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ABSTRACT  

 

Objectives 

The aim of this study is to use Gaussian Process Regression (GPR) methods to quantify the effect of 

experimental temperature (Texp) and choice of diffusion cell on model quality and performance. 

Methods 

Data was collated from the literature. Static and flow-through diffusion cell data was separated and a 

series of GPR experiments conducted. The effect of Texp was assessed by comparing a range of datasets 

where Texp either remained constant or was varied from 22oC to 45oC. 

Key findings 

Using data from flow-through diffusion cells results in poor model performance. Data from static 

diffusion cells resulted in significantly greater performance. Inclusion of data from flow-through cell 

experiments reduces overall model quality. Consideration of Texp improves model quality when the 

dataset used exhibits a wide range of experimental temperatures.  

Conclusions 

This study highlights the problem of collating literature data into datasets from which models are 

constructed without consideration of the nature of those data. In order to optimise model quality data 

from only static, Franz-type, experiments should be used to construct the model and Texp should either 

be incorporated as a descriptor in the model if data is collated from a range of studies conducted at 

different temperatures. 
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Introduction 

 

Quantitative models of skin permeation are normally constructed by the collation of data from 

disparate literature sources, irrespective of differences in the methods used to generate data. This has 

historically been used as the main method of dataset construction due to the paucity of available data. 

For example, the dataset collated by Flynn (1990) contains 97 permeability values, mostly from in vitro 

skin permeation studies, for 94 different chemicals [1]. These data were collected from 15 different 

literature sources [2 – 17], inferring that the data might inevitably exhibit a high degree of 

experimental variation due to inter-laboratory variation, including the use of skin from different 

sources and anatomical sites. This dataset is still the basis for the majority of work in this field, 

although it is important to note that a key message from Flynn’s study was that any such model is, by 

its very nature, an approximation of “real-world” skin permeation and that it should always be treated 

as a work in progress [1]. 

 

Following Flynn’s work a wide range of models estimating skin permeation were published. Many used 

Flynn’s dataset, or subsets abstracted from it, and others added to the original dataset. These studies 

are reviewed in detail elsewhere [18, 19] and they generally suggested that the inherent biological 

variation present in skin permeation data is so significant that differences in experimental 

methodologies from which models are built are impossible to decouple from each other.  

 

In recent years the volume of data from which models of skin permeation can be built has increased 

significantly. However, in the construction of a valid and relevant model it is never a straightforward 

solution to simply use more and more data as it becomes available. Data has often been added to 

datasets from studies which were conducted at different temperatures, carried out using different 

types of diffusion cells (either static, ‘Franz-type’ or flow-through, ‘Bronaugh-type’, illustrated in 

Figure 1), using different receptor compartment fluids (including a range of solvents or solutions 

buffered at a range of different pH values), or under occluded or unoccluded conditions. However, 

when models were constructed few, if any, of these parameters were considered [18, 19] usually as 

the variance associated with the outcome of the modelling process was attributed to the inherently 

variable nature of the skin and its permeability properties. 

 

The availability of a range of software packages that allow the generation of thousands of molecular 

descriptors has also been used without generally considering the impact of practices on model quality. 

This issue was explored by building models with in excess of 2000 molecular descriptors of each 
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member of their dataset [20]. By using a Feature Selection method it was determined that the best 

model used only 27 of these descriptors, with many being removed as they were redundant due to 

being highly correlated or only having one possible value. This study recommended that a relevant 

dataset must contain a diverse and balanced set of chemicals and that the underlying nature of the 

dataset must be considered when conducting such studies.  

 

The application of Machine Learning methods to this field have allowed more complex methods to be 

used to build models. For example, methods based on Gaussian Process Regression (GPR) have 

demonstrated improved predictive ability compared to the more traditional quantitative structure-

permeability relationship (QSPR) models [18, 21, 22]. These methods are not without criticism, but 

the often-cited absence of an algorithm to describe the permeability process is increasingly being 

perceived not as a limitation, but as a static outcome for such studies which may be open to incorrect 

interpretation, notably in the context of Flynn’s comment, above [19].  

