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Abstract— In this paper, the author presents a work on i) 

range data and ii) stereo-vision system based disparity 

map profiling that are used as signatures for 3D face 

recognition. The signatures capture the intensity 

variations along a line at sample points on a face in any 

particular direction. The directional signatures and 

some of their combinations are compared to study the 

variability in recognition performances. Two 3D face 

image datasets namely, a local student database 

captured with a stereo vision system and the FRGC v1 

range dataset are used for performance evaluation.  
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I.  INTRODUCTION  

    Research in 3D Face Recognition systems is 

becoming increasingly popular due to the development of 

more affordable 3D image acquisition systems and the 

availability of 3D face databases. Such systems have made 

quite a progress in solving problems of localisation, pose 

and illumination variances. However, these problems still 

continue to exist. With security applications such as Border 

Crossing, it is difficult to acquire idealistic images without 

being constrained and intrusive at capture points.   

 

In 3D profile generation techniques, only one angle of 

planar intersection with the 3D image is typically 

considered. Such techniques deal with variations in pose by 

normalising the image to a standard pose as a pre-

processing step. Additionally, automatic illumination 

normalisation techniques do not reach an optimal 

performance with uniformity across a database. This has 

been experimented on the FRVT database on 4 different 

illumination normalisation techniques namely global 

equalization, parabola equalization, double equalization & 

wavelet-based equalization [18] as indicated by legends 

g,p,d and w respectively in Fig.1. The double equalisation 

algorithm is the only one that had managed to achieve an 

SSE of zero at some points, but not across the board. There 

is a residue despite normalisation. Face recognition 

technologies have to cope and perform under such noisy 

environments.  

 

In this paper, the author chooses to determine the 3D 

profile called signatures along several possible angles of 

planar intersections with the 3D image to accommodate 

such illumination and small 2D pose variations. For a 

chosen angle, a set of 3D signatures are derived along the 

Y-axis at fixed sampling points.  Variations in angles 

include 0º, 45º, 90º, 135º and their combinations of 0º+45º, 

135º+45º, 135º+45º+0º, 90º+45º, 90º+135º, 90º+135º+0º, 

90º+135º+45º, 135º+0º. From these signatures, statistical 

moments are determined as feature sets. Performance 

evaluations through ROC for the above modalities have 

been carried out using the following experimental setup: 

A. Databases:  

a) Student Database-DB1:  

A student database captured from a Stereo Vision 

Systems [1] consisting of the 100 students as 

subjects with 10 canonical views per subject (fixed 

sample sizes) under a controlled illumination 

environment. Small variations in pose were 

allowed. The canonical views span 180º and 

therefore an approximate 18º separation between 

two consecutive samples. 

b) FRVT Database-DB2:  

FRVT data consisting of 275 subjects with varying 

sample sizes leading to a total of 943 images. The  

Database consists only of frontal images. The 

images vary in illumination and scaling.  
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B. Model Representations: 

a) Average Model – Mavg With the student DB, an 

average image is generated from the sample sets of 

fixed  sizes (i.e. number of samples/subject=k, 

constant). 

 

b) Individual Model - Mind: With FRGC dataset, both 

average and individual face models are derived and 

tested separately. The average models were built 

based on varying sample sizes.  

 

Results show that the features extracted provide good 

discriminating ability between classes. 

 

The rest of the paper is organized as follows: Section II 

provides a literature review of 3DFR systems from a feature 

extraction perspective. Section III details the proposed 

system. Section IV describes the experimental setup and 

reports on various performance measures and relative 

performances of the angular features extracted. Section V 

provides a conclusion and recommendations for further 

work. 

 

 
Figure 1: Illumination Normalisation – sum squared error (SSE) plot for 

four different techniques for random samples of the FRVT DB. 

