
09 March 2020

.                                       SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

                                                                               SISSA Digital Library

Original

3-dimensional left-invariant sub-Lorentzian contact structures

Publisher:

Published
DOI:10.1016/j.difgeo.2016.07.001

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Availability:
This version is available at: 20.500.11767/32601 since:

This is a pre print version of the following article:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sissa Digital Library

https://core.ac.uk/display/287583495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ar
X

iv
:1

60
2.

05
09

1v
1 

 [
m

at
h.

D
G

] 
 1

6 
Fe

b 
20

16

3-DIMENSIONAL LEFT-INVARIANT SUB-LORENTZIAN

CONTACT STRUCTURES

MAREK GROCHOWSKI, ALEXANDR MEDVEDEV, AND BEN WARHURST

Abstract. We provide a classification of ts-invariant sub-Lorentzian struc-
tures on 3 dimensional contact Lie groups. Our approach is based on invariants
arising form the construction of a normal Cartan connection.

1. Introduction

1.1. Sub-Lorentzian Geometry. LetM be a smooth manifold. A sub-Lorentzian
structure (or a metric) on M is, by definition, a pair (H, g) where H is a smooth
bracket generating distribution on M and g is a smooth Lorentzian metric on H .
A triple (M,H, g) where M is a manifold endowed with a sub-Lorentzian structure
(H, g) is called a sub-Lorentzian manifold. Such a manifold is said to be contact if
the distribution H is contact.

The theory of sub-Lorentzian manifolds is a subject presently in it’s infancy but
interest is growing, see [3, 4, 5] for outlines of the general theory and [12, 10, 7]
where the main emphasis was on investigating the causal structure of such manifolds
(geodesics, the structure of reachable sets, normal forms). There are also two papers
[8, 9] where the authors started the investigation of the theory of invariants for sub-
Lorentzian structures.

Sub-Lorentzian metrics which are simultaneously time and space oriented will be
called ts-oriented (see section 2 for more details). The aim of this paper is to classify
all left invariant ts-oriented sub-Lorentzian structures on 3-dimensional Lie groups.
Two basic invariants which plays fundamental role in the study were introduced
in [8]. These are: a (1, 1)-tensor h =

(

a b
−b −a

)

on H and a smooth function κ on
M (see Section 4.4 for exact formulas). These invariants can be obtained from
a variety of perspectives with varying degrees of complexity. For example in [9]
a Riemannian approach is used while an approach using null lines should also be
possible. In both cases, the fact that the underlying manifold is contact plays a
significant role and so the techniques do not obviously generalize.

In this work we use the standard machinery of Cartan connections with the goal
of giving a thorough explanation of the origins of the invariants via Cartan theory.
The general approach proceeds as follows: to begin, we construct the so called first
order geometric structure corresponding to the sub-Lorentzian structure (M,H, g)
(see section 3.1 for the definitions). Specifically, we construct the symbol algebra
corresponding to a canonical filtration of the tangent bundle generated by H . The
symbol algebra then defines the weighted frame bundle. The first order geometric
structure is an SO1,1 reduction of the bundle of weighted frames. A frame on
M is said to be adapted if it corresponds in a natural manner with a weighted
frame and the bundle over M consisting of adapted frames admits a canonical
Cartan connection. The curvature function of this connection generates the algebra
of invariants for the corresponding sub-Lorentzian structure. In particular the
invariants κ and h arise in a canonical decomposition of the curvature function for
3-dimensional contact sub-Lorentzian structure.
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2 MAREK GROCHOWSKI, ALEXANDR MEDVEDEV, AND BEN WARHURST

One can go further and obtain canonical frames using the SO+
1,1(R)-equivariance

of the structure function. This leads to the full classification of 3-dimensional
left-invariant sub-Lorentzian contact structures. In the following theorem we use
the notation of Šnobl and Winternitz [17] for 3-dimensional real Lie algebras. In
particular, L(3, 1) = h3 is the Heisenberg Lie algebra; the Lie algebras L(3, 2, η),
L(3, 4, η) and L(3, 3) are solvable with the special cases L(3, 2,−1) = p1,1 and
L(3, 4, 0) = e2 being the Poincaré and Euclidean Lie algebras respectively; L(3, 5)
and L(3, 6) are sl2 and su2 respectively. Our main results is:

Theorem 1. All 3-dimensional left-invariant sub-Lorentzian contact structures up
to local ts-isometries are given by Table 1, where each connected simply connected
Lie group is associated with it’s Lie algebra. Each row in the table corresponds to
a different structure. In particular

(1) If deth ≤ 0 then the structure is completely determined by the invariants
h, κ and τ if τ is defined.

(2) If deth > 0 then every value of κ and h admits 3 locally non-isomorphic
structures.

Table 1. 3D left-invariant contact sub-Lorentzian structures

h equivalent to κ τ, if defined Lie Algebra

κ = 0 − L(3, 1) = h3
(

0 0
0 0

)

κ ∈ R∗ − L(3, 5) = sl2

κ = 0 τ = 2 L(3, 3)

κ = 0 |τ | > 2 L
(

3, 2, −τ−
√
τ2−4

−τ+
√
τ2−4

)

κ = 0 |τ | < 2 L
(

3, 4, |τ |√
τ2−4

)

(

1 −1
1 −1

)

,

(

−1 −1
1 1

)

κ ∈ R∗ − L(3, 5) = sl2

κ = 0 τ ∈ R L
(

3, 2, τ−
√
τ2+4

τ+
√
τ2+4

)

(

1 1
−1 −1

)

,

(

−1 1
−1 1

)

κ ∈ R∗ − L(3, 5) = sl2

|κ| < −χ − L(3, 6) = su2
(

0 χ
−χ 0

)

, χ 6= 0 |κ| > −χ, |κ| 6= χ − L(3, 5) = sl2
χ = ±κ > 0, − L(3, 2,−1) = p1,1
χ = ±κ < 0, − L(3, 4, 0) = e2

κ = −7χ − L(3, 3)
(

0 χ
−χ 0

)

, χ 6= 0
κ > −7χ − L

(

3, 2,

√
|χ−κ|−√

7χ+κ√
|χ−κ|+√

7χ+κ

)

κ < −7χ, − L

(

3, 4,

√
|χ−κ|√−7χ−κ

)

κ = 7χ − L(3, 3)
(

0 χ
−χ 0

)

, χ 6= 0
κ < 7χ − L

(

3, 2,

√
|χ+κ|−√

7χ−κ√
|χ+κ|+√

7χ−κ

)

κ > 7χ, − L

(

3, 4,

√
|χ+κ|√−7χ+κ

)

(

χ 0
0 −χ

)

, χ 6= 0 κ ∈ R − L(3, 5) = sl2

We outline the main similarities and differences with the sub-Riemannian case.
First of all, as a byproduct of our classification procedure, we see specific similarities
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with phenomena which arise in [1], namely that the affine group A1(R) ⊕ R is
locally ts-isometric to SL2(R). Secondly, the scalar invariants are similar to the
sub-Riemannian case with the differences simply in sign. However, the tensor h
represents a significant difference. In particular we have 4 cases to consider: h = 0;
deth = 0, h 6= 0; deth > 0 and det h < 0. Finally, the case det h = 0, h 6= 0, κ = 0
has a non-discrete family of non-equivalent structures. We introduced the invariant
τ , which is in fact the covariant derivative of h, to parametrise this family.

The paper is organized as follows. In section 2 we make precise some terminol-
ogy concerning orientation and isometries as well as provide a motivating example
comming from control theory. In section 3 we outline Cartan geometry and the
construction of canonical Cartan connections. In section 4 we apply the Cartan
methods to our specific case to produce the invariants of the sub-Lorentzian srtuc-
tures of interest. In section 5 we combine the invariants with the classsification
procedure of Šnobl and Winternitz [17] to prove our main theorem 1.

2. Sub-Lorentzian preliminaries

2.1. Orientation. Suppose that (M,H, g) is a sub-Lorentzian manifold and let
q ∈ M . A vector v ∈ Hq is said to be timelike if g(v, v) < 0, null if g(v, v) = 0
and v 6= 0, nonspacelike if g(v, v) ≤ 0, v 6= 0, and finally spacelike if g(v, v) > 0
or v = 0. A vector field on M is called timelike (nonspacelike, null) if its values
X(q) have such a property for every q ∈ M . The definition of course implies that
any timelike, nonspacelike or null vector field is horizontal in the sense that it is a
section of the bundle H → M .