 

We believe that this is the first study to focus on the experimental design in the development of 

predictive models of skin permeation, rather than solely focusing on the physicochemical descriptors 

of the molecules in the dataset. This is also the first study to apply the t-SNE methodology to the 

modelling of skin permeability. It is therefore the aim of this study to use GPR methods to quantify 

the effect of various experimental conditions – specifically, experimental temperature and choice of 

diffusion cell (as static or flow-through) – on the development of predictive models of skin permeation. 

Thus, in modelling the experimental temperature and cell type, and examining the effect of these 

conditions on the outcome of models, this study is the first of its kind and it presents a new approach 

to modelling skin permeability that will have significant implications for how such models should be 

constructed and interpreted. Implicit in this is the characterisation of the underlying data from static 

and flow-through cell experiments and how this novel approach can be used to underpin better model 

development through rational dataset construction.  
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Methods 

 

Part One – The Influence of Diffusion Cell Type on Models of Skin Permeability  

 

Datasets 

 

The dataset used for the main study of diffusion cell type has been published in full [23] and variously 

analysed previously [20, 23]. It consists of data collated from a range of literature sources based mainly 

on the Flynn dataset and subsequent modifications [24 – 27]. The dataset used in this study consists 

of 91 compounds from static diffusion cell studies and 53 compounds from flow-through cell 

experiments which are the averages of available literature data for each chemical [21, 28]. The 

physicochemical descriptors used in the model are lipophilicity (as log P), molecular weight (MW), 

molar refractivity (MR), used as a measure of molecular polarizability, counts of hydrogen bond donor 

and acceptor groups (HD and HA, respectively), the solubility parameter (SP), described by Fedors 

[29]) and the melting point (MPt). The corresponding target, skin permeability coefficient, is denoted 

as log Kp . 

 

Characterisation of the dataset 

 

Data visualisation matrices and principal component analysis (PCA) have been used in previous studies 

on percutaneous absorption [21, 28, 30]. The t-distributed Stochastic Neighbour Embedding (t-SNE) 

technique has recently been used for dimensionality reduction and the visualisation of high-

dimensional datasets [31]. It is applied here for the first time to a dataset of skin permeability data.  

 

Gaussian Process Regression 

 

The Gaussian Process Regression (GPR) methods used have been described previously in substantial 

detail [21, 30], including a guide for non-expert users to apply GPR methods to their datasets [32]. 

GPR is a non-parametric method of analysis. In contrast to quantitative structure-activity methods 

(QSARs) it is often described as a “black-box” method as it does not produce an explicit functional 

representation of the data (i.e. an algorithm). In GPR methods the underlying function, f(x), which 

produces the data will remain unknown and that the data is produced from an infinite set of functions 

with a Gaussian distribution in the function (chemical) space. The GPR model is fully characterised by 

its mean and covariance function [33] with the mean being considered the “zero-everywhere” 
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function. The mean of the GPR model is used as the predicted value (the output of the model) and the 

variance represents the error bars for this prediction. The molecular physicochemical descriptors of 

each molecule used in this study were selected as they are commonly used in similar modelling studies 

and are readily available without the need for specialist software [19, 21, 28, 30, 34]. Statistical 

performance measures for models are described below. 

 

Analysis of data 

 

Data from static and flow-through cell experiments were separated so that the performance of each 

group could be determined separately. In the first experiment, which used a leave-one-out 

methodology, the model is trained based on the flow-through data only and the predictions are 

obtained for flow-through data only. Similarly, in the second experiment, the model is based on the 

static diffusion cell data and the predictions are achieved only for static data. The effect of mixing data 

using both static and flow-through diffusion cells was then examined. Data from static diffusion cells 

and flow-through diffusion cells only were used to train each model and were also used to assess the 

performance of models which were trained with data from the other type of diffusion cell (i.e. models 

were based on training from static diffusion cells and then evaluated for flow-through cell data only, 

and vice versa). 

