
A software tool supporting a
constructivist approach to assessing

student team work in software
development

By Helen Partou

h.partou3@herts.ac.uk

and Lindsay Smith

l.1.smith@herts.ac.uk

School of Computer Science
1

mailto:h.partou3@herts.ac.uk
mailto:l.1.smith@herts.ac.uk

School of Computer Science (SCS) students -
‘Zero to Hero’ in six weeks
• Preparing students for employment in the computing industry

• Existing software tool (old platform): not ‘fit for purpose’
• Technical components not scalable for new programming languages

• Overly complicated to use and difficult to adapt

• Relevant software engineering experience(s)
• Context of software development is core delivery

• Software tool (new platform) piloted in 2015-16 L7 Sem. A module

• Expanded into L5 modules including online provision in Sem. B

• Approx. 850+ students have now experienced the platform

2

Platform structure & demo

• Portable web-based platform
• Robust: accessible with few unrecoverable technical failures

• Model-View-Controller (MVC) chosen architectural structure
• Separates database, visual elements and programming interactions

• Facilitates teamwork: version control compatible, e.g. Dropbox

3

Assessment strategy – solving a problem

• Complexity of software development presents specific educational
challenges for SCS students
• ‘Soft’ skills focus on team working

• Passengers (lack of interest, engagement and/or feeling of inferiority) vs.
diligent isolation (poor delegation, perfectionism and/or presence of
passengers)

• ‘Hard’ skills focus on technological constraints
• Time constraints: platform minimises technical complexity for development of

solution application

• Industry value: why code in teams?
• Software developers cannot put graduates ‘in front of a client’ [1]

• QAA Computing benchmarks: software ‘exposure’ and ‘substantial’ group
projects [2] 4

Assessment marking criteria – guide to team
project management

• User Acceptance Tests (UATs)
• check software is ‘fit for purpose’

• For Assessment (tutors simulate
client) categorised marking criteria
• Baseline = minimum engagement

for a pass mark

• Advanced = independent tasks gain
higher marks

• UATs support delegation of tasks to
team members

5

Constructivism & Instructional Scaffolding

• Platform applications scalable to virtually any ‘real-world’ scenario
• Formative: ‘Orders’ system included in platform

• Minimises ‘expectation gap’ [3]

• Summative: Olympic games, resourcing school productions, smart tech, etc.
• Students ‘construct’ ideas

• Instructional Scaffolding:
• Practical guides, FAQs, demonstration videos and hands-on lab supervision

• Supports VARK (Visual/Auditory/Read-Write/Kinaesthetic) learning style

6

Critical reflections

• Future-proofing platform delivery
• Industry-standard technologies

• The Cloud, e.g. Git-based tools

• Proactive planning: staff development time and resources
• Current platform = 500+ staff hours (conservative estimate)

• Managing student teamwork autonomy
• Staff familiarity, e.g. level of staff involvement in student teams

• Instructional scaffolding affected by VLE constraints
• Students can face a challenge accessing teaching resources

• Criticality of case study for platform to support constructivism

7

References
[1] Matthews, D. (2016) ‘What should computer science degree students learn?’. Times Higher
Education. 10 March 2016. Available at: https://www.timeshighereducation.com/news/what-
should-computer-science-degree-students-learn

[2] QAA (Quality Assurance Agency) (2016) Subject Benchmark Statement: Computing. Available at:
http://www.qaa.ac.uk/publications/information-and-
guidance/publication?PubID=3043#.Wx1yVSBG1Pa

[3] Christenson, S., Reschly, A. & Wylie, C. (2012) Handbook of Research on Student Engagement.
New York: Springer

8

https://www.timeshighereducation.com/news/what-should-computer-science-degree-students-learn
http://www.qaa.ac.uk/publications/information-and-guidance/publication?PubID=3043#.Wx1yVSBG1Pa