If (H, g) is a sub-Lorentzian metric on M , then it can be proved that H admits
a splitting H = H− ⊕ H+ of sub-bunbdles such that H− is of rank 1 and g is
negative (positive) definite on H− (H+). Any splitting with the above-mentioned
properties is called a causal decomposition for (H, g). We say that the metric
(H, g) is time-orientable (resp. space-orientable) if the bundle H− → M (resp.
H+ → M) is orientable. Consequently, by a time (space) orientation we mean a
given orientation of the bundle H− → M (H+ → M). Note that since a rank
1 bundle is orientable if and only if it is trivial, time orientability of (M,H, g) is
equivalent to the existence of a timelike vector field on M . Thus it is sometimes
more convenient to define a time orientation of (M,H, g) as a choice of a timelike
vector field X on M .

Since causal decompositions are not unique we must make it precise when two
pairs of bundles H+

1 → M , H+
2 → M and H−

1 → M , H−
2 → M have compatible

orientations, where H = H−
1 ⊕H+

1 and H = H−
2 ⊕H+

2 are causal decompositions.
So we say that the given orientations of H−

1 → M , H−
2 → M are compatible

if g(X1, X2) < 0, where Xi is the section of H−
i → M which agrees with the

orientation of H−
i → M , i = 1, 2. On the other hand, H+

1 → M , H+
2 → M have

compatible orientations if the following condition is satisfied: for any point q ∈ M
there exists its neighbourhood U and linearly independent sections Xi,1, ..., Xi,k :

U → H+
i , rank H+

i = k, such that Xi,1, ..., Xi,k agrees with the orientation of

H+
i → M , i = 1, 2, and det (g(X1,i, X1,j))i,j=1,...,k > 0.

As mentioned earlier, Sub-Lorentzian metrics which are simultaneously time and
space oriented will be called ts-oriented. If (M,H, g) is time-oriented by a vector
field X then a nonspacelike v ∈ Hq is said to be future directed if g(v,X(q)) < 0.

2.2. Isometries. Let (M,H, g) be a sub-Lorentzian manifold. A diffeomorphism
f : M → M is called an isometry if (i) dqf(Hq) = Hf(q) for every q ∈ M,
and (ii) dqf : Hq → Hf(q) is a linear isometry for every q, that is to say if
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g(dqf(v), dqf(w)) = g(v, w) for all v, w ∈ Hq and q ∈ M . Of course, all isome-
tries of a given sub-Lorentzian manifold form a group. Let f : M → M be an
isometry and let H = H− ⊕H+ be a causal decomposition. Then H = H−

1 ⊕H+
1

is also a causal decomposition, where H±
1 = df(H±). Suppose now that (M,H, g)

is time-oriented (resp. space-oriented). We say that f is a t-isometry (resp. s-
isometry) if the fiber bundle map df |H− : H− → H−

1 (resp. df |H+ : H+ → H+
1 )

is orientation preserving. In case (M,H, g) is ts-oriented, f is called a ts-isometry
if it preserves both orientations. Clearly, any ts-isometry f is characterized by the
condition dqf ∈ SO1,1(k) for every q ∈ M .

2.3. An application. Sub-Lorentzian manifolds arise in control theory. Suppose
that (M,H, g) is a time-oriented sub-Lorentzian manifold, rankH = k + 1. Let
X0, X1, . . . , Xk be an orthonormal basis for (H, g), defined on an open set U ⊂ M ,
where X0 is a time orientation. An absolutely continious curve γ : (a, b) → M is
said to be nonspacelike future directed, if γ̇(t) ∈ Hγ(t), g(γ̇(t), X0(γ(t))) ≤ 0 and
g(γ̇(t), γ̇(t)) ≤ 0 for almost every t in (a, b). It can be proved (see [7]) that up to a
reparameterization all nonspacelike future directed curves in U can be obtained as
trajectories of the following affine control system on U :

q̇ = X0 +

k
∑

i=1

uiXi,(1)

where the set of control parameters is equal to

C =

{

u ∈ R
k;

k
∑

i=1

u2
i ≤ 1

}

,

i.e. to the unit ball centered at 0. Note that (1) is not uniquely determined by the
structure (H |U , g), it depends on the choice of an orthonormal frameX0, X1, . . . , Xk,
where X0 is a time orientation. However, any two such systems are equivalent in
the sense that they have the same set of trajectories.

Affine control systems frequently arise in various fields of mathematics and
physics (cf. ,[11], [14]), so it is worth noting that our results can be used to classify
such systems in the case where M is a 3 dimensional Lie group, g is left-invariant
and k = 1. For more general systems, Cartan geometry applies equally well, and
so the outline given here can also be used in such cases.

3. Cartan Geometries Associated with Structures on Filtered

Manifolds

3.1. Geometric structures on filtered manifolds. A filtered manifold is ba-
sically a manifold endowed with a filtration of the tangent bundle. A manifold
with a bracket generating distribution endowed with a (pseudo) sub-Riemannian
structure with constant symbol sits within the purview of the general theory of
geometric structures on filtered manifolds. In this section we briefly describe some
basic constructions from nilpotent differential geometry [13]. Our aim is to illus-
trate a general strategy for the construction of canonical Cartan connections related
to geometries on filtered manifolds.

Definition 1. A filtration of the tangent bundle of a manifold M is a sequence
{F i}i∈Z of sub-bundles of TM such that

i F 0 = {0},
ii F i+1 ⊂ F i,
iii ∪i∈ZF

i = TM ,
iv [F i, F j ] ⊂ F i+j , ∀i, j ∈ Z,
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where F i denotes the sheaf of germs of local sections of F i. A filtered manifold is
a smooth manifold M equipped with a filtration of the tangent bundle.

A filtration naturally arises from a smooth bracket generating distribution D.
Set F i = {0} for all i ≥ 0 and let F−1 denote the sheaf of germs of local sections
of D. For i < 0, we inductively define a sequence of sheaves by setting F i−1 =
F i + [F i, F−1]. The filtration is the sequence {F i} where each F i is the union of

stalks F i = ∪p∈MF i|p.
If gr−i TpM = F−i

p /F−i+1
p , then the graded tangent space is the vector space

grTpM =

k
⊕

i=1

gr−i TpM.

If X ∈ Γ(F−i) and Y ∈ Γ(F−j) are local sections defined on a neighborhood of p,
then we have

[X + Γ(F−i+1), Y + Γ(F−j+1)] = [X,Y ] + Γ(F−(i+j)+1)

on some neighborhood of p, and it follows that the Lie bracket of vector fields
induces a well defined Lie bracket on grTpM thus defining a stratified nilpotent Lie
algebra of step k. Lie algebra grTpM is often called a symbol Lie algebra of the
filtration F in the point p. We say that a filtered manifold is of type m if grTpM
equipped with the induced Lie bracket is isomorphic with m as a stratified nilpotent
Lie algebra at every point p.

Definition 2. Let U be an open subset of a filtered manifold M of type m. A local
weighted frame is a map Φ : U × m → grTM such that for each point p ∈ U the
map Φp : m → grTpM is a strata preserving Lie algebra isomorphism. The union
of germs of local weighted frames over all points of M defines an Aut(m)-principle
bundle which we refer to as the weighted frame bundle of the filtered manifold M
of type m.

Definition 3. If M is filtered of type m then a local frame {E−i
j } of TM is said to

be adapted if there exists a weighted frame Φ such that Φ(p, e−i
j ) = E−i

j (p)+F−i+1
p

where e−i
j form a basis of m−i. If {ωj

−i} ⊂ T ∗M is the set of dual elements to

{E−i
j }, then the map e−i

j ⊗ ωj
−i : TM → m is called an adapted coframe.

Definition 4. A first order geometric structure on a filtered manifold of type m is
a reduction of the weighted frame bundle to the subgroup G0 ⊂ Aut(m). We call a
weighted frame which belongs to the reduced bundle a weighted frame adapted to
the structure.

Consider a (pseudo) sub-Riemannian structure which is defined by a pseudo-
Riemannian metric g on the distribution H ⊂ TM . If the distribution is bracket
generating then M is a filtered manifold and the metric g defines a metric (pseudo)
sub-Riemannian symbol (g,m) in every point. If metric symbols are equivalent for
all points we say that the corresponding structure has constant metric symbol. For
such structures the weighted frame bundle can be reduced to the structure group
G0 ⊆ SO(m−1) which gives us a canonically defined first order geometric structure
on M .

