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Pasteuria spp. are endospore forming bacteria which act as natural antagonists to many
of the most economically significant plant parasitic nematodes (PPNs). Highly species-
specific nematode suppression may be observed in soils containing a sufficiently high
density of Pasteuria spp. spores. This suppression is enacted by the bacteria via inhibition
of root invasion and sterilization of the nematode host. Molecular methods for the
detection of Pasteuria spp. from environmental DNA (eDNA) have been described;
however, these methods are limited in both scale and in depth. We report the use of
small subunit rRNA gene metabarcoding to profile Pasteuria spp. and nematode
communities in parallel. We have investigated Pasteuria spp. population structure in
Scottish soils using eDNA from two sources: soil extracted DNA from the second National
Soil Inventory of Scotland (NSIS2); and nematode extracted DNA collected from farms in
the East Scotland Farm Network (ESFN). We compared the Pasteuria spp. community
culture to both nematode community structure and the physiochemical properties of soils.
Our results indicate that Pasteuria spp. populations in Scottish soils are broadly
dominated by two sequence variants. The first of these aligns with high identity to
Pasteuria hartismeri, a species first described parasitizing Meloidogyne ardenensis, a
nematode parasite of woody and perennial plants in northern Europe. The second aligns
with a Pasteuria-like sequence which was first recovered from a farm near Edinburgh
which was found to contain bacterial feeding nematodes and Pratylenchus spp.
encumbered by Pasteuria spp. endospores. Further, soil carbon, moisture, bulk
density, and pH showed a strong correlation with the Pasteuria spp. community
composition. These results indicate that metabarcoding is appropriate for the sensitive,
specific, and semi-quantitative profiling of Pasteuria species from eDNA.
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INTRODUCTION

Plant parasitic nematodes (PPNs) pose a major threat to global
food security, with estimated combined crop losses due to PPNs
equating to $80 billion USD each year (Nicol et al., 2011; Jones
et al., 2013). However, broad spectrum chemical nematicides and
soil fumigants which have been effective in PPN control are being
steadily withdrawn from the market due to environmental
concerns, such as ozone depletion by methyl bromide (Ristaino
and Thomas, 1997), or their potential for negative effects on
human health, such as the 1985 Aldicarb poisoning outbreak in
the United States and Canada (Goldman et al., 1990). The
withdrawal of these substances necessitates the development of
sustainable alternatives to chemical PPN control. These
alternatives may be: management practices, such as
solarization (McGovern and Mcsorley, 1997; Freitas et al.,
2000; Wang et al., 2006), or incorporation of organic
amendments (Stirling et al., 2003; Jaffee, 2004; Walker, 2004;
Bonanomi et al., 2007); breeding and growth of resistant
cultivars, such as potato varieties which carry the H1 resistance
gene, preventing the development of Globodera rostochiensis via
starvation of the infective juvenile stages within the root (Kort
et al., 1977; Rice et al., 1985; Sobczak et al., 2005); and the
incorporation or cultivation of PPN biocontrol agents (BCAs) in
cropping soils, such as the nematophagous fungus Pochonia
chlamydosporia, which parasitizes the eggs of some of the most
impactful PPN species (Kerry et al., 1982; Yang et al., 2012;
Manzanilla-López et al., 2013). Among BCAs specialist
nematode parasites are the most effective as generalist
nematode predators do not respond to large increases in PPN
populations providing only a background level of biocontrol
which may not be easily quantified (Stirling, 2014). Among the
most specialized PPN BCAs are obligate hyperparasitic bacteria
of the genus Pasteuria.

Pasteuria spp. are gram positive, endospore forming
Firmicutes which suppress PPNs via two mechanisms. First,
Pasteuria spp. endospores attach to the surface of the nematode
hindering directional movement and, by extension, root access
(Davies et al., 1991; Vagelas et al., 2012). Second, upon
penetration of the nematode cuticle and colonization of the
pseudocoelom, Pasteuria spp. are able to alter embryogenesis,
sterilizing the host (Davies et al., 2011). Pasteuria spp. may be
highly fastidious parasites, exhibiting host specificity which can
be species or population specific (Davies et al., 2001; Davies et al.,
2008; Duneau et al., 2011; Mohan et al., 2012). Cross generic
attachment profiles have been described in Pasteuria spp. which
are capable of attachment to both the pigeon pea cyst nematode
(Heterodera cajani) and a potato cyst nematode (G. pallida)
(Mohan et al., 2012), however these are both members of the
Heteroderinae with similar life cycles. Specificity of Pasteuria
spp. presents an advantage over broad spectrum chemical
control and less targeted management practices such as soil
solarization which may remove ecosystem services that are
mediated by beneficial organisms, including BCAs (Wang
et al., 2006). However, this host specificity also presents a
challenge to the use of Pasteuria spp. as inundative or
Frontiers in Plant Science | www.frontiersin.org 2
inoculative BCAs, as the interaction of a strain with a native
PPN population cannot be easily predicted without prior testing.
Inoculative and conservation biocontrol using Pasteuria spp. is
hindered by a limited understanding of the impacts of soil
properties and management practices on Pasteuria
spp. populations.

oil characteristics, such as clay and organic matter content
have been noted as a driver of Pasteuria biology (Dabiré and
Mateille, 2004; Dabiré et al., 2007). Spores are non-motile and so
require a degree of porosity in the soil in order to disperse and to
come into contact with the nematode cuticle, allowing
attachment and infection (Dabiré and Mateille, 2004).
Pasteuria spp. endospores are robust, exhibiting resistance to
extremes of temperature, and desiccation (Williams et al., 1989).
However, they can be lost from the soil via leaching (Dabiré and
Mateille, 2004; Cetintas and Dickson, 2005; Luc et al., 2010).
Trudgill et al. (2000) reported attachment of P. penetrans was
favored by decreasing coarse sand and increasing clay content in
Senegal but decreasing clay and organic matter content in
Burkina Faso, with no such observable environmental effects
on populations from Ecuador. However, due to reduced porosity
and the ability of spores to bind to colloids, the presence of clay
has been shown to improve retention of spores in the upper soil
profile (Dabiré et al., 2007). The vast majority of Pasteuria spp.
ecology research to date has examined a single species, Pasteuria
penetrans. This is with good reason as P. penetrans is a parasite of
the most significantly damaging PPNs globally, the tropical
apomictic root knot nematodes (RKN, Meloidogyne spp.)
(Davies et al., 2011; Jones et al., 2013). Some variation between
populations of this species is observable as noted above with
regard to the impact of soil clay content on retention of
endospores (Trudgill et al., 2000). Other factors are more
consistent, for example rate of development of P. penetrans has
been shown to increase linearly between 18° and 27°C in multiple
studies (Giannakou et al., 1997; Serracin et al., 1997; Lopes et al.,
2018). However, it is possible that focus on this species obscures
a greater diversity of endospore properties and environmental
interactions within the genus given the high diversity and global
distribution of Pasteuria species (Chen and Dickson, 1998). For
example, despite the apparent negative impact of leaching on P.
penetrans endospore retention, Costa et al. (2006) were readily
able to recover Pasteuria spp. directly from sandy soils in
temperate dunes. Pasteuria hartismeri, a parasite of temperate
RKN species (Bishop et al., 2007), may be expected to be better
suited to the lower temperatures within its distribution.
Understanding the diversity, or lack thereof, of the
relationships between Pasteuria spp. and environmental
characteristics may therefore be critical to its effective
deployment as a BCA.