TABLE I.  FRVT SAMPLE SIZE FREQUENCIES  

Sample size 1 2 3 4 5 6 7 8 

Frequency 77 32 47 33 28 30 15 13 

 

II. REVIEW OF CURRENT POSITION  

The field of 3D Face Recognition (3DFR) is quite new 

but advancing quite rapidly. At the algorithmic level, the 

techniques vary depending on the modes of model 

representation (or registration), feature extraction and 

matching. Feature extraction has recently gained a lot of 

prominence as it dictates the performance of a recognition 

system. A good set of survey papers [1-2] provide varied 

systems on generic 3DFR. These cover a range of 

techniques starting from imaging, representation, matching, 

both grey scale as well as colour images. In this section, we 

consider a brief review of current techniques that is related 

to 3D facial feature extraction. 

 

The popular idea of using local shape descriptors extend 

from 2D to 3D [3] making sparse representations of face 

models feasible [4-5]. Even though research in 3DFR claim 

having solved problems of pose invariance as compared to 

2D, most research work in 3D continues to focus on pose 

invariance [6-7]. It is well acknowledged that face 

recognition systems under perform as a single modality. 

The success of multi-modal systems and in particular 

2D+3D face recognition algorithms are becoming a popular 

but simpler approach to improving recognition accuracies 

[7-8]. In [3], Wang et al utilise 3D+2D image features and 

fuse final recognition using PCA which showed improved 

performance in comparison to single modal systems. Such 

systems typically require manual selection of fiducial points 

for pose normalisation. In addition, matching requires 

perfect image alignments and filling missing points through 

interpolation.  

 

The marriage of image processing and computer 

graphics provides robust performance under noisy 

conditions by use of morphable models [9]. An emerging 

area is that of geodesic distance measurement [7], which is 

the shortest distance between two points, is a good 

candidate for feature extraction. Geodesic distances provide 

a basis for mapping 3D space into a 2D image. These 

approaches assume that human face is isometric, which 

indicates the preservation of geodesic distance in various 

expressions. Moments are used as features and treated as a 

face signature in [10]. 

 

The work by Gorden [11] uses disparity maps to model 

faces is similar to the approach adopted in the proposed 

work here. The author employs curvature estimations on 

range data along with depth information for face 

recognition. The paper reports high accuracy (70-100%) 

and viewpoint invariance.  Lee and Milos [22] segment 

range images into convex regions based on the signs of 

mean and Gaussian curvatures leading to an Extended 

Guassian Image (EGI).  

 

Beumier and Acheroy[13] derive a 3D facial structure 

and its information is used for recognition. The process 

requires pose normalisation and extracting profile curves at 

the intersections of facial surface with evenly spaced 

vertical planes. A 3D face database of size 120 with 30 

people was tested giving an EER of 9-13% when automatic 

normalisation is used and an EER 3.25-6% when manual 

orientation is used.  

 

In [14], Razden et al., have a combined feature 

extraction, facial profile signatures, and partial surface for 

matching of triangular meshes. Surface classification based 

on mean and Gaussian curvatures is followed. Their 

approach was tested on 117 people with 421 scans of 

varying facial expressions captured at the PRISM lab at 

Arizona State University. Their reported authentication 

performance is an EER of 0.065% for normal faces and 

1.13% for faces with expressions. Verification results of 

100% in normal faces with expressions at 0.1% FAR. For 



identification, the performance was 100% in normal faces 

and 95.6% with expressions. 

  

The Face Recognition Vendor Technology (FRVT) 

2006 includes a sequestered evaluation of 3DFR systems 

conducted for the first time in 2006 from high resolution 

still and 3D imagery collected from controlled 

environment[15] [Fig2]. A key measure of performance is 

the False Reject Rate (FRR) at a False Accept Rate (FAR) 

of 0.001. These high performance rates have been 

contributed to the algorithm design that takes advantage of 

the image size and quality. Performance in FRVT 2006 

shows an order of magnitude increase. Two of  Viisage’s 

algorithms ranked the first in FRVT 2006 evaluation 

followed by Geometrix and University of Houston.  

 

Figure 2. Example of FRVT 2006 3D dataset – shape and texture channles 
respectively.[15] 

In this paper, the author derives 3D profiles called 

signatures at regular intervals on the face at points of 

intersection with a plane. This approach is similar to that of 

Beumier and Acheroy but the key difference is that a set of 

signatures corresponding to varied angles of intersection of 

the plane with the facial image. In this sense, multi-modal 

signatures from various angles of intersection may 

conveniently be used to improve performance as shown in 

this paper. In this process, modelling of facial features from 

various angles allows for variations in pose to be taken into 

consideration at the feature extraction level.  