3.2. Cartan geometries as a generalization of homogeneous spaces. A ho-
mogeneous space for a Lie group G is a manifold M on which the Lie group G
acts from the right both transitively and effectively. If H is the stabilizer of an
arbitrary point p ∈ M then H is a closed Lie subgroup of G. The manifold M is
diffeomorphic to the right coset space G/H under the action (Ha)g = H(ag).

Consider the 3 natural actions which are defined for all Lie groups G:
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• left multiplication Lg(a) = ga,
• right multiplication Rg(a) = ag,
• conjugation Cg(a) = gag−1,

All maps above are diffeomorphisms and their differentials are denoted by Lg∗, Rg∗
and Adg respectively. In particular, the tangent map

Lg−1∗ : TgG → TeG

is an isomorphisms of tangent spaces. The Maurer-Cartan form ω̃ : TG → g is
defined pointwise by ω̃g = Lg−1∗ and satisfies the following 3 properties which will
be crucial in the definition of Cartan connection:

(1) ω̃g : TgG → g is an isomorphism;
(2) R∗

gω̃ = Adg−1 ω̃;
(3) for all left-invariant vector field X we have ω̃g(Xg) = Xe.

We introduce the commutator on forms with values in a Lie algebra g defined by

[α, β](X,Y ) = [α(X), β(Y )] + [β(X), α(Y )].

In particular

[α(X), α(Y )] =
1

2
[α, α](X,Y ).

If ei is basis of g, α =
∑

i ei ⊗ αi and β =
∑

i ei ⊗ βi, then [α, β] is defined by

[α, β] =
∑

i,j

[ei, ej]⊗ αi ∧ βj .

One of the key properties of the Maurer-Cartan form ω̃ is that the following
structure equation holds:

dω̃ +
1

2
[ω̃, ω̃] = 0.

To show that structure equation holds, it is sufficient to check it for left-invariant
vector fields. Using Cartan’s formula we obtain

dω̃(X,Y ) = Xω̃(Y )− Y ω̃(X)− ω̃([X,Y ])

= −ω̃([X,Y ]) = −[ω̃(X), ω̃(Y )] = −1

2
[ω̃, ω̃](X,Y ),

where X and Y are left-invariant vector fields.
Cartan geometries generalize homogeneous spaces G → G/H simply by con-

sidering a general principal H-bundle G → G/H and prescribing an object on G
analogous to the Maurer Cartan form on G, where properties analogous to (2) and
(3) above are only required to hold with respect to H .

Let g and h denote the Lie algebras of the Lie groups G and H respectively.

Definition 5. A Cartan geometry of infinitesimal type (g, h) on a manifold M is a
principal H-bundle G over M together with a form ω̃ : TG → g, called the Cartan
connection form, having the following properties:

(1) ω̃p : TpG → g is an isomorphism;
(2) R∗

hω̃ = Adh−1 ω̃ for all h ∈ H ;
(3) ω̃(X∗) = X where X∗ is a fundamental vector field corresponding to X ∈ h,

i.e., X∗f(p) = d
dt
f(p exp(tX))|t=0.

The Maurer-Cartan structure equation doesn’t hold for general Cartan connec-

tions. The g-valued 2-form Ω̃ ∈ g ⊗∧2
TG∗ given by the formula

Ω̃ = dω̃ +
1

2
[ω̃, ω̃],
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is called the curvature form. A fundamental property of the curvature is that
vp y Ω̃p = 0 for all vp belonging to the vertical sub-bundle V = kerπ∗, where
π : G → M is the natural projection, see [16, p. 187].

On the manifold M the relevant object to study is the pull back of the Cartan
connection by a section of the principle bundle G.

Definition 6. Given an arbitrary section s : M → G, the Cartan gauge correspond-
ing to s is the one form ω = s∗ω̃.

Consider a change of section s̄ = sh, where h : M → H . Then the Cartan gauge
changes in the following way:

(2) ω̄ = s̄∗ω̃ = Adh−1 ω + h∗ωH = Adh−1ω + h−1dh,

where ωH is Maurer-Cartan form on H .
The pull-back of the curvature Ω̃ on the principle H-bundle G is a two form

Ω = s∗Ω̃ on the manifold M and is given by the following formula

Ω = dω +
1

2
[ω, ω].

If we change section s̄ = sh the curvature on the manifold changes by the adjoint
action of h−1:

(3) Ω̄ = s̄∗Ω̃ = Adh−1 Ω.

3.3. Cartan connections associated with structures on filtered manifold.

The problem of equivalence between geometric structures on manifolds is typically
solved by applying Cartan’s method of equivalence to produce a Cartan connection
and use its curvature as the natural invariant.

When the underlying manifolds are filtered, the target Lie algebra for a Cartan
connection is given by the Tanaka prolongation of the pair (m, g0) where g0 is a
subalgebra of the strata preserving derivations of m such that G0 = exp(g0), see
[19].

Consider a graded nilpotent Lie algebra m = m−k ⊕ · · · ⊕ m−1. Let g0 be a
subalgebra of the grading preserving derivations of m. The Tanaka prolongation
of the pair (m, g0) is the graded Lie algebra g(m, g0) where gi(m, g0) = mi for
−k ≤ i < 0, g0(m, g0) = g0 and for each i > 0, gi(m, g0) is inductively defined by

gi(m, g0) =
{

ϕ ∈
⊕

p>0

gi−p(m, g0)⊗ g∗−p | ϕ([X,Y ]) = [ϕ(X), Y ] + [X,ϕ(Y )]
}

.

The pair (m, g0) is said to be of finite type if gi(m, g0) = {0} for some i, otherwise
it is of infinite type and g(m, g0) is infinite dimensional.

Consider a first order geometric structure of type m on the filtered manifold
M . Let g = g(m, g0) and g+ = ⊕i>0gi. We define a trivial H-principal bundle
G = H ×M where

H = G0 × exp(g+).

With the given first order geometric structure we associate a family of adapted
Cartan connections of type (g, h).

Definition 7. A Cartan connection ω̃ : TG → g is called adapted if for an arbitrary
section s : M → G, the corresponding Cartan gauge ω : TM → g, has the property
that the m valued part forms an adapted coframe.

To obtain invariants of the initial geometric structure we want to associate a
unique adapted Cartan connection to the structure. The construction of the desired
connection can be done using normalization of the structure function.
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Definition 8. The curvature function k̃ : G → Hom(∧2g−, g) of a Cartan connec-
tion ω̃ is defined by the formula

k̃(X,Y ) = Ω̃
(

ω̃−1(X), ω̃−1(Y )
)

.

A built in property of the curvature function is that it is H-equivariant, i.e.,

R∗
hk̃ = Adh−1 k̃.

The vector space Hom(∧2g−, g) = g⊗∧2
m∗ has a natural grading. Elements in

the subspace gl ⊗ m∗
−i ∧m∗

−j are assigned weight w = l + i+ j.

Definition 9. We call a Cartan connection and underlying Cartan geometry regular
if k̃ takes values in Hom(∧2g−, g)+, where + subscript means a positive degree part
of a space.

Definition 10. A subspace N ⊂ Hom(∧2g−, g)+ is called a normal module if:

(1) N is an H module with respect to the adjoint action of H on Hom(∧2g−, g);
(2) Hom(∧2g−, g)+ = N ⊕ ∂ (Hom(g−, g)+), where ∂ is the Lie algebra differ-

ential.

The existence of unique Cartan connection associated with a geometric struc-
ture is a fundamental starting point in the study of equivalence problems for the
given geometric structure. For example regular parabolic geometries (i.e. with
semi-simple model group) admit a natural and uniform notion of normal Cartan
connection [2]. The general result regarding existence of normal Cartan connections
can be formulated as follows:

Theorem 2. [13, p. 92] Consider a geometric structure with an infinitesimal model
(g, h) on a filtered manifold. Then for every normal module

N ⊂ Hom(∧2g−, g)+

there exists a unique regular Cartan connection adapted to the structure such that
the curvature function takes values in N .

In the next section we are going to construct various invariant objects associated
with sub-Lorentzian structures on a contact 3-manifold M . The main ingredients
are a normal module and the corresponding normal Cartan connection given by
Theorem 2. A canonical pullback of the Cartan connection toM induces differential
invariants for the structures at the level of M and allows us to construct canonical
frames for sub-Lorentzian contact structures.