Morphological diversity within Pasteuria spp. endospores
manifests in differences in the shapes of the sporangial walls
resultant from the arrangement of parasporal fibers (Starr and
Sayre, 1988). For example, P. ramosa, which parasitizes the water
flea (Daphnia magna) forms a characteristic “tear-drop” shape,
whereas P. penetrans possesses a distinctive “flying saucer” or
“fried egg” shape resulting from an inferiorly collapsed sporangia
January 2020 | Volume 10 | Article 1763
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forming a concave cup like surface on the underside of the
endospore (Starr and Sayre, 1988). The classical “flying saucer”
shape of P. penetrans is common to a number of species which
parasitize PPNs including P. hartismeri (Bishop et al., 2007) and
P. nishizawae, which parasitizes the soybean cyst nematode (H.
glycines) (Noel et al., 2005). Pasteuria thornei, which parasitizes
semi-endoparasitic root lesion nematodes (Pratylenchus spp.)
maintains a rigid rhomboidal structure (Starr and Sayre, 1988).
Morphological characterization is, however, insufficient to
identify most Pasteuria species and is therefore inadequate to
predict interactions with the host. Molecular detection and
characterization of Pasteuria spp. has been demonstrated using
a variety of housekeeping genes, such as GyrB and SigE, (Schmidt
et al., 2004; Nong et al., 2007; Mauchline et al., 2010; Mauchline
et al., 2011) and the 16S rRNA gene (Duan et al., 2003;
Atibalentja et al., 2004; Rao et al., 2012). Detection of single
Pasteuria endospores was reported by Mauchline et al. (2010)
using a commercial enzymatic digest followed by multiple strand
amplification. PCR based detection has also been tested both in
planta (Atibalentja et al., 2000; Schmidt et al., 2004; Rao et al.,
2012) and in soils known to contain Pasteuria spp. (Duan et al.,
2003). While these methods allow the molecular characterization
of Pasteuria spp. populations and have provided the beginnings
of a species 16S gene reference database, they are limited in both
scale and depth. PCR and Sanger sequencing of individual
samples with Pasteuria specific primers allows for few samples
to be processed at any one time and, in complex populations, this
method is unlikely to provide adequate sequencing depth to
accurately characterize population diversity. We have developed
a high throughput, high resolution method of determining
Pasteuria spp. population structure which builds on existing
molecular detection methods to increase their scale and depth.
Here we demonstrate the utility of this method to assess the
distribution and variation in Pasteuria spp. community structure
in a range of Scottish soils and how such variation relates to the
physical properties of the soils they inhabit. Further, we
demonstrate that this approach can be combined with recent
advances in high throughput nematode community profiling
(Porazinska et al., 2009; Porazinska et al., 2010; Morise et al.,
2012; Porazinska et al., 2012; Treonis et al., 2018; Waeyenberge
et al., 2019) to assess the relationships that Pasteuria spp. may
have on nematode community structure in agricultural soils. We
describe significant species level variation in relationships with
soil properties. The methodology described herein provides a
framework which may be used or improved to study Pasteuria
spp. ecology at scale and depth.
MATERIALS AND METHODS

Environmental DNA Samples
East of Scotland Farm Network
Nematode communities were extracted from soils in the 2014 re-
sampling of the East of Scotland Farm Network (ESFN) (Hawes
et al., 2010) (n = 560) using a modified Baermann funnel
extraction method as described by Brown and Boag (1988)
Frontiers in Plant Science | www.frontiersin.org 3
with 200 g of soil used for each extraction (Wiesel et al., 2015).
Extracted nematodes were lyophilized before DNA extraction
with a PureLink® Pro 96 well Genomic DNA Purification Kit
(Thermo Fisher Scientific) according to the manufacturer's
instructions. The concentration of extracted DNA from ESFN
samples was not measured.

National Soil Inventory Scotland 2
The National Soil Inventory Survey 2 (NSIS2) comprises 406 soil
samples collected at 195 sites between 2007 and 2010 (Lilly et al.,
2011). Pits, one meter in depth, were dug at 20 km grid intervals
across the Scottish Isles and mainland and soil samples were
collected for each horizon. Satellite soil samples were taken at
fixed distances from selected main sample pits. DNA was
extracted from 0.25 g of each soil sample, quantified using
Quant-iT PicoGreen dsDNA assay kit (ThermoFisher), and
stored at −80°C. Extensive soil and environmental metadata
was collected corresponding to each site (Lilly et al., 2011).
One hundred thirty archived NSIS2 DNA samples were
removed from storage at −80°C for inclusion in our analysis.
These samples were selected based on the following criteria: only
upper soil horizons were included; satellite samples, 4–16 m
from the main sample pit, were selected where available
allowing assessment of variation at a site; and 11 NSIS2
sample sites, indicated to contain Pasteuria-like sequences
based on shallow non-specific 16S rRNA gene sequence
analysis of the NSIS2 dataset (Freitag, unpublished data),
were included in order to characterize populations at these
sites. Each NSIS2 sample was diluted to a concentration of 10
ng μl−1 in high performance liquid chromatography (HPLC)
grade water before amplification.

Pasteuria 16S rRNA Gene Copy Number
Detection Limits
To determine an approximation of the sensitivity of our
Pasteuria spp. PCRs, serial dilutions of Pasteuria spp.
plasmids carrying cloned 16S rRNA gene PCR product were
prepared. 16S rRNA gene sequences were amplified from P.
penetrans genomic DNA and ESFN DNA. 16S rRNA gene
product was amplified using primers 39F and 1166R (Table 1)
as previously described (Mauchline et al., 2010) and ligated
into pGEM-T easy plasmid (Promega) following the
manufacturers protocol. Plasmids were used to transform
electrocompetent DH5a cells from which individual clone
colonies were cultured and plasmid extracted using the
QIAprep spin kit (QIAGEN). The sequence of clone
TABLE 1 | Primers used in this study.

Primer Sequence (5’-3’) Target
gene

Reference

39F GCGGCGTGCCTAATACA 16S rRNA Atibalentja et al.,
2000

1166R CGCCGGCTGTCTCTCCAA 16S rRNA Duan et al., 2003
PAS776F CAGCATCTTTGTGCCGAAGG 16S rRNA This Study
NF1 GGTGGTGCATGGCCGTTCTTAGTT 18S rRNA Mullin et al., 2003
18Sr2b TACAAAGGGCAGGGACGTAAT 18S rRNA Mullin et al., 2003
January 2
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plasmids was confirmed with Sanger sequencing using generic
M13F and M13R primers. Plasmids were quantified using a
Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific). The
copy number of plasmid template μl−1 was calculated from the
combined length of vector and insert and the concentration of
each plasmid suspension (ng ml−1) using the formula:

copy   number   =  
dsDNA  mass   ngð Þ  �   (6:022� 1023)
size   of   plasmid   bpð Þ � 650� 109ð Þ

To assess approximate gene copy number detection limits
dilutions were prepared of P. penetrans and P. hartismeri 16S
rRNA gene plasmid stocks to a concentration which was
calculated to corresponded to ~10 million copies of each
plasmid. This stock was then used to produce six replicate
serial dilution series of each plasmid from an initial estimate of
10 million copies to a theoretical single copy of target sequence
μl−1 of plasmid suspension. One μl of each plasmid dilution
series was included as template in PCR reactions alongside
NSIS2 and ESFN samples in Pasteuria PCR reactions as below
and included in the final PCR product pool prepared
for sequencing.

