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Abstract

Background: Many models of protein sequence evolution, in particular those based on Point Accepted Mutation
(PAM) matrices, assume that its dynamics is Markovian. Nevertheless, it has been observed that evolution seems to
proceed differently at different time scales, questioning this assumption. In 2011 Kosiol and Goldman proved that, if
evolution is Markovian at the codon level, it can not be Markovian at the amino acid level. However, it remains unclear
up to which point the Markov assumption is verified at the codon level.

Results: Here we show how also the among-site variability of substitution rates makes the process of full protein
sequence evolution effectively not Markovian even at the codon level. This may be the theoretical explanation behind
the well known systematic underestimation of evolutionary distances observed when omitting rate variability. If the
substitution rate variability is neglected the average amino acid and codon replacement probabilities are affected by
systematic errors and those with the largest mismatches are the substitutions involving more than one nucleotide at a
time. On the other hand, the instantaneous substitution matrices estimated from alignments with the Markov
assumption tend to overestimate double and triple substitutions, even when learned from alignments at high
sequence identity.

Conclusions: These results discourage the use of simple Markov models to describe full protein sequence evolution
and encourage to employ, whenever possible, models that account for rate variability by construction (such as hidden
Markov models or mixture models) or substitution models of the type of Le and Gascuel (2008) that account for it
explicitly.

Keywords: Non-Markovian evolution, Amino acid substitution matrices, Substitution rate variability, Evolutionary
distances, Protein sequence evolution

Background
Since the publication of the work by Dayhoff and Eck
[1] introducing for the first time the concept of PAM
matrices, protein sequence evolution has been typically
modeled as a time-homogeneous Markov process and
each protein site is assumed to be ruled by the same
dynamic laws and to evolve independently from the others
and from its own past history. This concept is a milestone
in the modeling of protein evolution and is, for example,
at the basis of several successful approaches for structure
prediction. After Dayhoff ’s first paper, PAMmatrices have
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been further developed and specialized by using larger
datasets [2, 3] and different methods to infer the instan-
taneous substitution rate matrix [4–6]. However, in more
recent years, the availability of larger and larger substi-
tution datasets has started challenging this theoretical
framework. For example, Benner et al. [7] and Mitchison
and Durbin [8] observed qualitative differences in protein
evolution at different sequence divergence, raising con-
cerns on treating the substitution process as Markovian.
Even more recently, Kosiol and Goldman [9] proved that,
if the substitution process is Markovian at the codon level,
it is notMarkovian at the amino acid level.With that paper
it became evident that substitution matrices on codons
[10–12] should be preferred to those on amino acids, but
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it is still unclear up to which point evolution at the codon
level can be consideredMarkovian. In particular, substitu-
tion matrices both on amino acids and on codons tend to
present high rates for double and triple instantaneous sub-
stitution rates, i.e. substitutions between codons differing
by more than one nucleotide or between amino acids
whose codons differ all for more the one nucleotide. This
phenomenon, according to biochemical wisdom, does not
seem realistic and may hint to further violation of the
Markov assumption not kept into account even when
describing the evolution at the codon level.
Another important result in the description of protein

sequence evolution was obtained in 1993 by Yang [13, 14],
who proved that the estimations of evolutionary distances
and evolutionary trees improve if the variability of substi-
tution rates over sites is accounted for. This rate variabil-
ity, which is typically modeled by a gamma distribution
[13, 14], is due to many effects, including different struc-
tural and functional constraints [15] and coevolution
inducing a coupling between substitutions at close-by
sites [16, 17].
The importance of taking rate variability into account

is widely recognized in phylogenetics and many meth-
ods have been developed to include it when dealing with
large multiple sequence alignments [18–21]. However,
these findings are generally neglected when building sub-
stitution matrices or applying them to alignments where
no further information on the rate distribution is avail-
able. One noteworthy exception is due to Le and Gascuel
[22], who improved the amino acid replacement matrix by
Whelan and Goldman [5] by incorporating the variabil-
ity of evolutionary rates across sites, but still proposing a
model on amino acids rather than on codons.
We here present a model based on a Markovian evolu-

