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Abstract

In order to determine as best as possible the nature of the dark matter (DM) particle (mass and decoupling temperature) wecompute
analytically the DM galaxy properties as the halo density profile, halo radius and surface density and compare them to their observed
values. We match the theoretically computed surface density to its observed value in order to obtain: (i) the decreasingof the phase-
space density since equilibration till today (ii) the mass of the dark matter particle and the decoupling temperatureTd (iii) the kind
of the halo density profile (core or cusp). The dark matter particle mass turns to be between 1 and 2 keV and the decoupling
temperatureTd turns to be above 100 GeV. keV dark matter particles necessarily produce cored density profiles while wimps
(m ∼ 100 GeV,Td ∼ 5 GeV) inevitably produce cusped profiles at scales about 0.003 pc. We compute in addition the halo radius

r0, the halo central densityρ0 and the halo particle r. m. s. velocityv2
1/2

halo they all reproduce the observed values within one order
of magnitude. These results are independent of the particlephysics model and vary very little with the statistics of thedark matter
particle. The framework presented here applies to any kind of DM particles: when applied to typical CDM GeV wimps, our results
are in agreement with CDM simulations. keV scale DM particles reproduce all observed galaxy magnitudes within one orderof
magnitude while GeV DM mass particles disagree with observations in up to eleven orders of magnitude.

Keywords: cosmology: dark matter, galaxies: halos, galaxies: kinematics and dynamics

1. Introduction

Since several years and more recently [37, 15, 19, 44] it
has been stressed that basic galaxy parameters as mass, size,
baryon-fraction, central density, are not independent from each
other but in fact all of them do depend on one parameter that
works as a galaxy identifier. In fact there exist functional re-
lations that constrain the different galaxy parameters in such a
way that the galaxy structure depends essentially on one param-
eter ([21, 38] and references therein).

These functional relations may play for galaxies the rôle
that the equations of state play in thermodynamical systems.

First, let us remind that the density of DM in galaxies is
usually well reproduced by dark halos with a cored distribution
(author?) [9, 39], wherer0 is the core radius,ρ0 is the central
density lim

r→0
ρ(r) = ρ0 and ρ(r) for r < r0 is approximately

constant. Recent findings highlight the quantityµ0 ≡ r0 ρ0

proportional to the halo central surface density defined as

2
∫ ∞

0
ρ(0, 0, x3) dx3 where ~r = (x1, x2, x3)

wherex3 goes along the line of sight. The quantityµ0 is found
nearlyconstantand independent of luminosity in different galac-
tic systems (spirals, dwarf irregular and spheroidals, elliptics)
spanning over 14 magnitudes in luminosity and over different

1Corresponding author

Hubble types. More precisely, all galaxies seem to have the
same value forµ0, namelyµ0 ≃ 120 M⊙/pc2 [32, 17, 41]. It
is remarkable that at the same time other important structural
quantities asr0, ρ0, the baryon-fraction and the galaxy mass
vary orders of magnitude from one galaxy to another.

The constancy ofµ0 is unlikely to be a coincidence and
probably has a deep physical meaning in the process of galaxy
formation. It must be stressed thatµ0 is the only dimensionful
quantity which is constant among galaxies.

By analogy with the theory of phase transitions in statisti-
cal physics we find useful to call ’universal’ those quantities
which take the same value for a large set of galaxies while non-
universal quantities vary orders of magnitude from one galaxy
to another. In this context the quantities called universaltake
the same value up to±20% for different galaxies.

Other known universal quantity in the above sense is the
shape of the density profile when expressed as a function of
r/r0 and normalized to unit atr = 0.

In order to understand the above observations, we compute
here from the Boltzmann-Vlasov equation [16, 30] the DM den-
sity profile and the surface densityµ0 for different types of DM.

In this paper, we follow the evolution of the gravitational
collapse of a perturbation of massM ∼ 3 × 1012M⊙ and de-
rive the resulting linear halo density profile. This reproduces
the phase of fast accretion found inN-body simulations. As a
result, we obtain robust predictions for the properties of DM
halos.
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In the case ofΛCDM our results agree with theN-body
ΛCDM simulations and in the case ofΛWDM our results agree
with the observations.

We obtain a very good fit of the computed profile to the
Burkert profile. This determines the relation betweenr0 and the
free-streaming length.

We also compute non-universal galaxy quantities as the halo
radius, galaxy mass, halo central density and squared halo ve-
locity. We find that the linear approximation provides halo cen-
tral densities smaller than or in the range of the observations,
and halo velocities larger than the observed ones by a factor
between 1 and 10. We thoroughly analyze in our paper the va-
lidity of the linear approximation to study galaxy properties and
its limitations. Notice that our determination of the DM particle
mass does not relay to these non-universal galaxy quantities.

We combine the observed properties of galaxies as the ef-
fective core density and the core radius with the theoretical evo-
lution of density fluctuations computed from first principles.

We consider in this paper the whole range of galaxy virial
masses going from 5 to 300×1011 M⊙.

The theoretical treatment presented here captures many es-
sential features of dark matter, allowing to determine its nature.

Our treatment also applies to CDM: if we use the CDM
surface density value obtained from CDM simulations [27], we
determine [sec. 9] a dark matter particle mass in the wimps
mass scale (GeV), fully consistent with CDM simulations.

This paper is organized as follows: Sec. 2 presents galaxy
data and empirical formulas relating basic galaxy parameters;
sec. 3 deals with the phase-space density; sec. 4 contains
our theoretical results for the density profile from the linearized
Boltzmann-Vlasov equation. In sec. 5 we derive the DM par-
ticle mass and the decoupling temperature from the theoretical
and observed galaxy surface density, in sec. 6 we compute non-
universal galaxy properties and in sec. 7 we derive the profiles
for keV scale DM particles and for wimps (cored vs. cusped
profiles). In sec. 8 we present our conclusions.

2. DM halos around galaxies: the observational framework

The kinematics of about several thousands disk galaxies,
described by the Universal Rotation Curves of Spirals, and the
information obtained from other tracers of the gravitational field
of galaxies, including the dispersion velocities of spheroidals
and the weak lensing measurements ([21, 38] and references
therein) found that the density of the dark matter halos around
galaxies of different kinds, different luminosity and Hubble types
is well represented, out to the galaxy virial radius, by a Burkert
profile

ρ(r) = ρ0 FB

(

r
r0

)

, FB(x) =
1

(1+ x) (1+ x2)
, x ≡ r

r0
, (1)

whereρ0 stands for the effective core density andr0 for the core
radius. The Burkert profile satisfactorily fits the astronomical
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Figure 1: The common logarithm of the observed surface density µ0obs in
(MeV)3/(~2 c4) vs. the common logarithm of the core radiusr0 in kpc. Notice
that in galaxies bothr0 andρ0 vary by a factor of thousand whileµ0 varies only
by about±20%.

observations and we use the observed values ofρ0 vs. r0 for
DM dominated spiral galaxies given in [38].

The structural halo parametersρ0 and r0 are found to be
related, it is worth to compute from them the virial massMvir

in terms of the core radiusr0 ([21, 38] and references therein)

mv ≡
Mvir

1011M⊙
= 0.320

(

r0

kpc

)1.72

(2)

The surface densityµ0 is defined as:

µ0 ≡ ρ0 r0 (3)

We display in Table 1 the values of the observed surface den-
sity µ0obs in (MeV)3/(~2 c4) and the corresponding core ra-
dius r0. We plot in fig. 1 the observed surface densityµ0obs in
(MeV)3/(~2 c4) vs. the core radiusr0.

Notice that in galaxies bothr0 andρ0 vary by a factor 103

while µ0 varies only by less than±20%. 5 kpc. r0 . 50 kpc
for normal spiral galaxies. Therefore, as stressed by [32, 17, 41]
the surface density is a constant over a large number of galaxies
of different kinds.

