
J
H
E
P
0
5
(
2
0
1
6
)
0
3
2

Published for SISSA by Springer

Received: March 25, 2016

Accepted: April 28, 2016

Published: May 5, 2016

Interface localization near criticality

Gesualdo Delfino

SISSA and INFN — Sezione di Trieste,

Via Bonomea 265, 34136 Trieste, Italy

E-mail: delfino@sissa.it

Abstract: The theory of interface localization in near-critical planar systems at phase

coexistence is formulated from first principles. We show that mutual delocalization of two

interfaces, amounting to interfacial wetting, occurs when the bulk correlation length crit-

ical exponent ν is larger than or equal to 1. Interaction with a boundary or defect line

involves an additional scale and a dependence of the localization strength on the distance

from criticality. The implications are particularly rich in the boundary case, where de-

localization proceeds through different renormalization patterns sharing the feature that

the boundary field becomes irrelevant in the delocalized regime. The boundary delocal-

ization (wetting) transition is shown to be continuous, with surface specific heat and layer

thickness exponents which can take values that we determine.
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1 Introduction

When a statistical system is at a point of phase coexistence, an interface separating two

different phases can be induced imposing suitable boundary conditions. If, in addition, the

system is close to a second order phase transition point (e.g. the Ising model slightly below

the critical temperature) the interface exhibits universal properties whose characterization

represents a particularly interesting theoretical problem. While in principle the field theory

which describes the universal properties of the order parameter also encodes those of the

interface, in practice the fact that the latter is an extended object makes non-trivial its

study within local field theory (see e.g. [1]).

A very relevant aspect is that of the localization of an interface at a boundary, on

a defect, or with respect to a second interface. While the problem is clearly of general

theoretical interest, a specific terminology has been developed in the context of wetting

phenomena, the name referring to a liquid-vapor interface, with the liquid phase wetting

the boundary upon delocalization of the interface (see e.g. [2, 3]). In this case, however,

the long range forces normally relevant in fluids move the focus away from the universal

properties we are interested in. In this paper we will only consider systems with short

range interactions close to (second order) criticality, for which the problem of interface

localization can be addressed within the framework of universality, and then of statistical

field theory. The wetting vocabulary, on the other hand, is traditionally used also for short

range interactions, and we will often refer to it in this paper.

We will consider the two-dimensional case and show how interface localization can be

analyzed within the field theory describing the universality class of the order parameter.

As will become clear, the main reason why we are able to achieve this goal is that in two

dimensions the interfaces correspond to trajectories in imaginary time of the topological

excitations (kinks) of the underlying (1+1)-dimensional quantum field theory. Extracting

the implications of this basic circumstance we arrive, in particular, at the following results.

Mutual delocalization of two interfaces, also known as interfacial wetting, occurs when the
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correlation length critical exponent ν is larger than or equal to 1. Localization on a defect

line persists arbitrarily close to criticality, despite the fact that its strength tends to zero

if the defect operator has scaling dimension larger than 1. An interface delocalizes from a

boundary sufficiently close to criticality, and in the delocalized regime the boundary field

becomes irrelevant in the renormalization group sense. This delocalization transition is

continuous (within the classification usually adopted in this context), with allowed values

of the interfacial specific heat exponent αS = −4k, k = 0, 1, 2, . . .; for the layer thickness

exponent we obtain βS = αS/2−1. The simplest case k = 0 explains the exponents known

from the lattice solution of the Ising model [4, 5].

The paper is organized as follows. The next section is devoted to the field theoretical

description of the bulk theory and to its implications for the mutual localization of two

interfaces. Sections 3 and 4 are then devoted to localization by a defect line and a boundary,

respectively, while the last section contains a short summary.

