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Abstract

Clostridium [Clostridioides] difficile infection (CDI) is one of the leading causes of diarrhea

associated with medical care worldwide, and up to 60% of patients with CDI can develop a

recurrent infection (R-CDI). A multi-species microbiota biofilm model of C. difficile was

designed to evaluate the differences in the production of biofilms, sporulation, susceptibility

to drugs, expression of sporulating (sigH, spo0A), quorum sensing (agrD1, and luxS), and

adhesion-associated (slpA and cwp84) pathway genes between selected C. difficile isolates

from R-CDI and non-recurrent patients (NR-CDI). We obtained 102 C. difficile isolates from

254 patients with confirmed CDI (66 from NR-CDI and 36 from R-CDI). Most of the isolates

were biofilm producers, and most of the strains were ribotype 027 (81.374%, 83/102). Most

C. difficile isolates were producers of biofilm (100/102), and most were strongly adherent.

Sporulation was higher in the R-CDI than in the NR-CDI isolates (p = 0.015). The isolates

from R-CDI patients more frequently demonstrated reduced susceptibility to vancomycin

than isolates of NR-CDI patients (27.78% [10/36] and 9.09% [6/66], respectively, p = 0.013).

The minimum inhibitory concentrations for vancomycin and linezolid against biofilms (BMIC)

were up to 100 times and 20 times higher, respectively, than the corresponding planktonic

MICs. Expression of sigH, spo0A, cwp84, and agrD1 was higher in R-CDI than in NR-CDI

isolates. Most of the C. difficile isolates were producers of biofilms with no correlation with

the ribotype. Sporulation was greater in R-CDI than in NR-CDI isolates in the biofilm model

of C. difficile. The R-CDI isolates more frequently demonstrated reduced susceptibility to

vancomycin and linezolid than the NR-CDI isolates in both planktonic cells and biofilm iso-

lates. A higher expression of sporulating pathway (sigH, spo0A), quorum sensing (agrD1),
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and adhesion-associated (cwp84) genes was found in R-CDI than in NR-CDI isolates. All of

these factors can have effect on the recurrence of the infection.

Introduction

Clostridium [Clostridioides] difficile is one of the leading causes of healthcare-associated diar-

rhea worldwide. Since 2011, cases of C. difficile infection (CDI) have increased in the United

States, with 453,000 infections and 29,000 deaths [1].

An estimated 20–35% of patients with CDI can develop a recurrent infection (R-CDI)

within eight weeks of the first episode, with an incidence of 1,846–37,620 cases/year [2]. The

development of R-CDI has been associated with the germination of spores of the strain that

produced the initial infection in the colon or with the acquisition of a new strain [3–5].

The pathogenicity of chronic and recurrent infections has been associated with the produc-

tion of biofilm in some bacterial species [6], and C. difficile has been shown to produce orga-

nized biofilm communities on abiotic surfaces in vitro [7–9]. Furthermore, C. difficile has shown

to produce biofilms in the presence of other bacteria such as Finegoldia magna in vitro and par-

ticipate in complex gut microbiota biofilms in vitro and during infection in vivo in a mouse

model [10, 11]. Such biofilm formation could protect bacteria from cellular immune responses

associated with toxin production and from antibiotics used for the treatment of CDI [10].

C. difficile spores have been found within the biofilms in a simulated chemostat gut model

[11, 12], suggesting that the accumulation of spores within the biofilm of C. difficile could play

a role in the development of R-CDI [13]. Lower spore germination rates have been reported

in C. difficile biofilms than in vegetative cultures [14, 15], which may affect the persistence of

infection.

The development of biofilms has been associated with the ability of bacteria to resist antimi-

crobial agents because they act as a physical barrier and decrease the effective concentration of

antimicrobials [8, 10]. Indeed, the biofilms of C. difficile have shown 100 times greater resis-

tance to metronidazole and 10 times greater resistance to vancomycin than cells cultured in

liquid media [14].