III. PROPOSED SYSTEM  

In this Section, a 3DFR system architecture using facial 

directional signatures is outlined. The generic block 

diagram for the system is shown in Fig.4. 

A. Data Acquisition 

The proposed 3DFR system deals with databases 

namely the student database (DB1) and FRVT v1 database 

(DB2), samples of which are shown in Fig.3. The student 

DB is a disparity map derived from a stereo-vision pair of 

left and right images. The shape channels were used in case 

of FRVT dataset. Details of acquisition and mapping into 

corresponding 2.5D disparity maps and range data are found 

in [15, 17] respectively for the two databases.  

B. Image Normalisation 

For this paper, the student database has two datasets 

based on the camera lens used namely 7.5 mm and 12.5 

mm. Each partition contains 100 subjects with 10 canonical 

views per subject with a total of 1000 images in each 

dataset. The FRVT database consists of frontal images of 

275 subjects with varying samples/subject as shown by the 

frequency distribution in Table I. The size of the database is 

943. Both the student and FRVT databases were manually 

cropped and resized to an image size of 128x128 pixels. 

The student DB was acquired in an illumination controlled 

environment; hence did not require further normalization. 

The FRVT database required illumination normalisation 

using the standard histogram equalisation technique 

available in MATLAB. Thus the DBs were normalised with 

respect to scaling and illumination (Fig.4). The rest of the 

steps are common for both databases. 

 

 
 
Figure 3: Top Row – Stereo Pair; Bottom Left – Corresponding 

Disparity Map. Bottom Right – FRVT 2.5 Range Image[15] 

C. 3D Profile Signatures 

With the DB images, signatures were derived at the 

intersections of facial surface with evenly spaced vertical 

planes. The signatures act as profile curves at sample points 

along the Y-axis (90º) of the image. For convenience, a 

fixed set of 40 signatures is derived for each image. 

Similarly, other directional signatures are also derived, as 

shown in (Fig.4-5). The 3D signatures appear as a 

compressed image (Figs.4-5) due the effect of sampling in 

3D. Sampling takes place at points of intersection of a stack 

of planar surfaces oriented in a particular angle with the 

images. 

 

It’s the aim of this paper to evaluate the performance of 

the system by using these directional signatures as features.  

D. Model Representation 

Models are built to form a feature database suitable for 

matching. Two approaches are followed: a) an average 

model constructed by averaging the normalised canonical 

views as in the student database. b) individual images 

retained as models of face images. The individual models 

are useful when there are insufficient samples for the 

subjects as in the case of the FRVT dataset where the 

number of samples/subject is one for some part of the 



database (Table I). The within-class distance is larger in the 

former case compared to the latter as it is a fuzzy 

representation encompassing the average information from 

all of the samples of a subject. Therefore, with the average 

model representation, it is not expected to produce a 100% 

match score between the query and the target images even 

for Validation tests. However, this does not imply that it is a 

poor representation as it allows an implicit modelling of 

imprecision within the dataset. 

 

Thus the second aim of this paper is to evaluate the 

performance of the system based on the above two model 

representations. 

 

Basic variations in intersecting planar angles with an 

image include 0º, 90º, 45º and 135º and the corresponding 

signatures are used as uni-modal features. In addition, 

concatenated feature sets derived by combining signatures 

at two or more intersecting angles. The full set comprises of 

the following combinations: 

a) Uni-modal: Θ1 ∈ 
1
C4  = {0,45,90,135} 

b) Two-angles: Θ2 ∈ 
2
C4 = {0+45, 0+90, 45+90, 

0+135, 45+135, 90+135} 

c) Three-angles: Θ3 ∈
 3

C4={0+45+90,0+45+135, 

0+90+135, 45+90+135} 

d) Four-angles: Θ4 ∈ 
4
C4 = {0+45+90+135} 

E. Feature extraction 

For the above models, statistical features namely; a set 

of 7 central moments [10, 16] is derived.  