tion of the single protein site and describe how the among-
site variability of substitution rates, by allowing each site
to evolve at a different speed, makes the evolution of
full protein sequences effectively non-Markovian. The
observed non-Markovian behavior at the full-sequence
scale can be seen as the consequence of a reduction in the
state space: the full state space, consisting in the twenty
amino acids on sites characterized by different rates, is
implicitly reduced to the simple set of the amino acids,
independently of the specific rate of that site and this gives
birth to ensemble average transition probabilities on the
reduced state space which are not Markovian. The main
consequence is that simpleMarkovmodels of protein evo-
lution that neglect rate variability (PAM and PAM-like
matrices), no matter if they are empirical or mechanistic
and if they are developed at the codon or at the amino acid
level, are affected by systematic errors that, for example,
may lead to underestimating the evolutionary times. We
will also show that one of the effects of treating protein
evolution as a Markov process is a general overestimation

of instantaneous double and triple substitutions, which
might explain the corresponding high values found in the
most common instantaneous substitution matrices such
as the Jones-Taylor-Thornton (JTT) [3], the Whelan and
Goldman (WAG) [5] and the Empirical Codon Model
(ECM) [10].

Methods
Markov models of protein sequence evolution
We first model protein sequence evolution as a homo-
geneous continuous-time Markov process defined by an
N × N instantaneous substitution matrix, Q, where N is
the number of possible states [23]. When protein evolu-
tion is modeled on the amino acids, the possible states are
the 20 amino acids and NAA = 20, while when the frame-
work of codons is chosen, the possible states are the 61
codons coding for amino acids and Nc = 61. From now
on the superscript c (resp. AA) will be reserved to codon
related (resp. amino acid related) quantities.
Each off-diagonal entry of Q, Qi,j �=i, represents the

instantaneous substitution rate from state i to state j and
is assumed to be constant in time and over sites. The diag-
onal entries are defined as minus the sum of all the other
entries in that row, Qii = − ∑

j �=i Qij and account for the
instantaneous probability of escaping from each state. Q
is normalized so that

∑
i
∑

j �=i
(
πiQij

) = 1, where πi is
the equilibrium probability of state i, defined by the set of
conditions

∑
i πiQij = 0. Because of this normalization,

the time is measured in units of expected substitutions per
site. For example, t = 0.01 corresponds to a typical rate of
substitution of 1 %, constant along the protein chain.
To analyze the dynamics in the framework of codons we

consider the M0 model introduced by Yang [24]:

Qc
i,j �=i ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 i or j stop codons
0 i → j > 1 nucl. subst.
π c
j i → j syn. transv.

π c
j κ i → j syn. transit.

π c
j ω i → j nonsyn. transv.

π c
j κω i → j nonsyn. transit.

(1)

where π c
j is the equilibrium probability for codon j, κ is

the transition/transversion rate ratio and ω is the nonsyn-
onymous/synonymous rate ratio. The parameters are set
to their typical values for protein-coding DNA: ω = 0.2,
κ = 2.5 and the codon distribution π c

i is chosen as in
Kosiol and Goldman [9]. For the sake of completeness, the
substitution dynamics is here modeled also in the amino
acid framework, using the WAGmatrix [5] as QAA.
The transition probability from state i to state j in a time

interval of t is given by:

Pij(t) =
[
etQ

]
ij

(2)
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The matrix P(t), defined from now on as the transition
probability matrix at time t, describes by construction a
Markovian dynamics.

