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We study a quantum quench of the mass and the interaction in the Sinh-Gordon model starting from
a large initial mass and zero initial coupling. Our focus is on the determination of the expansion of the
initial state in terms of post-quench excitations. We argue that the large energy profile of the involved
excitations can be relevant for the late time behaviour of the system and common regularization schemes
are unreliable. We therefore proceed in determining the initial state by first principles expanding it in

a systematic and controllable fashion on the basis of the asymptotic states. Our results show that, for
the special limit of pre-quench parameters we consider, it assumes a squeezed state form that has been
shown to evolve so as to exhibit the equilibrium behaviour predicted by the Generalized Gibbs Ensemble.
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1. Introduction

Research in non-equilibrium processes of Quantum Field The-
ory (QFT) and their statistical mechanical properties constitutes a
fast developing and widely applicable area of theoretical physics.
The correct understanding of phenomena out of equilibrium not
only plays a crucial role for our knowledge about as diverse top-
ics as cosmology, heavy-ion collision experiments and cold atom
systems (see, for instance, [1-3] and references therein), but it
also poses purely theoretical questions in the subject of QFT it-
self.

This is particularly true in the case of (1 + 1)-dimensional
integrable QFTs, i.e. systems which have an infinite number of
local integrals of motion [4]: in this case, connecting far-from-
equilibrium dynamics at early times with the approach to equi-
librium at late times may be a true challenge for the theory. In
particular, the experimental evidence of lack of thermalization in
a 1d system of bosons with pointlike interactions [5] (a system
described by a special limit of the integrable QFT of the Sinh-
Gordon model [6,7]) led to the conjecture that quantum inte-
grable systems exhibit equilibration to a Generalized Gibbs Ensemble
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(GGE) rather than the usual Gibbs ensemble of thermal equilib-
rium [8].
The GGE is associated with a density matrix

PGGE X exp(— ZMQ:’)
i

that involves all local integrals of motion Q; of the integrable
model, including the Hamiltonian. The validity of the GGE has been
verified with a variety of different approaches and settings in many
systems which can be mapped to free boson or fermion systems,
even though such mappings are often highly non-trivial [9-19]. For
genuine interacting integrable QFT there have been so far only a
few studies [20-30], and presently the most general result con-
cerns the time-average of one-point functions of local operators,
for which it was shown in [28] that their values can indeed be
recovered by the GGE average.

In many non-equilibrium situations of a QFT, the future evolu-
tion of the system is entirely encoded into the specification of the
initial state |B), also called boundary state. This is what happens,
for instance, in the global Quantum Quench (QQ) process, where a
parameter of the Hamiltonian is abruptly changed at t =tp and
the role of the boundary state is played by the ground state of the
pre-quench Hamiltonian.
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The subject of this paper is the theoretical investigation of the
boundary state closely related to Dirichlet boundary conditions of
an interacting integrable QFT, in particular its determination ac-
cording to basic principles. An important issue of our analysis will
concern the proper treatment of the ultraviolet unbounded be-
haviour originally present in the expression of |B), a task that
will lead us to a non-trivial set of equations involving the exact
matrix elements of the field ¢(x) on the asymptotic states. For
convenience we will present our main results through the simplest
representative of these interacting theories, i.e. the Sinh-Gordon
model based on the bosonic field ¢ (x), the generalization to more
complicated integrable QFT being straightforward.

2. Boundary states

In global QQ, |B) is the ground state of the pre-quench Hamil-
tonian and an important step for solving the subsequent out-
of-equilibrium dynamics is to express this state in terms of the
operators that create the particle excitations of the post-quench
Hamiltonian. A familiar and simple example of this procedure,
which will be important for our future considerations, is the
quench process of the mass term myg — m of a free bosonic mas-
sive QFT [31]: in this case, introducing

1( |Eo(p) E(p) )
= + ,
P 2(\/ Ep) ~ \ Eo(p)
with E(p) = /p2+m?2 and Eq(p) =,/p?+m3, and denoting by

(Ao(p), Ag(p)) and (A(p), AT(p)) the pre/post-quench annihilation
and creation operators, these two sets are related by a Bogoliubov
transformation

Ao(p) = c+(D)A(p) +c—_(p)AT(—p)
Al(p) =c (AT (D) + c_ (D) A(—p) (1

In this example, the boundary state is identified by the condition
Aop(p)|B) =0, which can be expressed in terms of the post-quench
operators as