2 Mutual localization of two interfaces

We will consider two-dimensional statistical systems with values of the bulk parameters

corresponding to coexistence of different phases. In particular, we are interested in the

regime in which such a system is close to a second order phase transition point, to which

we refer in the following as the critical point. This means that the bulk correlation length ξ

is much larger than microscopic scales1 and that the system admits a continuous description

in terms of a field theory specified by a reduced Hamiltonian (or Euclidean action)

Hbulk = Hcritical + λ

∫
d2xΦ(x) , (2.1)

where Hcritical is the scale-invariant reduced Hamiltonian of the critical point, λ measures

the distance from criticality, and Φ(x) is the operator which drives the system away from

criticality. The fact that we are at phase coexistence in two dimensions ensures that ξ

is finite for λ 6= 0, and that the operator Φ(x) is relevant (or marginally relevant) in the

renormalization group sense, with a scaling dimension XΦ ≤ 2, the equality corresponding

to the marginally relevant case. It follows from (2.1) that

λ ∼ ξXΦ−2 , (2.2)

or conversely ξ ∼ λ−ν with ν = 1/(2 − XΦ). The two-dimensional Euclidean field the-

ory (2.1) is the continuation to imaginary time of a relativistically invariant quantum field

theory in one spatial dimension. Within the quantum description, the coexisting phases

of the statistical system correspond to degenerate vacuum states |0a〉, with a = 1, 2, . . . la-

beling the different phases. In a (1+1)-dimensional quantum field theory with degenerate

vacua the elementary excitations have a topological nature, and correspond to the kinks a|b
connecting a vacuum a to a vacuum b 6= a. Being a relativistic particle, a kink a|b carries

energy and momentum (e, p) = (mab cosh θ,mab sinh θ), where mab ∼ 1/ξ is the kink mass

1At the same time ξ is much smaller than the linear size R of the system, which is then regarded as

infinite in the following. The condition R� ξ is necessary for the obervation of separated phases.
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and θ is the rapidity parameter. If, for two given phases a and b, the elementary kink

a|b connecting the corresponding quantum vacua exists, its trajectory2 in imaginary time

yields an interface separating phases a and b in the statistical system, with mab exactly

equal to the interfacial tension [6–8]. If a|b does not exist, instead, going from |0a〉 to |0b〉
necessarily requires a multi-kink excitation, say a two-kink one a|c|b yielding two inter-

faces enclosing a macroscopic layer of a third phase c (figure 1a). Hence we see that this

latter phenomenon, known as interfacial wetting, is actually determined by the vacuum

connectivity structure of the underlying quantum theory. As we now explain, this in turn

depends on the value of the critical exponent ν.

The problem can be restated as follows. Given a two-kink state a|c|b, there is interfacial

wetting only if the two kinks do not allow for a stable bound state a|b which, by definition

of bound state, would have a mass mab smaller than the total mass mac +mcb of the state

a|c|b, and would lead, via free energy minimization, to a single interface along which phase

c is confined in a thin layer. The existence of a bound state is a property which does

not change along the renormalization group trajectory defined by (2.1), and can then be

investigated in the tail of the trajectory, where particle kinetic energies are much smaller

than their masses and non-relativistic potential theory applies. In particular, we can use

the result that an attractive potential on a line produces at least a bound state [9]. On the

other hand, it was shown in [7, 10] through the exact study of the unbound regime that the

kinks have fermionic statistics which accounts for the mutual avoidance of the interfaces.

With reference to (2.1), non-interacting fermions correspond to a Hamiltonian bilinear in

the fermions, where Φ provides the mass term and XΦ = ν = 1 (a single fermion species

corresponds to the Ising model, with λ ∼ Tc−T ). Hence the attractive regime corresponds

either to XΦ < 1 or to XΦ > 1. A simple way to fix the issue is to consider the three-state

Potts model. Indeed, given a two-kink state a|c|b, the permutational symmetry of the

model implies the existence of the bound state a|b with the same mass of a|c and c|b. Since

this model has XΦ = 4/5 [11], the binding regime corresponds to XΦ < 1. Conversely,

interfacial wetting occurs for XΦ ≥ 1, i.e. ν ≥ 1.