Amplification Strategy
Pasteuria spp. Primer Design
All primer sequences used in this study are presented in Table
1. Primers for the specific amplification of the Pasteuria 16S
rRNA gene were designed based on published 16S rRNA gene
data. All Pasteuria spp. 16S rRNA gene sequences (n = 272)
were downloaded from the non-redundant nucleotide archive.
These sequences were aligned using MAFFT (v7.407) (Katoh
and Standley, 2013) and trimmed using a python script (this
study) to those sequences containing 39F and 1166R primer
sites allowing for a mismatch of up to 3 nt (n = 54) which
excluded shorter sequence fragments. The remaining
sequences were used as input in Primer-BLAST (Ye et al.,
Frontiers in Plant Science | www.frontiersin.org 4
2012) as target sequences with primer 1166R as the input
reverse primer and a maximum PCR product size of 500 bp.
Primer-BLAST was then used to predict non-target
amplification of candidate forward primer-1166R pairs vs
the non-redundant nucleotide archive allowing up to six
mismatches in total within the primer pair (Ye et al., 2012).
The primer pair PAS776F (this study) and 1166R (Duan et al.,
2003), generating a 333 bp fragment showed no in silico
predicted non-target amplification. The reference set was
again trimmed to the region between primers PAS776F and
1166R using python (this study) and aligned using MAFFT
(v7.407) (Katoh and Standley, 2013) with the addition of 16S
rRNA gene sequences for P. ramosa, which does not carry the
primer binding sites, and Thermoactinomyces daqus, a related
Firmicute (Ludwig et al., 2009). Using this alignment, it was
determined that all previously described species were
distinguishable by at least two bp in the target region.
Identical sequences, and sequences unassigned to a
particular species or host, were removed from the reference
set leaving 16 representative sequences: T. daqus, (n = 1), P.
ramosa (n = 1), P. penetrans (n = 3), P. hartismeri (n = 2),
P. nishizawae (n = 2), P. goettingianae (n = 1), P. usgae (n = 1),
P. aldrichii (n = 1), Plectid infective Pasteuria spp. isolates (n =
3), and Pasteuria HcP (n = 1). In addition, Pasteuria-like
sequences aligning with 97% similarity to P. hartismeri were
added which we have called here Pasteuria Luffness (n = 2) for
the location of their initial recovery bringing the total reference
set to 18 sequences. These sequences were used as the reference
database for taxonomic assignment of Pasteuria spp.
amplicons. The pairwise percentage identity of reference
Pasteuria spp. sequences in the aligned region of the 16S
rRNA gene ranged from a low of 84.7% (P. ramosa vs P.
usgae) to a high of 99.3% (P. penetrans to Pasteuria HcP) with
an average of 95% identity between all reference sequences.
Maximum likelihood phylogeny was inferred from aligned
reference sequences using IQ-TREE (v1.6.9) (Nguyen et al., 2014)
FIGURE 1 | Maximum likelihood phylogeny and pairwise sequence identity heatmap of Pasteuria spp. taxonomic reference sequences used in primer design and
Pasteuria spp. ZOTU taxonomic assignment.
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with bootstrapping (n = 100), and graphically represented in FigTree
(v1.4.3) (Rambaut, 2012) (Figure 1). The pairwise similarity of
reference sequences was plotted as a heatmap (Figure 1) using
ggplot2 (Wickham, 2009).

Primer Barcode Design
A pairwise in-line primer barcoding strategy was devised to
index PCR products. Barcode sequences (6 nt) were designed
based on a Levenshtein distance of three using the EditTag
python package (Faircloth and Glenn, 2012). These were
trimmed to 32 tags (1024 pairwise combinations) based on
minimizing penalty scores generated using the same software.
Two adenine bases were appended to the 5' end of each barcode
to account for base loss at the beginning of a sequencing read.
Pairwise combinations of barcoded primers were achieved by
diluting the stocks from 100 μM to 0.6 μM and then adding 2.5 μl
of each primer to a respective reaction, each individual primer in
32 unique reactions.

Amplification
PCR amplification of Pasteuria spp. 16S rRNA gene sequence
was carried out using a semi-nested approach using 1 μl of ESFN,
NSIS2, or plasmid dilution series DNA as template. Large
fragment (1110 bp) 16S rRNA gene products were amplified
using primers 39F (Atibalentja et al., 2000) and 1166R. This
product was then diluted 1 in 10 and used as template for short,
barcoded inner nest PCR that used primers PAS776F and 1166R.
Outer nest PCR conditions were 94°C for 5 minutes, followed by
30 cycles of 94°C for 1 minute, 60°C for 1 minute, and 72°C for 1
minute, with a final extension at 72°C for 10 minutes. PCR
conditions for Pasteuria inner nest reactions included an initial
denaturation of 94°C for 5 minutes, followed by 15 cycles of 94°C
for 15 seconds, 70°C for 20 seconds, and 72°C for 20 seconds,
with a final extension at 72°C for 1 minute.

18S rRNA gene sequences were amplified from ESFN DNA
samples using primers NF1 and 18Sr2b (Mullin et al., 2003;
Porazinska et al., 2009). PCR conditions were 94°C for 5 minute,
followed by 40 cycles of 94°C for 30 seconds, 58°C for 30 seconds,
and 72°C for 1 minute, with a final extension at 72°C for
10 minute.

All reactions (20 μl) were carried out with Q5 High-Fidelity
DNA Polymerase (NEB) with 1 μl of DNA as template. A high-
fidelity polymerase with 3–5′ exonuclease activity was used in all
PCR reactions to minimize artificial sequence variation
generated by PCR errors.

Library Preparation From PCR Products
Each short PCR product (4 ml) was electrophoresed on a 2%
agarose gel. Gels were visualized for bands of the expected size
and each band was assigned a score from 1 to 4 based on its
relative brightness: 1, not visible; 2, barely visible; 3, clearly
visible; and 4, very bright. This scoring was used to
approximately normalize PCR product concentrations, to avoid
overrepresentation of concentrated reactions, as follows: 10 ml
(scoring 1 or 2); 5 ml (scoring 3); and 1 ml (scoring 4) of products
added to the final product pool. All products from PAS776 and
1166R PCRs of NSIS2, ESFN, and control DNA samples were
Frontiers in Plant Science | www.frontiersin.org 5
pooled; all products from NF1 and 18Sr2b PCRs of ESFN DNA
were pooled separately. Once pooled, products were
concentrated by overnight incubation at −80°C with the
addition of 1 volume of isopropanol, 0.2 volumes of 3M
sodium acetate, and 20 ng of glycogen, followed by
centrifugation at 10,600 g for 15 minutes at 4°C to pellet DNA.
The supernatant was discarded, the pellet washed in 70% ice cold
ethanol and allowed to air dry. Dried pellets were re-suspended
in 105 ml of HPLC water. Pooled, concentrated PCR products
were subjected to size selection using the MagJET NGS Cleanup
and Size Selection Kit (Thermo Fisher Scientific). This size
selection was carried out to exclude primers and, in the case of
nested Pasteuria spp. 16s rRNA gene PCRs, to exclude outer nest
PCR products. Binding buffer (400 μl) was used with both initial
and final bead binding incubations which were extended to 15
minute, and intermediate binding was kept at 2 minutes to
maximize product recovery. PCR product pools were
combined and prepared for sequencing using the TruSeq PCR-
Free Library Preparation Kit (Illumina), omitting shearing. The
TruSeq PCR-Free Library Preparation Kit was selected to
minimize sequence errors introduced by amplification.
Sequencing was carried out at Edinburgh Genomics on
Illumina’s MiSeq platform with 300 base paired end reads.

Read Trimming and Overlap Merging
Initial sequence quality was assessed using FastQC v0.11.3
(Andrews, 2010). Trimmomatic v0.33 (Bolger et al., 2014) was
used to trim reads with a minimum Phred quality score of 22 and
a minimum length of 150 bp. Trimmomatic parameters were
determined by incremental reduction in quality score cut-offs
until >75% of all paired reads could be merged. PEAR v0.9.6
(Zhang et al., 2014) was used to merge quality trimmed paired
end reads. Primer sequences were used to separate merged read
pairs into amplification target groups, using primer regular
expression matching with an acceptable ambiguity of 1 nt, and
their orientation was then corrected using Python (this study).
VSEARCH v2.1.1 (Rognes et al., 2016) was used to filter merged
read pairs for a maximum number of expected base calling errors
of less than 2 (Edgar and Flyvbjerg, 2015). Merged read pairs
were binned in respective sample FASTQ files based on in-line
primer barcode sequences, trimmed to exclude sequence up to
and including primer sequences, to confine sequences to variable
regions, then renamed to meet downstream requirements using
Python (this study).

UNOISE3 from USEARCH v.10.0.240 (Edgar, 2013; Edgar,
2016) was used to generate zero radius operational taxonomic
units (ZOTUs). ZOTU is a term specific to analysis with
UNOISE referring to operational taxonomic units (OTUs)
which are generated by an error correction algorithm as
opposed to a sequence similarity clustering algorithm (Edgar,
2016). Raw merged read pairs were mapped back to ZOTUs
using the otutab command in USEARCH.