Ensemble average transition probabilities
We now consider the effect on protein sequence evolu-
tion of a site-dependent substitution rate. Consistently
with what proposed by Yang [13], we assume that the rate
of substitution, r, is distributed according to a γ -shaped
probability density function with average value 〈r〉 = 1:

ρ(r) = k · exp (−α · r) r(α−1) (3)

where α is the shape parameter and k is a normalization
factor such that

∫ ∞
0 ρ(r)dr = 1. In the rest of the paper,

both in the codon and in the amino acid model, we are
going to use α = 0.286. This value is consistent with those
observed in several protein families (see Table 1 of ref.
[25]), but the specific choice of α is here irrelevant, being
the scope of this work to provide a demonstration of the
consequences of a plausible rate distribution on protein
sequence evolution. The results for other values of α in the
range [0.2 : 1] are reported in the Additional files.
The transition probability from state i to state j in a time

interval of t for a site characterized by rate r is given by:

Pij (r, t) =
[
er·t·Q

]
ij

(4)

When no information is available on the specific rate of
each site, which is the typical premise when using sub-
stitution matrices, we can score an alignment only by
comparing it to average transition probabilities. So we are
interested in estimating the average probability for a site
being in state i at time zero to be in state j at time t, con-
sidering that the rate distribution is given by Eq. 3 and that
each site evolves according to the Markovian dynamics
described by Eq. 4:

P̃cij(t) =
∫ ∞

0
Pcij (r, t) ρ(r)dr

=
[∫ ∞

0
er·t·Qc

ρ(r)dr
]
ij

(5)

We will call P̃(t) the ensemble average transition proba-
bility matrix at time t. Here the term ensemble average
should be intended as an average over the ensemble of
sites subject to the distribution of the substitution rate
described by Eq. 3. We want to highlight that the defini-
tion of Eq. 5 implicitly entail that each site is characterized
by a substitution rate that remains constant over time.
This is, of course, an approximation, because during evo-
lution the propensity for a site to accept mutations may
change [26], but, for short evolutionary times and in
the range of sequence identity considered in this study
(∼ 80 %), this approximation should hold. In fact, this is

the same approximation implicitly used in the vast major-
ity of phylogenetic algorithms for tree reconstruction,
where each protein site is assumed to maintain the same
rate along the branches of the full tree.

Non-Markovian behavior of ensemble average transition
probabilities
According to Eq. 5, the ensemble average transition
probability matrix is a combination of many Markovian
transition probabilities and, in general, combinations of
non-identical Markov processes are not Markovian. In
other words, even if here the single-site dynamics is
assumed to be Markovian, when the full protein sequence
evolution is approximated by neglecting site specificity
as done in general substitution matrices, the state space
is implicitly reduced and only some special reductions,
with respect to which that process is “lumpable” [27],
still give rise to Markovian dynamics. With this in mind,
the non-Markovian behavior of the full protein sequence
dynamics can be simply proved either by checking that
P̃(t) �= [̃

P(τ )
]t/τ , namely that P̃ violates the Chapman-

Kolmogorov equation, or by exploiting the properties of
lumpable Markov processes. A numerical example of the
violation to the Chapman-Kolmogorov equation can be
found in Appendix A, while a demonstration of non-
Markovianity based on the properties of lumpability can
be found in Appendix B.
In the next paragraph, we are going to quantify the entity

of the violation of the Markov assumption.

Results
In order to understand qualitatively the effects of the vari-
ation of the rate over sites, let us first consider a simplified
world with only three codons, A, B and C, characterized
all by the same frequency πA = πB = πC = 1

3 . We
assume that the instantaneous substitution matrix for this
model is:

Q =
⎛
⎝ −1 0.9 0.1

0.9 −1.1 0.2
0.1 0.2 −0.3

⎞
⎠

If the rate of substitution is constant over sites, the transi-
tion probability matrix at time t is

P(t) = etQ (6)

and describes a Markovian dynamics. On the other hand,
we can imagine a sequence where, still keeping the same
average rate, half of the sites has a reduced substitution
rate of 0.5 and the other half has a faster substitution
rate of 1.5. For this second system the ensemble average
transition probability matrix at time t will be
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P̃(t) = e0.5·tQ + e1.5·tQ

2
(7)

It may be of interest to monitor the value of these two
sets of transition probabilities as functions of time and
compare them. Being the three codons equiprobable, Q,
P and P̃ are symmetric and so we can limit ourselves to
check only 3 different transition probabilities: PAB = PBA,
PAC = PCA and PBC = PCB. In Fig. 1 we compare the time
evolution of these three quantities (respectively in black,
blue and red) in the two systems (in solid line for Eq. 6
and points for Eq. 7): clearly P(t) �= P̃(t). So, it is evident
that the variation of the rate induces a change in the aver-
age transition probabilities even if both Q and the average
substitution rate do not change. It is also easy to verify
that the dynamics described by Eq. 7 is not Markovian
(see Methods).