4. Invariants of 3-dimensional sub-Lorentzian contact structures

4.1. First order geometric structures associated with 3-dimensional sub-

Lorentzian contact structures. The sub-Lorentzian contact structure is given
by a contact distribution H and a sub-Lorentzian metric g which is defined on H.
Let X1 and X2 be an orthogonal frame of H in the following sense:

g(X1, X1) = −1, g(X1, X2) = 0, g(X2, X2) = 1.

We choose a contact form η so that dη(X1, X2) = η([X2, X1]) = 1 and denote the
corresponding Reeb vector field by X3, i.e., X3ydη = 0 and η(X3) = −1. The Lie
brackets are then given by 6 structure functions according to the following relations:

[X1, X3] = c113X1 + c213X2

[X2, X3] = c123X1 + c223X2

[X1, X2] = c112X1 + c212X2 +X3.
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The coframe dual to the frame {X1, X2, X3} is an adapted coframe and denoted
{θ1, θ2, θ3}. Using Cartan’s formula we get following structure equations for the
adapted coframe:

dθ1 = c112θ2 ∧ θ1 + c113θ3 ∧ θ1 + c123θ3 ∧ θ2

dθ2 = c212θ2 ∧ θ1 + c213θ3 ∧ θ1 + c223θ3 ∧ θ2

dθ3 = θ2 ∧ θ1

Since d2θ3 = 0 we immediately get that c113 + c223 = 0, hence letting c113 = c and
c223 = −c we get

[X1, X3] = cX1 + c213X2

[X2, X3] = c123X1 − cX2(4)

[X1, X2] = c112X1 + c212X2 +X3.

and

dθ1 = c112θ2 ∧ θ1 + cθ3 ∧ θ1 + c123θ3 ∧ θ2

dθ2 = c212θ2 ∧ θ1 + c213θ3 ∧ θ1 − cθ3 ∧ θ2(5)

dθ3 = θ2 ∧ θ1.

If H denotes the contact distribution and g denotes the sub-Lorentzian metric
on H, then the filtration of the tangent bundle is given by

F 0 = {0}, F−1 = H, F−2 = H+ [H,H],

where gr−1 TM = H. The type in such cases is given by the Heisenberg algebra.
In particular

m = m−2 ⊕m−1,

where m−1 = 〈e1, e2〉, m−2 = 〈e3〉 and [e1, e2] = e3.
An adapted to sub-Lorentzian 3-dimensional contacts structure weighted frame

takes the form

Φ(p, e1) = Y1 ∈ H

Φ(p, e2) = Y2 ∈ H

Φ(p, e3) = [Y1, Y2] ∈ TM/H

where g(Y1, Y1) = −1, g(Y1, Y2) = 0, g(Y2, Y2) = 1. Since our interest is in ts-
isometric equivalence, we consider the SO+

1,1(R)-principle bundle of ts-oriented
weighted frames. It follows that adapted to the structure frame is of the form

E1(p) = a12(p)X1 + a22(p)X2,

E2(p) = a12(p)X1 + a22(p)X2,

E3(p) = b1(p)X1 + b2(p)X2 +X3,

where
(

a11(p) a12(p)
a21(p) a22(p)

)

∈ SO+
1,1(R) and X1, X2, X3 are as in (4).

For sub-Lorentzian structures on a contact three manifold, the pair (m, g0) con-
sists of the Heisenberg algebra m = span {e1, e2, e3 = [e1, e2]} and g0 is spanned by
{e4} with relations

[e1, e2] = e3, [e4, e1] = e2, [e4, e2] = e1.

Lemma 1. The Tanaka prolongation for this structure is g(m, g0) = m⊕ g0.
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Proof. Consider an arbitrary element ϕ ∈ g0 ⊗ g∗−1 ⊕ g−1 ⊗ g∗−2 in the first prolon-
gation. Then

0 = ϕ([e1, e3]) = [ϕ(e1), e3] + [e1, ϕ(e3)] = [e1, ϕ(e3)],

0 = ϕ([e2, e3]) = [ϕ(e2), e3] + [e2, ϕ(e3)] = [e2, ϕ(e3)].

Since ϕ(e3) ∈ g−1 it must be equal to 0. Let ϕ(e1) = a1e4 and ϕ(e2) = a2e4. Then
the following equality shows that ϕ = 0:

0 = ϕ(e3) = ϕ([e1, e2]) = [a1e4, e2] + [e1, a2e4] = a1e1 − a2e2.

�

4.2. Normal Cartan geometry associated with 3-dimensional sub-Lorentzian

contact structures. As shown in Lemma 1, the infinitesimal flat model for sub-
Lorentzian structures on contact 3–manifolds is given by the 4-dimensional graded
Lie algebra

g = g−2 ⊕ g−1 ⊕ g0

with basis {e1, e2, e3, e4} satisfying the following relations:

[e1, e2] = e3, [e4, e1] = e2 and [e4, e2] = e1,

where g−2 = span {e3}, g−1 = span {e1, e2} and g0 = span {e4}.
A Cartan connection for sub-Lorentzian contact structure on a 3-dimensional

manifold M is defined on a principle SO+
1,1(R)-bundle G. Since we are interested

in local equivalence, we can assume G is the trivial bundle SO+
1,1(R)× U where U

is an open subset of M .
Consider an arbitrary Cartan connection ω̃ =

∑

i=1 ω̃iei : TG → g for sub-
Lorentzian structure on a 3-dimensional contact manifold M . The curvature of
this connection is

Ω̃ = dω̃ +
1

2
[ω̃, ω̃] =

4
∑

l=1

∑

1≤i<j≤3

klijel ⊗ ω̃i ∧ ω̃j : ∧2 TG → g,

and the corresponding curvature function has the form

k̃ =

4
∑

l=1

∑

1≤i<j≤3

klijel ⊗ e∗i ∧ e∗j : G → Hom(∧2g−, g).

Proposition 1. For an arbitrary sub-Lorentzian structure there exists a unique
Cartan connection ω̃ =

∑

i ω̃iei : TG → g with the curvature function taking values

in the following 6-dimensional SO+
1,1(R)-module Ñ :

e1 ⊗ e∗1 ∧ e∗3 − e2 ⊗ e∗2 ∧ e∗3; e1 ⊗ e∗2 ∧ e∗3; e2 ⊗ e∗1 ∧ e∗3;

e1 ⊗ e∗1 ∧ e∗3 + e2 ⊗ e∗2 ∧ e∗3; e4 ⊗ e∗1 ∧ e∗3; e4 ⊗ e∗2 ∧ e∗3.

Proof. In order to use Theorem 2 we need to show that Ñ is an SO+
1,1(R)-module

and is complementary to the image of Lie algebra differential

∂ : Hom(g−, g)+ → Hom(∧2g−, g)+.

The image of the differential ∂ is generated by the following 5 elements:

e1 ⊗ e∗1 ∧ e∗2 − e3 ⊗ e∗2 ∧ e∗3; e2 ⊗ e∗1 ∧ e∗2 + e3 ⊗ e∗1 ∧ e∗3;

e1 ⊗ e∗1 ∧ e∗2; e2 ⊗ e∗1 ∧ e∗2; e4 ⊗ e∗1 ∧ e∗2 − e2 ⊗ e∗1 ∧ e∗3 − e1 ⊗ e∗2 ∧ e∗3,

and doesn’t intersect Ñ . The space Hom(∧2g−, g)+ is 11-dimensional, therefor Ñ
is complementary to im ∂.

An element h ∈ SO+
1,1(R) acts naturally on 2-dimensional space 〈e1, e2〉, acts by

inverse transform h−1 on 〈e∗1, e∗2〉 and trivially by identity on {e3, e4, e∗3, e∗4}. This
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defines and action of SO+
1,1(R) on Hom(∧2g−, g)+ and we can see that Ñ is in fact

an SO+
1,1(R)-module. �

Proposition 2. Assume that the the curvature function of the Cartan connection
belongs to the module Ñ defined in Proposition 1. Then the coefficient of

e1 ⊗ e∗1 ∧ e∗3 + e2 ⊗ e∗2 ∧ e∗3

is equal to zero.
Furthermore, the coefficients of e4⊗e∗1∧e∗3 and e4⊗e∗2∧e∗3 are linear combinations

of the covariant derivatives of the coefficients of

e1 ⊗ e∗1 ∧ e∗3 − e2 ⊗ e∗2 ∧ e∗3, e1 ⊗ e∗2 ∧ e∗3 and e2 ⊗ e∗1 ∧ e∗3.