Taxonomic Assignment
Taxonomy was assigned to ZOTUs using UCLUST (Edgar,
2010) via assign-taxonomy.py in QIIME v1.91 (Caporaso et al.,
2010) to cluster ZOTU sequences iteratively between 100% and
January 2020 | Volume 10 | Article 1763
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90% identity to our curated Pasteuria spp. reference database for
16S rRNA gene products and to the SILVA-132 database (Quast
et al., 2012) for the 18S rRNA gene products. All reference
sequences were trimmed to the regions between the primer
sequences allowing for a maximum mismatch of 1nt in each
primer sequence. Iterative best hit assignment was used as each
sequence being assigned taxonomy was a single representative of
a putatively real biological sequence. The percentage match of
each taxonomic assignment was appended to ZOTU identifiers
as an integer between 0.9 and 1.0 (Quast et al., 2012). Iterative
taxonomy tables were combined into a single table containing
the best available match for each ZOTU sequence using Python
(this study). Thereafter, ZOTU tables were combined with
sample metadata and best taxonomic assignments using R
scripts (this study).

ZOTU Table Quality Control
ZOTU tables with metadata were filtered for total ZOTU
abundance (> 10) across the entire dataset to eliminate
uninformative, low abundance ZOTUs. 18S rRNA gene
products were also filtered for unwanted taxa to exclude
ZOTUs outside of Nematoda. The number of reads generated
for each sample was compared against the PCR band score to
determine that observed amplification matched with the
abundance of assembled products. Comparisons of these two
independent estimates of PCR product mass were used to assess
the likelihood of errors in the barcode sorting pipeline, pipetting
of barcoded primers, sample storage, and cross contamination of
barcode primer stocks. Samples which showed sustained
mismatch between band scoring and merged paired read
counts were removed.

Ordination and Statistical Analysis
Pasteuria spp. communities in the NSIS2 samples and nematode
communities in the ESFN samples were ordinated using non-
metric multidimensional scaling (NMDS) using Vegan (Dixon,
2003). ESFN samples which did not produce visible metazoan
PCR product were excluded as uninformative. Soil metadata and
ZOTU abundance were then fitted to these ordinations using
Vegan’s envfit. P values were adjusted for the false discovery rate
using the Benjamini-Hochberg correction method (Benjamini
and Hochberg, 1995).

Pasteuria-Nematode ZOTU Interactions
Pasteuria and nematode ZOTU correlation was computed as the
Spearman's rank correlation between each pairwise combination
of ZOTUs. This was computed in R using a slightly modified
version of a script described by Williams et al. (2014) designed to
determine microbial co-occurrence patterns. P values were
adjusted for the false discovery rate using the Benjamini-
Hochberg correction method (Benjamini and Hochberg, 1995).

Nematode Recovery
Recovery of nematodes from ESFN soils which returned a large
18S rRNA gene fragment PCR product was carried out to
attempt to confirm the presence of Pasteuria endospores in
soils which returned Pasteuria-like PCR products. This was
Frontiers in Plant Science | www.frontiersin.org 6
done using a high density sucrose flotation method designed to
optimize recovery of dense endospore filled nematodes (Hewlett
et al., 1997). Two hundred grams of ESFN soils were suspended
in 600 ml of tap water and the slurry was shaken vigorously for a
period of 2 minutes then passed through a bank of sieves (250,
90, 25 mm). The retentate from the 25 mm sieve was re-suspended
in approximately 30 ml of sterile distilled water and this was
spun at 420 g for 5 minutes to pellet nematodes. The supernatant
was discarded, and the pellet suspended in approximately 30 ml
of sterile sucrose solution with an approximate density of 1.28 g
ml−1. This was spun again at 420 g for 1 minute and the
supernatant passed through a 25 mm sieve. The retentate from
this sieve was re-suspended in approximately 20 ml of SDW and
4 x 5 ml observed in a counting dish for the presence of
endospores with an inverted microscope (Hund Wilovert®) at
50 and 200X magnification.

Immunofluorescence
Immunofluorescent labeling of P. penetrans spores on live
nematodes recovered from soils was carried out using a
previously described polyclonal antibody (Costa et al., 2006). A
1:1000 dilution of antibody was added to an equal volume of
sterile distilled water containing the recovered nematode. This
was left for 1 hour at room temperature or at 4°C overnight
before being washed by successive transfer of individual
nematodes to 5 ml of sterile distilled water. The resultant
solution was then incubated with Goat anti-rabbit IgG bound
to red fluorescent dye CyC at 4°C overnight. This was washed of
unbound antibody as before and viewed under RFP fluorescent
microscopy at 200 and 1,000x magnification with a Zeiss
Axiosop microscope.
RESULTS

PCR
Of 560 ESFN nematode DNA samples 266 (47.5%) and 122
(21.8%) score of 2 or higher with metazoan and Pasteuria spp.
primers, respectively. Considering ESFN samples which did not
amplify as failed DNA extractions or PCR reactions, 45.9% of
successful ESFN samples returned Pasteuria spp. PCR product.
Of 144 NSIS2 soil DNA samples, 56 (38.9%) score 2 or higher
using Pasteuria spp. PCR primers.

Size Selection
Extension of initial and final bead binding incubations, to the
exclusion of primers and shorter products, and reduction of the
intermediate binding, to the exclusion of larger PCR products,
increased the efficiency of PCR product recovery from just 6% to
35% with an approximate input of 5 mg.

Sequence Pipeline
Out of a total of 8,945,443 raw paired end reads, 77.8% remained
after trimming; of these 98.7% were merged. Merged read pairs
produced 1,181,554 Pasteuria spp. 16S rRNA gene sequences;
2,100,892 metazoan 18S rRNA gene sequences; and 183,079
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matching no primer sequence. Ninety-nine percent of the
metazoan and 92% of the Pasteuria spp. merged read pairs
remained after expected error and barcode sorting. Four
percent of the Pasteuria spp. and 16% of the metazoan merged
read pairs were unique sequences.

Nematode Primer Specificity
Nematode ZOTUs account for 72% of all ZOTUs and 85% of all
merged read pairs within the ESFN 18S rRNA gene sample set.
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Annelid worms comprised 12% of the assembled read pairs and
4% of ZOTUs in this set. Fungi, Oomycetes, and Alveolata each
comprised 1% of remaining assembled read pairs.

Pasteuria Detection Limits
Amplification and agarose gel electrophoresis demonstrated a typical
detection limit of approximately 1000 target gene copies. Sequencing
results largely reflected this with consistent detection of P. penetrans
and P. hartismeri target sequences at 1,000 target copies and above
FIGURE 2 | Boxplots of Pasteuria penetrans (A) and P. hartismeri (B) 16S rRNA gene template copy number vs the merged paired read copy number ul−1 of
product added to the final sequencing pool. Spearman's rank correlation is given as Rho and p. Loess curve of best fit is given as the blue trend line with dark grey
shading representing uncertainty in this fit with a 95% confidence interval. Template copy number, representing the number of plasmids in each PCR reaction
carrying the target gene, was log transformed as each input copy number was an order of magnitude greater or less than the next smallest or largest.
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(Figure 2). Reads obtained from sequencing μl−1 of PCR
product do not increase beyond 1,000,000 target gene copies
in the PCR reaction.

Diversity and Distribution
Soil samples from the NSIS2 which contained Pasteuria spp. were
broadly distributed with no sequence or ZOTU variant bearing a
significant relationship to easting or northing (Figure 3). The most
common and widely distributed sequence variants recovered
matched most closely to reference sequences for Pasteuria
hartismeri and a sequence recovered at a farm near Edinburgh
here referred to as “Pasteuria Luffness”. ESFN samples were similarly
dominated by these two sequences at most sites.