Several factors have been described to have a key role in the formation of C. difficile biofilm,

such as surface factors like S-layer protein, SlpA (encoded by slpA), the cell wall protein

Cwp84 (encoded by cwp84), and the putative quorum sensing regulator LuxS (encoded by

luxS) [8, 10, 16]. In addition, the master regulator of sporulation, Spo0A, has shown to deter-

mine the biofilm-producing phenotype [7, 14]. Recently, the sigma factor of sporulation, SigH,

and the agr quorum sensing system, have been shown to regulate metabolism and virulence

potential in C. difficile [17–20]. Nevertheless, their contributory role in R-CDI development

remains unknown.

Therefore, the aim of this study was to evaluate the effect of biofilm production in a range

of C. difficile ribotypes, their sporulation, antimicrobial susceptibilities, and expression of

genes involved in sporulation and biofilm formation in isolates from recurrent and non-recur-

rent CDI patients.

Material and methods

Setting

Patients were recruited for this study who were treated at the following two hospitals in

Mexico: The Civil Hospital of Guadalajara, "Fray Antonio Alcalde" a tertiary hospital with
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1000 beds in Guadalajara; and the University Hospital "Dr. José Eleuterio González," a tertiary

teaching hospital with 500 beds in Monterrey.

Ethics statement

The local ethics committee (Comité de Ética en Investigación del Antiguo Hospital Civil de

Guadalajara “Fray Antonio Alcalde,” Jalisco, Mexico) approved this study with reference num-

ber 047/16. Informed consent was waived by the Ethics Committee because no intervention

was involved and no patients identifying information was included.

Study population, CDI diagnosis, and classification of CDI

Patients with unexplained diarrhea (� 3 unformed stools, Bristol scale 5–7) within 24 h were

included. For the diagnosis of CDI, fecal samples were collected, and C. difficile was investi-

gated by real-time PCR (Cepheid Xpert C. difficile/Epi test, Cepheid, Sunnyvale CA). Patients

were defined with CDI when patients were diarrheal and PCR was positive.

R-CDI was defined by the reappearance of diarrhea associated with CDI within eight weeks

after the completion of antibiotic therapy or the resolution of the initial episode [21]. CDI was

classified as NR-CDI when no new episode occurred within eight weeks. Data collected from

patients with R-CDI and NR-CDI included epidemiological and clinical data, prior antibiotic

therapy, and treatment for CDI. The study was reviewed and approved by the Local Ethics

Committee (Approval: 047/16).

Culture of C. difficile and typing of isolates

Fecal specimens were cultured on C. difficile agar (Neogen Corporation, MI) with cefoxitin (16

mg/L) and incubated in an anaerobic chamber (10% CO2, 10% H2, and 80% N2) at 37˚C for 48

h. Isolates were identified by polymerase chain reaction (PCR) with amplification of the triose

phosphate isomerase (tpi) gene [22] and by matrix-assisted laser desorption ionization time-

of-flight mass spectrometry (MALDI-TOF MS). All isolates were stored at −80˚C. The tcdA,

tcdB, cdtA, and cdtB genes were amplified using a multiplex PCR method [22], and the ribo-

typing-PCR was performed as previously described [23].

Selected isolates were subjected to ribotyping by capillary electrophoresis at the C. difficile
Ribotyping Network Reference Laboratory (CDRN) at Leeds Teaching Hospitals NHS Trust

(Leeds, United Kingdom).

