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[\ Abstract

=~ .In order to determine as best as possible the nature of thertiter (DM) particle (mass and decoupling temperaturejeovepute
analytically the DM galaxy properties as the halo densibfifg, halo radius and surface density and compare themitoothserved
<E values. We match the theoretically computed surface detusitts observed value in order to obtain: (i) the decreasirige phase-
O 'space density since equilibration till today (ii) the makthe dark matter particle and the decoupling temperafyr@i) the kind
< .of the halo density profile (core or cusp). The dark mattetigarmass turns to be between 1 and 2 keV and the decoupling
temperaturely turns to be above 100 GeV. keV dark matter particles nedgsgaoduce cored density profiles while wimps
T '(m~ 100 GeV,T4 ~ 5 GeV) inevitably produce cusped profiles at scales abo@30p@. We compute in addition the halo radius

U ro, the halo central densify, and the halo particle r. m. s. velociwflﬁijo they all reproduce the observed values within one order
’'of magnitude. These results are independent of the paptigisics model and vary very little with the statistics of teek matter
_C .particle. The framework presented here applies to any kimtM particles: when applied to typical CDM GeV wimps, our ués

O ‘are in agreement with CDM simulations. keV scale DM parsiadkeproduce all observed galaxy magnitudes within one arfler
I magnitude while GeV DM mass particles disagree with obgimvain up to eleven orders of magnitude.

0)

4= ‘Keywords: cosmology: dark matter, galaxies: halos, galaxies: kirt@®and dynamics

1. Introduction Hubble types. More precisely, all galaxies seem to have the
) same value fog, namelyug ~ 120 My/pc [@E’@u It
Since several years and more receritly {37,(15,/19, 44] lls remarkable that at the same time other important strattur

has been stressed that basic galaxy parameters as mass, Sig@ntities asgo, po, the baryon-fraction and the galaxy mass
(@) baryon—fra_lctlon, central density, are not independemhfeach vary orders of magnitude from one galaxy to another.
O) other but in fact all of them do depend on one parameter that e constancy ofi is unlikely to be a coincidence and
—i quks as a galaxy _|dent|f|e_r. In fact there exist fun(_:tlorml " probably has a deep physical meaning in the process of galaxy
- lations that constrain the iérent galaxy parameters in such a g mation. It must be stressed thatis the only dimensionful
way that the galaxy structure depends essentially on oraerpar quantity which is constant among galaxies.
O .eter (121[38] and references therein). . By analogy with the theory of phase transitions in statisti-
These functional relations may play for galaxies the rolecy| physics we find useful to call 'universal’ those quaesiti
S that the equations of state play in thermodynamical systems yhich take the same value for a large set of galaxies while non
.= First, let us remind that the density of DM in galaxies is njyersal quantities vary orders of magnitude from onexgala
>$ usually well rlgroduced by dark halos with a cored distiénut 14 4nother. In this context the quantities called univetska
o (auth.or?) [IQ ], whererg is the core radlqsqo is the _central the same value up t620% for diferent galaxies.
density lim p(r) = po andp(r) for r < ro is approximately Other known universal quantity in the above sense is the
constant. Recent findings highlight the quanjity = ro po shape of the density profile when expressed as a function of
proportional to the halo central surface density defined as r/ro and normalized to unit at= 0.

8v3 [as

0 R In order to understand the above observations, we compute
ZL‘ p(0,0,%3) dxg - where "= (xg, Xz, Xs) here from the Boltzmann-Vlasov equationl[L6, 30] the DM den-
_ ) o sity profile and the surface densjiy for different types of DM.
wherexs goes along the line of sight. The quantityis found In this paper, we follow the evolution of the gravitational

nearlyconstantand independentof luminosity infiérentgalac- cojlapse of a perturbation of mass ~ 3 x 102M,, and de-
tic systems (spirals, dwarf irregular and spheroidalipt&s)  rive the resulting linear halo density profile. This reproes
spanning over 14 magnitudes in luminosity and ovéledént  the phase of fast accretion foundNbody simulations. As a
result, we obtain robust predictions for the properties & D
halos.
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In the case ofACDM our results agree with thE-body 381
ACDM simulations and in the case &#WDM our results agree

with the observations. 38 .
We obtain a very good fit of the computed profile to the
Burkert profile. This determines the relation betwegand the 379k ,

free-streaming length.

We also compute non-universal galaxy quantities as the halg 3 1
radius, galaxy mass, halo central density and squared lealo v §
locity. We find that the linear approximation provides hadme & 377 1
tral densities smaller than or in the range of the obsematio %
and halo velocities larger than the observed ones by a factor 37| 1
between 1 and 10. We thoroughly analyze in our paper the va-
lidity of the linear approximation to study galaxy propesiand 375 1 .
its limitations. Notice that our determination of the DM piele
mass does not relay to these non-universal galaxy quantitie 374t .

We combine the observed properties of galaxies as the ef-
fective core density and the core radius with the theoritioa 3B 05 ‘ ) ” 5 18
lution of density fluctuations computed from first principle log10 10

We consider in this paper the whole range of galaxy virial
masses going from 5 to 30010 M.

-

Figure 1: The common logarithm of the observed surface tepsips in
(MeV)3/(h? c*) vs. the common logarithm of the core radigsn kpc. Notice
that in galaxies bothy andpg vary by a factor of thousand while, varies only
The theoretical treatment presented here captures many gg-about:20%.
sential features of dark matter, allowing to determine étire.
Our treatment also applies to CDM: if we use the CDM .
. ! . . observations and we use the observed valugs ofs. rq for
surface density value obtained from CDM simulatidn$ [28, w . . ) )
. . . . DM dominated spiral galaxies given iﬂ38].
determine [sec[]9] a dark matter particle mass in the wimps
. ) . . The structural halo parametess andrg are found to be
mass scale (GeV), fully consistent with CDM simulations. o .
related, it is worth to compute from them the virial madg,

This paper is organized as follows: Sec. 2 presents galaxiy terms of the core radius ([21,[38] and references therein)
data and empirical formulas relating basic galaxy pararagte 172
sec. 3 deals with the phase-space density; sec. 4 contains Muir _ 0‘320( o ) )

our theoretical results for the density profile from the &irized ™ = 10m, kpc
Boltzmann—VIasov equatior_L In sec. 5 we derive the DM Parrie surface density is defined as:
ticle mass and the decoupling temperature from the theateti
and observed galaxy surface density, in sec. 6 we compute non ;5 = pg ro (3)
universal galaxy properties and in sec. 7 we derive the psofil

for keV scale DM particles and for wimps (cored vs. cuspedWe display in Table 1 the values of the observed surface den-

profiles). In sec. 8 we present our conclusions. sity pioobs iN (MeV)3/(h? ¢*) and the corresponding core ra-
diusrg. We plot in fig.[1 the observed surface dengigyps in

_ _ (MeV)3/(h? ¢*) vs. the core radius.
2. DM halos around galaxies: the observational framework Notice that in galaxies botty andpo vary by a factor 19
while o varies only by less than20%. 5 kpc< ro < 50 kpc
?br normal spiral galaxies. Therefore, as stresse@mﬁ]
the surface density is a constant over a large number of igalax
of different kinds.

