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Abstract A pole-shared switched-current complex wavelet 

filter structure with follow-the-leader feedback configuration 

is proposed for synthesizing the real and imaginary 

approximation functions with the same poles. The 

double-sampling fully-balanced SI bilinear integrator and 

current mirror are employed as the building cells. By sharing 

the implementation circuit for approximation poles of the real 

and the imaginary part, the proposed structure only has the 

same circuit complexity as that of real-valued wavelet filter, 

which is very suitable for small-size and low-power 

application. The complex Morlet wavelet is selected as an 

example to elaborate the design procedure. Simulation results 

confirm that the presented complex wavelet filter structure 

can generate the real and imaginary coefficients of complex 

wavelet transform accurately with simple synthesis method 

and explicit design formulas. 

 

Keywords Switched-current filter · Complex wavelet 

transform · Bilinear integrator · Double-sampling 

fully-balanced·Follow-the-leader feedback configuration 

1 Introduction 

Complex wavelet transform (CWT) has been proven to be a 

powerful tool in transient signal detection, due to its ability to 

provide modulus and phase information [1,2]. To achieve 

real-time performance and low power consumption, analog 
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implementation of CWT has been proposed, mainly involving 

the design of analog complex wavelet filter (ACWF) and 

modulus/phase computing circuit [3]. As the first stage of 

CWT circuit, ACWF generates the real and imaginary 

coefficients, which plays an important role in modulus and 

phase computation. Theoretically, CWT is equivalent to two 

real-valued wavelet transforms, which are operated in the real 

and the imaginary part respectively [2]. Thus, ACWF can be 

realized by using two analog real-valued wavelet filters 

(ARVWFs), but this leads to large chip size and high power 

dissipation. To overcome this problem, [3] proposed a 

pole-shared approximation method to make the rational 

approximations for the real and imaginary parts of complex 

wavelet base have the same poles, based on which the 

ARVWFs designed for the real and imaginary parts can share 

the implementation circuits for the poles.  

This Letter aims to propose a complex wavelet filter 

structure to synthesize the pole-shared rational approximation 

functions obtained by [3]. The switched-current (SI) circuit is 

employed to construct the pole-shared structure and design 

formulas are derived. 

 

2 Design strategies for complex wavelet filter 

structure 

Assuming ( )t  is the complex wavelet base, the CWT of the 

signal f(t) at scale a and time-shift τ is given by 
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where ( )r t  and ( )i t  are the real and imaginary parts of 

( )t respectively. 

According to the definition of convolution, (1) can also be 

expressed as 
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Observed from (2), CWT uses complex-valued filter 

(essentially composed of two real-valued filters) to 

decompose the signal into real and imaginary parts. 

Consequently, the implementation method for ACWF can be 

derived from ARVWF design, i.e. mathematically 

approximate the complex wavelet base in the real and the 

imaginary part with realizable rational expression respectively, 

and then implement these two rational approximation 

functions using suitable circuit topologies. So far, several 

approximation algorithms for ARVWF design have been 

proposed [4-11], which can be used directly to obtain the 

rational approximations to the real and the imaginary part of 

complex wavelet base respectively. However, this 

conventional approximation method will yield two rational 

functions with different poles and zeros, and thus two totally 

different implementation circuits. This characteristic is indeed 

unsuited for small-sized and low-power application, since 

ARVWF is normally the high-order system and thus its 

double size will greatly enhance the overall circuit complexity. 

To resolve above problem, [3] presented a novel 

approximation method to make these two rational functions 

have the same poles, the so-called “pole-shared” 

approximation. Then, the ARVWFs designed for the real and 

imaginary parts can share the implementation circuits for 

poles, which will greatly lower the circuit complexity. 

Herein, this Letter mainly focuses on the design of 

pole-shared filter structure to synthesize the pole-shared 

rational approximation functions derived from [3]. To 

minimize circuit complexity while keeping a guaranteed 

performance, the following design strategies should be taken 

into account.  