[c+(DAD) +c-(P)AT(—p)]IB) =0. )

The solution of this equation provides the sought expression of the
boundary state in terms of the post-quench operators

rd
| Bree) ~ €Xp {— / e Kfree(p)AT(—p)AT(m} 12) 3)

2w
0

where |§2) is the ground state of the post-quench Hamiltonian and

Eo(p) — E(p)
Eo(p) + E(p)’

From the point of view of the post-quench system, the bound-
ary state is then an infinite superposition of pairs of equal and
opposite momentum, each of them weighted with the amplitude
Kiree (p) (see Fig. 1).

In the case of interacting integrable QFT (for simplicity we are
considering integrable QFT with only one type of particle excita-
tions), a generalization of this class of boundary states consisting
of an infinite number of pairs of equal and opposite momentum is
given by the general expression

Kfree (p) = (4)

N Ood_e t_py 7t
|B) ~ exp - K(©)Z'(-60)Z'(9) )182) (5)

0

(p)

free

Fig. 1. With respect to the post-quench Hamiltonian, the boundary state |B) appears
as a coherent superposition of an infinite number of pairs of particles with equal
and opposite momentum.

where ZT(6) are creation operators of the post-quench Hamilto-
nian, |£2) is its ground state and the variable 6 conveniently pa-
rameterizes the dispersion relation of the particle excitations of
mass m, given by E =mcoshf and p = msinh#. The operators
Z(©) and ZT(0) provide a complete basis of the Hilbert space of
the post-quench integrable QFT and satisfy the Zamolodchikov-
Faddeev algebra

Z(61)Z(62) = S(61 — 62)Z(62) Z (61)
ZO1ZT(02) = S — 1) Z1(02)Z(61) + 27 8(61 — 62) (6)

that involves the exact two-body S-matrix S(6; — 6;), function of
the rapidity differences. Boundary states of the exponential form
(5) have been considered in [20,32], where it was shown that they
automatically lead to equilibration of one-point observables ac-
cording to the GGE (in agreement with the general analysis done
in [28]). Such a class of exponential states includes the important
examples of integrable boundary states, i.e. boundary states that re-
spect the integrability of the bulk [33], like the Dirichlet states that
can be prepared by a special QQ where the mass parameter mg of
the pre-quench Hamiltonian is sent to infinity.

While it is presently not known whether a general QQ in an
integrable QFT leads to an exponential state (5), we will argue that
this may be the case for a natural class of quench processes in the
Sinh-Gordon model. Before facing this aspect of the problem, let
us discuss another important issue related to boundary states.

3. The problem of ultraviolet behaviour

The Dirichlet state |D), like all other known integrable bound-
ary states, suffers from an ultraviolet unbounded behaviour. For
example, taking literally the expression that comes out in the limit
mg — oo of the free bosonic case (3), one realizes that the corre-
sponding amplitude Kp(p), associated with an idealized Dirichlet
state, is a constant and does not decay sufficiently fast for large
momenta. This is easily understood since excitations on the initial
state are cut-off by mg which in this case is taken to be infinite.
Similar unbounded behaviour is present in any other integrable
QFT and, as a result, gives rise to divergent expectation values.

When the post-quench Hamiltonian is a Conformal Field The-
ory, a cure of this problem was proposed by Cardy and Calabrese
[31,34], who assumed a large but not infinite my and made use
of the concept of ‘extrapolation length’ 7p, already known from
boundary Renormalization Group (RG) theory, to account for the
difference of the actual initial state from the idealized Dirichlet
state. The parameter tp is a ‘small’ regularization parameter that
plays the role of the inverse of an exponential cut-off and depends
on the initial parameters: chosen to be of the order 1/my, it turns
out to give indeed a good approximation of the initial state when
the post-quench system is critical.