The kinematics of about several thousands disk galaxie
described by the Universal Rotation Curves of Spirals, aed t
information obtained from other tracers of the gravitadildield
of galaxies, including the dispersion velocities of spldats
and the weak lensing measuremerﬁ(, 38] and references Notice that the surface density of ordinary matter in lumi-
therein) found that the density of the dark matter halosmdou nous galaxies is about a factor 4 larger than the surfacetgens
galaxies of diferent kinds, dferent luminosity and Hubble types value for dark mattef [20]. Clusters of galaxies, exhibitaakd
is well represented, out to the galaxy virial radius, by akéur ~ matter surface density about a factor 4 or 5 times larger than
profile that of dwarf, elliptical and spiral galaxiés [3,18]. Sudffet-

ence could be due to a baryongeet, which study is beyond
r 1 r . e
o(r) = po FB(_) , Fag(X) = ————— , x= — , (1) the scope of this paper. For clusters of galaxiess 4 to 50
fo 1+ (1+x) fo times larger than for the galaxies in Table 1 and the masses ar
wherep, stands for theféective core density andg for the core 100 to 4000 larger than the masses of the galaxies in Table 1.

radius. The Burkert profile satisfactorily fits the astrorcah ~ Namely, the variation ofi from galaxies to clusters of galax-
ies is a much small factor than the changegiiand in the total



ro (KPC)  woobs (MeV?)

4.8 0.63 16
6.1 0.64 16
7.9 0.63 16

10.2 0.62 16
13.3 0.61 16
17.3 0.60 16
22.6 0.60 16
29.4 0.59 16
38.7 0.57 16
51.8 0.55 16

Table 1: The observed core radigsand the observed surface dengityps -

mass. We choose for the present work the data from galaxies ; ; ; . .
in Table 1 (further discussion on clusters of galaxies iggin l0g;, Qgi,o vs.m, —
sec. 6).

85 i
3. The invariant phase-space density of DM galaxy halos

The invariant phase-space density is definedﬂlﬂ E@Z 28] st .

1
z% where o?=Z <V?> (4) 3
o 3 5
. L . . . . o 51 1
is the velocity dispersiorQ is invariant under the expansion of E,
the universe and decreases due to self-gravity interaz:@] T
from its primordial valueQ, to the volume average valu@aio .l |
of the galaxies today:
1
Qhalo = Z Qp P (5) 65 - i
where
Phalo Pprim . . ) ) )
= = . 6
Qhalo o3 Qv Tim ©6) 0 5e+12 le+13 1543 23 25eH3  3eHl3

Muirial/Msun

This equation defines the factﬁr[lﬁ]. Z is larger than unity
Figure 2: The logarithny of the phase-space dens@yai, obtained from ed.{8)

and its value d_e_pends on the galaxy considered. . using the data in Table 1 vs. the virial mass of the galsbyyiz in units of solar
Let us anticipate thaQp only depends on the properties masseau,.

of the DM particle and its primordial distribution functigsee

eq. below].
o) _] . For a NFW profile,
The velocityvhao(r) follows from the virial theorem com-
bined with the Burkert profile ed(1) [21,138] o(r) = LZ , (9)
0o 13 1 r 1+ L)
Veao(r) = 27 G —2 |In(1 + x) — arctanx + 5 In@+x)| s\ Ts
r ; we get:
X=o . () 0.324
fo Qo= —3——— (NFW). (10)
G2 yps 3

Qnalo IS Obtained by averagingr) andvﬁalo(r) over the volume
using the density itse}i(r) as weight function (s¢e Appendix] A). Both results egs.[18) anf{|10) are of the same order of mag-

From eqs.[(l1) [4)[(6) an@l(7) we obtain [see[eqlA.4)], nitude and dfer by a factor~ 5. SinceQ ~ m* as shown
0.069 below in eql(Ill), using the cuspy NFW profile instead of the
Qhalo = 3—3 (Burkert). (8)  cored Burkert profile only may change the DM particle mass
G2 +po Iy by a factor~ 1.5 keeping its order of magnitude.

We plot in fig.[2 the phase-space densiiy, vs. the virial
mass of the galaxiria in units of solar masselsl,. Notice



that the virial mass of the galaxy is related to the halo reju  distribution function which evolves according to the narebr
through eq[(R). Boltzmann-Vlasov equation. The evolution is practicaihehr
The primordial invariant phase-space denglfycan be eval- in the RD era and in the MD era before structure formation.
uated in the radiation dominated (RD) era with the reﬁl} [12 That is, we can use the linear Boltzmann-Vlasov for redshift
z 2 30. Forz < 30 non-linearities are relevant and one should

]

3 V3 1I;mt use the non-linear Boltzmann-Vlasov equation or, altévabt
Qp 272 9 I_g N (11) performN-body simulations. It must be noticed that the resolu-
4 tion of the linearized Boltzmann-Vlasov equation from tinel e
wherel, andl, are the dimensionless momenta of the particleof inflation till today provides a good approximated pictafe
DM primordial distribution function [12]: the structures today [13]. From the evolution of the darkterat
. . fluctuationsA(k, 2) we obtained the density profite (r) ].
I, = f V2 Fy(y) dy, ls= f v* Fq(y) dy, We follow the density fluctuations in the RD era according
0 0 to the results in|_L_1|6] andﬂg]. It is convenient to recast the

gis the number of internal degrees of freedom of the DM Ioarti_Ilnearlzed Boltzmann-Vlasov equation in the matter dongda

cle (g = 2 for Dirac fermions). For example, for Dirac fermions (MD) era as an integral equation, the Gilbert equaﬂﬁh (2.

of masamthat decoupled ultrarelativistically at thermal equilib- solve the Gilbert equatio 8, 6] to obtain the density fhaet
rium we have, tionsA(k, 2) till today

220 g T(K) (1 + 269) Ak ) - (17)

Here the subindey, refers to equilibration, the beginning of
the MD era, 1+ Zq ~ 3200 andT (k) is the transfer function
which takes into account the evolution of the density fluetua
tions during the matter dominated efia(k) has the properties:

The covariant decoupling temperatdrgcan be expressed T(0) = 1 andT(k — ) = 0. Namely, the transfer function
in terms of the number of ultrarelativistic degrees of freacat T (k) suppresses the larggsmall scale) modes.

m Ak, Z
Qp = 0‘020395ﬁ . (12) (k2)
Similar expressions and values are obtained for bosonsand f
particles decoupling ultrarelativistically out of therheguilib-

rium ﬂﬂ].

decouplinggy by using entropy conservation [4] It is convenient to introduce the dimensionless variable
1 | \/E
o\3 — k. wh o= fs Ve 18
Tg = (—) T, . (13) Y Nin wWhere rjy N (18)

I s andkss stand for the free-streaming length and free-streaming

can be expressed as [12
9 P (12l wavenumber respectivelﬂSO] amng, is given by I[]S]

9=_—3—75_ — Q (212)° (14) 3M3 E
33 72 Qbm pc Min =2 /1+ Zeq — 5 (19)
Ho vQpwm Qp

whereT, is the CMB temperature toda§pm the DM cos-
mological fraction ang, the critical density of the universe. Hg stands for the Hubble constant today ag| for the Planck

From WMAP/LSS data we have [34], mass,
T, = 0.2348 meV, Qpy = 0.228, Ho=15102%eV, Mp =243 10°® GeV. (20)
— (2,518 meV /(73 &) . 15 rin is the characteristic length scale in the linear regime.

pe=( i ) (15) We plot in fig. [3 the transfer functiom(y) for Fermions

here 1 me\= 1073 eV. We have in additiodIiZ], (FD) and Bosons (BE) decoupling ultrarelativisticallydafior
5 e Od Jd particles decoupling non-relativistically [Maxwell-Bamann
m =7 Qom 90 6.986 evﬁ , (16)  statistics, (MB)]. We see from figi] 3 that the transfer fuoiti

Y

T(y) decreases by an amount of order oneyfancreasing by
Hence, a DM particle decoupling ultrarelativisticaly aiskift ~ unit. ThereforeT (k) decreases by an amount of order one when
Zq and physical decoupling temperatlTrc%hys =Q+2z) Tq 2 k increases by an amount of the order of the wavenurkher
100 GeV wherayy ~ 200 (see ref[[30]) will have a mass in the [see eq[(18)]. As we see from fig. B(y) shows little variation
keV scale. with the statistics of the DM particles.