Notice that the surface density of ordinary matter in lumi-
nous galaxies is about a factor 4 larger than the surface density
value for dark matter [20]. Clusters of galaxies, exhibit a dark
matter surface density about a factor 4 or 5 times larger than
that of dwarf, elliptical and spiral galaxies [3, 18]. Such differ-
ence could be due to a baryons effect, which study is beyond
the scope of this paper. For clusters of galaxiesr0 is 4 to 50
times larger than for the galaxies in Table 1 and the masses are
100 to 4000 larger than the masses of the galaxies in Table 1.
Namely, the variation ofµ0 from galaxies to clusters of galax-
ies is a much small factor than the change inr0 and in the total
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r0 (kpc) µ0obs (MeV3)

4.8 0.63 104

6.1 0.64 104

7.9 0.63 104

10.2 0.62 104

13.3 0.61 104

17.3 0.60 104

22.6 0.60 104

29.4 0.59 104

38.7 0.57 104

51.8 0.55 104

Table 1: The observed core radiusr0 and the observed surface densityµ0obs .

mass. We choose for the present work the data from galaxies
in Table 1 (further discussion on clusters of galaxies is given in
sec. 6).

3. The invariant phase-space density of DM galaxy halos

The invariant phase-space density is defined by [5, 8, 12, 28]

Q ≡
ρ

σ3
where σ2 ≡

1
3
< v2 > (4)

is the velocity dispersion.Q is invariant under the expansion of
the universe and decreases due to self-gravity interactions [43]
from its primordial valueQp to the volume average valueQhalo

of the galaxies today:

Qhalo =
1
Z

Qp , (5)

where

Qhalo ≡
ρhalo

σ3
halo

, Qp ≡
ρprim

σ3
prim

. (6)

This equation defines the factorZ [12]. Z is larger than unity
and its value depends on the galaxy considered.

Let us anticipate thatQp only depends on the properties
of the DM particle and its primordial distribution function[see
eq.(11) below].

The velocityvhalo(r) follows from the virial theorem com-
bined with the Burkert profile eq.(1) [21, 38]

v2
halo(r) = 2π G

ρ0 r3
0

r

[

ln(1+ x) − arctanx+
1
2

ln(1+ x2)

]

,

x =
r
r0

. (7)

Qhalo is obtained by averagingρ(r) andv2
halo(r) over the volume

using the density itselfρ(r) as weight function (see Appendix A).
From eqs. (1), (4), (6) and (7) we obtain [see eq.(A.4)],

Qhalo =
0.069

G
3
2
√
ρ0 r3

0

(Burkert) . (8)
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Figure 2: The logarithm10 of the phase-space densityQhalo obtained from eq.(8)
using the data in Table 1 vs. the virial mass of the galaxyMvirial in units of solar
massesM⊙.

For a NFW profile,

ρ(r) =
ρs

r
rs

(

1+
r
rs

)2
, (9)

we get:

Qhalo =
0.324

G
3
2
√
ρs r3

s

(NFW) . (10)

Both results eqs. (8) and (10) are of the same order of mag-
nitude and differ by a factor∼ 5. SinceQ ∼ m4 as shown
below in eq.(11), using the cuspy NFW profile instead of the
cored Burkert profile only may change the DM particle mass
by a factor∼ 1.5 keeping its order of magnitude.

We plot in fig. 2 the phase-space densityQhalo vs. the virial
mass of the galaxyMvirial in units of solar massesM⊙. Notice
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that the virial mass of the galaxy is related to the halo radius r0

through eq.(2).
The primordial invariant phase-space densityQp can be eval-

uated in the radiation dominated (RD) era with the result [12]

Qp =
3
√

3
2 π2

g
I

5
2

2

I
3
2
4

m4

~3
, (11)

whereI2 andI4 are the dimensionless momenta of the particle
DM primordial distribution function [12]:

I2 ≡
∫ ∞

0
y2 Fd(y) dy , I4 ≡

∫ ∞

0
y4 Fd(y) dy ,

g is the number of internal degrees of freedom of the DM parti-
cle (g = 2 for Dirac fermions). For example, for Dirac fermions
of massm that decoupled ultrarelativistically at thermal equilib-
rium we have,

Qp = 0.020395
m4

~3
. (12)

Similar expressions and values are obtained for bosons and for
particles decoupling ultrarelativistically out of thermal equilib-
rium [12].

The covariant decoupling temperatureTd can be expressed
in terms of the number of ultrarelativistic degrees of freedom at
decouplinggd by using entropy conservation [4]

Td =

(

2
gd

)
1
3

Tγ . (13)

gd can be expressed as [12]

gd =
2

1
4

3
3
8 π

3
2

g
3
4

ΩDM

T3
γ

ρc
Q

1
4
p (I2 I4)

3
8 (14)

whereTγ is the CMB temperature today,ΩDM the DM cos-
mological fraction andρc the critical density of the universe.
From WMAP/LSS data we have [34],

Tγ = 0.2348 meV, ΩDM = 0.228 ,

ρc = (2.518 meV)4/(~3 c5) , (15)

here 1 meV= 10−3 eV. We have in addition [12],

m= π2 ΩDM
ρc

T3
γ

gd

g I2
= 6.986 eV

gd

g I2
, (16)

Hence, a DM particle decoupling ultrarelativisticaly at redshift
zd and physical decoupling temperatureTphys

d = (1+ zd) Td &

100 GeV wheregd ∼ 200 (see ref. [30]) will have a mass in the
keV scale.

4. The linear Boltzmann-Vlasov equation.

We now evolve the density fluctuations from the end of in-
flation till today in the standard model of the Universe. This
evolution provides the phase-space densityQhalo and the sur-
face densityµ0 today. The density fluctuations follow from the

distribution function which evolves according to the non-linear
Boltzmann-Vlasov equation. The evolution is practically linear
in the RD era and in the MD era before structure formation.
That is, we can use the linear Boltzmann-Vlasov for redshift
z & 30. Forz . 30 non-linearities are relevant and one should
use the non-linear Boltzmann-Vlasov equation or, alternatively,
performN-body simulations. It must be noticed that the resolu-
tion of the linearized Boltzmann-Vlasov equation from the end
of inflation till today provides a good approximated pictureof
the structures today [13]. From the evolution of the dark matter
fluctuations∆(k, z) we obtained the density profileρlin(r) [13].

We follow the density fluctuations in the RD era according
to the results in [16] and [29]. It is convenient to recast the
linearized Boltzmann-Vlasov equation in the matter dominated
(MD) era as an integral equation, the Gilbert equation [22].We
solve the Gilbert equation [13, 6] to obtain the density fluctua-
tions∆(k, z) till today

∆(k, z)
z→0
=

3
5

T(k) (1+ zeq) ∆(k, zeq) . (17)

Here the subindexeq refers to equilibration, the beginning of
the MD era, 1+ zeq ≃ 3200 andT(k) is the transfer function
which takes into account the evolution of the density fluctua-
tions during the matter dominated era.T(k) has the properties:
T(0) = 1 andT(k → ∞) = 0. Namely, the transfer function
T(k) suppresses the largek (small scale) modes.

It is convenient to introduce the dimensionless variable

γ ≡ k rlin where r lin ≡
l f s√

3
=

√
2

kf s
, (18)

l f s andkf s stand for the free-streaming length and free-streaming
wavenumber respectively [30] andr lin is given by [6]

r lin = 2
√

1+ zeq













3 M2
Pl

H0
√
ΩDM Qp













1
3

, (19)

H0 stands for the Hubble constant today andMPl for the Planck
mass,

H0 = 1.5 10−33 eV , MPl = 2.43 1018 GeV . (20)

r lin is the characteristic length scale in the linear regime.
We plot in fig. 3 the transfer functionT(γ) for Fermions

(FD) and Bosons (BE) decoupling ultrarelativistically, and for
particles decoupling non-relativistically [Maxwell-Boltzmann
statistics, (MB)]. We see from fig. 3 that the transfer function
T(γ) decreases by an amount of order one forγ increasing by
unit. Therefore,T(k) decreases by an amount of order one when
k increases by an amount of the order of the wavenumberkf s

[see eq.(18)]. As we see from fig. 3,T(γ) shows little variation
with the statistics of the DM particles.