C. difficile biofilm model

The biofilm of C. difficile formation was conducted as reported previously with some modifica-

tions. [7, 24] Briefly, each isolate was cultured in brain heart infusion (BHI) broth supple-

mented with 0.5% yeast extract and 0.1% L-cysteine (BHIS) in 96-well microtiter plates and

incubated in anaerobic conditions at 37˚C for 7 days. The planktonic cells were removed, and

absorbance of planktonic cultures was read at 590 nm using a microtiter plate spectrometer

iMarK (Bio-Rad, Hercules, CA, USA). The biofilm was washed with sterile phosphate-buffered

saline (PBS) (200 μl), fixed with 2% glutaraldehyde, and washed again with PBS. Then, 1%

crystal violet was added and the biofilm was washed six more times with sterile water and de-

stained with 30% acetic acid. The optical density was read at 590 nm. The adherence index

(AI) was calculated, and the isolates were classified as strong adherents (AI> 1.20), moderate

adherents (0.90 < AI <1.20), weak adherents (AI between 0.2 and 0.90) and non-adherents

(AI< 0.2) [25]. The assays were performed in triplicate, and only the results with a variation

coefficient greater than 20% were accepted.
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Microbiota–C. difficile biofilm model

For this study, we designed a biofilm model containing C. difficile and species from the intesti-

nal microbiota (Enterococcus faecalis ATCC 29212, E. faecium, Lactobacillus casei, Lactobacil-
lus rahmnosus, and Lactobacillus acidophilus strains obtained from clinical specimens). Each

strain was cultured in BHIS at 37˚C in an anaerobic chamber for 24–48 h and subsequently

diluted 1:10 in BHIS broth. A 200-μl mixture of microbiota and C. difficile (1:1:1:1:1:1 of each

species) were added to each well of a microtiter plate, and the plates were incubated in an

anaerobic chamber at 37˚C for 7 days. The determination of the biofilm was carried out

according to the biofilm model of C. difficile only.

Strains ATCC BAA-1805 (ribotype 027, strong adherent) and ATCC 9689 (ribotype 001,

weak adherent) were used as controls in the biofilm assays.

Antimicrobial susceptibility testing

Antimicrobial susceptibilities were determined by the agar dilution method in selected isolates

[26]. Antibiotics used to treat CDI infections, as well as those associated with the development

of CDI, were included. The minimum inhibitory concentrations (MICs) were determined

for metronidazole (ICN Biomedical, Costa Mesa, CA), vancomycin, linezolid, ciprofloxacin,

moxifloxacin, erythromycin, clindamycin, rifampicin, and tetracycline (Sigma-Aldrich). The

antimicrobial diluents used and the ranges tested were recommended by the Clinical and Lab-

oratory Standards Institute (CLSI, 2019, M100-S28). An overnight culture in Schaedler broth

(Neogen Corporation) of each isolate was inoculated using a multipoint inoculator (104 col-

ony-forming units (CFU)/spot) on Wilkins-Chalgren agar (Neogen Corporation) [27]. The

ATCC 700057 (ribotype 038) was used as a control strain.

Resistance breakpoints were defined according to the CLSI guidelines as follows: moxiflox-

acin and clindamycin� 8 mg/L, tetracycline� 16 mg/L, metronidazole� 32 mg/L, (CLSI,

2019). The breakpoint for vancomycin was defined according to the European Committee on

Antimicrobial Susceptibility Testing (EUCAST, 2019) as greater than 2 mg/L. For antimicro-

bial agents of which no standard breakpoints to C. difficile have yet to be defined, breakpoints

were considered as follows: erythromycin� 8 mg/L (CLSI, 2013), ciprofloxacin,� 8 mg/L,

[28] linezolid� 16 mg/L [29], and rifampicin� 32 mg/L [30].

Biofilm minimum inhibitory concentration

The BMIC was determined for vancomycin and linezolid. Briefly, the planktonic phase of a

7-day-old biofilm was removed, and the antibiotics were prepared in fresh BHIS. Each concen-

tration (from 512 mg/L to 0.5 mg/L) was aliquoted into microtiter plates (one per concentra-

tion), and 200 μl per well were added. The biofilm was resuspended, and the plates were

incubated at 37˚C for 48 h in anaerobiosis.

The BMIC was defined as the lowest concentration of an antimicrobial that prevents

growth. The ATCC 700057 C. difficile strain (ribotype 038) was used as a control.