4.1. The phase density from the observed and theoretical sur
face density

We now evolve the density fluctuations from the end of in-  We match in this section the observed surface density (Table
flation till today in the standard model of the Universe. This1) with the surface density computed from eds.] (29) (30).
evolution provides the phase-space den€lify, and the sur- This gives as a result e.(36) which determines the prinabrdi
face densityg today. The density fluctuations follow from the phase density.

4

4. The linear Boltzmann-Vlasov equation.



All fluctuations withk > keq that were inside the horizon by
equilibration are relevant heree [13]. This introduces in(Zg)
the comoving horizon volume by equilibratidﬂﬁ] 16]

by bybg
N
kg Hg

wherebg ~ 3.669 103 andb; ~ 1 (actuallyb; = 1 in [13]).

The initial power fluctuations are multiplied by a Gaussian
random fiech(IZ) with unit variance

"Bose-Einstein ——

09 F

08

: (25)
0.7 F
06

"l <@ g'®) >= (k- K) . (26)

04T which describes the random quantum character of the primor-

dial fluctuations.

Each realization of the random fiegaIZ) with unit variance
and zero average produces a DM configuration in the linear
regime (a ‘galaxy’). The simplest one is obtained g@ﬁ) =
1. The presence og(R) will produce a large variety of non-
spherically symmetric galaxy configurations in a large safy
masses and sizes. For simplicity we restrict ourselves toere
the casey(K) = 1 and leave the inclusion gfk) # 1 to future

- . P .
Figure 3: The transfer functiom(k) vs. y = k rji, for Fermions and Bosons work. The profllep“n(r) [Wlth g(k) N 1] bears the universal

decoupling ultrarelativistically and for particles depting non-relativistically ~ PrOPerties of the galaxies, tha_t Is to say, the general mmﬁe _
(Maxwell-Boltzmann statistics)T (y) shows little variation with the statistics of common to all (or most) galaxies. This is why such a profile is

the DM particles. We see thai(k) decays for increasingwith a characteristic very appropriate and useful to extract these universalgtiss.
scale~ 1/rjin ~ ks Which is the free-streaming wavenumber [sed &d).(18)].

03

02

01p

0 1 2 3 4 5 6 7 8 9 10

From the results egE.(R4)-(24) we compute and analyze the
_ _ _ _ _ surface density and the density profile. We see fron el.(22) t
We first compute the linearized density profile from the Feurj,, (r) decreases with havingr;, as characteristic scale since

transform of the density fluctuations today|[13] it depends om/rji, being the Fourier transform of a function of
1 oo v that decreases with unit characteristic scalg jsee fig[B].
Pin(0) = 55 f kdksinkn Akz=0).  (21)  We plot in fig (ETA the ratio
0
More explicitly, from eq[{II7) the density profitg, (r) turns pin(r) _ W) = Jo N@) sin(yy) dy wherey = . (27)
to be the Fourier transform of the density fluctuatiavfk, ze,) oin(0) y fo"" y N(y) dy " lin
by the end of the RD era times the transfer funcfigk):
) for Fermions (FD) and Bosons (BE) decoupling ultrarelativi
() = 108 V2 Qowm Mg, (1+ Zeg) 1ol cally and for particles decoupling non-relativisticaligxwell-
pintt) = "5, Ho 0 Boltzmann statistics (MB)].
kg—ns/Z o0 r Y(y) mainly depends on known cosmological parameters
xbo by T f dy N(y) sin(y —) , (22)  and fundamental constants and has a weak logarithmmic de-
Min T JO Flin pendence on the DM particle mass.
where|Ao| stands for the primordial power amplitudg,is the _ We c_ompute theoretically the sgrface density from the den-
primordial spectral indes is the pivot wavenumber used by Sity Profile eql2P) and the halo radius egsl (19) and|(B. fipnT
WMAP_ t_o fit 'Fhe primordial powerkeq the horizon wavenumber Lot = Fo pin(0) , (28)
by equilibration and
&y with eqgs. [IP)I(2R) and (Bl 1)iiin reads:
NG) =72 n( 22 76). @3) 2
; M
Keq Iin Lol = 1058\@ Qom Aol (1 + Zeq)17n$/4 koH Pl
The numerical values of the cosmological parameters eferi T 06 o
in eq.[22) arel[31] VQpm Ho Qp) ° oo
Xbg by YTV ¥y N(y) dy . (29)
Aol ~ 494 10° , ng~00964 , ky=2Gpct, ky Mg, 0

) The DM profile eql(2R) decreases with the characteristic
Keq=9.88Gpc™ , o=~ 0.1160. (24) length i, which is of the same order of magnitude than the
halo radiusrg in the empiric density profile e@l(1). We define
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Figure 4: The logarithay of the primordial phase-space density =

(Z Qnaio)/(keV)* vs. the common logarithm of the virial mass of the galaxy

my, = Myirial /[10™Mo]. g is obtained by solving e@.(B6).

the codficienta asa = rji, /ro and determine it by fitting the lin-

ear profile to the Burkert profile B. The valueof

turns to be between 0.4 and 0.8 depending on the DM patrticle

statistics (see Table B.1).
Using the numerical values of the parameters €qgs. (20)
(Z4), this theoretical formula takes the form

MeV)3 by s [
pom = 3011 S 2ol [Cynp)ay. @0)
where
Q.38
= 1
qp (kev)4 hsc ’ (3 )
and

N(y) = y™/** In(do a; 7) T(y) . do=5567. (32)

From now on we use the dimensionless primordial dertgjty

We identify the observed surface dengity,s with the the-
oretical value obtained in the linear approximatian,. We
thus obtain the following trascendental equation in théaide

Op-

@  Hoobs h? ¢t

E (T NGy dy = & Koosh"C
Y fo YNOY &Y= 5 3511 (Mev)e

We compute the quantities in dq.[33) usiNgy) eq.[31) [i. e.
the transfer functio (y)] from the solution of the linearized
Boltzmann-Vlasov equation obtained [ﬂa, 6], so that:

(33)

f Y2 T(y) Iny dy = 1.315... ,

0

f Y2 T(y) dy = 2.666. .. (34)
0

and hence,

f ¥ N(y) dy = 1817(1 + 0.0489 Ingp) . (35)
0

These values correspond to fermions decoupling ultravedat
tically at thermal equilibrium. Bosons and particles olbeythe
Maxwell-Boltzmann statistics yield similar results as @ees
from figs.[3 and B.14.

For fermions decoupling ultrarelativistically at therreghi-
librium, eq.[33) takes then the form:

0.161

1 2 4
6B (1+0.04891 Ingp) = — oo

by 10330 (MeV}§
where we used the numerical values in €g3%.(24) (35). The
value ofb; ~ 1 which provides the best fit to the halo radius is
b, ~ 0.8 (see append[x Appendix| B).

We proceed now to solve numerically €qJ(36) to obtain the
primordial phase-space density for the diferent values of
Hoobs given in Table 1.

(36)

5. The DM particle mass and the decoupling temperature
from the galaxy surface density

We plot in fig.[4 the solution of ed.(B6)), vs. m,. From
eqs(b) and (31, can be expressed as

Up = ZQWan 3 8
P (kevy*

Therefore, for a galaxy of mass, the observed values of the

(37)

an&]ase—space densi®hao (fig. [2) yields the factoZ as a func-

tion of the virial massn, [eq. (2)].