In the case of massive post-quench theories, the obvious gener-
alization of the above idea is to replace Kp(8) by Kp(#)e 2E@
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and to postulate that tg is still of order 1/mg as in the conformal
case. In order to check the validity of this assumption and esti-
mate a suitable value for g, one may choose an observable and
equate its expectation values in the exact and in the approximate
initial state. If the 7y regularization were consistent, this estimate
should be independent of the choice of observable under consid-
eration. However this turns out not to be true, as shown in detail
in the Supplementary Material. For instance, for a mass quench in
free bosonic theory, choosing as observable the operator ¢2(x), one
arrives at the scaling relation

T
To= 27’“51 ~0.881938m; ', (7)
where y is the Euler-Mascheroni constant. Although this goes as
in the conformal case, tg ~ 1/mg [31,34], the prefactor is however
different. A similar scaling law, but with another prefactor, is ob-
tained choosing as observable the Hamiltonian: in this case one
arrives at

T0= ~ 0.906900m; . (8)

2f
Even though the two scaling laws (7) and (8) are very close nu-
merically, the impossibility to arrive to a universal expression of
7o is nevertheless a flaw of the present regularization scheme. This
discrepancy can be interpreted as an indication that the effect of
higher energy excitations present in the initial state cannot be in-
corporated in an appropriate and unique definition of an energy
cut-off: observables that weigh differently the effect of low and
high energy excitations can then reveal different ultraviolet be-
haviour.

A way out of these difficulties is to assume 1y to be not a con-
stant but a quantity that depends on p itself. In fact, such a depen-
dence is perfectly justified from the point of view of boundary RG,
according to which the actual boundary state may be constructed
involving any boundary irrelevant operator, as recently discussed
in [35,36]. In this approach, the introduction of the extrapolation
length 19 amounts to a perturbation of the boundary state gen-
erated by the bulk Hamiltonian i.e. the state becomes e~!%|D).
In addition to the latter, one must in general introduce a different
To for each bulk conserved charge Qg, which are indeed bound-
ary irrelevant operators. This would lead to a regularized initial
state obtained by e~ 2s @s%.s| D), which turns out to be still of the
form (5) but with a tp that is a momentum-dependent function.
This is because all charges Qg of an IFT can be put in the form
fd9659 Z1(6)Z(0) [4]. However the problem of how to determine
the suitable function 7p(@) or equivalently K(#) remains.

In the following we will study a QQ in the Sinh-Gordon (shG)
model in which we start from a large but not infinite mass mg
and use the exponential form (5) as an Ansatz, providing a series
of arguments for such a choice. We then derive, from first prin-
ciples, a sequence of integral equations that must be satisfied by
the function K(6) and propose a solution based on an analytical
approximation which we verify numerically with a high level of
accuracy. This provides a posteriori a non-trivial check of the va-
lidity of our initial Ansatz (5).

4. The Sinh-Gordon model

The shG Hamiltonian is
1 0
H= ( )+ — <8_(f<)> +—(coshg¢—1) (9)

where ¢ = ¢ (x,t) is a real scalar field, v (x) its conjugate momen-
tum, p the mass and g the coupling constant. In this integrable

field theory there is only one type of particle with physical renor-
malized mass m given by m? = u?sinaw /amw where « is the
dimensionless renormalized coupling constant o = g2/(87w + g2).
Particle scattering is fully determined by the two-particle S-matrix
given by [37,38]

" sinhf — isinam (10)
©)= sinh6 +isinar’
where 6 is the rapidity difference between the particles.

Let us consider a QQ in the shG model starting from a large ini-
tial mass mg and, for reasons that become clear soon, zero interac-
tion og = 0: the final quantities are finite values of m and «. Such
a quench may be regarded as made of a sequence of processes: an
initial quench of the mass in free bosonic theory, mg — m, swiftly
followed by a switching on of the coupling, cg — «.

To determine the boundary state |B) for this QQ in terms of the
post-quench Hamiltonian, let us use the condition that |B) is an-
nihilated by the pre-quench annihilation operator Zy(p) [39]. The
choice of the initial coupling value o = 0 is particularly conve-
nient because in this case Zp(p) is just the annihilation operator
of the free bosonic theory, easily expressible in terms of the phys-
ical field operator ¢ (x) and its conjugate momentum 7 (x) as

Zo(D)Z\/ <¢>( )+l¥> (11)
Op

where ¢(p) = fdxe‘”’"d:(x) is the Fourier transform of ¢(x) and
7 (p) of m(x). Since in a QFT we have 7 = q’) = —i[¢, H], we arrive
to the following equation

(6(p) + [¢(p), H]/Eqp)|B) =0. (12)

To make progress in the solution of this equation, let us first ex-
pand the state in the post-quench basis in the most general way

<1+ i ﬁ / @2713(2;;(90)1?5({@}))

x |61, ..., b5) (13)

where |61, ..., 05) = ZT(01)...Z1(65)|82) (61 > 62 > 63...) is the post-
quench eigenstate containing s particles with rapidities 61, ..., 6g
and p(6;) = msinhé, is the momentum corresponding to rapid-
ity 6.