 

Ten different training and test subsets from the mixed dataset were generated. As datasets for static 

and flow-through diffusion cell experiments are of different sizes (n=91 and 53, respectively) the same 

number of static cell and flow-through cell data are included in each training set – 36 data were 

selected randomly for this purpose. The test set contains unequal measures of data from both static 

cell and flow-through cell datasets. This is repeated ten times in order to produce ten random training 

and test sets which are then trained separately and predictions obtained for their corresponding test 

sets. As the experiments have been repeated ten times the results are reported as the mean value 

along with its standard deviation. Thus, the following experiments were conducted: 

- Experiment A: Using data from static cell experiments only for training and test sets 

- Experiment B: Using data from flow-through cell experiments only for training and test sets 

- Experiment C: Using data from static cell experiments only for training and test sets from flow-

through cell experiments only 

- Experiment D: Using data from flow-through cell experiments only for training and test sets from 

static cell experiments only 
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- Experiment E: A mixed analysis of data collated from both datasets and used for training and test 

sets. 

 

Part Two – The Effect of experimental temperature on Model of Skin Permeation 

 

In a separate experiment using the datasets published by Prapopoulou [23], the effect of experimental 

temperature (Texp) on model performance was evaluated. The numerical feature of experimental 

temperature (as Texp) was added to the other descriptors examined in this study (see the section of 

Datasets). Initial studies showed that no benefit was obtained by including MR or SP into the analysis. 

The Texp range used in this study was 22oC to 45oC (including studies which cite the skin surface 

temperature at 32oC, rather than the temperature of the diffusion cells). All data that listed Texp as 

“not given” were omitted from the analysis [49]. The experimental results were compared before and 

after the inclusion of Texp in the model. Analysis was conducted using GPR methods outlined above. 

 

Performance measures 

 

The performance of each model is determined, as in previous studies [21, 28, 30, 35] by consideration 

of the correlation coefficient (r, CORR), the improvement over the Naïve model (ION) and the mean 

squared error (MSE). The training and test input target pairs are considered as (𝑥𝑛
𝑡𝑟𝑛, 𝑦𝑛

𝑡𝑟𝑛) and (𝑥𝑛
𝑡𝑠𝑡, 

𝑦𝑛
𝑡𝑠𝑡) with a test input of 𝑥𝑛

𝑡𝑠𝑡. The MSE measures the average squared difference between a model 

prediction, denoted by𝑦𝑛̂, and the corresponding targets, 𝑦𝑛
𝑡𝑠𝑡. The normalised mean squared error, 

where the MSE is normalised by the variance of target values, is thus represented by the expression: 

 

𝑀𝑆𝐸 =  
1

𝑁𝑡𝑠𝑡
∑ (𝑦𝑛

𝑡𝑠𝑡 − 𝑦𝑛̂)2 
𝑁𝑡𝑠𝑡
𝑛=1   ,        (1) 

 

where 𝑁𝑡𝑠𝑡 denotes the number of target values in the test set. 

 

The degree of improvement in the model, compared to the Naïve predictor (In the naive model for 

any input the prediction is always the same value, namely the mean of log Kp in the training set), is 

then represented by the expression: 

 

𝐼𝑂𝑁 =  
𝑀𝑆𝐸𝑛𝑎𝑖𝑣𝑒−𝑀𝑆𝐸

𝑀𝑆𝐸𝑛𝑎𝑖𝑣𝑒
 𝑥 100%          (2) 

 

where MSEnaive represents the MSE of the naïve model [21]. 
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As well as reporting MSE and ION for each experiment the correlation coefficient, r2 or CORR, between 

targets and estimates is also reported to further characterise the quality of models. This is consistent 

with the use of r2 in a range of predictive methods, including Machine Learning and quantitative 

structure-activity (or permeability) relationships (QSARs or QSPRs). This allows contextualisation of 

model quality with previous work in these fields. The aim of these performance measures is to obtain 

a models with low values of MSE and high values of both ION and CORR.  
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Results 

 

Characterisation of the dataset 

 