In Fig. [3 we plot log,Z vs. m,, and log, Qﬁéo VS. m, is
plotted in Fig.[2. We see th&@hqo decreases witim, while
Z increases withm, in such a way that the produgt Qa0 is
roughly constant Moreover, as follows from egEl(5) ard112)
Z Qhaio gives the DM particle mass

m* = 49.0Z Qhapo - (38)

We notice in fig[h that the fact@ changes by about two orders
of magnitude
2910 <72<5410,

over a large range of values of the virial mass. The variaifon
Z is relevant in the context of galaxy formation but not for the
particle DM determination. Since goes aZ'/* even a large
change irZ merely produces a small changenin For example,
changingZ by a factor 100 changen by a factor 32.

We obtain the DM particle mass from eqs[(ZI){IR) in
terms of the invariant phase-space dengigy

% _ _(2)
—moq; , mo=(=

| 3

x (—4) keV , (39)
2 \3

mp = 2.6462 ke\c® for Dirac fermions ,

mo = 2.6934 keV/c? for scalar Bosons (40)
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Figure 5: The common logarithm of the self-gravity decnegdactorZ com-
puted from eq{37) witly, solution of eq[(3b) [figl}] vs. the virial mass of the
galaxymy, = Myiral /[10"Mo].

1.95 T T
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Figure 6: The DM particle masain keV following eq.[39) with the values of
dp solution of eq[(3B) vs. the virial mass of the galary = Myirial /[10MMo].
We see that the DM massexhibits the same variation with, than the surface
densityuoons in fig. [I. The precision in the observations of the surfacesiign
o translates on the precision of the DM massA value form slightly below
2 keV is favoured.

The numerical coicients here correspond to ultrarelativistic
decoupling at thermal equilibrium. For decoupling out adrth
mal equilibrium the coficients are of the same order of mag-
nitude m].

In fig. [@ we plotm according to ed.(39) with the values of
gp solution of eq((36) (fig[}¥) andoobs given in Table 1. The
precision in the observations of the surface densjtiyyanslates
on the precision of the DM particle mass

We find m about 2 keV (up ta:10%) forb; = 0.8. More
generallymis in the keVscalefor by ~ 1.

The variation of the observed surface dengiy,s with the
core radiusy (fig. ) is similar to:

e (a) the variation of the DM particle massdisplayed in
fig. G,

e (b) the variation of the primordial phase-space derggity
in fig. 4],

e (c) the variation of the density contrast in fig. 9.

Therefore, the precision in the observations of the surdizce
sity uo translates on the precision in the evaluation of the DM
massm.

From the solution fog, eq.[36) and figl}4 we can also com-
pute the number of ultrarelativistic degrees of freedomeat d
couplinggq and therefore the decoupling temperattigevhich
is a further relevant characteristic magnitude of the DMipa:.
For Dirac fermions decoupling ultrarelativistically atetimal
equilibrium the number of ultrarelativistic degrees ofefdiem
at decoupling can be expressed from[ed.(14) as

ga = 13655 . (41)
And from fig.[4:
014<qy<03 ., 061<q}<0.74. (42)

We thus find that for thermal fermiomg is in the interval

833<gq <1010 thermal fermions

which correspond to physical decoupling temperature€18)j.
above 100 GeV.

The gravitino is a popular DM candidate decoupling at ther-
mal equilibrium which can provide such valuesgaf ~ 1000
in non-minimal supergravity extensions of the standard @hod
of particle physics. (In the minimal supersymmetric exiens
%hﬁﬂstandard model (MSSM) one has the vajye- 22875

142]).

For DM particles decoupling out of thermal equilibrium as
sterile neutrinos, the primordial power spectrum and tioeee
the inferred values for the mass of the DM particle change by a
factor of order one {5,/ 7, 12, 14,136,146]. The low-momentum
regime is enhanced in the out of equilibrium particle digtri
tionsFq4(y) [B] and therefore the dimensionless momentyiof



Fa(y) is smaller for out of equilibrium decoupling than for ther- g
mal equilibrium decoupling. As a consequence, we see from
eq.[16) that we can have smaltprfor smallerl, always keep-
ing min the keV scale.

Sterile neutrinos which decouple out of equilibrium are to-
day the front-runner candidate for WDM in the keV mass scale.

In summary, the DM particle mass is in the keV scale whether
the DM particle decouples in or out of thermal equilibrium.
The fact that the DM particle mass is in the keV scale is a ro-
bust result which does not depend on the details of the partic
physics models. Of course, to fix the number within the scale ¥} ]
1 < m < 10 keV depends on the details of the particle model.
Our aim in this paper is not to analyze the observational con-
straints on the DM particle models but to determine the DM 2«2} .
particle mass scale from general fundamental grounds and ob
servations.

ro data vsm,
Fo VS. M,

50 | k

0 1
6. Non-universal structural galaxy properties

We compute here for illustration non-universal galaxy guan . . ! ! !
tities as the halo radius, galaxy mass, halo central deasity 0 50 100 150 200 250 300
squared halo velocity. These calculations are indepenafent
determlnatl_on of the DM par.tlde mgss and are _pres_ented tﬁne, the halo radiusg in kpc from the real data in Table 1 in solid red line
see what kind of results provide the linear approximatioet L s 'the virial mass of the galaxy, = Myiiai/[L0*Mo]. The theoreticako
us anticipate that the linear approximation for non-urseér computed from first principles approaches asymptoticélly dbserved, for
galaxy properties agrees with the observed values witha onlarge galaxies.
order of magnitude.

Notice that our determination of the DM particle mass does  \\e see that the ratiMga)/Myirial tUTNS to be in the interval,
not relay to these non-universal galaxy quantities.

igure 7: The computed halo radiug in kpc from eql{4#)in broken green

M
gal <5, .

The characteristic length of the linear profilg eq.[19) 0.12< ——
takes the following form in terms af, eq.[31): virial

The contrast density, that is, the ratio between the maximum
DM mass densityjin (0) and the average DM mass dengigy,

In fig. [2 we plot i, from eq.[@B) andr ro from the data in N the universe results

Min =211 q,_,% kpc. (43)

Table 1 as functions afy,. contrast pin(0)
The halo radius in the linear approximation is giverry= Pom
a ro which for DM Dirac fermions becomes with ppm = Qowm pec andQpy andp. given by eq[(I5) piin (0)
_ 1 is given by e as
ro = fin_ _ 307 dp® kpc, (44) g Y eqll28)
0.688 in(0) = Holin
n - .
where we used = 0.688 obtained in appendix AppendiX B by fo
fitting the Burkert and linear profiles. We plot in fig.[® the contrast density
Using the range of values qf, eq.[42) obtained by solving Lo
eq.[36) yields contrast= % (46)
46 kpc < rg < 59 kpc. DM Pe o

As seen from fig[19, the ratio obtained is betwegd dnd 12

of the observed value 3 x 1C° in [@]. The values obtained

are below the observed values because the linear halo radius
ro = nin/0.688 is larger than the observed halo radiggnd

The total mass of the galatya follows by integrating the ~ the density contrast goes agrd eq.[46). This property shows

which is in the upper range of the observgdalues in Table
1. Namely, the linear approximation for the halo radius give
values above or in the range of the observations.

density profile eq.(22). We find again that the larger and more dilute is the galaxy the bisiter
5 5 the linear approximation for non-universal quantitieg($able
Mgal = 2015 piin(0) = 201§ toobs - (45) 2).
In fig. [B we plot Mga/Myiriai VS. M, where the observed, and Notice that we consider the whole range of galaxy virial
Myiria are defined by ed.2). masses going from 5 to 30aL0'! M. Universal quantities as
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Figure 8: The common logarithm of the predicted total mash@falaxyMga
given by eq[(4b), divided by the observed virial m&ga Vvs. the observed
virial mass of the galaxyn, = Myirial /[10'Mg]. The ratioMga/Myirial turns
to be in the interval 12 < Mga/Myiriai < 5.0. Notice that the dierence of
Mgal With Myirial is irrelevant to the determination of the DM particle mass.
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Figure 9: The ratigiin (0)/opm between the maximum DM mass dengify; (0)
and the average mass density in the univeis@ vs. the virial mass of the
galaxym, = Myirial /[10*Ms]. The ratiopiin (0)/ppm turns to be betweerya
4q).

and ¥2 of the observed value 3 x 10°

the surface density stay constant ups20% within this wide
range of galaxy masses.