Non-Markovian behavior in the framework of codons
A similar effect can be observed in the models describing
protein sequence evolution both at the codon level and at
the amino acid level and it may be interesting to quantify
the violation of the Markov assumption in presence of a
plausible rate variation.
Concerning codons, we model the instantaneous sub-

stitution matrix as in Eq. 1 and the rate distribution by
Eq. 3 (see Methods). Since now the rate distribution is
continuous, the sum in Eq. 7 is replaced by an integral
and gives Eq. 5. To quantify the variation of the ensem-
ble average transition probability matrix with respect to
the Markovian transition probability matrix, we compare
Pc(t) to P̃c(t) at time t = 0.235, which corresponds, for
Pc, to the 80 % of sequence identity. In Fig. 2a we show the

Fig. 1 Transition probabilities in a simplified world. Comparison
between the transition probabilities in a sequence with constant
substitution rate over sites and in a sequence with two equiprobable
classes of rates for a simplified system described in Results. Black:
PAB(t) (solid line) and P̃AB(t) (points); Blue: PAC(t) (solid line) and P̃AC(t)
(points); Red: PBC(t) (solid line) and P̃BC(t) (points)

entry-by-entry comparison between them in log-log scale:
each point corresponds to a pair i, j of codons and its x-
value is given by the Markovian evolution Pcij(t), while its
y-value is its non-Markovian counterpart P̃cij(t). If the two
dynamics gave the same results, the points would lie on
the line y = x, but this is not the case. In particular, one
can see four separate subsets: the black squares (zoomed
in the inset) are the entries corresponding to j = i (the
diagonal terms in the matrix), while the red, green and
blue points correspond to j �= i (the off-diagonal ones),
where i and j differ respectively by one, two or three
nucleotides. It is evident that, with respect to the Marko-
vian dynamics, P̃c(t) gives rise to higher entries for j = i
enhances double and triple substitutions and discourages
single ones.
A first consequence is that the expected sequence iden-

tity between two sequences separated by an evolutionary
time t is much lower for the Markovian dynamics than
for the non-Markovian one. This happens because, even
if the average rate of substitutions is the same, in the
non-Markovian case it is much more likely that substitu-
tions cumulate on the few sites with rate larger than 1.
In this way, a much larger fraction of substitutions takes
place on a site that has already mutated, without further
modifying the global sequence identity. The Markovian
assumption produces therefore a systematic underestima-
tion of evolutionary times. This result may be considered
the theoretical explanation of the observation by Yang
et al. [14] that, when taking substitution rate variability
into account, one gets larger estimates of branch lengths
in phylogenetic trees. The difference of sequence identity
between two sequences separated by a given evolution-
ary time in the two processes can be found in Additional
file 3 (Figure S2 (a)). In particular, at the time t =
0.235 the non-Markovian dynamics presents the 85.7 %
of sequence identity, while the Markovian one only the
80 %.
It is, then, more appropriate to compare the two pro-

cesses at fixed sequence identity: in Additional file 3
(Figure S2 (b)), one can find the same comparison of
Fig. 2a with the time t̃ of the Non-Markovian process cho-
sen to produce a sequence identity of the 80 %, which
gives t̃ = 0.4. Even if this choice balances the entries cor-
responding to i = j, the non-Markovian dynamics still
enhances double and triple substitutions with respect to
its Markovian analogue. For example, at sequence identity
of 80 %, the estimated probability of finding a substitution
from codon ATC to codon TGG (3 different nucleotide,
so one of the blue points in Fig. 2a–c) is 5.21 · 10−8