Pasteuria ZOTUs vs Soil Properties
Figure 4 shows the plotted NMDS ordination and associated
metadata and species fits. Statistically significant relationships
were observed between Pasteuria ZOTU sequence variants and
near surface mineral horizon A, soil carbon, dry bulk density,
pH, and field moisture (Table 2).
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Major soil group peat, vegetation code ES1C (terminal phase
blanket bog), clay content, and soil horizon O were significant
factors pre-Benjamini-Hochberg correction, however, these drop
from significance post-correction. Other soil horizons, major soil
groups, and vegetation codes lacked statistically significant
effects, both before and after Benjamini-Hochberg correction,
on Pasteuria community composition.

NSIS2 Pasteuria spp. soil samples do not cluster into clear
independent groups in the NMDS analysis. This suggests that the
relationship between the above factors and the abundance of
recovered ZOTUs is not binary but scalar. For example, ZOTU
X3 assigned to P. hartismeri with 99% identity is more abundant
in samples with less carbon, a higher pH, and a lower moisture
content. These variables have strong pairwise Spearman's rank
correlations (Table 3) and likely summarize the general
properties of the soil horizon A in contrast to organic horizons
L, H, and O. ZOTU X25, assigned with 96% identity to Pasteuria
goettingianae has the inverse relationship with these variables,
while X1, which is most similar to P. penetrans in the amplified
region, shows no strong preference. However, each ZOTU is also
FIGURE 3 | Map of distribution of the most abundant Pasteuria spp. ZOTUs across both NSIS2 (circles) and ESFN (triangles) datasets. Plot points are colored by
ZOTU and sized as a function of the total number of merged read pairs recovered for that ZOTU µl−1 of product added to the final pool from the
corresponding sample.
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present in organic and minera l so i l s /hor izons at
lower abundance.

Pasteuria-Nematode Interactions
ESFN Nematode Communities
Organic farming methods show a statistically significant
relationship (P = 0.035) with nematode community structure
pre-Benjamini-Hochberg correction although LEAF and
conventional farms do not (Figure 5). No soil environmental
factors tested in the ESFN dataset remained significant (P < 0.05)
following Benjamini-Hochberg correction. However, the weight
Frontiers in Plant Science | www.frontiersin.org 9
of sand (P = 0.009) and silt (P = 0.013) in each sample appeared
to significantly influence the nematode community
before correction.

Several ZOTUs bearing sequence similarity to PNN genera
drive diversity in nematode community structure (Figure 5).
Pasteuria hartismeri-like ZOTU X4 displays a negative fit to
almost all statistically significant nematode ZOTU sequences.
Pasteuria spp. ZOTU sequences X15 assigned to a Pasteuria spp.
infective of bacterial feeding Plectidae, correlates with organic
farms, silt weight, and Longidorus elongatus (Tzean and
Estey, 1981).

Direct PCN J2 counts were available for 74 of the ESFN
samples taken from a potato variety and nematicide
incorporation trial conducted in two fields at a single farm.
FIGURE 4 | NDMS ordination plot of NSIS2 Pasteuria spp. community composition. Points are colored by soil horizon where L = litter; H = humus; O = peaty
material formed under wet, anaerobic conditions; and A = mineral horizon formed at or near the surface showing accumulation and incorporation of organic matter.
Points are sized by the total number of merged read pairs µl−1 of PCR product added to the final pool from the corresponding sample. Stress = 0.245235.
TABLE 2 | Environmental variables with a statistically significant relationship to
Pasteuria spp. community ordination before or after Benjamini-Hochberg
correction.

NMDS1 NMDS2 r P BH adjusted P

Horizon: A 0.583 0.208 0.38 0.001 0.01
Bulk Density 0.556 0.324 0.41 0.001 0.01
Carbon −0.654 −0.135 0.45 0.001 0.01
Moisture −0.634 −0.082 0.41 0.001 0.01
pH 0.425 0.242 0.24 0.006 0.05
Vegetation ES1C −0.334 0.314 0.21 0.019 0.13
Clay 0.385 0.210 0.19 0.022 0.13
Major Soil Group: Peat −0.438 0.005 0.19 0.033 0.17
Horizon: O −0.388 0.041 0.15 0.053 0.24
TABLE 3 | Spearman’s rank correlation of soil properties with statistically
significant correlation to Pasteuria spp. community composition.

Horizon A Dry Bulk Density Carbon pH Field
Moisture

Horizon A 1 0.84 −0.85 0.84 −0.83
Dry Bulk Density 0.84 1 −0.78 0.78 −0.90
pH 0.84 0.78 −0.66 1 −0.75
Field Moisture −0.83 −0.90 0.85 −0.75 1
Carbon −0.85 −0.78 1 −0.66 0.85
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Direct J2 counts and ZOTUs assigned to Globodera spp. showed
statistically significant (P = 3.25e−07) positive correlation.
However, this correlation was weak (R = 0.67).

ZOTU Spearman’s Rank Correlations
To test direct species to species interactions, rather than overall
community interactions, the pairwise Spearman's rank correlation of
all nematode and Pasteuria spp. ZOTUs was calculated. Several
Pasteuria and nematode ZOTUs bear a statistically significant
relationship (Table 4). However, the observed correlations are
typically weak. Pasteuria spp. ZOTUs X1, X2, X3, and X4 display
a significant negative correlation with metazoan ZOTUs assigned to
Paratylenchus species. ZOTU X2, and X3 both assigned to P.
hartismeri also displays a statistically significant negative
correlation with Heterodera andMeloidogyne species.

Recovery of Endospore Encumbered Nematodes
Sucrose floatation of nematodes from ESFN soils returned
Pasteuria endospore encumbered Pratylenchus spp. and free-
living nematodes (Figure 6). Insufficient material was recovered
to amplify endospore 16S rRNA gene sequences, however
polyclonal anti-Pasteuria penetrans antibodies successfully
recognized Pratylenchus spp. attached endospores (Figure 6).
Frontiers in Plant Science | www.frontiersin.org 10
DISCUSSION

Sensitivity
Sensitivity of our tests were high with detection limits of
Pasteuria ranging from 10 to 1,000 copies of the target gene.
Mauchline et al. (2011) hypothesized that the copy number of the
16S rRNA gene in Pasteuria spp. was likely to be low, one or two
copies in contrast to those of related Bacillus spp., which typically
have more than ten (Fogel et al., 1999). Genomic sequencing of
P. penetrans RSE148 (Orr et al., manuscript in preparation)
returned three SSU gene copies. Detection at this level would be
theoretically sufficient to recover sequence from a single
endospore filled juvenile nematode, which would typically
contain ~500 mature endospores (Sturhan et al., 1994). These
limits provide an indication of detection in an ideal sample where
all bacteria are lysed, and which is free from inhibitors. However,
spores of Pasteuria spp. are robust, being resistant or partially
resistant to heat, desiccation, lysozyme, and SDS (Giannakou
et al., 1997; Atibalentja et al., 2004; Mauchline et al., 2010).
Environmental DNA samples are likely to contain inhibitors
which would further increase the practical limits of detection
relative to the inhibitor concentration within the starting
material (Donn et al., 2008).
FIGURE 5 | NMDS ordination of ESFN nematode community ZOTUs. Each point represents a nematode community. Samples are colored by farm type and sized
by the total abundance of nematode merged read pairs recovered µl−1 of PCR product added to the final pool. Arrows represent the statistically significant fits of
Nematode ZOTUs, Pasteuria ZOTUs, non-nematode metazoan ZOTUs, and environmental factors where the length of the arrow reflects the effect size. For ease of
visualization the number of significant nematode ZOTUs plotted has been reduced. Stress = 0.2482174.
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TABLE 4 | The top three most abundant Pasteuria spp. ZOTUs in the ESFN dataset and respective metazoan ZOTU Spearman’s rank correlations which were
statistically significant after Benjamini-Hochberg correction.

