
Helen Partou (h.partou3@herts.ac.uk) & Lindsay Smith (l.1.smith@herts.ac.uk)

University of Hertfordshire, UK

Assessment Strategy to ‘Future Proof’ Students as Computing Practitioners

Development > Rollout > Evolution

• Motivation

• Team-based software development is core module delivery in 
computing at Hertfordshire
• Students need relevant software engineering experience(s)

• Previous software development platform not ‘fit for purpose’ 
teaching resource 
• Not compatible/upgradeable/adaptable

• Overly complicated for ‘Zero to Hero’ student assessment in a six 
week development cycle

2014-15 2015-16
2015-16 
Semester A

2015-16 
Semester B

2016-to-
date

Research
technical 
options & 
feasibility of 
platform

Build 
platform & 
supporting 
resources 

Pilot platform 
as teaching 
tool with 
small L7 
cohort 

Larger scale 
rollout for L5 

cohort(s) on-
campus & 
distance learning

Multiple 
module 
adoption & 
evolution of 
delivery

Assessment Strategies to Scope 
Student-based Solutions

• Teaching resources are customised to support assessment
• Demonstration videos, FAQs and supervision supports instructional scaffolding as 

students gradually increase technical expertise.

• An example ‘Orders’ application provides opportunities for formative feedback and 
minimises the student-tutor ‘expectation gap’ [2] of assessment deliverables.

• Applications built in the platform are potentially scalable to any real-world 
scenario
• Supports constructivism, e.g. cinema film showings

• Limitations for summative assessment include:
• Managing trade-offs between case study complexity and platform functionality to 

define project scope

• For example: matching deliverable technical competences with available 
assessment timeframe

• Summative assessment strategy has categorised marking criteria 
• Baseline = minimum engagement for a pass mark

• Advanced = independent tasks gain higher marks

• Example documentation for software: User Acceptance Tests (UATs)
• Staff simulate client role to check software is ‘fit for purpose’

• UATs support delegation of tasks to team members

• Promoting “T-Shaped” individuals (specialised generalists) [3]

• Timeline, Scope & Feasibility

• Development 

• Estimated 500 + staff hours

• Approximate take up to date

• In 7 modules 

• Delivered to 1000+ students 

• Assessed equivalent of 200 
student teams

Purpose-built Platform as a Teaching Tool

• Web-based
• We built an open-source development stack with an example ‘Orders’ system, 

utilising the Model-View-Controller (MVC) architecture for students to undertake 
data-driven web programming.

• Portable & robust
• The tool is ‘plug-and-play’ and can be integrated with cloud-based tools.

• Lightweight, compatible with multiple environments, re-usable and 100% reliable 
to-date .

• Students can experiment with impunity. Industry 4.0 and Future Developments

Current developments

• Technical 
• Exploring integration of the platform with Git-based systems, e.g. Azure DevOps, which 

facilitates sophisticated version control in the cloud.

• Compassion-focused pedagogy (CfP) [4]
• Supporting student team dynamics and task management.

Future developments

• Feasibility of adapting this approach to fast-moving technological change.
• How the approach and/or platform integrates with, or could transfer to, other fields and 

technologies

• Such as Internet of Things (IoT) e.g. ‘smart’/cognitive technologies/digitalisation.

References
[1] Matthews, D. (2016) ‘What should computer science degree students learn?’. Times Higher Education. 10 March 2016. Available at: https://www.timeshighereducation.com/news/what-should-computer-science-degree-students-learn

[2] Christenson, S., Reschly, A. & Wylie, C. (2012) Handbook of Research on Student Engagement. New York: Springer

[3] Rubin, K. (2012) ‘T-shaped Skills and Swarming Make for Flexible Scrum and Agile Teams’. Available at: http://www.scrumexpert.com/knowledge/t-shaped-skills-and-swarming-make-for-flexible-scrum-and-agile-teams/ 

[4] Gilbert, T. (2017) ‘When Looking Is Allowed: What Compassionate Group Work Looks Like in a UK University’. In Gibbs, P. (eds.) The Pedagogy of Compassion at the Heart of Higher Education. Cham, Switzerland: Springer. pp. 189-202.

Are Soft Skills Harder than Hard Skills in 
Software Development Projects?

• Problems

• A STEM educational challenge is inherent complexity in delivering software development 
skills
• Preparing students for employment in the computing industry

• Employers cannot put graduates ‘in front of a client’ [1]

• Teaching ‘hard’ skills focuses on technological constraints
• Keeping up with technological change and advances

• Teaching ‘soft’ skills focuses on team work
• Student participation: passengers (lack of interest, engagement and/or feeling of inferiority) vs. 

diligent isolation (poor delegation, perfectionism and/or presence of passengers)

• Solutions
• Reduction in technical complexity, e.g. robustness of platform enables ‘Zero to Hero’ 

solutions

• Agile approach, staff development and staff-student feedback

• Optimising teaching staff engagement with student teams

• Managing student team autonomy

• Student and staff teams collaboration

• Team clinics, tutorial triage

Application
architecture, 
e.g. framework

WAMP

Libraries

Generic Our platform

CodeIgniter

EasyPHP

Grocery
CRUD etc.

Customised
(advanced)

Constrained
(baseline)

Poster presented at Advance HE STEM 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/287582179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