4.1. The phase density from the observed and theoretical sur-
face density

We match in this section the observed surface density (Table
1) with the surface density computed from eqs. (29) and (30).
This gives as a result eq.(36) which determines the primordial
phase density.

4
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Figure 3: The transfer functionT(k) vs. γ = k rlin for Fermions and Bosons
decoupling ultrarelativistically and for particles decoupling non-relativistically
(Maxwell-Boltzmann statistics).T(γ) shows little variation with the statistics of
the DM particles. We see thatT(k) decays for increasingk with a characteristic
scale∼ 1/r lin ∼ kf s which is the free-streaming wavenumber [see eq.(18)].

We first compute the linearized density profile from the Fourier
transform of the density fluctuations today [13]

ρlin(r) =
1

2π2 r

∫ ∞

0
k dk sin(k r) ∆(k, z= 0) , (21)

More explicitly, from eq.(17) the density profileρlin(r) turns
to be the Fourier transform of the density fluctuations∆(k, zeq)
by the end of the RD era times the transfer functionT(k):

ρlin(r) =
108
√

2
5 π

ΩDM M2
Pl

H0
(1+ zeq) |∆0|

×b0 b1
k2−ns/2

0

rns/2
lin r

∫ ∞

0
dγ N(γ) sin

(

γ
r

r lin

)

, (22)

where|∆0| stands for the primordial power amplitude,ns is the
primordial spectral index,k0 is the pivot wavenumber used by
WMAP to fit the primordial power,keq the horizon wavenumber
by equilibration and

N(γ) ≡ γns/2−1 ln

(

c0 γ

keq r lin

)

T(γ) . (23)

The numerical values of the cosmological parameters entering
in eq.(22) are [31]

|∆0| ≃ 4.94 10−5 , ns ≃ 0.964 , k0 = 2 Gpc−1 ,

keq = 9.88 Gpc−1 , c0 ≃ 0.1160. (24)

All fluctuations withk > keq that were inside the horizon by
equilibration are relevant here [13]. This introduces in eq.(22)
the comoving horizon volume by equilibration [13, 16]

b1

k
3
2
eq

≃ b1 b0

H
3
2
0

, (25)

whereb0 ≃ 3.669 10−3 andb1 ∼ 1 (actually,b1 = 1 in [13]).
The initial power fluctuations are multiplied by a Gaussian

random fieldg(~k) with unit variance

< g(~k) g∗(~k′) >= δ(~k− ~k′) , (26)

which describes the random quantum character of the primor-
dial fluctuations.

Each realization of the random fieldg(~k) with unit variance
and zero average produces a DM configuration in the linear
regime (a ‘galaxy’). The simplest one is obtained forg(~k) =
1. The presence ofg(~k) will produce a large variety of non-
spherically symmetric galaxy configurations in a large range of
masses and sizes. For simplicity we restrict ourselves hereto
the caseg(~k) = 1 and leave the inclusion ofg(~k) , 1 to future
work. The profileρlin(r) [with g(~k) = 1] bears the universal
properties of the galaxies, that is to say, the general properties
common to all (or most) galaxies. This is why such a profile is
very appropriate and useful to extract these universal properties.

From the results eqs.(22)-(24) we compute and analyze the
surface density and the density profile. We see from eq.(22) that
ρlin(r) decreases withr havingr lin as characteristic scale since
it depends onr/r lin being the Fourier transform of a function of
γ that decreases with unit characteristic scale inγ [see fig. 3].

We plot in fig. B.14 the ratio

ρlin(r)
ρlin(0)

≡ Ψ(y) =

∫ ∞
0

N(γ) sin(γ y) dγ

y
∫ ∞
0

γ N(γ) dγ
wherey ≡ r

r lin
, (27)

for Fermions (FD) and Bosons (BE) decoupling ultrarelativisti-
cally and for particles decoupling non-relativistically [Maxwell-
Boltzmann statistics (MB)].
Ψ(y) mainly depends on known cosmological parameters

and fundamental constants and has a weak logarithmmic de-
pendence on the DM particle mass.

We compute theoretically the surface density from the den-
sity profile eq.(22) and the halo radius eqs.(19) and (B.1). Then,

µ0 lin ≡ r0 ρlin(0) , (28)

with eqs. (19)-(22) and (B.1),µ0 lin reads:

µ0 lin =
108
√

2
5π

ΩDM |∆0| (1+ zeq)1−ns/4
k2

0 M2
Pl

H0 α

×b0 b1













√
ΩDM H0 Qp

24 k3
0 M2

Pl













ns/6 ∫ ∞

0
γ N(γ) dγ . (29)

The DM profile eq.(22) decreases with the characteristic
length r lin which is of the same order of magnitude than the
halo radiusr0 in the empiric density profile eq.(1). We define

5
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Figure 4: The logarithm10 of the primordial phase-space densityq =

(Z Qhalo)/(keV)4 vs. the common logarithm of the virial mass of the galaxy
mv ≡ Mvirial /[1011M⊙]. q is obtained by solving eq.(36).

the coefficientα asα ≡ r lin/r0 and determine it by fitting the lin-
ear profile to the Burkert profile in Appendix B. The value ofα

turns to be between 0.4 and 0.8 depending on the DM particle
statistics (see Table B.1).

Using the numerical values of the parameters eqs. (20) and
(24), this theoretical formula takes the form

µ0 lin = 391.1
(MeV)3

~2 c4

b1

α
q

ns
6

p

∫ ∞

0
γ N(γ) dγ , (30)

where

qp ≡
Qp

(keV)4
~

3 c8 , (31)

and

N(γ) = γns/2−1 ln
(

d0 q
1
3
p γ

)

T(γ) , d0 = 556.7 . (32)

From now on we use the dimensionless primordial densityqp.
We identify the observed surface densityµ0obs with the the-

oretical value obtained in the linear approximationµ0 lin . We
thus obtain the following trascendental equation in the variable
qp:

q
ns
6

p

∫ ∞

0
γ N(γ) dγ =

α

b1

µ0obs ~
2 c4

391.1 (MeV)3
. (33)

We compute the quantities in eq.(33) usingN(γ) eq.(31) [i. e.
the transfer functionT(γ)] from the solution of the linearized
Boltzmann-Vlasov equation obtained in [13, 6], so that:

∫ ∞

0
γns/2 T(γ) ln γ dγ = 1.315. . . ,

∫ ∞

0
γns/2 T(γ) dγ = 2.666. . . (34)

and hence,
∫ ∞

0
γ N(γ) dγ = 18.17

(

1+ 0.0489 lnqp

)

. (35)

These values correspond to fermions decoupling ultrarelativis-
tically at thermal equilibrium. Bosons and particles obeying the
Maxwell-Boltzmann statistics yield similar results as onesees
from figs. 3 and B.14.

For fermions decoupling ultrarelativistically at thermalequi-
librium, eq.(33) takes then the form:

q0.161
p

(

1+ 0.04891 lnqp

)

=
1
b1

µ0obs ~
2 c4

10330 (MeV)3
. (36)

where we used the numerical values in eqs.(24) and (35). The
value ofb1 ∼ 1 which provides the best fit to the halo radius is
b1 ≃ 0.8 (see appendix Appendix B).

We proceed now to solve numerically eq.(36) to obtain the
primordial phase-space densityqp for the different values of
µ0obs given in Table 1.

5. The DM particle mass and the decoupling temperature
from the galaxy surface density

We plot in fig. 4 the solution of eq.(36),qp vs. mv. From
eqs.(5) and (31)qp can be expressed as

qp =
Z Qhalo

(keV)4
~

3 c8 . (37)

Therefore, for a galaxy of massmv the observed values of the
phase-space densityQhalo (fig. 2) yields the factorZ as a func-
tion of the virial massmv [eq. (2)].