ZOTU 1 ZOTU 2 rho P BH corrected P

X4_Pasteuria.hartismeri_0.995 X701_Filenchus.discrepans_1.0 0.25 7.7E-05 2.4E-03
X4_Pasteuria.hartismeri_0.995 X851_Ditylenchus.dipsaci_0.98 0.23 2.1E-04 5.5E-03
X4_Pasteuria.hartismeri_0.995 X867_Longidorus_0.96 0.23 2.1E-04 5.6E-03
X4_Pasteuria.hartismeri_0.995 X845_Pratylenchoides_0.98 0.23 2.2E-04 5.8E-03
X4_Pasteuria.hartismeri_0.995 X58_Diphterophora_0.98 0.23 2.5E-04 6.5E-03
X4_Pasteuria.hartismeri_0.995 X70_Diphterophora_0.98 0.21 7.2E-04 1.5E-02
X4_Pasteuria.hartismeri_0.995 X72_Longidorus.elongatus_1.0 0.21 8.6E-04 1.8E-02
X4_Pasteuria.hartismeri_0.995 X876_Ecumenicus_0.98 0.20 1.8E-03 3.2E-02
X4_Pasteuria.hartismeri_0.995 X784_Cephalobidae_0.94 −0.20 1.2E-03 2.3E-02
X4_Pasteuria.hartismeri_0.995 X65_Heterocephalobus.elongatus_1.0 −0.21 6.6E-04 1.4E-02
X4_Pasteuria.hartismeri_0.995 X752_Heterodera_0.97 −0.23 3.3E-04 8.2E-03
X4_Pasteuria.hartismeri_0.995 X706_Tylenchidae_0.93 −0.23 2.5E-04 6.4E-03
X4_Pasteuria.hartismeri_0.995 X846_Tylenchoidea_0.93 −0.24 1.1E-04 3.1E-03
X4_Pasteuria.hartismeri_0.995 X657_Tylenchidae_0.91 −0.26 3.2E-05 1.1E-03
X4_Pasteuria.hartismeri_0.995 X800_Eucephalobus.cf.oxyuroides.JH.2004_0.97 −0.26 2.3E-05 8.5E-04
X4_Pasteuria.hartismeri_0.995 X55_Thonus.sp.JH.2004_1.0 −0.27 1.7E-05 6.6E-04
X4_Pasteuria.hartismeri_0.995 X641_Plectidae_0.92 −0.28 7.7E-06 3.2E-04
X4_Pasteuria.hartismeri_0.995 X5_Meloidogyne_1.0 −0.29 4.7E-06 2.1E-04
X4_Pasteuria.hartismeri_0.995 X68_Eucephalobus.cf.oxyuroides.JH.2004_0.995 −0.32 2.2E-07 1.3E-05
X4_Pasteuria.hartismeri_0.995 X56_Aphelenchoides.sp.JH.2004_0.97 −0.32 1.8E-07 1.1E-05
X4_Pasteuria.hartismeri_0.995 X75_Tylenchoidea_0.95 −0.35 9.9E-09 7.4E-07
X4_Pasteuria.hartismeri_0.995 X62_Paratylenchus_0.98 −0.37 1.8E-09 1.5E-07
X3_Pasteuria.hartismeri_0.99 X845_Pratylenchoides_0.98 0.31 4.0E-07 2.3E-05
X3_Pasteuria.hartismeri_0.99 X851_Ditylenchus.dipsaci_0.98 0.31 4.8E-07 2.6E-05
X3_Pasteuria.hartismeri_0.99 X701_Filenchus.discrepans_1.0 0.26 4.4E-05 1.5E-03
X3_Pasteuria.hartismeri_0.99 X867_Longidorus_0.96 0.24 9.7E-05 2.9E-03
X3_Pasteuria.hartismeri_0.99 X663_Ditylenchus.dipsaci_0.97 0.24 1.8E-04 4.9E-03
X3_Pasteuria.hartismeri_0.99 X70_Diphterophora_0.98 0.23 2.1E-04 5.6E-03
X3_Pasteuria.hartismeri_0.99 X798_Ditylenchus.dipsaci_0.995 0.22 4.0E-04 9.6E-03
X3_Pasteuria.hartismeri_0.99 X755_Tylenchidae_0.95 0.22 5.0E-04 1.2E-02
X3_Pasteuria.hartismeri_0.99 X549_Neopsilenchus.magnidens_0.97 0.21 1.0E-03 2.1E-02
X3_Pasteuria.hartismeri_0.99 X876_Ecumenicus_0.98 0.19 2.4E-03 4.0E-02
X3_Pasteuria.hartismeri_0.99 X784_Cephalobidae_0.94 −0.19 2.8E-03 4.5E-02
X3_Pasteuria.hartismeri_0.99 X706_Tylenchidae_0.93 −0.20 1.2E-03 2.3E-02
X3_Pasteuria.hartismeri_0.99 X5_Meloidogyne_1.0 −0.20 1.2E-03 2.3E-02
X3_Pasteuria.hartismeri_0.99 X56_Aphelenchoides.sp.JH.2004_0.97 −0.24 1.5E-04 4.1E-03
X3_Pasteuria.hartismeri_0.99 X55_Thonus.sp.JH.2004_1.0 −0.26 4.6E-05 1.5E-03
X3_Pasteuria.hartismeri_0.99 X641_Plectidae_0.92 −0.26 3.8E-05 1.3E-03
X3_Pasteuria.hartismeri_0.99 X657_Tylenchidae_0.91 −0.28 8.5E-06 3.5E-04
X3_Pasteuria.hartismeri_0.99 X68_Eucephalobus.cf.oxyuroides.JH.2004_0.995 −0.30 1.9E-06 9.3E-05
X3_Pasteuria.hartismeri_0.99 X75_Tylenchoidea_0.95 −0.30 1.5E-06 7.6E-05
X3_Pasteuria.hartismeri_0.99 X62_Paratylenchus_0.98 −0.32 3.2E-07 1.8E-05
X1_Pasteuria.penetrans_1.0 X887_Diphtherophorina_0.96 0.23 3.0E-04 7.5E-03
X1_Pasteuria.penetrans_1.0 X713_Alaimus.sp.PDL.2005_0.98 0.23 3.1E-04 7.7E-03
X1_Pasteuria.penetrans_1.0 X70_Diphterophora_0.98 0.21 6.5E-04 1.4E-02
X1_Pasteuria.penetrans_1.0 X615_Nygolaimus.cf.brachyuris.JH.2004_0.995 0.21 1.0E-03 2.1E-02
X1_Pasteuria.penetrans_1.0 X525_Eumonhystera.cf.filiformis.1.JH.2014_0.97 0.20 1.7E-03 3.1E-02
X1_Pasteuria.penetrans_1.0 X855_Aquatides_0.96 0.19 2.8E-03 4.5E-02
X1_Pasteuria.penetrans_1.0 X678_Nygolaimus.cf.brachyuris.JH.2004_0.99 0.19 3.0E-03 4.8E-02
X1_Pasteuria.penetrans_1.0 X56_Aphelenchoides.sp.JH.2004_0.97 −0.19 2.0E-03 3.5E-02
X1_Pasteuria.penetrans_1.0 X75_Tylenchoidea_0.95 −0.20 1.2E-03 2.3E-02
X1_Pasteuria.penetrans_1.0 X570_Plectus_0.94 −0.20 1.2E-03 2.3E-02
X1_Pasteuria.penetrans_1.0 X55_Thonus.sp.JH.2004_1.0 −0.22 5.8E-04 1.3E-02
X1_Pasteuria.penetrans_1.0 X657_Tylenchidae_0.91 −0.22 5.3E-04 1.2E-02
X1_Pasteuria.penetrans_1.0 X68_Eucephalobus.cf.oxyuroides.JH.2004_0.995 −0.23 2.9E-04 7.4E-03
X1_Pasteuria.penetrans_1.0 X641_Plectidae_0.92 −0.23 2.3E-04 5.9E-03
X1_Pasteuria.penetrans_1.0 X62_Paratylenchus_0.98 −0.24 1.8E-04 4.9E-03
X2_Pasteuria.Luffness_0.98 X92_Xiphinema.pachtaicum_1.0 0.26 2.4E-05 8.8E-04
X2_Pasteuria.Luffness_0.98 X867_Longidorus_0.96 0.24 1.3E-04 3.8E-03
X2_Pasteuria.Luffness_0.98 X734_Longidorus_0.97 0.21 7.2E-04 1.5E-02
X2_Pasteuria.Luffness_0.98 X701_Filenchus.discrepans_1.0 0.21 9.9E-04 2.0E-02
X2_Pasteuria.Luffness_0.98 X56_Aphelenchoides.sp.JH.2004_0.97 −0.19 2.6E-03 4.3E-02
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Primer Specificity
UNOISE2 resulted in 148 16S rRNA gene ZOTUs across the
entire dataset. Of these ZOTUs 75 (50.7%) were at least 90%
similar to curated Pasteuria spp. reference sequences and only
one sequence returned a best hit as low as 92% similarity.
However, 100% of merged read pairs in the ESFN sample set
and 93% of merged read pairs in the NSIS2 dataset were at least
90% identical to Pasteuria spp. reference sequences. The
remaining 7% of NSIS2 assembled read pairs align
predominantly with uncultured Acidobacteria. The lack of
merged read pairs not matching to reference sequences
suggests minimal off-target amplification from eDNA samples.