Additional constraints on |B) come by exploiting the symme-
tries of the quench process and the boundary state. Since this is
the ground state of the pre-quench free Hamiltonian, it is invariant
under parity and translation invariance. Moreover both symmetries
are preserved by the quench process: hence, for parity reason, the
sum runs over even integer numbers of particles only, while, for
translation invariance, each term in the sum has zero total mo-
mentum, as ensured by the §-function.

Applying suitable test states on the left of (12), we can derive
integral equations satisfied by the amplitudes K; of the excitations
present in |B). However our investigation drastically simplifies if
we assume that the state is of the exponential form (5). If we apply
first the assumption that the state consists only of pairs of particles
with opposite rapidities, we have

de,
ZH/JM@M@Mwa@@ (14)

s=0r=1_"4,

where, due to the algebra (6), the amplitudes K satisfy the prop-
erties
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KsCoooy =65, ..) = S(—=20) Ks (..., 6;, ...),
Ks(ooos By s 05, ) = Ks(ooor 0, .0, 6, 0.

Assuming further that the state is of the more special form (5), the
amplitudes K; are related to each other by

1 S
Ks (@1, ., 05) = [[x:160). (15)

“r=1

The plausibility of such an Ansatz comes from a series of rea-
sons: first of all, from the vanishing of the expectation values on
the state |B) of all infinite conserved charges 9, (a=1,3,5,...)
of the Sinh-Gordon model which are odd under parity transfor-
mation. Indeed, if P is the parity operator which is conserved in
the quench process, then PQ, P = —Q, and since |B) is an even
state, P|B) = |B). Therefore

(B|Q; |B) = (B|P*Q, P?|B) = —(B|Q; |B) =0.

Since on the asymptotic states such charges act as 9,161, ...,
On) = > p_q sinh(ady)|01, ..., 6p) a pair-wise structure of the bound-
ary state automatically guarantees the vanishing of the expectation
values on the state |B). Secondly, imagine to realize the overall
quench in terms of a sequence of quenches, the first QQ; in which
we change only the mass (at og = 0), the second QQ» in which we
switch on the coupling. After QQ;, the resulting boundary state is
|Bfree) given in (3), which is made of pairs of equal and opposite
particles created by the free operators Zg(p) with mass m. After
QQy, where we have switched on the coupling constant «, the in-
finite number of pairs present in |Bfee) Start interacting between
them. However the interaction provided by the Sinh-Gordon model
cannot create or destroy particles since it is integrable and when
the particles cross each other, they just experience a time-delay
dictated by the elastic S-matrix given in (10). It is therefore con-
ceivable that the only effect of interaction is to “dress” both the
free particle amplitude Kgee(6) — K(0) and the free creation op-
erators Zg;(p) — ZT(p), preserving though the pair-wise structure
of the boundary state.

Assuming the validity of the pair-wise structure of the initial
state and the exponentiation of the amplitudes, i.e. assuming the
form (5), let us start our analysis from the limit my — oo which
corresponds to the Dirichlet state |D) satisfying the condition

#(p)|D) =0. (16)

Such a boundary state is known to be of the exponential form (5)
with amplitude Kp(#) given by [40]

1 +c0t(7ra/4—i9/2)>
1—tan(ra/4+i6/2) )"

Such a known case provides a non-trivial check of the approach
we are going to propose. Indeed, if we now take as test state an
arbitrary 1-particle excitation (| applied to the left of (16), substi-
tute (5) and expand, we obtain in this way the following integral
equation that must be satisfied by the amplitude Kp(0)

o0 _l S de/ ,
> 4(11[ o)
s=0 1=0Ci

x Fos1(60 + i, —07,61, ..., —6;,6;) =0, (18)

where F,({f;}) are the matrix elements (the so-called Form Factors)
of the field ¢ defined by F,({6;}) = (0|#|{0;}). In the derivation of
(18) we have exploited both the crossing symmetry and the an-
alytical properties of QFT [4,41] which have allowed us to write