It is relevant to evaluate the halo velocity given by [EQ.]A.4
VZhaio = 2.316G o g - (47)
Using eql{4#) this equation becomes

2 Mo -1

V2ha10 = 6.705 YV (km/secf q,° . (48)
From Table 1 the input observed surface density takes the val

Uo =~ 6000 Me\P . (49)
Eq.[48) thus becomes

— 201
\J/;;;;h51|0 lin = —7 L(TY]/ESGE(Z. (55())
9p

The obtained range of valuesqf eq.[42) yieldsqflJ ~ 0.77 and

\/ihalo in =~ 260 km/sec. (51)

This value is to be compared with the values arising frgym
and eq[(4l7) and the observed valugs Table 1.

79.3 km/sec< \/iham < 261 kmysec. (52)

The halo central density in the linear approximation is give
from egs. [[4%) and (49) by
Mo _ 5.3 _9
Lolin = o 29010 gp el
Using the range of values af, eq.[42) obtained by solving
eq.[36) yields

133102 & 194102 -9
cm3 Spo< cm3’

for 1.6 keV < m < 1.9 keV, which must be compared with the
observed values gfy given in Table 2.

We see that the linear approximation produces halo central
densities smaller or in the range of the observations amal hal
velocities larger than the observed ones by a factor of order
one.

Clusters of galaxies exhibit halo radiusabout 210 kpd]3]
well beyond the linear halo radius 50 kpc. Hence, clusters
of galaxies cannot be described by the initial conditionsdus
here. Chosing general random fielg(&) # 1 fulfilling eq.(28)
will provide general configurations with a large range of agss
and sizes. Each realization of the random f'g(IIEi) produces a
possible galaxy configuration. The factg(rl?) multiplies the
transfer functiorT (k) and therefore is to be added in ther. h. s.
of eqs[I¥),[[2B) and(B2) and inside tkeintegrands [r. h. s.
of eqs [2P),[(27) [(29)[{30)._(B3].(34) and35)].

We plot the density profiles in figd.110 ahdl11. Fig] 11
displays 500 profiles averaged in the angles for random ini-
tial conditions. One can see that the random initial fludtunest
only produce mild changes in the shape of the density profiles
Therefore, restricting ourselves for simplicity to init@imor-
dial conditions Withg(IZ) = 1 still provides relevant physical
results.



Observed Values Linear Theory Wimps in linear theory

ro 5to 52 kpc 46 to 59 kpc .0045 pc
po 15710193x105 % 13310194x105 L 1773x 107 L
Wehao  79.3to 261 kiysec 260 kiysec 0.0768 kifsec

Table 2: Non-universal galaxy quantities from the obsémmat (Table 1 combined with the virial) and from the lineag-th
ory results. The corresponding dark matter particle magtoised in fig.[6 and is in the range6l- 1.9 keV. The larger
and less denser are the galaxies, the better are the rasuitdte linear theory for non-universal quantities. The s-
umn corresponds to 100 GeV mass wimps. The wimps valuesgdfrdisagree by several orders of magnitude with the
observations.

7. The density profile: cores vs. cusps We plot in fig. [10 the density profilg;n(r) according to
eqgsl(ZR) and[(27) for DM particle massesof 1 and 2 keV

The properties of the density profilg, (r) depend on the  ang the Burkert density profile for the largest galaxy-= 51.8
free streaming lengthi, and therefore on the mass of the DM kpc andp(0) = 1.57 x 10725 ng in Table 1. We see from
Cl

particle as we discuss here below. . _ fig. [I0 that the density profilg;, (r) best follows the Burkert
We find from eqs((28)[(30) anfL(5) for the density profile pqfjle for a DM particle massislightly below 2 keV. This is in
at the origin agreement with Fig.]6 for the DM particle mass where a value
ngs2 3 for mslightly below 2 keV is favoured.
pin(0) = 22 = 3367 b, q,° x[1+0.04891 Ing| (Mev) .(53)
fo kpc We present in this paper clear evidences for a DM particle
We use from eq$.(39) and (44) that mass in the keV scale. However, one can wonder what is the

shape of the density profile and the value of the density at the
m\* e origin for a typical hundred GeV wimp.
A = Mo » Tin = 77.23 kpc m | (54) Since wimps are supposed to decouple non-relativistically

) ) o ~eq.[I1) does not apply to them. For DM particles decoupling
for DM particles decoupling ultrarelativistically at theal equi- non-relativisticallyQ, is given by m]

librium with mg given by eq[(4D). Then ef.(b3) can be written

as Qp= ;'\_’I'_fc Od (M Td)g nonrelativistic decoupling57)
m L1976 y
pin(0) = 1.622 10%° (m) For a 100 GeV wimp decoupling at the typical temperature

g Tawimp =5 GeV, we find from eq$.(31) and (57)

1402428 | (7)] 9 55
X[ i 175 keV/| cne (°5) Up wimp = 0.3166 16" (58)
where we used the numerical values from eds.] (24) Bid (4Q¥here we used thay ~ 80 at such decoupling temperature
and the conversion of units: [3d]. We then find from ed(83) the central density vaig0)
for such value ofy:
MeV 3 p
(MeV)” _ 01483608 102 2. | w
kpC cm? Plin (O)wimp ~1773x 10" R (59)

For the DM particle mass value ~ 2 keV found in the pre-  This value for the wimps density profile at the origin turngeo
vious sectionpiin (0) from eq{(5h) is two to three times smaller |arger than the observed valuesddgven orders of magnitude
than the observed values (as it is the contrast densitysied  This resultindicates that the DM particle mass is not in te¥/G
in the previous section). This is not surprising becau€0)  scale. DM particles at the keV scale reproduce very well both

is not an universal quantity and given the approximationwf o the surface density and the density profile at the origin.
theoretical computation.

L . . The free-streaming length, is the characteristic scale where
We derive il Appendix_{C, ed.(Q.9) the density profile be- ) . ) )
haviour forr > i wherers is given by)equE4)' yP oin(r) varies (see fig_B.14). This length is of the order of hun-
~in " ' dred kpc for keV mass scale DM particles as shown by ely.(54).

: or a hundred GeV wimp decoupling 8§ wimp = eV we

36.45kpcl482 F hundred GeV wi d ling B4wimp = 5 GeV
7) find from eqs[(4B) and(%8)

ri imp = 100 GeV, Tgwimp=5 GeV)= 0.0031 pc= 639 AU.