A basic illustration of this general result is provided by the Blume-Capel model [12,

13], i.e. an Ising model in which non-magnetic sites (vacancies) are also allowed. As the

temperature is lowered the model exhibits an ordering transition which is continuous up to

a vacancy density ρc, and becomes first order above ρc. The first order line, along which

the ferromagnetic phases + and − coexist with the disordered phase 0, corresponds to (2.1)

with Hcritical describing the tricritical point at ρc, λ ∼ ρ − ρc, and XΦ = 6/5 [14]. Since

ν > 1, the result we obtained above implies that the state +|0|− does not bind, and that

a wetting layer of the disordered phase forms in-between the ferromagnetic phases. The

absence of bound states can be checked within the exact scattering solution [15, 16], which

does not exhibit bound state poles. While interfacial properties in the Blume-Capel model

have been the subject of several Monte Carlo investigations (see in particular [17–20]), it

is hard to distinguish numerically between interfacial wetting and weak binding, i.e. the

2The kinks are the excitations of the theory (2.1) which describes all fluctuations near criticality. The

notion of kink trajectory is intended within the field theoretical framework which sums over all possible

configurations. It was shown in [6–8] how this determines the internal structure of the interface.
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Figure 1. Two interfaces enclose a third phase (a); an interface localized on a defect (b); phase

enclosed between the boundary and an interface (c).

formation of a bound state with mass (interfacial tension) m+− only slightly smaller than

2m+0. The sharp and general answer we are giving to this type of question provides a

benchmark for future simulations.

3 Localization on a defect line

We now consider the bulk theory (2.1) in presence of a defect line, and address the question

of the localization of an interface by the defect. Using the notation x = (x1, x2) for a point

on the plane, the presence of the defect along the line x1 = 0 corresponds to adding to (2.1)

the term

Hdefect = −g
∫
d2x δ(x1) Ψ(x) , (3.1)

where Ψ(x) is an operator of the bulk theory with scaling dimension XΨ, so that g has the

dimension of a mass to the power 1−XΨ. Within the one-dimensional quantum description

with x2 corresponding to imaginary time, the term (3.1) introduces an external potential

centered at x1 = 0 and vanishing as x1 → ±∞. The problem of the interface in presence of

the defect (figure 1b) maps to that of a kink in this potential. Here and in the rest of the

paper the kinks remain excitations of the bulk theory (2.1), so that (2.2) and mab ∼ 1/ξ

continue to hold.3

If the defect is able to bind the kink, the energy of the bound state takes the form

Ebound = mf(z) < m, where f is a function of the dimensionless combination

z = g/m1−XΨ , (3.2)

and we drop indices on the kink mass m. The difference 1 − f(z) measures the distance

from the unbinding threshold, and then the strength of localization. The attractive regime

is on one side, say g > 0, of the non-interacting point g = 0. As before, at the tail of

3The defect also preserves the topological charge of the bulk (g = 0) states; for neutral (charged) states

the order parameter takes equal (different) values at x1 = ±∞.
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renormalization group trajectories (large m) we can use the non-relativistic result that an

attractive potential is binding, and conclude that the interface is localized for all posi-

tive g. But in turn this means localization for all positive z, and then also for small m.

Binding vanishes as g → 0, i.e. f(z) → 1 as z → 0. It then follows from (3.2) that, as

criticality is approached (m → 0) for a fixed defect strength g, the localization strength

vanishes if XΨ > 1.

For a defect realized as a line of weakened bonds, Ψ coincides with the energy density

operator ε, and we already quoted the values Xε = 1 and 4/5 for the Ising and three-state

Potts models, respectively. For the Ising model with this type of defect the absence of

a delocalization transition was derived from the lattice in [21]; it is also the only defect

case, among those relevant for critical phenomena, which is exactly solvable [22, 23]. It

has the peculiarity that z = g, so that the localization strength does not change as crit-

icality is approached; the exact form of f(g) can be deduced from the field theoretical

solution of [22, 23].

A different realization of the defect in the Ising model has been studied numerically

in [24], where annealed vacancies were allowed along a line. Snapshots of the interface at

temperatures sufficiently close to criticality show wide fluctuations for small vacancy den-

sity ρD, and clear localization on the defect for larger values of ρD. Within our framework,

the Ising defect studied in [24] corresponds to g ∼ ρD and XΨ > 2. Indeed, since in the

Ising model the only non-magnetic relevant operator is the energy density ε, the operator

which creates the vacancies must be irrelevant; it is actually known [25] that its scaling

dimension is equal to 4. Since our analysis escludes a delocalization transition, the wide

fluctuations of the interface at small ρD must be interpreted as weak localization rather

than delocalization.