Figures 2 to 5 show the characterisation of the dataset. In Figure 2 the data is visualised in a matrix 

plot, comparing each individual molecular descriptor against each other. The data points have been 

shown in different signs and colours according to their labels: the static type is shown in red circles 

and the flow-through type by black crosses. In the diagonal (from top left to bottom right) the outline 

of grouped histograms are also plotted. It can be seen from this matrix that the distribution of the 

data from the static (Franz-type) diffusion cells is different to the distribution of the data from the 

flow-through cells across all the descriptors. The distribution of the molecular descriptors is shown for 

data from both static and flow-through cells in Figure 3 and indicates that the data from static diffusion 

cells has a similar mean value to data from flow-through cells for melting point, the Fedor’s solubility 

parameter, log P and the count of hydrogen bond donors, but that the means differ for molecular 

weight, molar refractivity and the count of hydrogen bond acceptors. Figure 4 shows the result of PCA 

analysis of the dataset. Plot (a) is a plot of the Eigenvectors, where each Eigenvalue indicates the 

amount of the variance within the data captured along the corresponding Eigenvector. The larger the 

Eigenvalue is, the more important the corresponding Eigenvector is, and the Eigenvector having the 

largest Eigenvalue is the first principal component. Thus, Figure 4(a) indicates that the first three 

components are relatively important in this PCA analysis, particularly the first two Eigenvectors which 

capture 67.97% of total variance.  Plots (c) and (d) in Figure 4 also shows that there is no linear 

relationship between logKp and the compound features.  

 

Figure 5 shows the results of the t-SNE analysis of the dataset. The basic aim of the t-SNE method is 

to minimise the divergence between the distribution that measures pairwise similarities of data in the 

original data space and the distribution that measures pairwise similarities of corresponding points in 

the low-dimensional space. Figure 5(a) shows the training errors, which converged after 100 

iterations. Like the PCA plot shown in Figure 4, it is clear that the data from the two different types of 

diffusion cells are mingled together, implying that they occupy the same “chemical space”. The 

complex and non-linear structures shown in the data, as shown in Figures 5(b to d), indicate that that 

structures in the data is complex and that it is difficult to distinguish them by using these seven 

physicochemical features. 

 

Effect of diffusion cell type on model quality 
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The results of Experiments A and B are shown in Table 1, where it can be seen that the performance 

of the flow-through model (that is, where permeation data from flow-through cell experiments only 

was used to train the model) is poor and almost the same as the naïve predictor. By comparison, the 

model using only static cell permeation data was substantially better (ION = 0.04FT vs. 0.42STAT; 

correlation coefficient = 0.20FT vs. 0.66STAT). 

 

The data from flow-through and static cell experiments was then collated and analysed together as a 

single dataset in order to gauge the impact of datasets containing mixed static and flow-through 

diffusion cell data on model quality. The results of Experiments C and D are shown in Table 2 and the 

average performance indicates that the best predictive models are always obtained when data from 

static diffusion cell experiments is used; when testing on the same data from static diffusion cell 

experiment, using the model trained by data from flow-through cell experiments, the value of ION is 

-7%, and the value of CORR is 0.19, while using the model trained by data from static cell experiment, 

the value of ION is 42% and the value of CORR is 0.66. Training models based on flow-through cell data 

only, and predicting the permeability of ‘unseen’ test data regardless of whether data from static or 

flow-through cells, resulted in poor models with a performance of 4% and 20% for ION and CORR, 

respectively (Table 1).  

 

Data from the static and flow-through cell subsets were then collated together to determine the effect 

of mixing data from these different sources on model quality. The results of this analysis are shown in 

Table 3, which indicate that, although data from both sets are used to train the model, the prediction 

performance for flow-through diffusion cell data has not been improved. A very small increase in static 

diffusion cell data (Table 2; IONGP 0.42, CORRGP 0.66 and Table 3; IONGP 0.43, CORRGP 0.67) was 

observed. Thus, using data from Franz-type cell experiments to train a predictive model for flow-

through diffusion cells, and vice versa (Table 3) resulted in poorly predictive models, suggesting a lack 

of comparability between the permeability data produced by both types of cells. 

 
 
Effect of experimental temperature (Texp) on model performance. 