In Fig. 5 we plot log10 Z vs. mv, and log10 Q−1
halo vs. mv is

plotted in Fig. 2. We see thatQhalo decreases withmv while
Z increases withmv in such a way that the productZ Qhalo is
roughlyconstant. Moreover, as follows from eqs.(5) and (12)
Z Qhalo gives the DM particle mass

m4 = 49.0 Z Qhalo . (38)

We notice in fig. 5 that the factorZ changes by about two orders
of magnitude

2.9 105 . Z . 5.4 107 ,

over a large range of values of the virial mass. The variationof
Z is relevant in the context of galaxy formation but not for the
particle DM determination. Sincem goes asZ1/4 even a large
change inZ merely produces a small change inm. For example,
changingZ by a factor 100 changesmby a factor 3.2.

We obtain the DM particle massm from eqs.(11)-(12) in
terms of the invariant phase-space densityQp:

m= m0
Q

1
4
p

keV
= m0 q

1
4
p , m0 ≡

(

2
g

)
1
4
√
π

I
5
8

2

( I4

3

)

3
8

keV , (39)

where

m0 = 2.6462 keV/c2 for Dirac fermions ,

m0 = 2.6934 keV/c2 for scalar Bosons. (40)
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Figure 5: The common logarithm of the self-gravity decreasing factorZ com-
puted from eq.(37) withqp solution of eq.(36) [fig. 4] vs. the virial mass of the
galaxymv ≡ Mvirial /[1011M⊙].
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Figure 6: The DM particle massm in keV following eq.(39) with the values of
qp solution of eq.(36) vs. the virial mass of the galaxymv ≡ Mvirial /[1011M⊙].
We see that the DM massmexhibits the same variation withmv than the surface
densityµ0obs in fig. 1. The precision in the observations of the surface density
µ0 translates on the precision of the DM massm. A value form slightly below
2 keV is favoured.

The numerical coefficients here correspond to ultrarelativistic
decoupling at thermal equilibrium. For decoupling out of ther-
mal equilibrium the coefficients are of the same order of mag-
nitude [12].

In fig. 6 we plotm according to eq.(39) with the values of
qp solution of eq.(36) (fig. 4) andµ0obs given in Table 1. The
precision in the observations of the surface densityµ0 translates
on the precision of the DM particle massm.

We find m about 2 keV (up to±10%) forb1 = 0.8. More
generally,m is in the keVscalefor b1 ∼ 1.

The variation of the observed surface densityµ0obs with the
core radiusr0 (fig. 1) is similar to:

• (a) the variation of the DM particle massm displayed in
fig. 6,

• (b) the variation of the primordial phase-space densityqp

in fig. 4,

• (c) the variation of the density contrast in fig. 9.

Therefore, the precision in the observations of the surfaceden-
sity µ0 translates on the precision in the evaluation of the DM
massm.

From the solution forqp eq.(36) and fig. 4 we can also com-
pute the number of ultrarelativistic degrees of freedom at de-
couplinggd and therefore the decoupling temperatureTd which
is a further relevant characteristic magnitude of the DM particle.
For Dirac fermions decoupling ultrarelativistically at thermal
equilibrium the number of ultrarelativistic degrees of freedom
at decoupling can be expressed from eq.(14) as

gd = 1365.5 q
1
4
p . (41)

And from fig. 4:

0.14< qp < 0.3 , 0.61< q
1
4
p < 0.74 . (42)

We thus find that for thermal fermionsgd is in the interval

833< gd < 1010 thermal fermions,

which correspond to physical decoupling temperatures [eq.(13)]
above 100 GeV.

The gravitino is a popular DM candidate decoupling at ther-
mal equilibrium which can provide such values ofgd ∼ 1000
in non-minimal supergravity extensions of the standard model
of particle physics. (In the minimal supersymmetric extension
of the standard model (MSSM) one has the valuegd = 228.75
[23, 42]).

For DM particles decoupling out of thermal equilibrium as
sterile neutrinos, the primordial power spectrum and therefore
the inferred values for the mass of the DM particle change by a
factor of order one [5, 7, 12, 14, 36, 46]. The low-momentum
regime is enhanced in the out of equilibrium particle distribu-
tionsFd(y) [5] and therefore the dimensionless momentumI2 of
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Fd(y) is smaller for out of equilibrium decoupling than for ther-
mal equilibrium decoupling. As a consequence, we see from
eq.(16) that we can have smallergd for smallerI2 always keep-
ing m in the keV scale.

Sterile neutrinos which decouple out of equilibrium are to-
day the front-runner candidate for WDM in the keV mass scale.

In summary, the DM particle mass is in the keV scale whether
the DM particle decouples in or out of thermal equilibrium.
The fact that the DM particle mass is in the keV scale is a ro-
bust result which does not depend on the details of the particle
physics models. Of course, to fix the number within the scale
1 < m < 10 keV depends on the details of the particle model.
Our aim in this paper is not to analyze the observational con-
straints on the DM particle models but to determine the DM
particle mass scale from general fundamental grounds and ob-
servations.

6. Non-universal structural galaxy properties

We compute here for illustration non-universal galaxy quan-
tities as the halo radius, galaxy mass, halo central densityand
squared halo velocity. These calculations are independentof
determination of the DM particle mass and are presented to
see what kind of results provide the linear approximation. Let
us anticipate that the linear approximation for non-universal
galaxy properties agrees with the observed values within one
order of magnitude.

Notice that our determination of the DM particle mass does
not relay to these non-universal galaxy quantities.

The characteristic length of the linear profiler lin eq.(19)
takes the following form in terms ofqp eq.(31):

r lin = 21.1 q
− 1

3
p kpc . (43)

In fig. 7 we plot r lin from eq.(43) andα r0 from the data in
Table 1 as functions ofmv.

The halo radius in the linear approximation is given byr lin =

α r0 which for DM Dirac fermions becomes

r0 ≡
r lin

0.688
= 30.7 q

− 1
3

p kpc , (44)

where we usedα = 0.688 obtained in appendix Appendix B by
fitting the Burkert and linear profiles.

Using the range of values ofqp eq.(42) obtained by solving
eq.(36) yields

46 kpc < r0 < 59 kpc.

which is in the upper range of the observedr0 values in Table
1. Namely, the linear approximation for the halo radius give
values above or in the range of the observations.

The total mass of the galaxyMgal follows by integrating the
density profile eq.(22). We find

Mgal ≃ 20 r3
0 ρlin(0) = 20 r2

0 µ0obs . (45)

In fig. 8 we plot Mgal/Mvirial vs. mv where the observedmv and
Mvirial are defined by eq.(2).
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Figure 7: The computed halo radiusr0 in kpc from eq.(44)in broken green
line, the halo radiusr0 in kpc from the real data in Table 1 in solid red line
vs. the virial mass of the galaxymv ≡ Mvirial /[1011M⊙]. The theoreticalr0
computed from first principles approaches asymptotically the observedr0 for
large galaxies.

We see that the ratioMgal/Mvirial turns to be in the interval,

0.12<
Mgal

Mvirial
< 5. .

The contrast density, that is, the ratio between the maximum
DM mass densityρlin(0) and the average DM mass density ¯ρDM

in the universe results

contrast≡ ρlin(0)
ρ̄DM

with ρ̄DM = ΩDM ρc andΩDM andρc given by eq.(15).ρlin(0)
is given by eq.(28) as

ρlin(0) =
µ0 lin

r0
.

We plot in fig. 9 the contrast density

contrast=
µ0 lin

ΩDM ρc r0
(46)

As seen from fig. 9, the ratio obtained is between 1/3 and 1/2
of the observed value∼ 3 × 105 in [40]. The values obtained
are below the observed values because the linear halo radius
r0 = r lin/0.688 is larger than the observed halo radiusr0 and
the density contrast goes as 1/r0 eq.(46). This property shows
again that the larger and more dilute is the galaxy the betteris
the linear approximation for non-universal quantities (see Table
2).