Spore count in the biofilm

The 7-day-old biofilm was disrupted with a pipette and resuspended in 100 μl PBS. Serial ten-

fold dilutions (10−1–10−7) were incubated at 65˚C for 20 min to kill the vegetative cells. Both

untreated and heat-treated suspensions were streaked on Clostridium difficile agar (Neogen

Corporation, MI, USA) and incubated at 37˚C for 48 h in anaerobic conditions. Total viable

cells and spore counts were determined as CFU/biofilm.
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Quantitative RT-PCR for spo0A, sigH, slpA, cwp84, agrD1, and luxS
Twenty selected strains (10 from R-CDI patients and 10 from NR-CDI patients) were ana-

lyzed. The biofilms incubated for 48 h were washed twice, then the pellet was resuspended in

DEPC water (200 μl) and treated with lysozyme (10 mg/ml) (Bio-basic, Ontario, Canada) and

proteinase K (Bio-basic). Total RNA was isolated using the Qiagen QIAamp DSP Viral RNA

mini kit (QIAGEN, Hilden, Germany). The quantity and quality of the RNA were assessed

using a NanoDrop spectrophotometer. The relative quantification of the expression of the

RNA transcripts of the spo0A, sigH, slpA, cwp84, agrD1, and luxS genes normalized to 16S

rRNA (rrs) was analyzed using the SuperScript III Platinum One-Step kit (Invitrogen, CA,

USA).

Standard curves were generated using 5-fold dilutions of ATCC 9689 RNA for each gene to

determine the efficiency of the reactions. RNA and diethyl pyrocarbonate (DEPC) water con-

trols were also included. The real-time RT-PCRs were performed in two biological samples in

duplicate; 200 ng RNA and 0.5 μl specific primers at 100 nM (listed on Table 1) in a 25-μL

reaction volume were used. The Smart Cycler real-time PCR system (Cepheid) was used with

cycling conditions as follows: 94˚C for 8 min, then 45 cycles of 94˚C for 30 s; 60˚C for spo0A,

sigH and cwp84; 54˚C for slpA, agrD1 and 30 s for luxS and an extension cycle of 72˚C for 25 s.

Melting curves were determined to assure that only the expected PCR products had been gen-

erated. Relative expression�3 was classified as overexpression. Data were normalized and

analyzed using the method described by Chang et al., and the ATCC 9689 was used as a cali-

brator [31].

Statistical analysis

Reduced susceptibility frequencies from planktonic and biofilm R-CDI cultures were com-

pared with NR-CDI cultures using Pearson’s chi-square test and Fisher’s Exact test.

Differences in relative expression ratios mean of biofilm cultures from R-CDI and NR-CDI

were analyzed using Student’s t-test. Non-parametric data were analyzed using the Mann-

Whitney test and Spearman rank correlation test.

All statistical analysis were performed using the SPSS software package. A p value less than

0.05 was considered to be statistically significant.

Results

Study population

In total, 254 patients with CDI (35.29%, female and 64.70%, male; age range, 15–85) were

confirmed by PCR, with 102 isolates of C. difficile recovered. Patients with R-CDI had more

significant exposure to antibiotics before CDI (p = 0.037) than patients with NR-CDI. Fluoro-

quinolones and vancomycin were more frequently used in patients with NR-CDI than in those

with R-CDI (p = 0.000 and 0.024, respectively). Cephalosporins were more frequently used in

patients with R-CDI than in NR-CDI (p = 0.048) (Table 2).