Let  x  → Number of subjects 

 y  →  Samples/subject  

  ∂   →  Sampling rate along a chosen axis  

  ∆ → Length of signature along the other axis  

       Θ ∈ {
n
Cr}│ where n =4 and r ∈  { 1,2,3,4}  

      and  µ  →  Central Moments on Θ 

 

Then, the dimensionality of the feature set is given by 

X* y *  ∂ * ∆ * µ * Θ 

The dimension of the feature sets for the above model 

representations for a directional signature along X or Y axis 

is given in Table II. (∂, ∆)   pair are constants for directional 

signatures along (0º, 90º) respectively. However, in the 

directions of 45º and 135º, the value of ∆, i.e. the length of 

the signature along the diagonals will be larger compared to 

X and Y axes. Further, Θ, the number of directional 

combinations proportionally increase the feature set 

dimension. 

F. Recognition 

  Recognition is carried by Fischer’s Linear Discrimant 

Analysis (FLDA) [1,9]. Given a query image Q, matching 

requires that Q undergoes all pre-processing and feature 

extraction process. For a specific angle of intersection, Q is 

represented by a feature set defined by ∂ * ∆ * µ. That is, by 

a feature set of dimensionality 40 signatures x 128 (length 

of each signature) x 7 central moments. Experimental set up 

and results of recognition are discussed in detail in Section 

IV.  

 
Figure 4: 3DFR System Architecture 

 
Figure 5: Directional planes intersecting 3D Face Image 

TABLE II.  DIMENSIONALITY OF FEATURE SETS BASED ON THE DB 

AND MODEL REPRESENTATION 

Model 
Represen
attion ↓ 

DB 

↓ X y ∂ ∆ µ Θ 

Average 
from 

Samples 
 

Student 
DB 

100 1 40 128 7 

{1
,2

,3
,4

} 

 

FRVT 
DB 

275 1 40 128 7 

Individual 
Samples 

FRVT 
DB 

275 [1,8] 40 128 7 



IV. EXPERIMENTAL SETUP AND RESULTS 

In Setions IA and IB, two configurations were discussed 

namely databases used and model registrations built. In this 

Section,  experimental results based on ROCs for Rank Vs 

Cumulative Match and FAR Vs FRR are determined. Using 

the notations defined in Setions IA and IB, performance 

evaluation is carried out:  

A. Performance Analysis-Rank Vs Cumulative Match 

In the following tables, a set of notations for chosen 

angles of intersection are used: 

D45  Diagonal 45º; H  Horizontal 0º;V Vertical 90 º; 

D135  Diagonal 135º; D135H  Θ2 , and so on. Tables III  

and IV relate to DB2 and in particular average Vs. 

individual model representations. The transient response, 

typically up to rank 5, indicates low scores of match due to 

the high criteria of top ranking. The Cut-off is the rank 

beyond which a steady state response (SSR) is reached and 

the scores reach saturation (stable).  The following 

configurations are considered: 

a) (Mind, DB2)- Model-Individual, DB-FRVT (TABLE 

III, Fig.6(a)). 

Considering the transient performance, combinatorial 

features provide top (<5) ranked results. Particularly poor 

performers are the diagonal signatures. VH combination 

produces a very high score. Typical Cut-off and SSR occur 

at ranks 10 and above and the system achieves very high 

scores of match at these points. Some of the higher order 

combinations of signatures take longer to reach SSR 

namely, VD135 and D45D135H. In general. Higher order 

combinations perform well.  

 

b) (Mavg, DB2)- Model-Average, DB-FRVT (TABLE IV, 

Fig.6(b)). 

In contrast to the individual model, the transient 

response of diagonal signatures of the avergae model 

reaches a very high score of match especially with the 

higher-order signatures. The cut-off points for SSR is 

reached at much earlier a stage as with VD45 and VD135H 

combinations. In terms of the  overall performance with 

FRVT dataset, the average model performs better compared 

to the individual model with high scores of match.  

 

c) (Mavg, DB1-7.5)- Model-Average, DB-Student with 

lens measurement 7.5mm (Table V, Fig.7(e-h)). 