Notice that we consider the whole range of galaxy virial
masses going from 5 to 300×1011 M⊙. Universal quantities as
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Figure 8: The common logarithm of the predicted total mass ofthe galaxyMgal

given by eq.(45), divided by the observed virial massMvirial vs. the observed
virial mass of the galaxymv ≡ Mvirial /[1011M⊙]. The ratioMgal/Mvirial turns
to be in the interval 0.12 < Mgal/Mvirial < 5.0. Notice that the difference of
Mgal with Mvirial is irrelevant to the determination of the DM particle mass.

 90000

 95000

 100000

 105000

 110000

 115000

 120000

 125000

 130000

 135000

 0  50  100  150  200  250  300

ρlin(0)/ρ̄DM vs. mv

Figure 9: The ratioρlin (0)/ρ̄DM between the maximum DM mass densityρlin(0)
and the average mass density in the universe ¯ρDM vs. the virial mass of the
galaxymv ≡ Mvirial /[1011M⊙]. The ratioρlin (0)/ρ̄DM turns to be between 1/3
and 1/2 of the observed value∼ 3× 105 [40].

the surface density stay constant up to±20% within this wide
range of galaxy masses.

It is relevant to evaluate the halo velocity given by eq.(A.4)

v2
halo = 2.316G µ0 r0 . (47)

Using eq.(44) this equation becomes

v2
halo = 6.705

µ0

MeV3
(km/sec)2 q

− 1
3

p . (48)

From Table 1 the input observed surface density takes the value

µ0 ≃ 6000 MeV3 . (49)

Eq.(48) thus becomes
√

v2
halo lin =

201

q
1
6
p

km/sec. (50)

The obtained range of values ofqp eq.(42) yieldsq
1
6
p ≃ 0.77 and

√

v2
halo lin ≃ 260 km/sec. (51)

This value is to be compared with the values arising fromµ0

and eq.(47) and the observed valuesr0 in Table 1.

79.3 km/sec<

√

v2
halo < 261 km/sec. (52)

The halo central density in the linear approximation is given
from eqs. (44) and (49) by

ρ0 lin =
µ0

r0
= 2.90 10−25 q

1
3
p

g
cm3

.

Using the range of values ofqp eq.(42) obtained by solving
eq.(36) yields

1.33 10−25 g
cm3

< ρ0 < 1.94 10−25 g
cm3

,

for 1.6 keV < m < 1.9 keV, which must be compared with the
observed values ofρ0 given in Table 2.

We see that the linear approximation produces halo central
densities smaller or in the range of the observations and halo
velocities larger than the observed ones by a factor of order
one.

Clusters of galaxies exhibit halo radiusr0 about 210 kpc [3]
well beyond the linear halo radius∼ 50 kpc. Hence, clusters
of galaxies cannot be described by the initial conditions used
here. Chosing general random fieldsg(~k) , 1 fulfilling eq.(26)
will provide general configurations with a large range of masses
and sizes. Each realization of the random fieldg(~k) produces a
possible galaxy configuration. The factorg(~k) multiplies the
transfer functionT(k) and therefore is to be added in the r. h. s.
of eqs.(17), (23) and (32) and inside the~k−integrands [r. h. s.
of eqs.(22), (27), (29), (30), (33), (34) and (35)].

We plot the density profiles in figs. 10 and 11. Fig. 11
displays 500 profiles averaged in the angles for random ini-
tial conditions. One can see that the random initial fluctuations
only produce mild changes in the shape of the density profiles.
Therefore, restricting ourselves for simplicity to initial primor-
dial conditions withg(~k) ≡ 1 still provides relevant physical
results.
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Observed Values Linear Theory Wimps in linear theory
r0 5 to 52 kpc 46 to 59 kpc 0.0045 pc
ρ0 1.57 to 19.3× 10−25 g

cm3 1.33 to 1.94× 10−25 g
cm3 1.773× 10−14 g

cm3
√

v2
halo 79.3 to 261 km/sec 260 km/sec 0.0768 km/sec

Table 2: Non-universal galaxy quantities from the observations (Table 1 combined with the virial) and from the linear the-
ory results. The corresponding dark matter particle mass isplotted in fig. 6 and is in the range 1.6 − 1.9 keV. The larger
and less denser are the galaxies, the better are the results from the linear theory for non-universal quantities. The last col-
umn corresponds to 100 GeV mass wimps. The wimps values strongly disagree by several orders of magnitude with the
observations.

7. The density profile: cores vs. cusps

The properties of the density profileρlin(r) depend on the
free streaming lengthr lin and therefore on the mass of the DM
particle as we discuss here below.

We find from eqs.(28), (30) and (35) for the density profile
at the origin

ρlin (0) =
µ0

r0
= 336.7 b1 q

ns+2
6

p ×
[

1+ 0.04891 lnqp

] (MeV)3

kpc
.(53)

We use from eqs.(39) and (44) that

qp =

(

m
m0

)4

, r lin = 77.23 kpc

(

keV
m

)
4
3

, (54)

for DM particles decoupling ultrarelativistically at thermal equi-
librium with m0 given by eq.(40). Then eq.(53) can be written
as

ρlin(0) = 1.622 10−25
( m
1.75 keV

)1.976

×
[

1+ 0.2428 ln
( m
1.75 keV

)] g
cm3

, (55)

where we used the numerical values from eqs. (24) and (40)
and the conversion of units:

(MeV)3

kpc
= 0.1483698 10−26 g

cm3
.

For the DM particle mass valuem∼ 2 keV found in the pre-
vious section,ρlin(0) from eq.(55) is two to three times smaller
than the observed values (as it is the contrast density, discussed
in the previous section). This is not surprising becauseρlin(0)
is not an universal quantity and given the approximation of our
theoretical computation.

We derive in Appendix C, eq.(C.9) the density profile be-
haviour forr & r lin wherer lin is given by eq.(54):

ρlin(r & r lin) = 10−26 g
cm3

(

36.45 kpc
r

)1.482

× ln

(

7.932 Mpc
r

)

[

1+ 0.2417 ln
( m
keV

)]

. (56)

It should be noticed that this behaviour has only a mild loga-
rithmmic dependence on the DM particle massm. The scales
in eq.(56) only depend on known cosmological parameters and
not onm.

We plot in fig. 10 the density profileρlin(r) according to
eqs.(22) and (27) for DM particle massesm of 1 and 2 keV
and the Burkert density profile for the largest galaxyr0 = 51.8
kpc andρ(0) = 1.57 × 10−25 g

cm3 in Table 1. We see from
fig. 10 that the density profileρlin(r) best follows the Burkert
profile for a DM particle massmslightly below 2 keV. This is in
agreement with Fig. 6 for the DM particle mass where a value
for mslightly below 2 keV is favoured.

We present in this paper clear evidences for a DM particle
mass in the keV scale. However, one can wonder what is the
shape of the density profile and the value of the density at the
origin for a typical hundred GeV wimp.

Since wimps are supposed to decouple non-relativistically,
eq.(11) does not apply to them. For DM particles decoupling
non-relativisticallyQp is given by [12]

Qp =
ΩDM ρc

2 T3
γ

gd (m Td)
3
2 nonrelativistic decoupling.(57)

For a 100 GeV wimp decoupling at the typical temperature
Td wimp= 5 GeV, we find from eqs.(31) and (57)

qp wimp= 0.3166 1021 (58)

where we used thatgd ≃ 80 at such decoupling temperature
[30]. We then find from eq.(53) the central density valueρlin(0)
for such value ofqp:

ρlin(0)wimp ≃ 1.773× 10−14 g
cm3

(59)

This value for the wimps density profile at the origin turns tobe
larger than the observed values byeleven orders of magnitude.
This result indicates that the DM particle mass is not in the GeV
scale. DM particles at the keV scale reproduce very well both
the surface density and the density profile at the origin.