1+0.2417 '”(kiv)] . (56) "”(””V'Tp vim ) P |

e Therefore, with such small, for wimps we can use for all rele-

It should be noticed that this behaviour has only a mild logaVant galactic scales the asymptotic behavioyi(r) eq.[C.8)
rithmmic dependence on the DM particle mass The scales  Valid forr > rin. Thatis,

in eq.[56) only depend on known cosmological parameters and pin(r = 0.003pClimp = 0.8064 1014 9 (61)
not onm. cm?

pin(r = Tin) = 10726 9 ( ;

cmd
< (7.933 Mpc) [

10
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Figure 10: The common logarithm of the density profilg(r) according to Fi . ; i . ) ;
! ! . gure 11: The normalized density profilg (r)/peiin (0) averaged in the angles
;qslljzs) ar}FIfQUIIrlt/ggﬁ \;E rdln kpc anfd ﬂ:ﬁ Eliurke;;prqfllier i(:ll)' .;Lhe for 500 random initial conditiong(IZ) VS.T/r1/4 ). r1/4 being the point where
urkert protiie Is plotted with ré CZ%SSES orthe fargesaggain fable 1 wi piin(r) takes 14 of its value at the originr1,4 coincides with the halo radius in
ro = 518 kpc ando(0) = 1.57 x 10~ —=- Notice that the agreement of the the Burkert profile

linear density profilepjin (r) with the Burkert profile is best for a DM particle
mass slightly below 2 keV.

eq.[52). Recall that keV scale DM particles yield a halo gelo
0.0031 p ity eq.(51) of the same order of magnitude than the observed
1+0.04616 "’(—(ﬂ - halo velocities. Therefore, keV DM particles may solve the
problem in the halo velocities recently noticed @[33] foet
This profile clearly exhibits ausp behaviour for scales 1pg bullet cluster when CDM wimps are used.
r > 0.003 pc. Notice that this asymptotic formula €gl(61) ap-
proximatively matches around ~ 0.003 pc the value of the
wimp profile at the origin ed.(39).
In summary, the density profilg,(r) eq.[22) exhibits a
cusp around the origin for a wimp DM particle and a core be
haviour atr = O for a keV scale DM particle mass.

(0.0031 p(jl‘482
x r

The analytic expressions we derived for the density pro-
file, and the mass of the dark matter particle also imply that
keV dark matter particles always produce cored densitylpsofi
‘while heavy dark matter particles as wimps € 100 GeV,Ty
=5 GeV) inevitably produce cusped profiles at scales of 0.003
pc. These results are independent of the particle modelanyd v

We display in fig[IP the density profile for 100 GeV wimps very little with the statistics of the dark matter particle.
and the NFW profile for the largest galaxy in Table I. The den-
sity profile for 1-2 keV particles in fig._10 and the density pro
file for wimps in fig. [I2 practically coincide for > 30 kpc
while they strongly dfer at smaller scales (S 30 kpc). The The linear approximation to the Boltzmann-Vlasov equa-
kev mass prqfile ex_hi_bits a core_like the Burkert P“)f"e Whiletion is valid as long as the density contrast is at most of orde
the wimp profile exhibits a cusp like the NFW profile. . one. However, in the non-linear regime the density fluctunsti

In this way, the value of the mass of the dark matter part'derelevant to the galaxy profiles grow with time independeafly

turns to be between 1 and 2 keV, and the number O,f ultrarelgp g \yavenumber. Therefore, the shape of the linear profile su
tivistic degrees of freedom of the dark matter coupling at de ;e in the non-linear regime. Only the profile normaliaati

couplinggq, or similarly, the decoupling temperatufg turns changes according with the non-linear evolution.

to be above 100 GeV. These results from linear approximation provide in prin-
We can also evaluate the halo velocity for wimps from theciple only estimates since non-linedfegts (including for in-

general formula ed.(30) and the valuefwimp €9.(58). We  stance mergers) are expected to be important. Howevemi tu

8. On the Validity of the Linear Approximation

obtain out that the obtained linear results well reproduce the mhse
— tions.
2 A —
\/\Tha'o inwimp = 0.0768 knysec Of course, the theory of galaxy formation requires N-body

three orders of magnitude below the observed halo velscitiesimulations, beyond the scope of this paper.
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Notice that general arguments based on the Boltzmann-¥laso The linear approximation for the density fluctuations am-
equation show that the cored or cusped character of a prefile plitude today is clearly only an estimate for the true nogdin
preserved through mixing and mergers and that cusps do netlue. However, the DM particle mass derived from the phase-
become steeper neither shallower through mixing and mergespace density in the linear approximation onlyfelis by one
[ad]. order of magnitude from the nonlinear value obtained froen th

Therefore, the cored and cusped character we find for thepherical mode( [12].
linear profiles depending on the DM particle mass considered
(keV and GeV mass scale, respectively) should remain Va”?he
after mixing and mergers are taken into account.

Interestingly enough, it is possible to derive the value of
surface densityg from CDM simulations. Values of the
productrs ps from NFW fits to CDM simulations for galaxies
Moreover, recenN-body ACDM simulations (Acquarius) were reported in [27]. From these values 9ps we can derive
have found that the DM halos form in a sort of "monolithical” the surface densityo, sinceug = po ro = 25 rs ps with the
way [48]. Their inner regions, that contain the visible gada,  result
are found to be stable since early times and contrary to {previ CDM v
ous believes, maj i i i Mo = 10" Mo/pc. (62)
, major mergers (i.e. those with progenitosmeas
tios greater than 1:10) are found to contribute little tdrttetal  [Notice thatps in [27] differs by a factor four from ed(9)].
mass growth [48]. This indicates that nonlinearities (inerg- We see that the surface density from CDM simulations is
ers) have a reduced importance. Minor mergers, secondary ifive orders of magnituddarger than the observed surface den-
fall, rare major mergers are certainly important for detaiut  sity uoops =~ 120 Mo /p& [32,117] 41].
the essential features of DM halos are determined during the It is illuminating to insert in eq(36) the above value of
fast-accretion phase of their gravitational collapse hashtis-  the CDM surface densityS°™ eq.[62)instead of the observed
tory of the quasar-galaxies coevolution also seems to atelic valuepugops This gives for the mass of the CDM partict&®M ~
[E]/. 60 GeV which is a typical wimp mass. Therefore, the linear ap-
The halo formation essentially consists of two main phasegyroximation also provides a consistent value for the magiseof
A first fast accretion phase (that can be treated by the linea€DM particles in full agreement with CDM simulations.
approximation), and a second subsequent slow accreticgepha

with mergers and infalls, that have a random character zatd th These results show that our theoretical treatment captures

can only be described by numerical simulations. This seconEFany essential features of dark matter, allowing to deteemi

phase does not have an essential influence in the shape of iz nature. When contrasted to the CDM surface density value

halo profile. Thus, in order to explain the observed halo [@®fi obtained frpm CDM 5|mulat|or_13 (instead of the surfgce dgnsi
. . X . value obtained from observations), our approach giveshier t
one just needs to describe the first phase of halo format®n, a . K .
we do here in this paper dark matter particle mass the typical CDM wimps mass scale
' (GeV), fully consistent with CDM simulations.
Evidence based on the phase space density pointing towards
a DM particle mass in the keV scale was presented in refs. [%_ Conclusions

@]. Notice in this respect that the linear fluctuations adl we

as the spherical model (which contains the nonlinearites) Dark matter is characterized by two basic quantities: the
give values for the DM particle mass in the keV scale whichDM particle massn and the number of ultrarelativistic degrees
only differ by a factor ten. of freedom at decouplingy (or, alternatively the decoupling

Analytic methods have been used to derive galaxy propert_emperaturé’d). We obtain_the dgnsity profiles and theor(_at_ical
ties using the primordial power of the density fluctuatioes( relations betweem andgy involving the opservable densities
for examplel[26. 35]) and using the spherical mageithor?) ~ #oM anduo eqs{11).[I4) and[29). Inserting the observed val-

,B]. ues ofppm andpug in these theoretical relatlons yields gq
andQp egs. [39){(4D) and(41), respectively.