First, ACWF’s performance relies on the analogue circuit 

techniques. To date, log-domain circuit has been employed in 

ACWF design [3]. Although successful in many aspects, 

log-domain filter needs on-chip tuning since it is difficult to 

fabricate the time constant accurately in the IC processes. SI 

filter does not have this problem because its time constant 

depends on the MOSFET aspect ratio [12]. Also, SI circuit 

can overcome the bottleneck encountered by its predecessor 

switched-capacitor circuit, e.g. incompatibility with digital 

VLSI technology. Therefore, SI technique becomes obvious 

choice for our purpose. 

Second, ACWF’s performance also depends strongly on the 

filter structure. Generally, any SI filter structure can be used 

in ACWF construction. However, for the purpose of sharing 

poles implementation circuits, the SI filter structure employed 

for synthesizing the rational approximations to the real and 

imaginary parts should have a special characteristic, that is, 

the implementation circuits for the denominator and 

numerator of the rational function should be independently 

controllable. Among all the existing SI filter architectures 

[5-7,10,11,13], the follow-the-leader feedback (FLF) multiple 

loop feedback (MLF) SI filter structure [10,13] is well 

suitable for pole-shared ACWF design, since the denominator 

coefficients (or poles) are controlled by the feedback weights, 

and separately the numerator coefficients (or zeros) are 

adjusted by the output weights. Hence, for synthesizing the 

pole-shared rational functions with FLF SI filter structure, the 

implementation circuits can share the SI integrator cores and 

feedback network. Furthermore, FLF filter structure has low 

magnitude sensitivity, which would provide a strong potential 

for high-quality ACWF design. 

With regard to all the considerations discussed above, the 

FLF SI filter structure is utilized to construct a pole-shared 

ACWF. 

 

3 Proposed pole-shared SI complex wavelet filter 

3.1 Filter structure 

In this Letter, SI integrator is selected as the building cell in 

ACWF design. Fig. 1 shows the employed double-sampling 

fully-balanced SI bilinear integrator (BI) operated with two 

non-overlapping phase ϕ1 and ϕ2 [13], whose four pairs of 

balanced outputs are realized by adding more output 

transistors with certain integrator coefficients. Black box Mi 

generally can be implemented by any elementary current 

memory, which samples input current on phase ϕi and sustains 

on the next phase. The operation of double-sampling makes BI 

cell sample and output signals on both phase ϕ1 and ϕ2, which 

will halve the clock frequency and introduce several 

superiorities [13]. 

Denoting ix=ix
+=-ix

- (x= c, f, r or m), the outputs in Fig. 1 have 

the relation [13] 

1

1

1
( ) / ( ) / ( ) / ( ) / ( )
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z
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
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
     (3) 

where coefficients c, f, r and m are defined by the current 

mirror ratios between the transistors in the integrator core and 

those at the outputs. 
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Fig. 2 gives the proposed double-sampling fully-balanced 

pole-shared SI ACWF structure based on FLF configuration. 

The balanced signals ic
±, if

±, ir
± and im

± represent the forward, 

feedback, real output and imaginary output branch, 

respectively. The balanced output signals ior
± and iom

± 

represent the real and imaginary coefficients generated by 

ACWF, respectively. 

In Fig. 2, a current mirror (CM) with coefficient c0 is 

introduced at the input terminal of BI1 to make circuit design 

more flexible and realizable [13]. Fig.3 illustrates the structure 

of CM cell, whose transfer function can be expressed as 

ic(z)=ci(z). 
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Fig. 1 Double-sampling fully-balanced SI bilinear integrator a 

circuit diagram and clock waveforms, b symbol  
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Fig. 2 Pole-shared SI complex wavelet filter structure 
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Fig. 3 Double-sampling fully-balanced SI current mirror 

 

3.2 Filter synthesis and design formulas 

Observed from Fig.2, the imaginary output iom
± is realized by 

adding two pairs of output transistors with integrator 

coefficient m in each BI cell of the real-valued FLF SI 

structure presented in [13]. Therefore, conducting similar 

deduction as [13], the transfer functions for real and 

imaginary output in Fig. 2 can be written as  
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where D(z)=(1+z-1)/(1-z-1). 