The free-streaming lengthr lin is the characteristic scale where
ρlin(r) varies (see fig. B.14). This length is of the order of hun-
dred kpc for keV mass scale DM particles as shown by eq.(54).
For a hundred GeV wimp decoupling atTd wimp = 5 GeV we
find from eqs.(43) and (58)

r lin(mwimp = 100 GeV, Td wimp= 5 GeV)= 0.0031 pc= 639 AU .(60)

Therefore, with such smallr lin for wimps we can use for all rele-
vant galactic scales the asymptotic behaviour ofρlin(r) eq.(C.8)
valid for r ≫ r lin . That is,

ρlin(r & 0.003pc)wimp = 0.8064 10−14 g
cm3

(61)
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Figure 10: The common logarithm of the density profileρlin (r) according to
eqs.(22) and (27) in g/cm3 vs. r in kpc and the Burkert profile eq.(1). The
Burkert profile is plotted with red crosses for the largest galaxy in Table 1 with
r0 = 51.8 kpc andρ(0) = 1.57× 10−25 g

cm3 . Notice that the agreement of the
linear density profileρlin (r) with the Burkert profile is best for a DM particle
mass slightly below 2 keV.

×
(

0.0031 pc
r

)1.482 [

1+ 0.04616 ln

(

0.0031 pc
r

)]

.

This profile clearly exhibits acuspbehaviour for scales 1pc&
r & 0.003 pc. Notice that this asymptotic formula eq.(61) ap-
proximatively matches aroundr ∼ 0.003 pc the value of the
wimp profile at the origin eq.(59).

In summary, the density profileρlin(r) eq.(22) exhibits a
cusp around the origin for a wimp DM particle and a core be-
haviour atr = 0 for a keV scale DM particle mass.

We display in fig. 12 the density profile for 100 GeV wimps
and the NFW profile for the largest galaxy in Table I. The den-
sity profile for 1-2 keV particles in fig. 10 and the density pro-
file for wimps in fig. 12 practically coincide forr & 30 kpc
while they strongly differ at smaller scales (r . 30 kpc). The
keV mass profile exhibits a core like the Burkert profile while
the wimp profile exhibits a cusp like the NFW profile.

In this way, the value of the mass of the dark matter particle
turns to be between 1 and 2 keV, and the number of ultrarela-
tivistic degrees of freedom of the dark matter coupling at de-
couplinggd, or similarly, the decoupling temperatureTd turns
to be above 100 GeV.

We can also evaluate the halo velocity for wimps from the
general formula eq.(50) and the value ofqp wimp eq.(58). We
obtain

√

v2
halo lin wimp= 0.0768 km/sec

three orders of magnitude below the observed halo velocities
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Figure 11: The normalized density profileρlin (r)/ρlin(0) averaged in the angles
for 500 random initial conditionsg(~k) vs. r/r1/4 [11]. r1/4 being the point where
ρlin (r) takes 1/4 of its value at the origin.r1/4 coincides with the halo radius in
the Burkert profile.

eq.(52). Recall that keV scale DM particles yield a halo veloc-
ity eq.(51) of the same order of magnitude than the observed
halo velocities. Therefore, keV DM particles may solve the
problem in the halo velocities recently noticed by [33] for the
bullet cluster when CDM wimps are used.

The analytic expressions we derived for the density pro-
file, and the mass of the dark matter particle also imply that
keV dark matter particles always produce cored density profiles
while heavy dark matter particles as wimps (m = 100 GeV,Td

= 5 GeV) inevitably produce cusped profiles at scales of 0.003
pc. These results are independent of the particle model and vary
very little with the statistics of the dark matter particle.

8. On the Validity of the Linear Approximation

The linear approximation to the Boltzmann-Vlasov equa-
tion is valid as long as the density contrast is at most of order
one. However, in the non-linear regime the density fluctuations
relevant to the galaxy profiles grow with time independentlyof
the wavenumber. Therefore, the shape of the linear profile sur-
vives in the non-linear regime. Only the profile normalization
changes according with the non-linear evolution.

These results from linear approximation provide in prin-
ciple only estimates since non-linear effects (including for in-
stance mergers) are expected to be important. However, it turns
out that the obtained linear results well reproduce the observa-
tions.

Of course, the theory of galaxy formation requires N-body
simulations, beyond the scope of this paper.
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Notice that general arguments based on the Boltzmann-Vlasov
equation show that the cored or cusped character of a profile is
preserved through mixing and mergers and that cusps do not
become steeper neither shallower through mixing and mergers
[10].

Therefore, the cored and cusped character we find for the
linear profiles depending on the DM particle mass considered
(keV and GeV mass scale, respectively) should remain valid
after mixing and mergers are taken into account.

Moreover, recentN-bodyΛCDM simulations (Acquarius)
have found that the DM halos form in a sort of ”monolithical”
way [48]. Their inner regions, that contain the visible galaxies,
are found to be stable since early times and contrary to previ-
ous believes, major mergers (i.e. those with progenitor mass ra-
tios greater than 1:10) are found to contribute little to their total
mass growth [48]. This indicates that nonlinearities (i.e.merg-
ers) have a reduced importance. Minor mergers, secondary in-
fall, rare major mergers are certainly important for details, but
the essential features of DM halos are determined during the
fast-accretion phase of their gravitational collapse, as the his-
tory of the quasar-galaxies coevolution also seems to indicate
[25].

The halo formation essentially consists of two main phases:
A first fast accretion phase (that can be treated by the linear
approximation), and a second subsequent slow accretion phase
with mergers and infalls, that have a random character and that
can only be described by numerical simulations. This second
phase does not have an essential influence in the shape of the
halo profile. Thus, in order to explain the observed halo profiles
one just needs to describe the first phase of halo formation, as
we do here in this paper.

Evidence based on the phase space density pointing towards
a DM particle mass in the keV scale was presented in refs. [5,
12]. Notice in this respect that the linear fluctuations as well
as the spherical model (which contains the nonlinearities)both
give values for the DM particle mass in the keV scale which
only differ by a factor ten.

Analytic methods have been used to derive galaxy proper-
ties using the primordial power of the density fluctuations (see
for example [26, 35]) and using the spherical model(author?)
[1, 2].

In summary, the solution of the linearized Boltzmann-Vlasov
equation presented here provides a satisfactory picture ofthe
generalgalaxy properties. Although nonlinear effects and baryons
are not taken into account, the linear description presented here
qualitatively reproduces the main non-universal and general char-
acteristics of a galaxy summarized in Table 2. Moreover, the
agreement is even quantitative (approximatively) for the linear
halo radiusr0, the galaxy massMgal, the linear halo central

densityρ0 and the halo velocityv2
halo

1/2

lin compared to the re-
spectived observed values in the limiting case of large galaxies
(both r0 andMgal large). The agreement is very good for uni-
versal galaxy quantities as the surface density and the density
profile as discussed above.

The linear approximation for the density fluctuations am-
plitude today is clearly only an estimate for the true nonlinear
value. However, the DM particle mass derived from the phase-
space density in the linear approximation only differs by one
order of magnitude from the nonlinear value obtained from the
spherical model [12].

Interestingly enough, it is possible to derive the value of
the surface densityµ0 from CDM simulations. Values of the
productrs ρs from NFW fits to CDM simulations for galaxies
were reported in [27]. From these values ofrs ρs we can derive
the surface densityµ0, sinceµ0 = ρ0 r0 ≃ 25 rs ρs with the
result

µCDM
0 ≃ 107 M⊙/pc2 . (62)

[Notice thatρs in [27] differs by a factor four from eq.(9)].
We see that the surface density from CDM simulations is

five ordersof magnitudelarger than the observed surface den-
sity µ0obs≃ 120M⊙/pc2 [32, 17, 41].

It is illuminating to insert in eq.(36) the above value of
the CDM surface densityµCDM

0 eq.(62)instead of the observed
valueµ0obs. This gives for the mass of the CDM particlemCDM ∼
60 GeV which is a typical wimp mass. Therefore, the linear ap-
proximation also provides a consistent value for the mass ofthe
CDM particles in full agreement with CDM simulations.