Θ =1, D135 performs the worst. V is the best performer. 

Θ=2,  VD135 performs the worst. VH is the best performer. 

Θ=3 and 4, overall a good performance is demonstrated. 

 

d) (Mavg, DB1-12.5)- Model-Average, DB-Student 

with lens measurement 12.5mm (Table V). 

The performance is far superior to 7.5mm lens and 

within-class feature deviation (σ) performances are minimal 

in this case due to the high resolution produced by the 

12.5mm lens. 

TABLE III:  (Mind, DB2) - ROC-Rank Vs Cumulative Match 

Response 

Match  

Transient  Cutoff Steady 

State 

Θ ↓ Score Rank Score Rank Score 

H 065 5 0.89 10 0.92 

V 0.77 5 0.94 10 0. 97 

D45 0.5 5 0.825 10 0.9 

D135 0.12 5 0.35 12 0.5 

D45D135 0.5 5 0.75 16 0.9 

D45H 0.64 5 0.95 15 1 

D135H 0.45 5 0.75 15 0.95 

VD45 0.7 5 0.94 11 0.9 

VD135 0.62 5 0.9 20 0.98 

VH 0.88 5 0.976 10 0.977 

VD135H 0.74 5 0.97 9 0.98 

VHD45 0.78 5 0.956 12 0.99 

D45D135H 0.62 5 0.87 16 0.99 

VD45D135 0.75 5 0.9 20 0.98 
VD45D135H 0.78 5 0.98 11 0.995 

 
TABLE IV:  (Mavg, DB2) - ROC--Rank Vs Cumulative Match 

Response Match Transient Cutoff Steady  

State 

Θ ↓ Score Rank Score Rank Score 

H 0.92 3 0.992   

V 0.754 5 0.94 10 0. 953 

D45 0.5 5 0.825 10 0.9 

D135 0.5 5 0.8 12 0.92 

D45H 0.6 5 0.88 10 .98 

D135H 0.45 5 0.8 15 0.95 

VH 0.875 5 0.976 10 0.977 

VD135 0.63 5 0.9 20 0.956 

VH45 0.775 5 0.956 11 0.99 

VD45 0.913 5 0.992 6 1 

D45D135 0.5 5 0.75 12 0.9 

VD135H 0.95 5 1   

D45D135H 0.9 5 1.0   

VD45D135H 0.77 5 0.96 11 0.995 

 
Figure 6(a): (Mind, DB2) 

 
Figure 6(b): (Mavg, DB2) 



B. Performance Analysis-Equal Error Rate (EER) 

The perfomance analysis in terms of the equal error rate 

(EER) is carried out by separting the signatures into groups 

based on single or multi-angle intersections (multi-modal).  

Note that the X-axis has a scaling factor of 20 in Fig7. For 

uni-modal signatures, i.e., Θ=1, it is inferred that the 

diagonal signatures at 45º, D45 does not perform well. At 

rank 1, the score of match, M1(EER) =0.6, EER ~= 0.38. 

Fig.7(b-d) show the performance with signatures when 

Θ=2, 3, 4 respectively. The trend plot for equal-error-rate, 

M(EER) decreases with increase in multi-modality, Θ. 

 

Similar results are echoed in the Rank Vs. Score metrics 

(Figs. 7(e-h)). Its trend plot M1(Score) decreases as well with 

increase in Θ. For brevity, no further ROC is produced here. 

Results of M1(EER) and M1(Score) are shown in Tables(V-VI) 

and summarised below.  

a) (Mind, DB2)- Model-Individual, DB-FRVT (TABLE 

III, Fig.6(a)). 

Θ =1, D135 signature performs the worst and V the best.  

Θ =2, within group ROC variation σ is small. M1(Score) is 

high. 

Θ =3,4 σ is very small and M1(Score) is very high. 

Overall, the higher order signature combinations perform 

very well, in this case. 

b) (Mavg, DB2)- Model-Average, DB-FRVT (TABLE IV, 

Fig.6(b)). 

Θ =1, D135 signature performs the worst and V the best.  