Proof. Let Ω̃ = dω̃ + 1
2 [ω̃, ω̃] be the curvature of the normal Cartan connection

ω̃. The fact that curvature function k̃(·, ·) = Ω̃
(

ω̃−1(·), ω̃−1(·)
)

belongs to Ñ is
equivalent by definition to

Ω̃ =k1(e1 ⊗ ω̃1 ∧ ω̃3 + e2 ⊗ ω̃2 ∧ ω̃3) + k2(e1 ⊗ ω̃1 ∧ ω̃3 − e2 ⊗ ω̃2 ∧ ω̃3)+

k3e1 ⊗ ω̃2 ∧ ω̃3 + k4e2 ⊗ ω̃1 ∧ ω̃3 + k5e4 ⊗ ω̃1 ∧ ω̃3 + k6e4 ⊗ ω̃2 ∧ ω̃3.(6)

The Bianchi identity [16, p. 193] states that

(7) dΩ̃ + [ω̃, Ω̃] = 0.

By (6), dΩ̃ has a trivial projection onto e3. Moreover, using ω̃ =
∑

i ei ⊗ ω̃i and
directly calculating gives

[ω̃, Ω̃] = 2k1e3 ⊗ ω̃1 ∧ ω̃2 ∧ ω̃3 mod 〈e1, e2〉
and so k1 = 0.

Consider now the projection of Bianchi identity on g−1 = 〈e1, e2〉. The g−1-part

of [ω̃, Ω̃] is given by

(8) [e1ω̃1+e2ω̃2, k5e4⊗ω̃1∧ω̃3+k6e4⊗ω̃2∧ω̃3] = k5e1ω̃1∧ω̃2∧ω̃3−k6e2ω̃1∧ω̃2∧ω̃3.

The formula for g−1-part of dΩ̃ is also straightforward:

(9) dΩ̃ =
(

(X̃1k3 − X̃2k2)e1 − (X̃2k4 + X̃1k2)e2

)

ω̃1 ∧ ω̃2 ∧ ω̃3 mod ω̃4,

where X̃i = ω̃−1(ei) ∈ Γ(TG) are universal covariant differentiations defined by the
normal Cartan connection, see [16, p. 194]. Comparing (8) and (9) we conclude
that

k5 = X̃2k2 − X̃1k3, k6 = X̃2k4 + X̃1k2.

�

We denote by N the “essential” part of Ñ which by Proposition 2 is the sub-
module generated by

(10)

K = e1 ⊗ e∗1 ∧ e∗3 − e2 ⊗ e∗2 ∧ e∗3,

X = e1 ⊗ e∗2 ∧ e∗3,

Y = e2 ⊗ e∗1 ∧ e∗3,

Since SO+
1,1(R) acts on e∗3 by identity we see that actually SO+

1,1(R) acts on K,
X and Y as on e1⊗e∗1−e2⊗e∗2, e1⊗e∗2 and e2⊗e∗1. The later is exactly the adjoint
action of SO+

1,1(R) on sl2(R) given by A → TAT−1 where

(11) K =
(

1 0
0 −1

)

, X = ( 0 1
0 0 ), Y = ( 0 0

1 0 ) and T =
(

cosh(t) sinh(t)
sinh(t) cosh(t)

)

.
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4.3. Local computation of normal Cartan connection. Consider a princi-
ple SO+

1,1(R)-bundle G = SO+
1,1(R) × U where U is an open subset of M . Let

ω̃ : TG → g be an arbitrary Cartan connection adapted to the sub-Lorentzian struc-
ture (M,H, g). For an arbitrary section s : U → G the corresponding Cartan gauge
ω = s∗ω̃ : TU → g adapted to the sub-Lorentzian structure has the form:

ω = e1 ⊗ ω1 + e2 ⊗ ω2 + e3 ⊗ ω3 + e4 ⊗ ω4,

where

ω1 = ā11θ1 + ā12θ2 + ᾱ1θ3,

ω2 = ā21θ1 + ā22θ2 + ᾱ2θ3,

ω3 = θ3,

ω4 = β̄1θ1 + β̄2θ2 + β̄3θ3

and the matrix (āij) is an element of SO+
1,1(R). Changing the section by the right

action of suitable element in SO+
1,1(R) according to formula 2 gives the following

lemma.

Lemma 2. There exists a unique section such that a Cartan gauge adapted to the
sub-Lorentzian structure has the form:

ω1 = θ1 + α1θ3,

ω2 = θ2 + α2θ3,

ω3 = θ3,

ω4 = β1θ1 + β2θ2 + β3θ3.

If ω = s∗ω̃ then Ω = s∗Ω̃ : ∧2 TM → g is given by Ω = dω + 1
2 [ω, ω] which for

our specific case takes the form:

Ω = e1 ⊗ Ω1 + e2 ⊗ Ω2 + e3 ⊗ Ω3 + e4 ⊗ Ω4,

where

Ω1 = dω1 − ω2 ∧ ω4,

Ω2 = dω2 − ω1 ∧ ω4,

Ω3 = dω3 − ω2 ∧ ω1,

Ω4 = dω4.

In accordance with Propositions 1 and 2, the normal Cartan connection satisfies
the conditions

Ω3 = 0,

Ωi = 0 mod ω3, i = 1, 2, 4.

The first condition is :

Ω3 = dω3 − ω2 ∧ ω1 = α1ω3 ∧ ω2 − α2ω3 ∧ ω1 = 0.

Therefore, α1 = α2 = 0. The second normalization condition is Ω1 mod ω3 = Ω2

mod ω3 = 0. This condition gives us:

Ω1 = dω1 − ω2 ∧ ω4 = (β1 − c112)ω1 ∧ ω2 = 0 mod ω3,

Ω2 = dω2 − ω1 ∧ ω4 = (−β2 − c212)ω1 ∧ ω2 = 0 mod ω3,

From the formulas above we obtain β1 = c112 and β2 = −c212. The last normalization
condition is Ω4 mod ω3 = 0 :

Ω4 = dω4 = (−β3 −X2(β1) +X1(β2)− β1c
1
12 − β2c

2
12)ω1 ∧ ω2 = 0 mod ω3

We obtain that β3 = (c212)
2 − (c112)

2 −X1(c
2
12)−X2(c

1
12).
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To summarize, the coefficients of Ω have the form:

Ω1 =− cω1 ∧ ω3 − (c123 + β3)ω2 ∧ ω3,(12)

Ω2 =− (c213 + β3)ω1 ∧ ω3 + cω2 ∧ ω3,(13)

Ω3 =0,(14)

Ω4 =
(

X1(β3)−X3(β1)− β1c− β2c
2
13

)

ω1 ∧ ω3(15)

+
(

X2(β3)−X3(β2)− β1c
1
23 + β2c

)

ω2 ∧ ω3.(16)

Where β1 = c112, β2 = −c212 and β3 = (c212)
2 − (c112)

2 −X1(c
2
12)−X2(c

1
12).

4.4. Invariants of sub-Lorentzian structure. A normal Cartan connection is
a special type of absolute parallelism. The problem of equivalence of absolute par-
allelisms is a classical subject and was studied in details for example in [18]. In
particular, local invariants of an absolute parallelism are precisely its structure func-
tion and its consecutive covariant derivatives. A finite number of these invariants
uniquely (up to local equivalence) determines the absolute parallelism.

Applied to a normal Cartan connection, this means that all local invariants
of a given Cartan connection can be derived from its structure function and con-
secutive covariant derivatives. However, due to H-equivariance of the structure
function k̃ : G → Hom(∧2g−, g), one can simplify k by introducing a canonical sec-

tion s : M → G and considering a canonical pullback k = s∗k̃. This allows us to
obtain invariants generated by k that are defined on the manifold M instead of the
principal bundle G.

Let kN be the part of the curvature function taking values in the module N
generated by (10). According to Proposition 2, the entire curvature function k can
be expressed through kN using covariant differentiation. Therefore we need only
focus our attention on kN : M → sl2(R).

Under the adjoint action, the SO+
1,1(R)-module sl2(R) has 2 irreducible submod-

ules. One is generated by the matrix

(17) f0 =

(

0 −1
−1 0

)

.

and the other generated by the pair of matrices

(18) f1 =

(

−1 0
0 1

)

and f2 =

(

0 −1
1 0

)

.