when the Markovian approximation is adopted, while is
more than one hundred times bigger if the rate is γ -
distributed. In Table 1 one can find some other exam-
ples of how transition probabilities change in the two
frameworks.
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Fig. 2 Comparison between Markovian and non-Markovian substitution probabilities in the framework of codons and of amino acids. a Points:
entry-by-entry comparison of Pc(t) and P̃c(t) in log-log scale, with t = 0.235. Each point corresponds to a pair i, j of codons and its x-value is given
by Pcij(t), while its y-value is P̃

c
ij(t). The black squares (zoomed in the yellow inset) are the entries with i = j, while red, green and blue points are

respectively the entries where codon i and codon j differ by one, two or three nucleotides. Solid line: line y = x. b Points: entry-by-entry comparison
of PAA(t) and P̃AA(t) in log-log scale, with t = 0.23. Coordinates and lines have the same meaning as in panel (a) and colors are such that the entries
where i = j are black (zoomed in the yellow inset), while red, green and blue identify the entries with i �= j where the most similar pair of codons
coding for amino acids i and j differ respectively by one, two or three nucleotides

In the Additional files we provide the ensemble aver-
age transition probability matrices for codons estimated
by Eq. 5 (Additional file 1) and theMarkovian counterpart
described by Eq. 2 (Additional file 2) at sequence identities
ranging from 95 to 50 %.

Non-Markovian behavior in the framework of amino acids
The same calculations can be also performed in the frame-
work of amino acids: Fig. 2d shows the entry-by-entry
comparison between the Markovian dynamics described
by PAA and its non-Markovian analogue P̃AA(t) in log-
log scale, where t = 0.23, corresponding to the 80 % of
sequence identity in the Markovian dynamics. Here red,
green and blue points identify the transition probabili-
ties between pairs of amino acids whose most similar pair
of codons (i.e. the pair of codons with maximal num-
ber of identical letters) differ respectively by one, two
or three nucleotides. Not surprisingly, the subsets are
less separated then in the framework of codons. In fact

Table 1 Examples of the variation of the transition probabilities
at the sequence identity of 80 % between Markovian (P) and
non-Markovian (̃P) dynamics

Initial state Final state P(t) P̃(t̃) P(t)/̃P(t̃)

ATC TGG 5.21 · 10−8 8.23 · 10−6 0.006

TTC ATG 3.39 · 10−5 3.09 · 10−4 0.110

GTC GTT 0.1507 0.0951 1.58

Ile Val 0.104 0.076 1.4

Arg Lys 0.064 0.049 1.3

Gly Ile 0.0006 0.0022 0.3

The first three rows involve substitutions in the framework of codons, while the last
three are in the framework of amino acids

many amino acid substitutions are a combination of sin-
gle, double and triple nucleotide substitutions. Anyway
it can be observed that the substitutions between amino
acids where at least two nucleotides must change are
more frequent in the non-Markovian dynamics than in
the Markovian one, as already observed for codons. The
comparison of the sequence identity generated by PAA
and P̃AA and the entry-by-entry comparison of PAA(t)
and P̃AA

(
t̃
)
at the 80 % of sequence identity can be

found in Additional file 3 (Figure S2 (c) and (d)). For
example, at sequence identity of 80 %, the estimated prob-
ability to find a substitution from glycine to isoleucine
(where at least two substitutions are needed) is approx-
imately one third for the Markovian model with respect
to the non-Markovian one. In Table 1 further exam-
ples of differences in the transition probabilities between
the Markovian and the non-Markovian dynamics can be
found.

Impact on the estimation of Q of the Non-Markovian
behavior due to the rate variability
We now show that treating full protein sequence evolu-
tion as Markovian, neglecting substitution rate variability,
determines also a wrong estimation of Q, the instanta-
neous substitution matrix. In particular, we will see that,
when learning Qc from pairwise alignments, substitu-
tion rates between codons differing by more than one
nucleotide are systematically magnified. This is somehow
intuitive: rate variability allows substitutions to accumu-
late on the few sites with high substitution rate and so,
when learning substitution frequencies from alignments,
we find a larger number of double and triple substitu-
tions than expected if the rates were constant. Then, when
inferringQc from these data without taking rate variability