 
It was found that if the dataset contained a wider range of experimental temperatures models with 

improved predictivity were obtained. For example, for the dataset with the widest range of 

temperatures (dataset F, Table 4) a 73% increase in ION was obtained. No improvement in model 

performance (as ION) was observed when the temperature range was restricted. This indicates that 
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adding Texp as a numerical feature to the data can be helpful in increasing model predictivity and that 

predictions are improved when the Texp range in a dataset as a large as possible. Model performance 

was not substantially improved by adding additional physicochemical features to the analysis or by 

using SVM methods [35]. 
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Discussion  

 

Diffusion cells for measurement of percutaneous absorption are comprised generically of two 

compartments separated by the membrane of interest. The donor compartment contains the 

penetrant, usually in a vehicle or other formulation, and it is collected from the receptor compartment 

after passing into and across the membrane of choice – in this context the membrane is usually excised 

human or other mammalian skin or artificial membranes such as polydimethylsiloxane.  

 

The two main types of diffusion cells for estimating the in vitro permeation of exogenous chemicals 

into and across skin are generally referred to as “static”, or Franz-type, diffusion cells [37] or flow-

through, or in-line or “Bronaugh-type” diffusion cells [38, 39] (Figure 1). The static cell is usually 

maintained in an upright position, with the receptor compartment (usually 2ml to 20ml in volume, 

compared to a flow rate in flow-through cells of 1 to 2 ml/min [40]) continually stirred to ensure even 

distribution of the permeant and is kept at a particular temperature which reflects either the in vivo 

situation or the needs of particular penetrants [41]. Whilst static cells find greater utility in the field – 

ostensibly due to convenience and cost – a number of studies indicate that there are no differences 

between permeability data obtained using either method [42 – 45]. In addition, the inherently variable 

nature of the skin membrane is considered in such experiments to exert a significant effect which may 

make any comparisons difficult or irrelevant. Official guidelines for in vitro diffusion cell studies, such 

as OECD 428, indicate that the use of either type of cell is acceptable [46]. In general it is perceived 

that both static and flow-through cells are similar in their production of permeability data and that 

the overall experimental design – notably the maintenance of skin conditions or the occlusivity of the 

donor compartment – is more important in the generation of valid and reliable data from in vitro 

experiments [44]. 

 

However, the results of this study indicate that the quality of the model is directly affected by the 

inclusion of data from flow-through experiments which reduces overall model quality and predictive 

power. Models based solely on flow-through data offer poor predictions of skin permeability, 

compared to models based on data derived from static diffusion cell experiments which resulted in 

comparatively highly predictive models. Thus, in order to optimise the model quality, data from only 

static, Franz-type, experiments should be used to construct the model and that data from flow-

through studies should not be used for this purpose as it yields by itself very poor models and also 

reduces the predictive accuracy of models when mixed with data from static diffusion cell 

experiments.  
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Despite the overall validation of flow-through diffusion cells proposed by Addicks and co-workers [42] 

they determined that, for a series of alkyl p-aminobenzoates diffused through a PDMS membrane, 

certain specific differences were observed when compared to static diffusion cells. Permeability 

coefficients for each of the compounds were obtained from static and flow-through diffusion cells and 

indicated that whilst the methyl and ethyl compounds were not significantly different the permeability 

coefficient for the propyl ester, at a flow rate of 24 ml/hr, was significantly higher than for either the 

12 ml/hr flow rate or for the Franz-type diffusion cell. Permeability coefficients at both flow rates in 

the flow-through diffusion cell were found to be significantly higher than those obtained with the 

Franz-type diffusion cell for both butyl and pentyl esters (P < 0.05). In exploring the flow rates further 

it was found that results were more erratic, with large standard deviations as the flow rate was 

increased to, for example, 60 ml/hr. They proposed that this was due to turbulent flow of the 

perfusant, which resulted in eddies in the current, and fluid channels in the cell which resulted in the 

formation of a large hydrodynamic layer which may affect perfusant solubility. They proposed that an 

optimum flow rate was required in flow-through cells which maintained sink conditions (which in their 

studies they found to be no more than 7% of the donor concentration at a flow rate of 12 ml/hr, lower 

than the often-cited threshold of 10% by, e.g. Barry, [47]).   