It was shown in [26] for the lattice Ising model with a line of weakened bonds that

depinning from the defect can be obtained inducing, through suitable boundary conditions,

the interface to form (in average) an angle φ with the direction of the defect. Within our

framework, this situation amounts to adding a left-right asymmetry (related to φ) across

the defect, which substantially modifies the analysis. Indeed, the non-relativistic limit now

corresponds to an asymmetric potential well, which may or may not produce a bound state

depending on the parameters of the well [9].

4 Localization at a boundary

We finally consider the problem of the localization of the interface by a boundary. We

then consider the system on the half-plane x1 ≥ 0, so that the reduced Hamiltonian is now

given by (2.1) (with the understanding that both Hcritical and the integral are restricted to

x1 ≥ 0) plus a boundary term

Hboundary = µ

∫
dx2 ΦB(x2) , (4.1)

where ΦB(x2) is a boundary operator with scaling dimension XΦB
, and the coupling µ has

dimension of a mass to the power 1−XΦB
. We also imply that the case µ = 0 corresponds

to unconstrained, or free, boundary degrees of freedom.
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The truncation to x1 ≥ 0 of the space on which the particles live no longer preserves

the topological charge, so that interfaces can be created as the boundary parameter µ is

varied. In particular, let us denote by |0a〉B the states of the boundary system that for

µ = 0 reduce to the degenerate ground states; the expectation value of the order parameter

operator on these states tends for x1 → +∞ to the value va it takes in the bulk phase a.

Generically, the boundary field µ splits the degeneracy, and we indicate by |0a〉B the ground

state and by |0b〉B one of the excited states. The latter corresponds to the ground state

plus excitations, and a single kink excitation a|b is allowed, since topological charge is not

preserved. For µ small enough the order parameter in the excited state still tends to vb for

x1 →∞, and the kink must be bound to the boundary to ensure this property (figure 1c).

For the scaling Ising model with a boundary magnetic field such a bound state has been

exhibited in [27] as a pole of the exact kink reflection amplitude on the boundary; the kink

unbinds when the field becomes strong enough. In general, the energy of the bound state is

Eb = Ea +mab cos θ0 , (4.2)

where Ea (resp. Eb) is the energy of the state |0a〉B (resp. |0b〉B), and the rapidity θ = iθ0

of the bound kink is purely imaginary to make Eb−Ea smaller than the unbinding threshold

mab. As observed in [28, 29], since mab is the interfacial tension between phases a and b,

and Ea (resp. Eb) the interfacial tension between the boundary and phase a (resp. b), θ0

emerges as the contact angle of phenomenological wetting theory [2, 3]. θ0 is a function of

the dimensionless combination

s = µ/m
1−XΦB
ab . (4.3)

Binding is stronger when Eb − Ea is small, i.e. for µ small, and consequently s small. As

s increases binding weakens until a delocalization (or boundary wetting) transition takes

place for a value sw at which θ0(sw) = 0. For XΦB
< 1, i.e. when the boundary operator

is relevant on the boundary, it follows from (4.3) that the interface will be delocalized

sufficiently close to criticality (mab → 0).

The alternative scenario, i.e. XΦB
> 1 and binding growing as mab decreases, namely

when the interface fluctuates more, is not plausible. Understanding why it does not occur

is instructive about the role of boundary operators in wetting phenomena. Consider for

this purpose the case in which µ is a boundary magnetic field which for positive values

favors phase a. It is then easy to see that the analysis we performed above applies only to

the case of a relevant (XΦB
< 1) boundary operator. Indeed it requires that the boundary

magnetization, which is responsible for the creation of the kink a|b in |0b〉B and goes as

µXΦB
/(1−XΦB

), is small for µ small, and then that XΦB
< 1. Notice that µ = 0 corresponds

to free boundary spins, and µ = +∞ to boundary spins maximally polarized (fixed) in the

direction a. These are scale (actually conformally [30]) invariant boundary conditions, and

a boundary magnetic operator relevant at µ = 0 induces a boundary renormalization group

flow from free to fixed, i.e. towards the boundary fixed point with less degrees of freedom.

This is what happens in the Ising model, where XΦB
equals 1/2 at the free boundary point

and is larger than 1 at the fixed boundary point [30]. On the other hand, a boundary

magnetic operator irrelevant at µ = 0 requires the presence of an intermediate, partially
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polarized boundary fixed point at µ = µ∗, where it becomes relevant. The above analysis of

the localization of the interface can then be repeated starting from this intermediate fixed

point, replacing µ with µ − µ∗, and leads to the same conclusions. A partially polarized

boundary fixed point is known to occur in the Blume-Capel model, for which XΦB
= 3/2

at µ = 0, and the vacancies make possible that the fixed point at µ∗ has more degrees of

freedom than that at µ = 0 [31, 32].