Rizzato et al. BMC Bioinformatics  (2016) 17:258 Page 6 of 9

into account, the only way to encompass the extra number
of double substitutions is to enhance instantaneous dou-
ble and triple transition probabilities. For simplicity we
are going to show this for a particular case, where Qc is
estimated from alignments all at the same sequence iden-
tity, but the reasoning can be generalized for alignments
at various sequence identity and for multiple sequence
alignments.
To evaluate the order of magnitude of this overestima-

tion of instantaneous double and triple substitutions, we
recover a measure ofQc, Q̃c(t), from the ensemble average
transition probability matrix at time t̃ = 0.4, P̃c

(
t̃ = 0.4

)
.

If, when estimating Q̃c (
t̃
)
, we are considering the process

as Markovian, for a sequence identity of 80 % we would
infer the evolutionary time being not t̃ = 0.4 but rather
t = 0.235 (see previous calculations and Fig. 2b). So we
can calculate Q̃c (

t̃
)
by inverting Eq. 2:

Q̃c (
t̃
) = log

(̃
Pc

(
t̃
))

t
(8)

with t̃ = 0.4 and t = 0.235.
Figure 3 shows the entry-by-entry comparison between

the originalQc and Q̃c (
t̃
)
. The two matrices clearly do not

correspond, as the points do not lie on the line y = x, so
the estimate of Qc from alignments when neglecting rate
variability is affected by systematic errors. In particular,
we can calculate the fraction of instantaneous double sub-
stitutions in the originalQc, f true2 , and in the estimated Q̃c,
f est2 , by:

f true2 =
∑

i,j| 2 �=nucl

[
πi · Qc

ij

]
∑

i,j �=i

[
πi · Qc

ij

] (9)

f est2 =
∑

i,j| 2 �=nucl

[
πi · Q̃c

ij
(
t̃ = 0.4

)]
∑

i,j �=i

[
πi · Q̃c

ij
(
t̃ = 0.4

)] (10)

where πi is the equilibrium probability of codon i and the
sum at the numerator is the restricted sum over the entries
involving a pair of codons i, j differing by two nucleotides.
The fractions of triple substitutions for the original Qc, f3,
and for the estimated Q̃c, f est3 , are computed in a similar
way.
In the original instantaneous rate matrixQc (Eq. 1) dou-

ble and triple substitutions are not allowed, so f true2 =
f true3 = 0 by construction, while, in the estimated matrix
Q̃c (

t̃
)
, we get f est2 = 0.153 and f est3 = 0.017. So, the sum

of the fractions of instantaneous double and triple substi-
tution estimated from alignments at the 80 % of sequence
identity would make up the 17 % of all the instantaneous
substitutions, while in the original Markovian model they
are the 0%.
This result might cast some light on the anomalous high

entries for double and triple substitutions in the Qmatrix

Fig. 3 Impact of the Markovian assumption on the estimation of Q.
Points: entry-by-entry comparison between Qc and Q̃c(t̃ = 0.4)
estimated by Eq. 8. Solid line: y = x

of many models: the sum of the fractions of instanta-
neous double and triple substitutions is 25 % in the ECM,
22 % in the WAG and 14 % in the JTT matrix (for the
last two, double substitutions are defined as the substi-
tutions between amino acids whose most similar pair of
codons differ by two nucleotides). Considering that muta-
tions take place by chance, one would rarely expect double
or triple substitutions to happen in an infinitesimal time
on the same codon, which is also the underlying hypoth-
esis in the definition of the mechanistic Qc of Eq. 1. For
example if single mutations take place with probability
p in a small time dt and the sites evolve independently,
two neighbor mutations in the same time interval should
happen at the much smaller probability of p2.
A possible explanation of the high value of double and

triple substitution rates in standard substitution matrices
is that the Markov assumption may have induced a ficti-
tious increase for double and triple substitutions. A full
proof of this idea would require recalculating Q from the
same alignments used to build each matrix by including
the rate variability. However, this explanation is consis-
tent with two previous results: when theWAGmatrix was
re-examined by Le and Gascuel by including the γ correc-
tion, they found smaller values for the triple substitutions
[22] and De Maio et al. [28] observed that accounting for
rate variability by hiddenMarkovModels reduces the esti-
mate of instantaneous multiple substitutions in the ECM
matrix.