Meanwhile, the pole-shared approximation functions to the 

real and imaginary parts of complex wavelet base generally 

have the form of 
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Applying bilinear transform s=(2/Ts)(1/D(z)) to (6) and (7), 

we have 
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where Ts is the sampling interval. 

Using coefficient matching between (4) and (8), and (5) and 
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(9), the design formulas for the parameters in Fig. 2 can be 

determined as 

( ) ( )

1 1 1

0 0 0

( ) ( ) ( ) ( 1,2, , )
2 2 2

r n i m n ii i is s n i s
i i ii i i

j j j

j j j

A AT T B T
r m f ,  i n

c c c

  

  

  

   

  
， ，

                (10) 

 

Obviously, by presetting ci to be a reasonable value, 

parameters ri, mi and fi can be easily obtained. Hereby, ci is 

normally selected to be the decimal fraction to enhance 

common-mode rejection [13]. Some advantages of the 

proposed structure are listed as below: 

First, the proposed structure for ACWF almost has the same 

circuit complexity as that of ARVWF. For certain ci, the 

shared denominator coefficients Bi are only controlled by fi. 

Therefore, the implementation circuits for the poles in (6) and 

(7) can share the integrator cores, forward and feedback 

branches as shown in Fig 2. Meanwhile, the numerator 

coefficients Ari and Ami are independently controlled by ri and 

mi, which means the zeros in (6) and (7) can be realized by the 

real and the imaginary output branch, respectively. Thus, for 

the nth-order pole-shared approximation functions as (6) and 

(7), the imaginary output can be realized by adding only 2n 

pairs of output transistors in ARVWF, which only takes up a 

small part of the filter structure. 

Second, the proposed structure can synthesize arbitrary 

pole-shared approximation function, with simple and explicit 

design formulas. For certain ci, parameters ri, mi and fi can be 

used to realize coefficients Ari, Ami and Bi based on (10), in 

which negative ri (or mi ) can be simply realized by 

interchanging the related two output terminals with coefficient 

ri (or mi ) of BIi. When Ar(n-i) or Am(n-i) is lacunary, ri or mi will 

be calculated as zero, then the related output terminals of BIi 

should be removed.  

Third, compared with single-ended FLF configuration [10], 

fully-balanced structure can realize signal inversion simply by 

interchanging the two output terminals of SI integrator 

without introducing excess phase errors, a feature that is 

particularly attractive in bilinear transform [13].  

 

4 Design example 

The proposed structure is suitable for any complex wavelets 

due to the generality of the MLF architecture. Herein, for 

brevity, the complex Morlet wavelet is selected as an example 

to illustrate the design procedure, which can be defined as the 

complex sinusoidal wave modulated by Gaussian function 

[14], i.e. 

2
0 /

( ) bj t t f

cmor t e e
 

          (11) 

The parameters fb and ω0 in (11) denotes the bandwidth and 

wavelet center frequency, respectively. To obtain a true 

wavelet characterized as zero integral, ω0 is usually made 

large enough in practice. For this example, fb=2 and ω0=6. 

Meanwhile, to facilitate physical hardware implementation, a 

time delay t0 should be introduced to make complex Morlet 

wavelet casual. Hereby, t0=3 is selected. 

Based on the pole-shared method proposed in [3], the 

eighth-order rational approximation functions to complex 

Morlet wavelet can be determined, whose numerator and 

denominator coefficients in (6) and (7) are shown as Table 1. 

Normally, the center frequency fo of wavelet filter should be 

denormalized to specified value in order to perform wavelet 

analysis at certain scale. In this Letter, the center frequency of 

10 kHz and sampling frequency of 100 kHz are selected as an 

example. Also, to avoid the nonlinear frequency distortion 

brought by bilinear transform, fo should be pre-warped to 

10.343 kHz calculated by fp=(fs/π)tan(πfo/fs), where fp and fs 

are the pre-warped center and sampling frequency 

respectively [12]. 

Setting c0=c1=c5=c6=0.1, c2=c3=0.6, c4=c7=0.3, the circuit 

parameters in Fig.2 can be determined by (10), which are 

listed in Table 2. Fig. 4 illustrates the structure of designed SI 

complex Morlet wavelet filter derived from Fig.2, in which the 

second generation SI memory cell is employed on the purpose 

of testifying the feasibility of proposed structure. 