If we write kN = κf0 + af1 + bf2 then

κ = β3 +
c123 + c213

2
= (c212)

2 − (c112)
2 −X1(c

2
12)−X2(c

1
12) +

c123 + c213
2

,

a = c

b = (c123 − c213)/2

Under the change of section s̄ = Rh(s), h : M → SO+
1,1 we get

k̄N = s̄∗k̃N = Adh−1(s∗k̃N ) = Adh−1(kN ).

Since SO+
1,1(R) acts on (17) as the identity, κ doesn’t depend on the choice of section

and is an invariant. We summarize this observation in the following proposition.

Proposition 3. The following expression

(19) κ = β3 +
c123 + c213

2
= (c212)

2 − (c112)
2 −X1(c

2
12)−X2(c

1
12) +

c123 + c213
2

.

is an invariant of time-space orientation preserving structure.
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Consider now the submodule of sl2(R) generated by

(20)

(

a b
−b −a

)

.

The corresponding part of kN is

(21) h = af1 + bf2 =

(

c
c123−c213

2
c213−c123

2 −c

)

and it depends on the choice of section s : M → G. To obtain an absolute invariant
of the structure we factor the expression at (21) by the action of SO+

1,1(R).

Proposition 4. For every 3-dimensional contact sub-Lorentzian ts-oriented man-
ifold there exists a section s such that the invariant h has the following form at a
given point:

(1) If h = 0 then:

h ∈
{(

0 0
0 0

)

,

(

1 ±1
∓1 −1

)

,

(

−1 ±1
∓1 1

)}

.

(2) If deth > 0 then:

h =

(

0 χ
−χ 0

)

.

(3) If deth < 0 then:

h =

(

χ 0
0 −χ

)

.

Moreover if h 6= 0 such a section is unique.

Proof. If T =
(

cosh(t) sinh(t)
sinh(t) cosh(t)

)

∈ SO+
1,1(R) then the adjoint action on h is given by

(22) T−1hT =

(

cosh(2t)a+ sinh(2t)b sinh(2t)a+ cosh(2t)b
− sinh(2t)a− cosh(2t)b − cosh(2t)a− sinh(2t)b

)

.

If deth = b2 − a2 > 0 then the equation

cosh(2t)a+ sinh(2t)b = 0

has the solution t = 1
4 ln(

b−a
b+a

) and h takes the form in item (2) with

(23) χ = sgn(a+ b)
√

b2 − a2.

Similarly, if deth < 0 then the equation

sinh(2t)a+ cosh(2t)b = 0

has the solution t = 1
4 ln(

a−b
b+a

) and h takes the form in item (3) with

(24) χ = sgn(a+ b)
√

a2 − b2.

If deth = b2 − a2 = 0 then

(25) h =

(

a ±a
∓a −a

)

and the adjoint action of T is simply T−1hT = exp(±2t)h, which depending on
sgn(a), has exactly one of the forms in item (1). �

Since a = c and b = (c123 − c213)/2 we have the following Corollary.
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Corollary 1. Assume that deth 6= 0 for sub-Lorentzian contact structure. Then
the following expression is a local invariant of ts-oriented structures:

χ = sgn

(

c+
c123 − c213

2

)

√

√

√

√

∣

∣

∣

∣

∣

(

c123 − c213
2

)2

− c2

∣

∣

∣

∣

∣

.

Corollary 2. If a sub-Lorentzian contact structure on a contact 3 manifold M
satisfies h 6= 0, then Proposition 4 defines a unique normal frame θ = s∗ω−.

Proof. The change of section s → s·h, h : M → SO+
1,1(R) for the Cartan connection

is equivalent to the change θ → Adh(θ) of associated frame θ = s∗ω− due to the
formula (2). Therefor existence and uniqueness follows from Proposition 4. �

5. Classification of left-invariant sub-Lorentzian structures

5.1. Classification of real 3-dimensional Lie algebras. To begin we review
the classification of real 3-dimensional Lie algebras following Šnobl and Winternitz
[17]. If g is a real 3-dimensional Lie algebra then we define g(1) = [g, g] and divide
into the cases : dim g(1) = 0, 1, 2, 3. The cases dim g(1) = 0 is the abelian algebra
and the case dim g(1) = 1 determines two classes, namely the Heisenberg algebra
and the affine algebra. The cases dim g(1) = 2 give rise to significantly more classes
corresponding to eigenvalues of adX |g(1) , where X /∈ g(1). Finally, in the case

g(1) = 3 there are only 2 non-isomorphic semi-simple Lie algebras, namely sl2(R)
and su2(R)

Theorem 3. Any 3-dimensional Lie algebra is isomorphic to exactly one of the
following algebras:

dim g(1) = 0

L(3, 0) : [E1, E2] = 0, [E1, E3] = 0, [E2, E3] = 0, (R3)

dim g(1) = 1

L(3, 1) : [E1, E2] = E3, [E1, E3] = 0, [E2, E3] = 0, (Heisenberg)

L(3,−1) : [E1, E2] = E1, [E1, E3] = 0, [E2, E3] = 0, (A+(R)⊕ R)

dim g(1) = 2

L(3, 2, η) : [E1, E2] = 0, [E1, E3] = E1, [E2, E3] = ηE2, 0 < |η| ≤ 1,

L(3, 4, η) : [E1, E2] = 0, [E1, E3] = ηE1 − E2, [E2, E3] = E1 + ηE2, η ∈ [0,∞),

L(3, 3) : [E1, E2] = 0, [E1, E3] = E1, [E2, E3] = E1 + E2,

dim g(1) = 3

L(3, 5) : [E1, E2] = E1, [E1, E3] = −2E2, [E2, E3] = E3, sl2(R),

L(3, 6) : [E1, E2] = E3, [E1, E3] = −E2, [E2, E3] = E1, su2(R).

We review the proof of the classification theorem as it provides the procedures
for putting a given algebra into its canonical form.

Proof. If dim g(1) = 0 then g is the three dimensional abelian Lie algebra L(3, 0).
If dim g(1) = 1 then there exists Z ∈ g such that g(1) = span {Z} and so it follows
that for any basis of the form {X,Y, Z} we have

[X,Y ] = α1Z, [X,Z] = α2Z, [Y, Z] = α3Z.
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Direct calculation shows that [g, [g, g]] = {0} if and only if α2 = α3 = 0. More-
over, if α2 = α3 = 0 then g is the Heisenberg algebra. Indeed, if E1 = X , E2 = Y
and E3 = α1Z then

[E1, E2] = E3, [E1, E3] = 0, [E2, E3] = 0.

If α3 6= 0 then

E1 = Z, E2 = − 1

α3
Y, E3 = α3X − α2Y + α1Z

is a basis with bracket relations:

[E1, E2] = E1, [E1, E3] = 0, [E2, E3] = 0.(26)

Similarly, if α2 6= 0 then

E1 = Z, E2 = − 1

α2
X, E3 = −α3X + α2Y − α1Z

is a basis with the same bracket relations as in (26) above.
The Lie algebra defined by (26) is denoted L(3,−1) and has the decomposition

L(3,−1) = L(2, 1) ⊕ L(1, 0) where L(2, 1) is the subalgebra spanned by {E1, E2}
and L(1, 0) = span {E3}.

Next we assume dim g(1) = 2. There are only two 2-dimensional Lie algebras.
Therefor g(1) is abelian since g(1) doesn’t contain semi-simple elements (g is solv-
able). Furthermore, rank adX |g(1) = 2 for any nonzero X 6∈ g(1). We conclude that

the map adX |
g(1) is an isomorphism g(1) → g(1) which doesn’t depend on X /∈ g(1).

There are three subcases to consider: adX |g(1) diagonalises in GL(g(1)), adX |g(1)

diagonalises in GL(g(1)⊗RC), adX |g(1) does not diagonalises. We get the following
classes:

L(3, 2, η) : [E1, E2] = 0, [E1, E3] = E1, [E2, E3] = ηE2, 0 < |η| ≤ 1,

L(3, 4, η) : [E1, E2] = 0, [E1, E3] = ηE1 − E2, [E2, E3] = E1 + ηE2, η ∈ [0,∞),

L(3, 3) : [E1, E2] = 0, [E1, E3] = E1, [E2, E3] = E1 + E2.

Case: adX diagonalises in GL(g(1)). Suppose the eigen values of adX |g(1) are

λ1, λ2 ∈ R, |λ1| ≥ |λ2| with V1, V2 ∈ g(1) denoting corresponding linearly indepen-
dent eigen vectors. Then the basis

E1 = V1, E2 = V2, E3 = − 1

λ1
X

satisfies the L(3, 2, η) bracket relations with η = λ2

λ1
, 0 < |η| ≤ 1.