Discussion and conclusions
We have discussed the effects of the among-site vari-
ability of substitution rates in the process of protein
sequence evolution. The relative difference of the rates
mixes Markov processes with different speed, which
makes the process of full sequence evolution effectively
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not Markovian. The first consequence of the violation of
the Markov assumption is a systematic underestimation
of evolutionary distances. We have quantified the viola-
tion of the Markov assumption for two realistic models
(respectively on codons and amino acids), demonstrating
that neglecting the rate variability may cause two orders
of magnitude of difference in the relative probability for
triple substitutions and one order of magnitude for dou-
ble substitutions. We have also shown that this approach
modifies in a radical way the estimate of Q itself by espe-
cially magnifying double and triple substitutions, which
might explain the correspondent high transition probabil-
ities in the main instantaneous substitution matrices (e.g.
JTT, WAG, ECM).
Statistical inference of phylogenies under Markov mod-

els including γ -distributed rate variation [13, 14] as well
as CAT models [20] can effectively deal with this prob-
lem and mixture models [18, 19, 29], that allow not only
site-dependent substitution rates but also site-dependent
substitution matrices, can go even beyond. However, the
substitution matrices for codons and amino acids are
most of the times derived without taking into account
the among-site rate variability and these matrices enter
necessarily even in the construction of the seed multiple
sequence alignment at the basis of any hidden Markov
Model. According to our findings, Markovian models for
protein evolution based on most of the available substitu-
tion matrices are affected by errors that get worse when
inferring information far from the learning set. This is
valid both for models at the codon level and at the amino
acid level, for which Kosiol and Goldman [9] have already
showed that a further source of memory is present.
The results shown here are robust with respect to the

specific choice of the rate matrix and rate distribution:
as can be guessed by the first simple example in Results,
any non-trivial rate distribution combined in Eq. 5 with
whatever Q gives rise to ensemble average transition
probabilities P̃ which differ from the simple P = etQ. The
results presented in Fig. 2 should then be intended as a
“proof-of-principle” that variable substitution rates cause
a non-Markovian full protein sequence evolution and as
a plausible estimate of the entity of the systematic errors
arising when using standard substitutionmodels in a naive
way.
Even if further and more specific analysis would be nec-

essary to quantify the impact of the effect described in this
work on specific applications, the present results seem
to discourage the use of simple Markovian models that
neglect among-site rate variability for both amino acid and
codon sequence alignments, especially when the substi-
tution matrices are learned on alignments in a range of
sequence identity very different from the test set. On the
other hand, they encourage the use of models that account
for among-site rate variability, for example mechanistic

codon models with the γ correction, Hidden Markov
Models [28, 30, 31], CAT models [20] or other mixture
models [18, 19, 29] that allow it by construction, or sub-
stitution models of the type of Le and Gascuel (LG) [22]
that account for it explicitly. In particular, we highlight
the necessity of developing a codon analogue of the LG
matrix, in order to get rid at the same time of both the
identified factors leading to a non-Markovian behavior of
full protein sequence evolution: the degeneration of the
genetic code and the rate variability.

Appendix A: Numerical proof of the violation of the
Markov assumption
In this sectionwe provide a numerical example that proves
the violation of the Markov assumption in the evolution
ruled by P̃. For all Markov processes described by a tran-
sition probability P the following property holds for any
pair of times t0 and t:

P(t) = [P (t0)]t/t0 (11)

This equation, generally known as the Chapman-
Kolmogorov equation [32], can then be employed as a test
of the Markov assumption.
In Additional file 3 (Figure S1) we compare entry by

entry in log-log scale P̃c(t) with
[̃
Pc(t0)

]t/t0 for t =
0.235 and t0 = 0.01. Coordinates, colors and lines have
the same meaning as in Fig. 2a in section Results. It
is evident that the points do not lie on the diagonal
so P̃c(t) �= [̃

Pc(t0)
]t/t0 . Moreover one can notice that[̃

Pc(t0)
]t/t0 is much more similar to Pc(t) than to P̃c(t).