These results show that our theoretical treatment captures
many essential features of dark matter, allowing to determine
its nature. When contrasted to the CDM surface density value
obtained from CDM simulations (instead of the surface density
value obtained from observations), our approach gives for the
dark matter particle mass the typical CDM wimps mass scale
(GeV), fully consistent with CDM simulations.

9. Conclusions

Dark matter is characterized by two basic quantities: the
DM particle massm and the number of ultrarelativistic degrees
of freedom at decouplinggd (or, alternatively the decoupling
temperatureTd). We obtain the density profiles and theoretical
relations betweenm andgd involving the observable densities
ρDM andµ0 eqs.(11), (14) and (29). Inserting the observed val-
ues ofρDM andµ0 in these theoretical relations yieldsm, gd

andQp eqs. (39)-(40) and (41), respectively.
We estimate the galaxy surface density and match it with

the observed values. Within the same scheme, we derive ana-
lytically the halo radiusr0 and the factorZ characterizing the
reduction of the phase-space density since equilibration till to-
day. For these results we use the observed values of the halo
phase-space densityQhalo.

From the observed values of the surface density we present
here clear evidence that the mass of the DM particle is about one
or two keV. Evidence based on the phase space density pointing
towards a DM particle mass in the keV scale was presented in
refs. [5, 12].

In addition, one can wonder what would be the results for
heavy wimps. For example, for wimps atmwimp = 100 GeV the
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characteristic scaler lin eq.(19) takes the value given by eq.(60).
For suchsmall r lin the linear profileρlin(r)wimp appears as a
cuspedprofile when observed at scales from 0.003 pc to 1 pc
as shown in fig. 12. Cusped profiles are thus clearly associated
to heavy DM particles with a huge massmwimp well above the
physical keV scale while cored profiles are associated to DM
particles with mass in the keV scale.

Notice that the density profile turns out to be cored or cuspy
depending on the DM particle massm. Form∼ keV the result-
ing density profile is cored as depicted in fig. 10 while form&

GeV the density profile turns to be cusped as shown in fig. 12.
Figs. 10-12 show that the density profiles for a 1-2 keV DM
particle are similar to Burkert (within a factor 2-3, irrelevant
for the aims of this paper) while for a wimp DM particle, the
density profile is similar to a NFW profile.

Despite its limitations, it is rather remarkable that the linear
approximation is able to reproduce the observations withinone
order of magnitude. In the present paper we restrict ourselves to
estimate the DM particle mass. In order to theoretically realize
galaxy formation,N-body simulations must be performed with
the appropriate primordial power spectrum. Such spectrum cru-
cially depends for small scales on the value of the DM particle
mass.

It must be stressed that the framework presented here ap-
plies to any kind of DM particles: particles with mass in the
keV scale reproduce all observed galaxy magnitudes within one
order of magnitude, while wimps (m ∼ 100 GeV) present dis-
crepancies with observations of up to eleven orders of magni-
tude. This is a robust indication that the DM particle mass isin
the keV scale.
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Appendix A. The average phase space-density

Qhalo in sec. 3 follows averagingρ(r) andv2
halo(r) over the

volume. We define their average using the densityρ(r) eq.(1)
as weight function:

ρ ≡

∫ Rvir

0
r2 ρ2(r) dr

∫ Rvir

0
r2 ρ(r) dr

, v2
halo ≡

∫ Rvir

0
r2 ρ(r) v2

halo(r) dr
∫ Rvir

0
r2 ρ(r) dr

.(A.1)

The virial radiusRvir is defined by the radius where the mass
computed from the Burkert profile eq.(1) takes the value [38]

M(Rvir ) ≃ 1012 M⊙

(

Rvir

259 kpc

)3

. (A.2)

Here,

M(Rvir ) = 4π
∫ Rvir

0
r2 ρ(r) dr = 2π ρ0 r3

0
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Figure 12: The linear density profile for 100 GeV wimps (broken green line)
and the NFW profile (solid red line) for the same galaxy mass asthe Burkert
profile in fig. 10. In all cases the densities are in g/cm3 andr in kpc. The wimps
linear density profile follows eq.(C.8). The wimp linear profile exhibits a cusp
like the NFW profile.

×
[

ln(1+ ĉ) − arctanĉ+
1
2

ln(1+ ĉ2)

]

,

ĉ ≡
Rvir

r0
. (A.3)

Elliminating M(Rvir ) between eqs.(A.2) and (A.3) gives ˆc as a
function ofρ0 through the trascendental equation

ρ0

0.6187 10−27 g
cm3

=
ĉ3

ln(1+ ĉ) − arctanĉ+ 1
2 ln(1+ ĉ2)

.

The right hand side is a monotonically increasing function of
ĉ. This implies that ˆc increases whenρ0 increases. Sincer0 de-
creases whenρ0 increases (keeping constant the surface density
µ0), therefore ˆc increases whenr0 decreases. For the galaxies
in Table 1, we find 9.2 . ĉ . 24.9 , 120 kpc< Rvir < 478 kpc,
smaller values of ˆc corresponding to larger galaxies.

From eqs.(4), (4) and (7) evaluating the integrals in eq.(A.1),
we find

ρ = 0.0662ρ0 , v2
halo = 2.316G ρ0 r2

0 , ,

Qhalo = 3
3
2

ρ

(v2
halo)

3
2

=
0.069

G
3
2
√
ρ0 r3

0

. (A.4)

For the NFW profile eq.(9) the virial mass takes the form

M(Rvir ) = 4π
∫ Rvir

0
r2 ρ(r) dr = 4 π ρs r3

s

[

ln(1+ c) −
c

1+ c

]

,
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c ≡ Rvir

rs
,

and therefore we find forρs,

ρs = 0.310 10−27 g
cm3

c3

ln(1+ c) −
c

1+ c

. (A.5)

The observations give forc the empirical relation [38]

c = 9.7

(

M(Rvir )
1012 M⊙

)−0.13

. (A.6)

Therefore, knowingM(Rvir ) andRvir we obtainρs andc from
eqs.(A.5) and (A.6). For the galaxies in Table 1, we find 23.2 kpc<
rs < 62.5 kpc , 0.439 10−25 g/cm3 < ρs < 1.087 10−25 g/cm3 , 7.64<
c < 13.1. We use the values ofrs andρs for the larger galaxy
to plot the NFW curve in fig. 12. Namely,rs = 62.5 kpc and
ρs = 1.087 10−25 g/cm3.

Appendix B. The linearized density profile.

Both, the Burkert profileFB(r/r0) eq.(1) and the linear pro-
file Ψ(r/r lin) eq.(27), have the same qualitative shape. To make
the connection quantitative, we fit the linear profile with a Burk-
ert profile setting

x = α y , that is, r lin = α r0 . (B.1)

We look for the value ofα that gives the best fit by minimizing
the sum of squares:

[Ψ(y) − FB(α y)]2 for 0 < y < 3 .

The best fit for each DM particle statistics is obtained for the
values ofα reported in Table B3. We display in fig. B.13
the Burkert profileFB(α y) and the linear profilesΨ(y) for
Fermi-Dirac, Bose-Einstein and Maxwell-Boltzmann statistics,
respectively. We see from fig. B.13 that the profiles for Bose-
Einstein and Fermi-Dirac statistics are better fitted by a Burkert
profile than the profile for Maxwell-Boltzmann statistics.

We compute the behaviour of the linear profileρlin(r) eq.(22)
for r ≫ r lin in Appendix C. We find that the linear approxima-
tion can be used for (see Appendix C)

0 ≤ r < rmax where rmax≃ 8 Mpc .

It must be noticed that the maximum radiusrmax turns to be
independent of the DM massm and only depends on known
cosmological parameters.

We have at the originF′B(0) = −1 while Ψ′(0) = 0 and
Ψ′′(0) < 0. More preciselyΨ′′(0) = −2.74 for fermionic DM
particles. At the origin, the Burkert profile decreases withunit
slope while the linear profile has an inverse-parabola shape.