Nematode primers used in this study were not completely
nematode specific, however ESFN DNA samples had been
enriched for nematodes via Baermann funnel extraction.
Nematode ZOTUs represented 581 (72%) of 803 18S rRNA
gene ZOTUs and 85% of assembled read pairs illustrating that
Baermann funnel extraction was an appropriate enrichment
method. Sapkota and Nicolaisen (2015) reported a similar
metabarcode study which enriched for nematode PCR
products via initial semi-nested amplification using primers
NemF and 18Sr2b from whole soil extracted DNA. These
authors reported that 64.4% of OTUs recovered were
taxonomical ly ass igned to Nematoda (Sapkota and
Nicolaisen, 2015). When contrasted with our results, PCR-
based sample enrichment from whole soil extracted DNA
appears to be less efficient (7.6% fewer nematode ZOTUs)
than selection by Baermann funnel extraction. Similarly,
Pasteuria spp. were amplified from a slightly higher
proportion (45.9%) of ESFN samples compared to NSIS2
samples (35.9%), a difference of 7%. This slight increase in
ESFN samples where Pasteuria spp. were detectable may be
attributed to the greater volume of soil (200 g vs 0.25 g) which
served as starting material for ESFN extractions. Pasteuria spp.
may not be evenly distributed in soils and indeed the formation
of microsites in soil may be important to effective parasitism
(Stirling, 2014). Nematode enrichment from a sufficient
volume of soil may also serve to enrich for Pasteuria species.
Further, nested PCR reactions significantly increase the
potential for well to well contamination, particularly within
large sample sets. However, the proportional increase in
Pasteuria spp. and nematode recovery in nematode enriched
ESFN DNA extractions is slight; evaluating any statistical
significance is not in the scope of this study. Further, it has
been shown that an initial nested PCR reaction followed by a
short number of barcoded primer cycles can reduce barcode
bias effects and improve reproducibility in metabarcode
studies (Berry et al., 2011).
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Ordination and Soil Properties
The physical and chemical properties of soils had clear and
statistically significant influence on Pasteuria spp. community
structure, moreover, Pasteuria ZOTUs had separate and specific
relationships with these properties. Pasteuria hartismeri appears to
significantly associate with mineral A horizons in the NSIS2 soil
DNA sample set. Soil organic carbon, pH,moisture, and bulk density
are intrinsically linked (Vereecken et al., 1989; Kemmitt et al., 2006).
Soil pH has previously been shown to correlate well with bacterial
diversity and elevation (Shen et al., 2013). In Scotland, this
relationship has a clear geographic implication in that altitude,
rainfall, and pH vary significantly from North and West to South
and East. No significant correlations were observed with either
latitude or longitude. However, Pasteuria spp. communities in the
ESFN appear broadly similar, being dominated by P. hartismeri and
PasteuriaLuffness sequences. Soil pHhas also been shown to directly
affect attachment of P. penetrans to root knot nematodes (Afolabi
et al., 1995). Pasteuria spp. found parasitizing H. glycines in China
were found most commonly in high pH, low organic matter soils
(Ma et al., 2005). In isolation the observed relationships between
Pasteuria spp. and soil properties could be perceived as factors
affecting the survival, attachment, and retention of endospores.
However, it is likely that the single greatest influence on the
abundance and diversity of Pasteuria spp. is the distribution of
their hosts. Near surface mineral horizons are the location in the soil
profile most likely to contain recorded root feeding nematode hosts
for P. hartismeri, temperate Meloidogyne species (Bishop et al.,
2007). Bulk density, pH, and organic matter content were also
shown by Treonis et al. (2018) to have a statistically significant
effect on nematode community structure in parallel metabarcode
and morphological profiling within grain production systems in the
mid-Atlantic USA. These researchers demonstrated that PNNs,
likely hosts for P. hartismeri, were more abundant in conventional
and zero tillage systems compared to organic farms (Treonis et al.,
2018). Our findings in the ESFN nematode community structure
dataset broadly support those of Treonis et al. (2018) except for pH
which shows no statistically significant influence either before or
after Benjamini-Hochberg error correction in the ESFNdataset. This
is likely a reflection of the limited range of pH within this sample set
(5.1–6.6).

Pasteuria-Nematode Community
Relationships
Observed nematode-Pasteuria ZOTU correlations were not
strong. This may be explained in part by successful nematode
suppression. Where Pasteuria spp. are effectively parasitizing a
nematode host, they may be difficult to recover as the number of
juveniles in the community will be greatly reduced. They would
TABLE 4 | Continued

ZOTU 1 ZOTU 2 rho P BH corrected P

X2_Pasteuria.Luffness_0.98 X657_Tylenchidae_0.91 −0.20 1.1E-03 2.2E-02
X2_Pasteuria.Luffness_0.98 X68_Eucephalobus.cf.oxyuroides.JH.2004_0.995 −0.21 6.8E-04 1.5E-02
X2_Pasteuria.Luffness_0.98 X62_Paratylenchus_0.98 −0.24 9.6E-05 2.9E-03
X2_Pasteuria.Luffness_0.98 X641_Plectidae_0.92 −0.25 7.4E-05 2.3E-03
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FIGURE 6 | (A) 400x magnification Pratylenchus spp. recovered from ESFN soil with Pasteuria spp. endospore attached (position indicated by red arrow).
(B) 1000x magnification of Pratylenchus spp. recovered from ESFN soil with Pasteuria spp. endospore attached (position indicated by red arrow). (C) 1000x
magnification of free living non-parasitic nematode recovered from ESFN soil with several Pasteuria spp. endospores attached (positions indicated by red arrows).
(D) 1000x magnification of fluorescence image of Pratylenchus spp. recovered from ESFN soil with Pasteuria spp. endospore attached (position indicated by blue
arrow), showing anti-Pasteuria penetrans antibody recognition.
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also be less mobile due to the attachment of endospores to the
cuticle, decreasing their recovery via methods which rely on the
mobility of viable nematodes (Vagelas et al., 2012) and they may
possess a much higher specific gravity, reducing their recovery
via methods which rely on floatation (Oostendorp et al., 1991).
Thus to successfully detect Pasteuria spp. from ESFN DNA
samples both the bacteria and nematode had to be present; the
nematode had to comprise enough of the total extracted
metazoan community to detect; and the Pasteuria spp. had to
be abundant enough to detect but not so abundant that the
nematode could not be recovered. Despite this, the data provides
some indication of Pasteuria spp. suppressive activity.