 

It is important to consider in this context some of the data used to construct mathematical models of 

skin permeability and their experimental conditions – and to note that such data is usually derived for 

purposes other than the development of mathematical models. In considering previous studies [11, 

12, 45, 48] whose data has been harvested in order to populate datasets from which various 

algorithms of skin permeability have been derived, the flow rates in flow-through cell experiments is 

different in all these studies, ranging from 1.1 to 5 mL/hr, which is both variable and outside the 

optimum proposed by Addicks and co-workers [42]. Building on their comments on flow rate and 

maintenance of skin conditions, it might be proposed that the flow rates in these studies are outside 

the ideal range to ensure full solubility.  

 

The wider point is not to consider the specifics of these different studies, which may have particular 

requirements which suit the nature of the chemicals of interest in each study. More important is the 

perception that data from static and flow-through cell experiments is interchangeable and can be 

collated into larger databases which are then used to develop predictive models. The design of 

datasets and the volume of data required to construct a robust model have been considered 

previously [49]. The findings of this study add to [49] by indicating that a closer inspection of the 
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experimental protocols for the data is required before data can be considered for use in datasets. In 

this context it is also important to consider that the design of diffusion cells is highly variable in size 

and that the maintenance of sink conditions is vital. Flow-through cells vary in terms of the materials 

used (e.g. some flow-through cells are manufactured from TeflonTM [38] whilst the vast majority of 

Franz-type cells are manufactured from glass) flow rate, possible issues of sample loss (if, for example, 

chemicals of interest are liable to be absorbed into the tubing used to perfuse the receptor 

compartment or if the temperature of significant amounts of tubing is not carefully controlled) and 

the gap between perfusion and sample collection. Whilst in vitro permeation data is normally 

interpreted in this context and accommodation in interpretation of data follows, this is not necessarily 

the same for models derived from collated literature data. There are echoes of this outcome in 

previous parts of the literature in this field. For example, the re-analysis of steroid permeability data 

used in Flynn’s dataset [1, 50] and its subsequent QSAR remodelling [51] indicated that steroids were 

no longer to be considered outliers which permeated the skin by a different mechanism of action, but 

that that conclusion had been made based on erroneous data which is still considered in some recent 

models of skin permeation [52].   

 

The effect of experimental temperature on model quality was also considered. In this study it was 

determined that, when Texp was considered as a descriptor of permeability in the same manner as the 

key physicochemical descriptors of a molecule it significantly influenced the nature of the resultant 

model; specifically, using a wider range of experimental temperatures improved model quality in 

terms of its improvement over the naïve model (Table 4). It is interesting to note that this effect was 

more pronounced compared to adding additional physicochemical descriptors to the model or when 

using different Machine Learning methods, such as Support Vector Machines [35]. Whilst this result 

appears anomalous and possibly contradictory it does echo other findings for permeation across a 

PDMS membrane in which Texp was found to be significant [53]. Further, it supports the analysis of 

diffusion cell type in that it indicates how experimental conditions can influence the construction of 

models, and underpins our recommendation that such descriptors of the experiment from which the 

data is derived, and not just the physicochemical descriptors of chemicals, be included in the 

construction of models derived from literature data.  
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Conclusions 

 

The experimental conditions examined in this study – diffusion cell type and Texp – are shown to have 

significant effects on the quality of models derived from these different studies, and can significantly 

affect the outputs (predictions of permeability and elucidation of mechanism insight) of these models. 

Separating the data based on diffusion cell type – as either static, Franz-type or flow-through, 

Bronaugh-type diffusion cells – shows that the best predictive models are always obtained when static 

diffusion cell skin permeability data is predicted compared to models constructed from flow-through 

cell experiments. These results are obtained regardless of whether data from static or flow-through 

cell experiments are used to train models. However, training models based on flow-through cell data 

only which is used to train ‘unseen’ test data (randomly taken from either diffusion cell dataset) 

resulted in models of poor statistical quality and limited predictive power. Conversely, when a wide 

range of experimental temperatures is used the performance of models improves substantially.   