Galaxy profiles take an universal form whenρ(r)/ρ0 is ex-
pressed as a function ofr/r0. The Burkert profile is a particu-
larly simple formula that satisfactorily reproduces the observa-
tions. The linear profileΨ(y), especially for Fermi-Dirac and
Bose-Einstein statistics, fits very well the Burkert profileand
therefore,Ψ(y) is also able to well reproduce the observations.
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Figure B.13: The Burkert profileFB(α y) and the linear profileΨ(y) computed
from first principles vs.y = r/r lin for Fermi-Dirac (FD), Bose-Einstein (BE)
and Maxwell-Boltzmann (MB) statistics. The values ofα for each statistics
are given in Table B3. The linear profileΨ(y), especially for Fermi-Dirac and
Bose-Einstein statistics, fits very well the Burkert profileand as a consequence,
Ψ(y) reproduces the observations as well asFB(α y).
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Particle Statistics α

Bose-Einstein 0.805
Fermi-Dirac 0.688

Maxwell-Boltzmann 0.421

Table B.3: The values of the parameterα ≡ r lin/r0 for which the Burkert profileFB(α y) best fits the linear profileΨ(y) ≡
ρlin(r)/ρlin (0) , y = r/r lin .
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Figure B.14: The profilesρlin (r)/ρlin(0) vs. x, wherex ≡ r/r lin for Fermions
and Bosons decoupling ultrarelativistically and for particles decoupling non-
relativistically (Maxwell-Boltzmann statistics). The bosons profile is the more
peaked, the MB profile is the shallowest and the fermions profile is lying in-
between. The profiles show little variation with the statistics of the DM parti-
cles.

Namely, the linear profileρlin(r) is well appropriated for small
and intermediate scales

0 ≤ r < rmax .

This means that although the linear approximation cannot cap-
ture the whole content of the structure formation, it can well
reproduceuniversal features which are common to all types
of galaxies as the density profile. Notice that the linear profile
Ψ(y) is universal as a function ofy = r/r lin . The values ofr lin

andρlin(0) are not universal and change by orders of magnitude
according to the halo mass. On the contrary, the surface density
µ0 defined by eq.(3) is an universal quantity. Indeed, the the-
oretical value ofµ0 that follows from the linear profileρlin(r)
eq.(22) can reproduce the observed values ofµ0 as it has been
shown in [13].

We use this property in section 4.1 to derive the values of
the DM particle massm and the number of ultrarelativistically
degrees of freedom at decouplinggd.

As shown above the linear profile and the Burkert profile are
the closest forr lin = α r0 with α = 0.688. On the other hand,

we know that the linear approximation always gives values for
r0 larger than the observed values, namely, the linear approxi-
mation improves for large galaxies [13]. Therefore, we require
thatr lin tends tor0 ≡ 0.688 r0 for large galaxies which fixesb1

to beb1 ≃ 0.8. In any case the dependence of the results onb1

[which must be anywayb1 ∼ 1] is quite mild.

Appendix C. Asymptotic behaviour of the linear density
profile.

To derive the asymptotic behaviour ofρlin(r) it is convenient
to change the integration variable in eq.(22) to

η ≡ γ
r

r lin
, y =

r
r lin

, (C.1)

and we obtain

Ψ(y) =
ρlin(r)
ρlin(0)

=
1

y2
∫ ∞

0
γ N(γ) dγ

×
∫ ∞

0
N

(

η

y

)

sinη dη (C.2)

In the limit y = r/r lin → ∞ we have from eq.(32)

N

(

η

y

)

y≫1
=

(

η

y

)
ns
2 −1 [

ln

(

c0

y
q

1
3
p

)

+ ln η

]

where we used thatT(0) = 1.
Therefore eq.(C.2) gives

Ψ(y)
y≫1
=
Γ
(

ns
2

)

sin
(

π
4 ns

)

∫ ∞
0

γ N(γ) dγ
y−1− ns

2

×
[

ln

(

c0

y
q

1
3
p

)

+ ψ
(ns

2

)

+
π

2
cot

(

π

4
ns

)

]

, (C.3)

where we used the formulas [24]
∫ ∞

0
η

ns
2 −1 sinη dη = Γ

(ns

2

)

sin
(

π

4
ns

)

,

∫ ∞

0
η

ns
2 −1 sinη ln η dη = Γ

(ns

2

)

sin
(

π

4
ns

)

×
[

ψ
(ns

2

)

+
π

2
cotg

(

π

4
ns

)]

, (C.4)

ψ(x) stands for the digamma function.
The asymptotic behaviour eq.(C.3) is hence governed by the

smallk behaviour of the fluctuations∆(k, zeq) by the end of the
radiation dominated era [see eq.(17)].
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Figure C.15: The linear profileΨ(y) vs. y computed from the numerical Fourier
transform eq.(27) in red continuous line and computed from the asymptotic
formula eq.(C.5). We see that the asymptotic formula well reproduces the linear
profile for y & 1 and not just fory≫ 1.

Using the numerical values forns andc0 from eqs.(24) and
(32) and the integral overN(γ) eq.(35), eq.(C.3) becomes

Ψ(y)
y&1
=

0.4120
y1.482

1+ 0.1687 ln



















q
1
3
p

y



















1+ 0.04891 lnq
. (C.5)

We obtain for DM particles decoupling ultrarelativistically at
thermal equilibrium using eqs.(39) and (40),

Ψ(y) = 0.7705

(

77.23 kpc
r

)1.482 (

keV
m

)1.976

×
1+ 0.1114 ln

(

kpc
r

)

1+ 0.2416 ln
( m
keV

) , (C.6)

where we used 1+ ns/2 = 1.482, 2 (2+ ns)/3 = 1.976.
We plot in fig. C.15 the asymptotic formula eq.(C.5) and

the numerical Fourier transform eq.(27) forΨ(y). We see that
the asymptotic formula eq.(C.5) correctly reproducesΨ(y) not
only for y≫ 1 but for ally & 1.

We see that there exists a maximum valueymax (and there-
fore rmax) where the linear profile vanishes:

ymax= 102.7
( m
keV

)
4
3

, rmax= 7.932 Mpc. (C.7)

where we used eqs.(C.1), (C.5) and (54).
Notice thatrmax turns to be independent of the DM massm

and only depends on known cosmological parameters.

Thus, the linear approximation can be used for

0 ≤ y < ymax , 0 ≤ r < rmax

whereΨ(y) > 0 with ymax andrmax given by eq.(C.7).
The nonvalidity of the linear approximation beyond 8 Mpc

reflects the fact that non-linear effects are important for small
wavenumbers: this is consistent with the fact that we have ef-
fectively cutted off the modesk < keq in the linear approxima-
tion [see eq.(25) and [13]] as it must be.

Combining the value ofρlin(0) in eqs.(53) and (55) with the
asymptotic behaviour eq.(C.5) yields

ρlin(r & r lin) = 10−26 g
cm3

(

42.03 kpc
r

)1.482

ln

(

7.932 Mpc
r

)

×
[

1+ 0.04891 lnqp

]

. (C.8)

We then find for DM particles decoupling ultrarelativistically at
thermal equilibrium using eqs.(39) and (40),

ρlin(r & r lin) = 10−26 g
cm3

(

36.45 kpc
r

)1.482

ln

(

7.932 Mpc
r

)

×
[

1+ 0.2416 ln
( m
keV

)]

, (C.9)

wherer lin is given by eq.(54). It should be remarked that this
behaviour has only a mild logarithmmic dependence on the DM
particle massm. The scales in eqs.(C.8)-(C.9) only depend on
known cosmological parameters and not onm.

As noticed in(author?) [13], the asymptotic decrease of
the linear profile given by eq.(C.8) is in remarquable agreement
with the universal empirical behaviour put forward from ob-
servations in [47] and fromΛCDM simulations in [45]. For
larger scales we would expect that the contribution from small
k modes where nonlinear effects are dominant will give the cus-
tomaryr−3 tail exhibited by the Burkert profile eq. (1).
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