In ZOTU fits to the ESFN NMDS plots a P. hartismeri-like
sequence which was prevalent in both datasets appeared to correlate
negatively with almost all significant nematode species, including
Globodera andPratylenchoides. Suppression ofH. avenae inUK soils
by Pasteuria-like species has previously been reported (Davies et al.,
1990). The dominance of P. hartismeri in Scottish soils is surprising.
However, pairwise Spearman's rank correlations suggest a potential
host range which is broader than it's currently described temperate
RKN hosts (Bishop et al., 2007). Further, ZOTU X5, which is
assigned with 100% identity to Meloidogyne spp. with exact
matches to both M. chitwoodi and M. fallax with 99.7% identity to
M. minor has a read abundance μl−1 ≥ 1 in 9.2% of successfully
amplified ESFN samples. Fleming et al. (2016) recently surveyed
cereal and grassland soils in Northern Ireland, finding thatM.minor
was prevalent in 6% of soils tested. The abundance of this ZOTU is,
however, typically low. This may reflect both primer bias and an
insufficient depth of sequencing. Waeyenberge et al. (2019) recently
demonstrated thatM. incognita are up to 19.3 x underrepresented in
metabarcoding data of defined communities depending on method
of DNA extraction and primer selectionRecovery of endospore
encumbered Pratylenchus spp. suggests that the P. hartismeri-like
Pasteuria found in this study is capable of attachment to
Pratylenchinae as well as temperate RKN species. P. hartismeri
assigned ZOTU X4 has a significant negative Spearman's rank
correlation (P = 0.007) with Pratylenchus fallax although this
relationship is not significant post Benjamini-Hochberg correction.
A number of other nematode ZOTUs also demonstrate a statistically
significant negative correlation with this P. hartismeri-like sequence
including ZOTUs assigned to Heterodera spp. and Paratylenchus
species. Pasteuria spp. are broadly considered to be extremely
fastidious in their attachment profile, however, cross-superfamily
attachment of P. penetrans to Meloidogyne spp. and Pratylenchus
spp. has been reported (Oostendorp et al., 1990; Sharma and Davies,
1996). De Gives et al. (1999) tested the attachment of five Pasteuria
endospore isolates to a range of nematodes finding that, while the
attachment profile of two isolates fromM. incognita were fastidious
within RKN, isolates from threeHeterodera spp. were less stringent;
attaching to populations of Heterodera spp., Globodera spp., M.
javanica, Pratylenchus spp.,Aphelenchoides spp., Radopholus similis,
and Rotylenchus reniformis. Supporting this observation, Wishart
et al. (2004) reported attachment of P. nishizawae endospores
isolated from H. glycines to both M. hapla and M. incognita. Chen
and Dickson (1998) listed 196 nematode species including free-
living, predacious, plant-parasitic, and entomopathogenic
Frontiers in Plant Science | www.frontiersin.org 14
nematodes which have been described encumbered with Pasteuria
spp. endospores. However, the genetic diversity of Pasteuria spp.
sequenced to date is relatively low. Mixed populations of Pasteuria
spp. are often recorded (Davies et al., 1990), however, it is not often
established that the endospores attached to each nematode species
are distinct. Metabarcoding revealed surprisingly little genetic
diversity of Pasteuria spp. in Scottish soils with two ZOTU
sequences dominating in both agricultural and non-agricultural
soils. However, we have captured only a fragment of the target
gene, leaving the possibility that additional variability within these
dominant ZOTU sequences has been overlooked. The range of
nematodes to which attachment of well characterized Pasteuria spp.
endospores has been tested is limited, normally restricted to root
knot and cyst nematodes due to the focus on recovery of novel
strains with biocontrol potential. While our understanding of the
molecular mechanics of Pasteuria spp. and nematode surface coat
interactions are incomplete, it may be premature to overstate the
specificity of endospore attachment. Endospore attachment is one of
the two mechanisms by which Pasteuria spp. may suppress a
nematode population (Davies et al., 1991; Vagelas et al., 2012).
Yet, in some cases, endospores attach and are then unable to
germinate such as Noel et al. (2005) reported with P. nishizawae
and G. pallida. This may account for indications of broad
suppressive activity of our P. hartismeri-like sequence.

The near exact opposition of this P. hartismeri-like sequence and
both Catenaria-like and Pythium-like sequences in NMDS
ordination could indicate a competitive interaction for the same
niche. Catenaria spp. are facultative parasites of a number of free
living and PNNs (Stirling, 2014). Pythium myophilum (previously
Lagenidium myophilum), the best taxonomic hit for ZOTU X88 is a
parasite of shrimp (Nakamura et al., 1994). However, Pythium spp.
have been recovered infecting of Daphnia longispina in several
German lakes whose 18S rRNA gene sequence clustered with P.
myophilum (Wolinska et al., 2009). Daphnia spp. are the only other
recorded hosts outside of Nematoda for Pasteuria species (Duneau
et al., 2011). Further, Pythiummonospermum, a member of the same
clade (Uzuhashi et al., 2010) is capable of parasitizing nematode eggs
but not juveniles (Tzean and Estey, 1981; Wolinska et al., 2009;
Duneau et al., 2011).

Limitations and Opportunities for
Future Development
Although correlated, direct PCN J2 counts were not accurately
reflected in the abundance of merged read pairs assigned to
Globodera species. Over and under estimation of nematode
abundance has been widely reported in nematode metabarcoding
studies (Porazinska et al., 2009; Treonis et al., 2018; Waeyenberge
et al., 2019). In the case of Heteroderinae, this may have been
exacerbated by the presence of a single nucleotide mismatch in the
NF1 primer sequence to the target DNA. Sample collection,
enrichment, DNA extraction, storage, barcoding, amplification,
library preparation, and sequencing each introduce unique biases
which can be minimized but are difficult to eliminate (Waeyenberge
et al., 2019). Pending further practical and/or computational
developments, it is important to recognize that sequence variant
analysis of nematode communities remains largely indicative; not
January 2020 | Volume 10 | Article 1763
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conclusive. Yet, several of the indicative relationships within the
ESFNdataset corroborate previous literature (Treonis et al., 2018), or
are corroborated in further investigation (Figure 6). This shows that,
despite its limitations, metabarcoding can be a useful tool in
uncovering biologically relevant trends in nematode communities.

The PCR barcoding strategy could be improved by double
indexing of samples. This would account for possible primer
dropout and allow for duplication of the assay in all samples.
Alternatively, adapter indexes could be used (Glenn et al., 2016)
which would preserve sequencing read length for PCR products.
Waeyenberge et al. (2019) demonstrated that an adaptedHolterman
method (Holterman et al., 2006) offered improvements to complete
lysis of nematode communities during DNA extraction. The use of
multiplemarker genes could provide amore robustmethodwhich is
better able to discriminate taxa. Porazinska et al. (2009) found that
sequencing of both 28S and 18S rDNAmarkers increased nematode
taxon discrimination from 90% to 97% in complex artificial
communities. However, an additional marker may reduce
coverage or push up sequencing costs. Design of additional
Pasteuria spp. markers is inhibited by a lack of robust sequence
data from well characterized strains. Mauchline et al. (2010)
identified several candidate markers such as gyrB and spo0A genes.
A concerted effort to generate Pasteuria spp. reference sequences
from diverse hosts and environments would be beneficial to
understanding the true diversity of the genus and its evolutionary
history. Further, conducting this assay in two stages, first assaying
Pasteuria spp. populations from direct soil extracted DNA and then
conducting deep sequencing of nematode communities, extracted
using high density sucrose flotation, in a restricted number of
interesting samples, may overcome some of the complications
introduced by sampling strategy discussed above.

The influence of pH, bulk density, moisture, cation valence, and
organic matter content on P. penetrans retention in the soil is well
documented (Dabiré et al., 2001; Dabiré and Mateille, 2004; Dabiré
et al., 2007; Mateille et al., 2009; Mateille et al., 2010). In addition, we
have been able to show that these relationships may be species, or
strain, specific and are likely driven by their effect on the host
nematode. This method could also be used to conduct large scale
assays of the effects of soil management practices in greater detail,
such as investigation of tillage and organic amendment, on the
cultivation of Pasteuria spp. specific suppression. Such an
investigation may reveal a pathway to a more holistic integrated
pest management strategy of which Pasteuria spp. are a part.
Frontiers in Plant Science | www.frontiersin.org 15
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