Indeed
[̃
Pc(t0)

]t/t0 = et·[log(̃Pc(t0))/t0] and, being t0 very
small, log

(̃
Pc(t0)

)
/t0 	 Qc. So, for this choice of t and t0,[̃

Pc(t0)
]t/t0 mimics a Markovian dynamics for aQc slightly

different from Eq. 1.

Appendix B: Proof of the violation of theMarkov
assumption by the properties of lumpable
processes
Given a set of states s = {s1, s2, . . . sN } and a partition on it
A = {A1,A2, . . .Ar}, a necessary and sufficient condition
for aMarkov chain on s to be lumpable with respect toA is
that, for every pair of sets Ai and Aj, the sum

∑
sl∈Aj psk ,sl

of the transition probabilities from state sk to states sl ∈ Aj
has the same value for every sk ∈ Ai [27].
We exploit this property to prove the non-Markovian

behavior of sequence evolution in presence of rate het-
erogeneity. Here the full state space is given by all the
possible pairs {r, c} with r a real number in [0 : ∞] corre-
sponding to a rate value and c one of the 64 codons. We
consider the following transition probability from state s1
to state s2: p{r1,c1},{r2,c2} = δ(r1, r2) · [

er1·
t·Q]
c1,c2. where


t is an arbitrarily small time.We partition the state space
into a 64-dimensional reduced space given by the set of
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possible codons: A = {c1, c2, . . . c64}, thus each set in A
contains all the states characterized by a same codon and
different rates. The dynamics described by p{r1,c1},{r2,c2}
is lumpable with respect to A only if

∫
p{r,c1},{r2,c2}dr2 =∫

p{s,c1},{r2,c2}dr2 for all the possible r and s. But the first
term gives

∫
δ(r, r2) · [

ertQ
]
c1,c2 dr2 = [

ertQ
]
c1,c2 while the

second term gives
[
estQ

]
c1,c2 which are equal only if r = s.

So the dynamics of the reduced process, in presence of
rate variability, is not Markovian.

Additional files

Additional file 1: P_NonMarkovian.txt. Ensemble average transition
probability matrices for codons according to Eq. 5, where the rate is
γ -distributed as in Eq. 3, for various t. The file is structured in 12 columns:
the first two contain i and j, the other ten P̃c(t)ij respectively for
t = 0.06, 0.14, 0.25, 0.4, 0.6, 0.9, 1.3, 1.9, 2.9, 4.3 corresponding to the
sequence identities of 95 %, 90 %...55 %, 50 %. i and j identify codons by
alphabetical order: 1=“AAA”, 2=“AAC” ... 64=“TTT”. (TXT 550 kb)

Additional file 2: P_Markovian.txt. Probability matrices for codons
according to Eq. 2 for various t. The file is structured in 12 columns: the first
two contain i and j, the other ten Pcij(t) respectively for
t = 0.05, 0.11, 0.17, 0.235, 0.31, 0.39, 0.48, 0.58, 0.7, 0.84 corresponding to the
sequence identities of 95 %, 90 %...55 %, 50 %. i and j identify codons by
alphabetical order: 1=“AAA”, 2=“AAC” ... 64=“TTT”. (TXT 550 kb)

Additional file 3: Suppl_Figures.pdf. Contains three supplementary
figures. Figure S1 (for Appendix), with the test of the
Chapman-Kolmogorov equation. Figure S2, with the comparison of the
sequence identity as functions of time and of the transition probabilities at
the same sequence identity between the Markovian and the
non-Markovian dynamics, both for codons and for amino acids. Figure S3 is
a panel containing the entry-by-entry comparison of Pc(t) and P̃c(t̃)
calculated at the same sequence identity for different choice of the shape
parameter α in the γ distribution. (PDF 143 kb)
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