Case: adX diagonalises in GL(g(1) ⊗R C). In this case the eigenvalues are a
conjugate pair (λ, λ̄) and there exists a nonzero W = U + iV ∈ g(1) ⊗R C such that
[X,W ] = λW . If ℜλ/ℑλ ≥ 0 then the basis

E1 = U, E2 = V, E3 = − 1

ℑλX

satisfies the L(3, 4, η) bracket relations with η = ℜλ/ℑλ. If ℜλ/ℑλ < 0 then

E1 = U, E2 = −V, E3 =
1

ℑλX

satisfies the L(3, 4, η) bracket relations with η = −ℜλ/ℑλ. It is known that
L(3, 4, s) ≃ L(3, 4, t) if and only if t = ±s.

Case: adX does not diagonalises. In this we consider the Jordan form of adX |g(1) ,
in particular we can choose the basis {Y, Z} so that adX is given by the matrix

(

λ 1
0 λ

)

, λ =
1

2
tr adX .
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Then the basis

E1 =
1

λ
Y, E2 = Z, E3 = − 1

λ
X

satisfies the L(3, 3) bracket relations.
In the case dim g(1) = 3 we use the fact that there are just 2 semi-simple real

Lie algebras of dimension 3. One can distinguish L(3, 5) and L(3, 6) via the Killing
form. Indeed L(3, 5) = sl2(R) is a split real form of sl2(C) with sign-indefinite
Killing form and L(3, 6) = su2(R) is a compact real form with negative negative
definite Killing form.

�

5.2. Left-invariant sub-Lorentzian contact structures in dimension 3. Now
we are going to proof Theorem 1. If the sub-Lorentzian structure is a left-invariant
structure on a Lie group then all the invariants are constant. In particular for the
3-dimensional sub-Lorentzian case

κ = −(c112)
2 + (c212)

2 +
c123 + c213

2

and

h =

(

c
c123−c213

2
c213−c123

2 −c

)

.

In order to obtain classification we consider canonical frames given by Proposition
4 and Corollary 2.

5.2.1. Case h = 0. This case needs special consideration since Proposition 4 and
Corollary 2 doesn’t provide canonical frame for this particular case.

We have c = 0 and c213 = c123 = γ, hence the Lie brackets are

[X1, X3] = γX2

[X2, X3] = γX1

[X1, X2] = c112X1 + c212X2 +X3

and

[X1, [X2, X3]] + [[X2, [X3, X1]]+[X3, [X1, X2]] = [X3, [X1, X2]]

= −γc112X2 − γc212X1.

The Jacobi identity forces γ = 0 or c112 = c212 = 0, which lead to the following two
possible Lie algebra structures:

A : [X1, X3] = 0 B : [X1, X3] = γX2

[X2, X3] = 0 (κ = (c212)
2 − (c112)

2) [X2, X3] = γX1 (κ = γ)

[X1, X2] = c112X1 + c212X2 +X3 [X1, X2] = X3.

If c112 = c212 = γ = 0, then both algebras A and B are isomorphic to the
Heisenberg algebra L(3, 1). If γ 6= 0, then γ = κ and B is isomorphic to sl2(R) =
L(3, 5) via the isomorphism given by the following change of basis:

E1 = X1 +X2, E2 =
1

κ
X3 E3 =

1

κ
(X1 −X2).

Furthermore, the sub-Lorentzian metric is −(1/2κ)K where K is the Killing form.
If c112 6= 0 or c212 6= 0, then the algebra A is isomorphic to L(3,−1). Indeed,

according to c112 6= 0 or c212 6= 0, the isomorphism is given by the corresponding
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change of basis:

1). E1 = X1 +
c212
c112

X2 +
1

c112
X3 2). E1 =

c112
c212

X1 +X2 +
1

c212
X3

E2 =
1

c112
X2 E2 = − 1

c212
X1(27)

E3 = X3 E3 = −X3.

Theorem 4. If κ is nonzero and identical for A and B, then the sub-Lorentzian
structures are locally ts-isometric.

Proof. To show this we exploit the fact that corresponding structures are constant
curvature structures.

Definition 11. We say that sub-Lorentzian structure is a constant curvature struc-
ture if the curvature of the corresponding Cartan connection is constant on the
whole principle bundle.

One can see that sub-Lorentzian structure is a constant curvature structure
only if SO+

1,1(R) acts trivially (identically) on the curvature function. Otherwise
curvature function wouldn’t be constant along fibers of the principle bundle.

Any two constant curvature structures with the same curvature are isomorphic
due to the following theorem.

Theorem 5. [15, Thm 14.18, p. 433] Let θ and θ̄ be two coframes on m-dimensional
manifolds M and M̄ , having the same constant structure functions. Then for any
pair of points p ∈ M and q ∈ M̄ , there exists a unique local diffeomorphism Φ :
M → M̄ such that q = Φ(p) and φ∗θ̄i = θi for i = l, ...,m.

If follows that there exists a local diffeomorphism of the corresponding principle
bundles which preserves fibers and maps one Cartan connection to the other. Since
the action of G0 is preserved, the projection of this diffeomorphism gives rise to the
required isometry between the underlying manifolds.

Indeed, let π1 : G1 → M1 and π2 : G2 → M2 be principle bundles corresponding
to sub-Lorentzian manifolds M1 and M2. Let ω̃1 : TG1 → g and ω̃2 : TG1 → g be
Cartan connections induced by the sub-Lorentzian structure, and let ϕ : G1 → G2 be
the local diffeomorphism such that ω̃1 = ϕ∗ω̃2. Then for any section s1 : M1 → G1

with image contained in the domain of ϕ, the diffeomorphism π2 ◦ ϕ ◦ s1 maps
the frame adapted to sub-Lorentzian structure on M1 to the frame adapted to sub-
Lorentzian structure onM2. Therefore this diffeomorphism automatically preserves
the sub-Lorentzian structure.

The last step in the proof is to check that A and B are constant curvature
structures with the same curvature function. Indeed, formulas on page 13 shows
that curvature function for both cases is

k = κ(e1 ⊗ e∗2 ∧ e∗3 + e2 ⊗ e∗1 ∧ e∗3)

and SO+
1,1(R) acts trivially on it.

�

5.2.2. Case deth = 0, h 6= 0. In this case we have c ∈ {−1, 1} and c123 − c213 = ±2,
and the brackets are

[X1, X3] = cX1 + c213X2

[X2, X3] = (c213 ± 2)X1 − cX2

[X1, X2] = c112X1 + c212X2 +X3.
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The cases c = 1 and c = −1 can be obtained one from the other by a reversal of
the time orientation or a reversal of the space orientation (but not both simultane-
ously). The underlying transformation is isometric but not ts-isometric. However
the underlying group is unaffected and thus we only consider the case c = 1.

The Jacobi identity

[X1, [X2, X3]] + [[X2, [X3, X1]]+[X3, [X1, X2]] = [X3, [X1, X2]]

= −(c112 + c212(c
2
13 ± 2))X1 + (c212 − c112c

2
13)X2.

implies that we must also have the following equations:

c112(1 + c213(c
2
13 ± 2)) = 0, and c212 = c112c

2
13.

There are three possible solutions:

(1) ±2 = −2, c213 = 1, c212 = c112, κ = 0,
(2) ±2 = 2, c213 = −1, c212 = −c112, κ = 0,
(3) c112 = 0, c212 = 0, κ = (c123 + c213)/2.

We see that solutions (1) and (2) give rise to two families of sub-Lorentzian struc-
tures which couldn’t be distinguished by invariants κ and h. Therefor we introduce
τ = c112 which is an additional invariant for these particular cases. One could check
that for solutions (1) and (2) τ is a covariant derivative of h along X1.

In solution (1) the brackets are

[X1, X3] = X1 +X2

[X2, X3] = −(X1 +X2)(28)

[X1, X2] = τ(X1 +X2) +X3.

which implies that g(1) = span{X1 +X2, X3} . Furthermore we have that

adX1 |g(1) =

(

τ 1
1 0

)

relative to the basis {X1 +X2, X3}. The characteristic polynomial of adX1 |g(1) is

t2−τt−1 and the eigenvalues are (τ ±
√
τ2 + 4)/2. Following the classification pro-

cedure the algebra is L(3, 2, λ1

λ2
) = L(3, 2, λ2

λ1
) where λ1 and λ2 are the eigenvalues.