In summary, the solution of the linearized Boltzmann-Viaso We estimate the gaquy surface density and match_|t with
equation presented here provides a satisfactory pictutkeof the observed values. Within the same scheme, we derive ana-

generalgalaxy properties. Although nonlineafects and baryonéyt'cany the halo radius, and the chtor_Z charac_ter|2|_ng the

are not taken into account, the linear description presdmtee reduction of the phase-space density since equilibraficot
qualitatively reproduces the main non-universal and geiobar- day. For these re;ults we use the observed values of the halo
acteristics of a galaxy summarized in Table 2. Moreover, thé)hase-space densiGhaio.

agreement is even quantitative (approximatively) for thedr From the observed values of the surface density we present
halo radiusrg, the galaxy mas$lg,, the linear halo central here clear evidence that the mass of the DM particle is abwit o
densityp and the halo velocityﬁhamﬁr/,z compared to the re- OF two keV. Evidence based on the phase space density ppintin
spectived observed values in the limiting case of largexigsa towards a DM particle mass in the keV scale was presented in
(bothro and Mg large). The agreement is very good for uni- r€fS- [5[12]

versal galaxy quantities as the surface density and thetgens  |n addition, one can wonder what would be the results for
profile as discussed above. heavy wimps. For example, for wimpsraimp = 100 GeV the
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characteristic scale, eq.[19) takes the value given by €gl(60).

For suchsmall ryi, the linear profilepiin(Nwimp appears as a
cuspedprofile when observed at scales from®@3 pc to 1 pc

25 ' ' ' NFW profile —

10910 2lin (Nwimp VS. T inkpc

23 F
as shown in figl_T2. Cusped profiles are thus clearly assaciate ‘

to heavy DM particles with a huge masg,imp well above the 25 ‘\l
physical keV scale while cored profiles are associated to DM ‘\
particles with mass in the keV scale. ull
Notice that the density profile turns out to be cored or cuspy \
depending on the DM particle masgs Form ~ keV the result-
ing density profile is cored as depicted in fig] 10 whileriop
GeV the density profile turns to be cusped as shown iffiyy. 12.
Figs. [TOEIR show that the density profiles for a 1-2 keV DM
particle are similar to Burkert (within a factor 2-3, irresnt
for the aims of this paper) while for a wimp DM particle, the
density profile is similar to a NFW profile.

245

25+

-26
Despite its limitations, it is rather remarkable that thmeer

approximation is able to reproduce the observations withia
order of magnitude. In the present paper we restrict ouesety
estimate the DM particle mass. In order to theoreticalljizea . . . . .
galaxy formationN-body simulations must be performed with '270 50 100 150 200 250
the appropriate primordial power spectrum. Such spectrum c
cially depends for small scales on the value of the DM pagticl Figure 12: The linear density profile for 100 GeV wimps (brokgeen line)
mass. and the NFW profile (solid red line) for the same galaxy mastha®urkert
profile in fig.[I0. In all cases the densities are jong® andr in kpc. The wimps
It must be stressed that the framework presented here a: ear density profile follows ed.{Q.8). The wimp linear fil@exhibits a cusp
plies to any kind of DM particles: particles with mass in the k¢ e NFW profile.
keV scale reproduce all observed galaxy magnitudes withén o
order of magnitude, while wimpsr(~ 100 GeV) present dis-
crepancies with observations of up to eleven orders of magni
tude. This is a robust indication that the DM particle mass is
the keV scale.

-26.5 |

300

1
x|In(1 + &) — arctanc™+ > In(1+ ¢

Rir
l'o ’
Elliminating M(Ryir) between eq$.(Al2) anf (A.3) givesas a
function ofpg through the trascendental equation
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Appendix A. The average phase space-density The right hand side is a monotonically increasing functiébn o
€. This implies thatincreases whepg increases. Since) de-
creases whepy increases (keeping constant the surface density
o), thereforecincreases whery decreases. For the galaxies
in Table 1, we find 2 < € < 249, 120 kpe< Ry < 478 kpc,

smaller values of torresponding to larger galaxies.

Qhalo in sec.[B follows averaging(r) andvﬁalo(r) over the
volume. We define their average using the densfty eq.[1)
as weight function:

fOR”" r2 p(r) dr fOR”" r2 p(r) V2, (r) dr
fOR”" r2pr)dr fORW r2 p(r) dr

The virial radiusR;; is defined by the radius where the mass
computed from the Burkert profile eg.(1) takes the valué [38]

Vhalo

P

(A.1)

From eqgs[(4)[4) andl7) evaluating the integrals il edl(A.
we find

p=00662p0 , VZhao=2316Gpors,

. .2 B 0069
N 2 Vir Q =32 - : A4
M(Rwr) ~ 10" Mo (259 kp() ’ (A'Z) e (\_fzhalo)g G% \/P_O I‘g ( )

Here, For the NFW profile ed.{9) the virial mass takes the form

R\/\r
M(Ryir) = 47Tf r2 p(r) dr = 27 po rg
0

1+c

k]

RVH'
MR =47 [ 12 p(r) dr =4z per? [in(1+ ) -
0

13



C

>

Rvir
Is
and therefore we find fqss,

g c

ps=03101027 % ¢ _ (A.5) 9y
ms ¢
c In(l + C) - 1_+C 09 b\ FB(Q' y) ,,,,,,,
The observations give farthe empirical relatior] [38] o
B M(Ruir) -0.13 0'6 7
c=97 (1012 M@) . (A.6)

Therefore, knowing(R,;;) andR;; we obtainps andc from
eqsAD) and(Ak). For the galaxiesin Table 1, we fin@2&c <
rs < 625 kpc, 0.439 102° g/cm’® < ps < 1.087 1025 g/cm?, 7.64<**[
€ < 131. We use the values of andps for the larger galaxy 02 f
to plot the NFW curve in fig[C12. Namelys = 62.5 kpc and
ps = 1.087 1025 g/cne.

0.1

0

Appendix B. The linearized density profile. ' ‘ ‘ ‘ ‘ ‘ PeelY)—
09 FalaV) g
Both, the Burkert profilé=g(r /ro) eq.[1) and the linear pro- os | \\ s(@) |
file Y(r /rin) €q.[2T), have the same qualitative shape. To make \
the connection quantitative, we fit the linear profile with& g A Y
ert profile setting o6 |
X=ay , thatis rp=arop. (B.1) o8
04 N
We look for the value of that gives the best fit by minimizing N
the sum of squares: eor X
[¥(y) - Fa(a y)]2 forO<y<3 .
The best fit for each DM particle statistics is obtained fa th o
values ofa reported in Table B3. We display in fig__Bl13 )
the Burkert profileFg(e y) and the linear profile&(y) for -~ Twly)—
Fermi-Dirac, Bose-Einstein and Maxwell-Boltzmann statss oor Feley) 1

respectively. We see from fif._BJ13 that the profiles for Bose- os}
Einstein and Fermi-Dirac statistics are better fitted by ekBrt
profile than the profile for Maxwell-Boltzmann statistics.
We compute the behaviour of the linear profig(r) eq.[22)
for r > rj;, in[Appendix_C. We find that the linear approxima- ~ osf
tion can be used for (s¢e Appendi} C) ol

03

0.7

0.6

0<r<rmax Where rpax= 8 Mpc.
0.2

It must be noticed that the maximum radiysy turns to be

independent of the DM mass and only depends on known

cosmological parameters. o T s n s 2 25 s 35 4 a5 s
We have at the origirF;(0) = -1 while ¥'(0) = 0 and

‘P"(O) < 0. More preciserP”(O) = —2.74 for fermionic DM Figure B.13: The Burkert profil€g(a y) and the linear profil&(y) computed