Θ =2, within group ROC variation σ is spread. M1(Score) is 

high. D45D135 performs the worst and VH the best. 

Θ =3,4 σ is spread and M1(Score) is average. 

For DB2,  the average model does not perform as well as the 

individual model representation. 

c) (Mavg, DB1-7.5)- Model-Individual, DB-Student 

with lens measurement 7.5mm (Table VI, Fig.7(a-d)) . 

Θ =1, V performs the best while D135 performs the worst. 

Within group, ROC is widespread. 

Θ =2, VH performs best and D135H performs the worst. 

ROC is widespread. 

Θ =3,4, VD45H performs the best and D45D135H performs 

the worst. Within group, ROC is better, less spread than low 

order combinations. 

d) (Mavg, DB-12.5)- Model-Average, DB-Student with 

lens measurement 12.5mm (Table VI) . 

The ROCs within groups are clustered together. The EER 

performance is far better than using 7.5 mm lens. 
 

TABLE V:  Performance Evaluation --Rank Vs Cumulative Match, M1(Score) 

 Parameters↓ Θ→ 1 2 3 4 

1 Mavg, DB1-7.5 0.3 0.56 0.62 0.66 

2 Mavg, DB1-12.5 0.71 0.82 0.85 0.87 

3 Mavg, DB2 (0.5,0.92) (0.8,1) (0.9,1) (0.92,1) 

4 Mind, DB2 (0.3D,0.9)  (0.42,1) (0.6,0.9) 0.78 

 

TABLE VI:  Performance Evaluation - M1(EER) 

 Parameters↓ Θ→ 1 2 3 4 σ 

1 Mavg, DB1-7.5 0.38 0.345 0.34 0.365 spread 

2 Mavg, DB1-12.5 0.23 0.18 0.18 0.19 v. small 

3 Mavg, DB2 0.8 0.05 0.08 0.08 spread 

4 Mind, DB2 0.25 0.18 0.28 0.28 v.spread 

 

Figure 7(a): (Mavg, DB1-7.51): Θ=1, M1=0.6, EER=0.38.  

 
Figure 7(b): (Mavg, DB1-7.51: Θ=2, , M1=0.5, EER=0.345 

 
Figure 7(c): (Mavg, DB1-7.51:  Θ=3, M1=0.46, EER=0.34 

 
Figure 7(d): (Mavg, DB1-7.51): Θ=3,  M1=0.5, EER=0.365 

 
Figure 7(e): (Mavg, DB1-7.51): Θ=1, M1=0.6, EER=0.38 

 
Figure 7(f): (Mavg, DB1-7.51): Θ=2, M1=0.6, EER=0.38 

 
Figure 7(g): (Mavg, DB1-7.51): Θ=3, M1=0.6, EER=0.38 

FAR Vs. FRR 

FAR Vs. FRR 

FAR Vs. FRR 

FAR Vs. FRR 



 
Figure 7(h): (Mavg, DB1-7.51): Θ=4, M1=0.6, EER=0.38 

 

V. SUMMARY  

In this work, two databases and two model configurations 

were considered for performance evaluation. Higher –order 

signature combinations were used as primary features and 

their usefulness tested.  The following are noted: 

 

 The average model performs better than the individual  

model in respect of M1(Score) but not so good in 

reducing the EER. 

 Higher order signature combinations are useful in 

reducing the EER and increasing the matching score. 

 Not all features are useful especially D135 signature 

and acts as an outlier to the ROC. 

 Uni-modal signatures perform very well especially the 

Vertical signatures across the board of testing. 

 

Further work is being carried out in the following 

directions: 

 Providing generalization results whereby the data is 

partitioned into learning and testing and are mutually 

exclusive. This performance evaluation will determine 

the ability to work with unseen data. 

 Providing individual model analysis for the student DB. 

 Partitioning the database into sub-databases and 

performing matching to reduce EER and increase 

M1(Score). This is particularly a useful criterion in 

handling large databases. 

 Two-stage matching where LDA is first applied to get a 

subset of matches followed by FLDA to work on the 

subset. This, mechanism has been tested on a smaller 

database in [16] showing very promising results, which 

is to be extended to the databases considered here.  
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