In solution (2) the brackets are

[X1, X3] = X1 −X2

[X2, X3] = X1 −X2(29)

[X1, X2] = τ(X1 −X2) +X3.

which implies that g(1) = span{X1 −X2, X3} . Furthermore we have that

adX1 |g(1) =

(

−τ 1
−1 0

)

(30)

relative to the basis {X1 −X2, X3}. The characteristic polynomial of adX1 |g(1) is

t2 + τt + 1 and the eigenvalues are (−τ ±
√
τ2 − 4)/2. Following the classification

procedure we get the following three possibilities:

(a) If |τ | = 2 then the algebra is L(3, 3) since (30) does not diagonalises,

(b) If |τ | > 2 then the algebra is L(3, 2, λ1

λ2
) = L(3, 2, λ2

λ1
) where λ1 and λ2 are the

eigenvalues,
(c) If |τ | < 2 then the algebra is L(3, 4, |τ |/

√
4− τ2).
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We remark that in solutions (1) and (2)(b) we do have distinct groups. Indeed
suppose that

c112 −
√

(c112)
2 + 4

c112 +
√

(c112)
2 + 4

=

(

−C1
12 −

√

(C1
12)

2 − 4

−C1
12 +

√

(C1
12)

2 − 4

)±1

where ckij denote the structure constant in solution (1) and Ck
ij denote the structure

constant in solution (2)(b). Then it follows that c112 = C1
12 = 0 which contradicts

|C1
12| > 2.
In solution (3) the brackets are

[X1, X3] = X1 + (κ∓ 1)X2

[X2, X3] = (κ± 1)X1 −X2

[X1, X2] = X3.

It follows that dim g(1) < 3 if and only if κ = 0 which reduces to particular cases
of solutions (1) or (2). If dim g(1) = 3 the Killing form is

K = (2κ∓ 2)(x1)
2 − 4x1x2 − (2κ± 2)(x1)

2 + 2κ2(x3)
2.

and so κ 6= 0 implies g ≃ L(3, 5).

5.2.3. Case deth > 0. In this case we have c = 0 and c213 − c123 = 2χ, hence the
brackets are

[X1, X3] = c213X2

[X2, X3] = (c213 − 2χ)X1

[X1, X2] = c112X1 + c212X2 +X3

and

[X1, [X2, X3]] + [[X2, [X3, X1]]+[X3, [X1, X2]] = [X3, [X1, X2]]

= −c112c
2
13X2 − c212(c

2
13 − 2χ)X1.

The Jacobi identity implies that we also have the following equations:

c112c
2
13 = 0 c212(c

2
13 − 2χ) = 0.

There are three possible solutions:

(1) c112 = 0, c212 = 0, (κ = c213 − χ)
(2) c112 = 0, c213 − 2χ = 0, (κ = (c212)

2 + χ)
(3) c213 = 0, c212 = 0, (κ = −(c112)

2 − χ).

In solution (1) the brackets are

[X1, X3] = (κ+ χ)X2

[X2, X3] = (κ− χ)X1

[X1, X2] = X3.

We note that dim g(1) = 3 if and only if κ2 − χ2 6= 0. The Killing form is

K = 2(κ+ χ)(x1)
2 − 2(κ− χ)(x2)

2 + 2(κ2 − χ2)(x3)
2.

Hence we conclude that if κ+χ < 0 and κ−χ > 0 then K is negative definite and
the algebra is L(3, 6) otherwise if κ2 − χ2 6= 0 the algebra is L(3, 5).

If χ = κ then g(1) = span{X2, X3}. Furthermore we have that

adX1 |g(1) =

(

0 2κ
1 0

)
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relative to the basis {X2, X3}. The characteristic polynomial of adX1 |g(1) is t2−2κ.

If κ > 0 then the eigenvalues are ±
√
2κ and the classification procedure implies

that the algebra is L(3, 2,−1). If κ < 0 then the eigenvalues are ±i
√
−2κ and the

classification procedure implies that the algebra is L(3, 4, 0).
If χ = −κ then g(1) = span{X1, X3}. Furthermore we have that

adX2 |g(1) =

(

0 2κ
−1 0

)

relative to the basis {X1, X3}. The characteristic polynomial of adX1 |g(1) is t2+2κ.

If κ > 0 then the eigenvalues are ±i
√
2κ and the classification procedure implies

that the algebra is L(3, 4, 0). If κ < 0 then the eigenvalues are ±
√
−2κ and the

classification procedure implies that the algebra is L(3, 2,−1).
In solution (2) the brackets are

[X1, X3] = 2χX2

[X2, X3] = 0

[X1, X2] = c212X2 +X3, ((c212)
2 = κ− χ).

and we see that g(1) = span{X2, X3} . Furthermore, we also have that

adX1 |g(1) =

(

c212 2χ
1 0

)

(31)

relative to the basis {X2, X3}. The characteristic polynomial of adX1 |g(1) is t2 −
c212t−2χ and the eigenvalues are (c212±

√

(c212)
2 + 8χ)/2. Following the classification

procedure we get the following three possibilities:

(a) If (c212)
2 = −8χ then the algebra is L(3, 3) since (31) does not diagonalises.

(b) If (c212)
2 > −8χ then the algebra is L(3, 2, λ1

λ2
) = L(3, 2, λ2

λ1
) where λi are the

eigenvalues.
(c) If (c212)

2 < −8χ then the algebra is L(3, 4, c212/
√

−8χ− (c212)
2).

In solution (3) the brackets are

[X1, X3] = 0

[X2, X3] = −2χX1

[X1, X2] = c112X1 +X3, ((c112)
2 = −κ− χ).

and we see that g(1) = span{X1, X3} . Furthermore, we also have that

adX2 |g(1) =

(

−c112 −2χ
−1 0

)

(32)

relative to the basis {X1, X3}. The characteristic polynomial of adX1 |g(1) is t2 +

c112t − 2χ and the eigenvalues are (−c112 ±
√

(c112)
2 + 8χ)/2. Following the classifi-

cation procedure we get the following three possibilities:

(a) If (c112)
2 = −8χ then the algebra is L(3, 3) since (32) does not diagonalises.

(b) If (c112)
2 > −8χ then the algebra is L(3, 2, λ1

λ2
) = L(3, 2, λ2

λ1
) where λi are the

eigenvalues.
(c) If (c112)

2 < −8χ then the algebra is L(3, 4, c112/
√

−(c112)
2 − 8χ).

We remark that the solutions (2)(b) and (3)(b) are distinct except when c112 =
±c212 and solutions (2)(c) and (3)(c) are distinct except when c112 = ±c212. In fact
case (3) can be obtained from cases (2) by multiplying the metric by −1 (i.e.,
timelike becomes spacelike and vice versa).



22 MAREK GROCHOWSKI, ALEXANDR MEDVEDEV, AND BEN WARHURST

5.2.4. Case deth < 0. In this case we have c = χ and c123 = c213, hence the brackets
are

[X1, X3] = χX1 + c213X2

[X2, X3] = c213X1 − χX2

[X1, X2] = c112X1 + c212X2 +X3

and

[X1, [X2, X3]] + [[X2, [X3, X1]]+[X3, [X1, X2]] = [X3, [X1, X2]]

= −(c112χ+ c212c
2
13)X1 + (c212χ− c112c

2
13)X2.

The Jacobi identity implies that we also have the following equations:

c112χ+ c212c
2
13 = 0 and c212χ− c112c

2
13 = 0.

It follows that c112 = 0, c212 = 0 and κ = c213, moreover the brackets are

[X1, X3] = χX1 + κX2,

[X2, X3] = κX1 − χX2,

[X1, X2] = X3,

implying dim g(1) = 3. The Killing form is

K = 2κ
(

(x1)
2 − (x2)

2
)

− 4χx1x2 + 2(κ2 + χ2)(x3)
2.

It is sign-indefinite hence the algebra is L(3, 5).
The classification is complete.
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[17] L. Šnobl and P.Winternitz Classification and Identification of Lie Algebras. CRMMonograph

Series, Volume 33, 2014.
[18] S. Sternberg. Lectures on Differential Geometry. Graduate texts in mathematics, 166.

Springer-Verlag, New York, 1997.
[19] N. Tanaka. On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto

Univ., 10:1–82, 1970.