A situation different from that analyzed so far arises if |0a〉B and |0b〉B are states

whose degeneracy is preserved by the boundary operator. In the Ising model, for example,

modifying the boundary bond coupling from the bulk value J to a value J0 (µ ∼ J − J0)

preserves the degeneracy of |0+〉B and |0−〉B. In such a case, for mab large we can use

the non-relativistic result that a potential well at the extremity of the half-line produces a

bound state only if it is sufficiently deep [9]. Hence the interaction, if attractive, localizes the

interface for s large enough, beyond a threshold sw. Since, as already observed, for µ fixed

localization cannot increase as mab decreases, we conclude from (4.3) that XΦB
> 1 at the

free boundary condition point µ = 0. This prediction can be checked to be true in the Ising,

Blume-Capel and Potts cases, for which boundary operators are classified [30–33]. Putting

all together, we see that localization at a boundary can follow different paths, but allows

for the general conclusions that the interface delocalizes as bulk criticality is approached,

and that the delocalized regime corresponds to an irrelevant boundary operator.

The solution for the Ising model on the semi-infinite lattice was obtained in [4, 5] for

fixed boundary spins and bonds coupling them to the adjacent spin column weakened from

the bulk value J to J0. The overall effect is that of a boundary magnetic field varying from

zero to infinity as J0 varies from zero to J , and the solution exhibits the wetting transition

at sw which, within our classification, falls into the energy splitting class.

In general, for fixed µ, (2.2) and (4.3) select a wetting transition value λw of the bulk

parameter. The relation

(1− cos θ0) ∝ (λ− λw)2−αS (4.4)

defines the interfacial (or surface) specific heat exponent αS [2, 3], and the transition is said

to be continuous if αS < 1. This denomination refers to the continuity of the first derivative

of (4.4) at λw, taking into account that the contact angle is phenomenologically set to zero

in the delocalized regime 0 < λ < λw. It is important to realize, however, that analytically

unbinding implies that the bound state pole in the kink-boundary scattering amplitude

slides through a branch point into a second sheet of the complex energy plane [9, 34].

Within the rapidity parameterization this means that the position iθ0 of the pole changes

sign at λw, i.e.

θ0 ∝ (λ− λw)2k+1 , k = 0, 1, 2, . . . , (4.5)

so that

αS = −4k . (4.6)

Eq. (4.5) also makes clear that αS is not affected by renormalization, a feature that pre-

sumably persists in higher dimensions. A second exponent βS < 0 describes the divergence

– 7 –
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of the distance of the interface from the boundary (or wetting layer thickness) [2, 3]

l ∝ (λ− λw)βS . (4.7)

We have to identify l with the inverse of the modulus mabθ0 (θ0 � 1) of the momentum of

the bound kink,4 so that

βS = αS/2− 1. (4.8)

Clearly, the value k = 0 is the one expected in the generic case, and the associated values

αS = 0 and βS = −1 indeed correspond to the Ising solution of [4, 5]. It will be interesting

to establish in the future whether the values k = 1, 2, . . ., which are also allowed by the

theory, are realized in other universality classes and/or with different boundary conditions.

5 Conclusion

In this paper we showed how the theory of interface localization in near-critical planar

systems with short range interactions can be formulated from first principles, without

assuming models of the interface but obtaining instead its properties within the field theory

associated to the given universality class of near-critical behavior. This allowed us to show,

in particular, that the binding of two interfaces (and then interfacial wetting) is determined

by the value of the bulk correlation length critical exponent. The strength of localization on

a defect line may renormalize towards zero approaching criticality, but this is not sufficient

to induce a delocalization transition. The latter occurs through different patterns in the

boundary case, with the unifying feature that the boundary field becomes irrelevant in the

delocalized regime. We showed that the surface specific heat and layer thickness exponents

of the transition are not affected by renormalization and can take values that we determined

exactly identifying the analytic mechanism underlying the wetting transition.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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