. . . L from first principles vs.y = r/r;, for Fermi-Dirac (FD), Bose-Einstein (BE)
particles. At the origin, the Burkert profile decreases witlit and Maxwell-Boltzmann (MB) statistics. The values ®ofor each statistics

slope while the linear profile has an inverse-parabola shape are given in Table B3. The linear profi(y), especially for Fermi-Dirac and
Galaxy profiles take an universal form whefr)/po is ex-  Bose-Einstein statistics, fits very well the Burkert proéifed as a consequence,

pressed as a function ofro. The Burkert profile is a particu- () reproduces the observations as welFaga y).
larly simple formula that satisfactorily reproduces thsatva-

tions. The linear profilé¢(y), especially for Fermi-Dirac and

Bose-Einstein statistics, fits very well the Burkert profiled

therefore ¥(y) is also able to well reproduce the observations.
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Particle Statistics a
Bose-Einstein 305
Fermi-Dirac 0688
Maxwell-Boltzmann (421

Table B.3: The values of the parametet= rjin /ro for which the Burkert profile=g(a y) best fits the linear profil&(y) =
pin(r)/piin(0) , Y = 1/Tiin.

: — we know that the linear approximation always gives values fo
: Bose-Elnstein — ro larger than the observed values, namely, the linear approxi
o9t | Maxwell-Boltzmann----- | mation improves for large galaxies [13]. Therefore, we fegju
\ thatri, tends torg = 0.688r( for large galaxies which fixels;
ol | - to beb; ~ 0.8. In any case the dependence of the resultis;on

\ [which must be anywal; ~ 1] is quite mild.
orF L ,

06l l Appendix C. Asymptotic behaviour of the linear density
L profile.

oor \ 1 To derive the asymptotic behaviourgf, (r) it is convenient
\ to change the integration variable in €ql(22) to

04 \ .

r r

=y — =—, C.1
03} 7 =Y Flin Y Flin (€1

0l and we obtain

pin(r) 1
\P = = =
01f v) pin(0) ~ y2 fo y N(y) dy
0 . . y f N (z) siny dy (C.2)
0 05 1 15 2 25 3 35 4 45 5 0 y

In the limity = r/r;, — co we have from ed.(32)

Co 1
Inf[—qg3|+In
(yqp) 1

Figure B.14: The profilegjin(r)/piin(0) vs. X, wherex = r/rjjp for Fermions
and Bosons decoupling ultrarelativistically and for paes decoupling non- ns
relativistically (Maxwell-Boltzmann statistics). The smns profile is the more (;7) ys1 (n)?_l

peaked, the MB profile is the shallowest and the fermions lpréfilying in-

between. The profiles show little variation with the statsof the DM parti- y y
les.
ces where we used that(0) = 1.
Therefore eq{Cl2) gives

Namely, the linear profilg, (r) is well appropriated for small .
and intermediate scales W )y>>1 F(%) 3'”(% ns) g

Y= = .. Y ?

0<T < TImax- Joo ¥ N&) dy
D )+ (%) + 2 cofZ )

This means that although the linear approximation canrmt ca x In(y qp) Y 2 * 2 cot 4 Ns)| - (C.3)

ture the whole content of the structure formation, it canlwel
reproduceuniversal features which are common to all types Where we used the formulas [24]

of galaxies as the density profile. Notice that the lineafifgro © g g Ne\ . (7
Y¥(y) is universal as a function of = r/rj;,. The values ofji, fo 27" sinnp dn = F(E) S'”(Z ns) .
andpjin (0) are not universal and change by orders of magnitude

according to the halo mass. On the contrary, the surfacétgens

1o defined by ed{3) is an universal quantity. Indeed, the the- f nn_zs’l sinp Innpdnp = F(%’) sin(:—T1 ns)
oretical value ofug that follows from the linear profilj, (r) 0

eq.[22) can reproduce the observed valuggds it has been X [l//(E) I cotg(z ns)] , (C.4)
shown in |L;_L13]. 2 2 4

We use this property in sectign #.1 to derive the values of/(X) stands for the digamma function.
the DM particle mass and the number of ultrarelativistically The asymptotic behaviour €g.(C.3) is hence governed by the
degrees of freedom at decoupligg smallk behaviour of the fluctuations(k, z.q) by the end of the

As shown above the linear profile and the Burkert profile areradiation dominated era [see €gl(17)].
the closest forji, = a ro with @ = 0.688. On the other hand,
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14 T

Numerical calculation o¥(y) vs.y—

Asymptotic formula fol¥(y) vs.y
12 E

08
06
04 F

02

0 1
0

Figure C.15: The linear profil€(y) vs.y computed from the numerical Fourier
transform eg[{27) in red continuous line and computed froem asymptotic
formula eq[[CF). We see that the asymptotic formula weltsduces the linear
profile fory 2> 1 and not just foy > 1.

Using the numerical values fog andcy from eqsl(Z#) and
([32) and the integral ovéM(y) eq.[35), eql{CI3) becomes

%
1+0.1687 |n[q?p
y>1 0.4120
w(y) = '
W)= Ji@r Tro004891 Im (€5

We obtain for DM particles decoupling ultrarelativistilyaht
thermal equilibrium using egB.(839) ard140),
)1.976

(77.23 kpc)1'482 ( keV
r

P(y) = 0.7705 —

1+01114 In( kfc)

X
m 9
1+02416 | (—)
* n keV

(C.6)

where we used + ng/2 = 1.482 2 (2+ng)/3 =1.976.

We plot in fig. [C.Ib the asymptotic formula dq.(C.5) and
the numerical Fourier transform dg.[27) f#(y). We see that
the asymptotic formula ef.(G.5) correctly reprodugég) not
only fory > 1 but for ally = 1.

We see that there exists a maximum vayygy (and there-
forermay Where the linear profile vanishes:

4

i) . Imax=7.932Mpc.  (C.7)

keV
where we used egs.(C.1), (C.5) ahdl(54).

Notice thatrmax turns to be independent of the DM mags
and only depends on known cosmological parameters.

Ymax = 1027 (

16

Thus, the linear approximation can be used for

0Sy<Ymax , 0<r <rmax

where¥(y) > 0 with Ymaxandrmax given by eq[Cl7).

The nonvalidity of the linear approximation beyond 8 Mpc
reflects the fact that non-lineaffects are important for small
wavenumbers: this is consistent with the fact that we have ef
fectively cutted @& the modek < keq in the linear approxima-
tion [see eql(25) anﬂlw]] as it must be.

Combining the value gji, (0) in eqs(5B) and (5) with the
asymptotic behaviour ef.(Q.5) yields

|

We then find for DM particles decoupling ultrarelativistigaat
thermal equilibrium using eqE.(B9) ad140),

9

pin(r 2 Min) = 10°2¢ P

4203 kpc)1'482 |

N 7.932 Mpc
r r

x|1+0.04891 Ingp| . (C.8)

36.45 kpa\**®  (7.932 Mpc
pin(r 2 fin) = 10°° crgn3 ( r IO) In( r P)
m

whererji, is given by eq[(54). It should be remarked that this
behaviour has only a mild logarithmmic dependence on the DM
particle massn. The scales in eqE.(CQ.8)-(C.9) only depend on
known cosmological parameters and nothan

As noticed in(author?) [|E], the asymptotic decrease of
the linear profile given by e.{Q.8) is in remarquable agre®m
with the universal empirical behaviour put forward from ob-
servations in[[47] and frorACDM simulations in ([45]. For
larger scales we would expect that the contribution fromlsma
k modes where nonlineaffects are dominant will give the cus-
tomaryr 3 tail exhibited by the Burkert profile ed](1).
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