Kp(0) = itanh (9/2)( (17)

4 - Re Kp(0)

06 [\

04}
I Im Kp(6)
02

Ly, T - I

r 1 2 3 4

w

Fig. 2. Plot of the numerical solution of (19) truncated after the first 3 (blue dotted
line) or 5 terms (black dashed line), along with the analytical result (17) (red full
line) for m=1,«a =0.4.

the matrix elements (9|$|{—6], +6/}) in terms of the Form Factors
above. The exact expressions of the Form Factors of the Sinh-
Gordon model were computed in [37,38] (for convenience, their
exact expressions can be found in the Supplementary Material).
Moreover since the numerical value of the F,'s decreases with the
order n, the series (18) shows a fast convergent behaviour and can
be approximated to the desired order of accuracy simply restrict-
ing to the lowest terms.

There is however a technical issue to take care of: since the
Form Factors have poles whenever an in- and an out-rapidity co-
incide, one needs to choose a suitable prescription on how to
pass around the poles, in order that the equation above makes
sense. This prescription is encoded in the integration contours C;
which can be determined by means of a finite volume regulariza-
tion [42-45] (details are discussed in the Supplementary Material).
Once this prescription is implemented, the first few terms of the
series give as a result the equation

1
0=F1+ 2 FiKo®)(1+5(-26))

1 +oo+ied6/
+5 / EF3(0+1'7I,—9/,9’)KD(9’)

4 27

—0o0

1 [ do’
+ - f —(S(=20)Kp(©) + S(20)S(6 —0')S(6 +6")

x Kp(=0))F3(—6,—6",6')Kp (¢)
+o0+ie +o00+i

€
1 do; do,
+3 z—ﬂl / 2—;F5(0+in,—0{,9;,—9§,9§)
—oo+ie —oo+ie
x Kp(67)Kp(65) + ... (19)

In Fig. 2 we plot the numerical solution of (19) when we keep
its first three and five terms, along with the analytical result (17).
As shown in Fig. 2, the agreement is quite satisfactory even when
the series is truncated up to the first three terms and it improves
significantly once the next two terms are included.

Using multi-particle test states applied on the left of (16), one
obtains a series of equations that must all be satisfied by the
amplitude Kp(#). More details of such computations will be pre-
sented elsewhere [46].

Supported by this positive check for the case mg — oo, let us
now address the problem of determining the amplitude K(6) in
the case of large but finite mg. The equation that defines the initial
state is now (12). Considering a 1-particle test state as before and
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Fig. 3. Plot of the numerical solution of (21) truncated after the first 3 (blue dotted
line) or 5 terms (black dashed line), along with the analytical Ansatz (22) (red full
line) for m=1, mg =10, « =0.4.

substituting (5), we find, after some algebra, that the new equation
is

é%(]—[/ —LK(6 )(EO(G)—E(QHZS:E(Q{))

i=0 ¢, i=1

x Fasy1(0 + im, —01,01, ..., —0;,6;) =0 (20)

which, after a truncation of the series to the same order as before,
becomes

. Eo(0) — E(0) _
0= <7EO(9)+E(9)>+ F1K(©)(1+4 S(-20))
+ootie
+1 / d_e’(so(e)—5(9)+25(0’))
2 2 Eo(8) + E(9)
—oo+i€e

x F3(9 +im,—0",0")K(0")

ol / do’ (Eo<9) +E©) +2E0 ))F3(_9, —6'.9)

2 Eo(0) + E(©)

—00

x (S(=20)K(6) + S(20)S(0 —0')S(0 +0")K (—0))K (¢")

+oo+ie
N 1 do;
8 2
—oo+i€e
+oo-tie
/ do) (Eo(0) — E(0) + 2E(0;) + 2E(6})
27 Eo(0) + E(0)
—oo+ie
x Fs(0 + i, —01, 01, —05,05) K (67) K (65) + (21)

One way to obtain the solution of this equation is to no-
tice that, for a smooth function K, the integral of the first
line is dominated by the contribution of the kinematical poles
of the Form Factor at 6 = £6’. At these poles, the prefactor
(Eo(0) — E(0) +2E(0"))/(Eo(0) + E(®)) of the integration kernel
becomes equal to unit. This suggests the approximate solution

Eo(0) — E (9)>
Eo(0) + E(6)
since then the first line of (21) becomes approximately the same
as the first line of (19). The second and third lines contribute only
small corrections to the solution.