 

This study indicates that model quality is also influenced significantly by experimental factors such as 

diffusion cell type and experimental temperature. Models produced from static, Franz-type, diffusion 

cell studies, which resulted in highly predictive models. It is therefore clearly recommended from the 

findings of this study that, in order to optimise the predictive power of a mathematical model of skin 

permeation, data from static cell experiments only should be used to construct the model and that 

relevant experimental conditions be incorporated into the model where relevant.  
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Figure 1. Examples of common diffusion cell designs, with the ‘Franz’-type static diffusion cell shown 
top left and the flow-through cell design shown bottom right. Modified from [41], used with 
permission.  
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Figure 2. A matrix of the scatter plots of data used in this study, groups as being generated from 
either flow-through or static-type diffusion cells. 
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Figure 3. Comparison of box-plots (static vs. flow-through diffusion cells) for each of the molecular 
descriptors used in this study.  
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Figure 4. PCA plot of the dataset used in this study, the data mapped to a low-dimensional space with 
a linear transformation, where (a) shows the Eigenvalue (variance) of each principal component; (b) 
shows a PCA plot of the first PC against the second the PC with data from static and flow-through cells 
mixed together. The compounds were plotted using the corresponding logKp values against the first 
two principal components to represent the variation in the seven features of all chemical compounds, 
and this is shown in plot (c) for PC1 and plot (d) for PC2. Note that the red circle denotes the data 
obtained from static diffusion cells and the black crosses denote the data obtained from flow-through 
diffusion cells. 
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Figure 5. Results of t-SNE (t-distributed Stochastic Neighbour Embedding) analysis, with (a) showing 
the training errors. Plot (a) shows the training errors. Plot (b) shows the projection plot using t-SNE. 
Plots (c) and (d) show the first and the second axis in the project space against the target (logkp) values, 
respectively.  
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Table 1. Results of Experiments A and B: prediction performances for static and flow-through 

diffusion cells used to assess the models.  

 Flow-through cell Static cell 

 Mean STD Mean STD 

MSEGP 0.84 0.12 0.98 0.13 

IONGP 0.04 0.04 0.42 0.09 

MSENaiveGP 0.87 0.13 1.68 0.09 

CORRGP 0.20 0.13 0.66 0.06 

 

 

Table 2. Results of Experiments C and D: prediction performances for a single dataset (with collated 

data from flow-through and static diffusion cell experiments) used to assess the models.  

 Flow-through cell Static cell 

 Mean STD Mean STD 

MSEGP 0.93 0.23 0.96 0.09 

IONGP -0.07 0.09 0.43 0.05 

MSENaiveGP 0.86 0.14 1.70 0.09 

CORRGP 0.19 0.16 0.67 0.05 

 

 

Table 3. Results of Experiments E: performance measures for training flow-through or static cell 

models with data from the other experiments.  

 Static cell data to train a 

predictive model for a flow-

through cell model 

Flow-through cell data to 

train a predictive model for 

a static cell model 

 Mean STD Mean STD 

MSEGP 1.17 0.32 1.64 0.06 

IONGP -0.35 0.22 0.05 0.04 

MSENaiveGP 0.85 0.24 1.73 0.16 

CORRGP 0.07 0.14 0.19 0.10 
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Table 4. ION performance with and without Texp added to the five physicochemical descriptors used. 
Data was refined as in [49] by, for example, removing ambiguous data or values, which are listed as 
‘greater than’ or ‘less than’ a fixed value, rather than a discrete number. 
 

Using five 

physicochemical 

descriptors 

 

Dataset A Dataset B Dataset C Dataset D Dataset E Dataset F 

Range of experimental 

temperatures in each 

dataset (oC) 

Temperature listed as either 37oC or 37oC with a skin 

surface temperature of 32oC 

22 – 45 22 – 45 

Size of dataset (oringial / 

refined [49]) 

11 / 9 42 / 25 38 / 21 99 / 57 92 / 51 148 / 86 

ION (mean value, 

without including Texp in 

the analysis) 

0.19 -0.03 0.38 0.33 0.00 0.37 

ION (mean value, 

including Texp in the 

analysis) 

0.19 -0.03 0.38 0.33 0.01 0.64 
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