 

Table 1 Coefficients of pole-shared rational approximations to complex Morlet wavelet  

  i 0 1 2 3 4 5 6 7 

Ari -1.6174e4 -1.3399e3 -169.5821 -430.3728 48.1897 -9.5038 0.5512 -0.0376 

Ami  -1.3581e4 5.7199e3 -2.1537e3 316.5315 -28.9016 -0.5890 0.1092 -0.0428 

Bi  1.5006e6 1.8697e5 1.9288e5 1.6639e4 8.5534e3 464.3558 156.3425 4.0841 
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Table 2 Parameters of pole-shared SI complex Morlet wavelet filter  

i 1 2 3 4 5 6 7 8 

γi -0.0203  0.1600 -0.2476 0.1127 -0.1807 -0.0384 -0.1633 -0.3539 

mi -0.0230 0.0317 -0.0153 -0.0676 0.1329 -0.4872 0.6970 -0.2972 

fi 2.2000 45.3656 12.0969 20.0050 6.9878 43.6324 22.7834 32.8346 
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Fig. 4 Structure of SI complex Morlet wavelet filter 

 

 

Fig. 5 shows the frequency response of complex Morlet 

wavelet filter simulated by ASIZ [15]. Observed from Fig. 5a, 

the real output of ACWF achieves peak value at center 

frequency 9.8 kHz. The lower and upper cutoff frequencies 

are 8.6 kHz and 11.2 kHz respectively, slightly different from 

ideal values, i.e. 8.4 kHz and 11.1 kHz. Meanwhile, Fig. 5b 

plots the imaginary output of ACWF, achieving peak value at 

center frequency 10.1 kHz. The measured lower and upper 

cutoff frequencies are 8.6 kHz and 11.2 kHz respectively, 

almost the same as should be close to, i.e. 8.4 kHz and 11.1 

kHz. Fig. 6 gives the impulse response of designed complex 

Morlet wavelet filter at fs=100 kHz.  

To testify the feasible application of the generated real and 

imaginary coefficients in the next stage of modulus and phase 

computation, Fig.7 plots the modulus and phase responses of 

complex Morlet wavelet filter calculated from the data in 

Fig.6 by using Matlab. Apparently, the approximated modulus 

and phase are close to the ideal cases. The time-delay of 

modulus response in Fig. 7a is due to the sample-and-hold 

operation of SI technique. The approximation error of phase 

response in Fig. 7b in the range of 0-0.05ms and 0.55-0.65ms 

is mainly caused by the non-ideality of rational approximation 

functions as shown in Table 1, whose phase response 

illustrated in Fig. 8 gives a clue. A high-performance 

pole-shared approximation method needs to be proposed to 

resolve above problem, but it is beyond the scope of this 

Letter and left to the future work. 

 

(a) 

 

(b) 

Fig.5 Frequency response of complex Morlet wavelet filter a 

real output, b imaginary output 
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(a) 

 

(b) 

Fig. 6 Impulse response of complex Morlet wavelet filter 

 a real coefficient, b imaginary coefficient 

 

 

(a) 

 

(b) 

Fig. 7 Transient response of complex Morlet wavelet filter a 

modulus, b phase  

 

 

Fig. 8 Phase response of the rational approximation functions  

5 Conclusions 

A double-sampling fully-balanced SI complex wavelet filter 

structure with low circuit complexity has been presented. Also, 

the explicit design formulas are demonstrated. Built on FLF 

configuration, the proposed structure can share a great part of 

the implementation circuits for the pole-shared real and 

imaginary approximation functions, which can minimize chip 

size and power consumption. To verify our proposal, the 

complex Morlet wavelet is used as an example. Simulation 

results show that the proposed filter structure can be used to 

extract the CWT’s modulus and phase information with high 

precision, and is well suited for the implementation of analog 

CWT circuits. It should be stressed that the proposed structure 

is suitable for arbitrary pole-shared rational complex wavelet 

bases due to the generality of the MLF architecture. 
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