The correctness of our approximate solution can be verified nu-
merically. Fig. 3 shows a typical plot of a numerical solution of (21)

K(G)%KD(9)< (22)

truncated to the 3rd or 5th terms, along with the Ansatz (22), for
some values of the ratio mp/m and interaction «. The agreement
is quite satisfactory, even when we include the contribution of the
second and third lines. Further comparative plots for a wide range
of parameter values will be presented elsewhere [46].

Obviously, the proposed solution (22) is expected to be more
accurate when the parameters mg, m and « are such that the dom-
ination of the poles is more prominent and the higher order terms
of the series give smaller contributions. The second condition is
satisfied for example when both masses mg and m are large or
when the interaction « is small.

In analogy to the Dirichlet state case, using multi-particle test
states we can derive a series of equations that must be satisfied by
the amplitudes K of the initial state in the form (14). Based on
the same combination of arguments used above (truncation of the
form factor series and pole dominance of the integrals), it is possi-
ble to show that also these equations reduce approximately to the
ones corresponding to the Dirichlet case when the K are chosen
to be Ks(61, ..., 0s) = 1/s![TF_; K1(8;) with K1(8) ~ Kp(0)Kiree (0).
In this way the exponential form of the Dirichlet state leads also
to approximate exponentiation of the QQ initial state.

5. Observables at large times

According to the analysis done above, a first order approxima-
tion of the initial state |B) for the QQ under consideration is given
by the exponential form (5) with amplitude K(0) given by (22).
This decays for large momenta as a power law (~ p~2) and ensures
a smooth ultraviolet behaviour through a momentum dependent
To-regularization. An initial state of this form belongs to the class
studied in [20,28,32] and therefore at least the one-point functions
of local observables equilibrate according to the GGE: their long
time values are given by

do; [ 1K6))?
O(xt%OO)—Zn./l—[ <W>

X (On, ..., 011OX)101, ..., On)c (23)

where K is given by the solution of the generalized Thermody-
namic Bethe Ansatz (TBA) equation

k@O = yK(e)\zexp[/ ;i;[(p(ﬂ —6')log(1+ \1’((9’)]2)] (24)

where ¢(6) = —id(logS(0))/dé, as explained in [20]. From the
above equations we can calculate numerically, for instance, the
GGE prediction for the operator exp(k¢) from which one can also
derive all field fluctuations ¢2" by differentiation with respect to
k at k = 0. In Fig. 4, the three curves represent three successive
partial sums of the series (23). The convergence of this series is
particularly fast near the point k = 0, even though to compute the
higher moments ¢2" with sufficient accuracy one needs to employ
more terms of the series.

6. Conclusions

In this paper we have studied a QQ of the mass and coupling
constant in the Sinh-Gordon model, in the special case of a large
initial mass and zero initial interaction. We have seen that the
ultraviolet regularization of this state is a non-trivial and phys-
ically relevant problem. This has led us to develop a systematic
method to determine the expansion of the boundary state in the
post-quench basis: this consists in solving integral equations for
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Fig. 4. Plot of the GGE prediction (e¥®)ccg as a function of k (m=1, mg =10, a =
0.4). The three curves represent partial sums of the series (23): the dotted (green)
line corresponds to the sum of the first two terms, the dashed (red) to the first
three and the solid (blue) to the first four terms.

the excitation amplitudes Ks; which involve the finite-volume pre-
scription of the exact Form Factors of the elementary field. As-
suming that the boundary state is of the exponential form (5), we
have obtained a first but quite accurate approximation of the solu-
tion by truncating the related Form Factor series. The proposed
solution is used to derive the large time behaviour of observ-
ables.

The fact that the large energy behaviour of excitation ampli-
tudes in the initial state is relevant for the calculation of physical
observables at large times, means that models that are effectively
equivalent as far as their ground state or thermal equilibrium prop-
erties are concerned, may not be equivalent out-of-equilibrium.
More generally, we conclude that RG methods and concepts that
are valid at equilibrium cannot always be applied directly to out-
of-equilibrium problems.

It would be quite interesting to extend the analysis done in this
paper to other QQ protocols and determine the relevant amplitudes
K of the corresponding boundary state from first principles.
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