ) ( ) å
d

dá ñ = -
á ñ

» - á ñ
=

¥⎛
⎝⎜

⎞
⎠⎟

where

p kd ; 1, 2, 3, . 61k k( ) ( ) ( )òd m m d má ñ º = ¼

From equations (59) and (60), it follows that in the limit of very frequentmeasurements so that m  ¥,
provided 0dá ñ » , one recovers theQZE condition, i.e. 1  = á ñ » . Thus, the condition to obtainQZE in
the case of stochasticmeasurements is

pd
0, 62

Z

2

2

( )
( )òd

m m m

t
á ñ = »

which, considering that Zt isfinite, reduces to the requirement pd 02( )ò m m m » . For instance, for a quite

general probability distribution p ( )m with power-law tails, namely, p 1 0
1( ) ( )m m m~ a+ , with 0a > and 0m

being a given time scale, QZE is achieved for 10m  and 2a > (corresponding to a finite secondmoment).

7. Conclusions and outlook

In this paper, we have analyzed stochastic quantumZeno phenomena bymeans of the large deviation theory
widely applied in probability theory and statistical physics.More specifically, we have analytically derived the
asymptotic distribution of the survival probability for the system to remain in the initial state when its unitary
evolution is combinedwith a very long sequence ofmeasurements that are randomly spaced in time. The
framework allowed us to obtain analytical expressions for themost probable and the average value of the survival
probability.While themost probable value represents what an experimentalist willmeasure in a single typical
implementation of themeasurement sequence, the average value corresponds instead to an averaging over a
large (ideally infinite)number of experimental runs. Therefore, by tuning the probability distribution of the time
intervals between consecutivemeasurements, one can achieve themost probable survival provability, thereby
allowing one to engineer novel optimal control protocols for themanipulation of, for example, atomic
population of a specific quantum state.

Our analytical predictions have been fully validated against numerical studies of a simple n-level quantum
system andZeno-protected entangled states. These states are particularly relevant in the context of quantum
information science, and therefore need to bewell protected fromunavoidable environmental decoherence
[13, 14]. For example, in [43], it has been shown that an entangled state can be characterized by a Zeno-time
comparable with the one of a separable state by virtue of its interactionwith a suitable noisy environment. Since
the decoherencemay correspond to a continuousmonitoring from the environment (repetitive random
measurements), our formalism allows one to predict the occupation probability of an arbitrary entangled state
by the knowledge of the probability distribution of the system-environment interaction times. Additionally, we
have found that the presence of stochasticity in themeasurement processmay enhance the survival probability
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in the typical experimental scenariowhere quantumZeno limit is not achieved. This suggests new schemes that
advantageously exploit disorder in implementing quantum information protocols.

Finally, as an outlook, our formalismmay be extended to themore general context ofQZDwhere the system
dynamics gets confined in aHilbert space, thereby enhancing its complexity exponentially [18]. Another
possible related application is the analysis of the interplay between classical noise arising from external drive and
the noise due to the randomness in themeasurement sequence, thereby designing new types of noise
constraining theHamiltonian dynamics in atomic quantum simulators ofmany-body systems [44].

Acknowledgments

Weacknowledge fruitful discussionswithMCampisi andHTouchette. FSC acknowledges support fromMIUR
(Project No. 2010LLKJBX). Thework of FC is supported by the EUFP7Marie-Curie Programme (Career
IntegrationGrantNo. 293449) and by aMIUR-FIRB grant (project no. RB FR10M3SB).

AppendixA.Derivation of equation (25)

In this appendix, we derive equation (25) of themain text. From equations (23) and (24), we get

m q nln , A.1d
d

1

1

( ) ( ) ( )( ) ( ) åm l m- = ¢
a

a
a

=

-

with

q qln ln . A.2d( ) ( ) ( ) ( )( ) ( ) ( )l m m mº -a a

Equation (A.1) is solvedwith

n
m q

d
d

ln

1
; 1, 2, , 1, A.3

d( )
( ) ( )

( )
( )

( )
m

l m
a¢ =

-
-

= ¼ -a a

while nd¢ is given by

n m n . A.4d

d

1

1

( )å¢ = - ¢
a

a
=

-

Then, equation (22) gives
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1
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where, in the second step, we have used Stirling’s approximation, while in the third stepwe have used
equations (A.3) and (A.4). Here, we have
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I x f
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p
ln , A.6
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Equation (A.5) is equation (25) of themain text.

Appendix B.Derivation of equation (30)

Here, we providemore details on the derivation of equation (30). From equation (26), the condition
I m qln 0( ) ( )∣( )  m¶ ¶ =a

= gives for d1, , 1a = ¼ - the relation

p f p f1 . B.1d
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Summing both sides over d1, 2, , 1a = ¼ - , we get
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Using the above equation, and combining equations (A.7) and (B.1), one has
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yielding finally

m p qln , B.6
d
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a

a a

=

which is equation (30) of themain text.

AppendixC.Derivation of equation (43)

Toderive equation (43), we use equations (40) and (42) to get

n m , C.1
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=

which, by rewriting equation (38) as
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Equations (38) and (39) then give (see the derivation of equation (A.3))
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Combining equations (C.3) and (C.4), and noting that m 0¹ , we get
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which is satisfiedwith
q m dln 1d d d( ( ) )( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )m m m l m m m a- - = - - "a a d1, , 1( )= ¼ - .
From equation (C.4), we get for d1, 2, , 1a = ¼ - that
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Using the last expression, and proceeding in away similar to appendix A, we get
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Equation (C.9) is equation (43) of themain text.
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