Culture and ribotyping

Sixty-six isolates (64.70%) of patients with NR-CDI and 36 (35.29%) of patients with R-CDI

were obtained. Most of the isolates were found to be ribotype 027 (83/102, 81.37%). The other

isolates were found to be ribotypes 003 and 002 (3/102, 2.94% each); 001, 014, 078, 220, and

076 (2/102, 1.96% each one); and 353 (1/102, 0.98%) (Table 3). No significant differences in

ribotype distribution between the R-CDI and NR-CDI groups was detected (p = 0.476).
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C. difficile biofilm sporulation

In the C. difficile biofilm model, the majority of C. difficile isolates were producers of biofilm

(100/102), with 80.55% of R-CDI isolates and 90.90% of NR-CDI isolates being strongly adher-

ent. No differences were detected in biofilm production among the isolates of R-CDI and

NR-CDI (AIs geometric mean [GM], 53.87 and 54.06, respectively; p = 0.579).

Sporulation was higher in R-CDI than in NR-CDI isolates (5 log10 CFU/biofilm vs. 3.85

log10 CFU/biofilm; p = 0.015).

C. difficile–microbiota biofilm and sporulation

In the biofilm of C. difficile–microbiota, no difference was detected in biofilm production

among the isolates of R-CDI and NR-CDI (AIs GM, 33.04 and 32.89, respectively; p = 0.677).

Table 1. Primer pairs used to amplify the genes studied by real-time RT-PCR.

Target gene 50primer 30primer Source

rrs GGGAGACTTGAGTGCAGGAG GTGCCTCAGCGTCAGTTACA [43]

spoA CTCAAAGCGCAATAAATCTAGGAGC TTGAGTCTCTTGAACTGGTCTAGG [44]

sigH GTTGGTAGCAAAAGAAAAAAGTTATGAG GTACTCTAGTGCTATTTTATCCCCTTCAC [45]

slpA AATGATAAAGCATTTGTAGTTGGTG TATTGGAGTAGCATCTCCATC [43]

cwp84 TGGGCAACTGGTGGAAAATA TAGTTGCACCTTGTGCCTCA [43]

luxS GTGTACTTGATGGAGTAAAGGGAGA TTCTACATCCCATTGGAGATAAGTC [46]

agrD1 TTTGCTAGCTCATTGGCACTT GATTGCTGATTTCTTTGGGTACTT Primer3 software

https://doi.org/10.1371/journal.pone.0220671.t001

Table 2. Clinical characteristics of patients with R-CDI and NR-CDI.

R-CDI (n = 23) NR-CDI (n = 31) p value

Hospitalization

Length of stay (mean days, range) 29.55 (4–124) 20.86 (4–59) 0.181

Intensive care unit, n (%) 6 (26.09) 10 (32.26) 0.427

Length of stay in ICU (mean days, range) 14.77 (2–48) 12.10 (2–48) 0.460

Prior antibiotics

Any antibiotic, n (%) 30 (96.77) 22 (95.65) 0.675

Length of exposure (mean days, range) 21.48 (1–100) 13.52 (1–52) 0.132

No. of antibiotics (mean) 3.65 2.71 0.037�

Cephalosporins 12 (54.54) 8 (27.59) 0.048�

Clindamycin 18 (81.82) 21 (72.41) 0.329

Macrolides 21 (95.45) 27 (91.10) 0.605

Fluoroquinolones 10 (45.45) 27 (91.10) 0.000�

Vancomycin 9 (40.91) 21 (72.41) 0.024�

Metronidazole 19 (86.36) 25 (86.21) 0.657

Carbapenems 14 (63.64) 17 (58.62) 0.472

CDI treatment

Vancomycin 19 (86.36) 24 (80.00) 0.490

Metronidazole 13 (59.09) 19 (63.33) 0.415

Metronidazole/vancomycin 10 (45.45) 16 (56.33) 0.390

Data are no. (%) of patients, unless otherwise noted.

�Significant difference p value <0.05

https://doi.org/10.1371/journal.pone.0220671.t002
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No significant difference was detected in sporulation between the R-CDI and NR-CDI iso-

lates (6.21 log10 and 5.54 log10 CFU/biofilm, respectively; p = 0.565).

Minimum inhibitory concentrations

Drug susceptibility was evaluated on a selection of 65 isolates (26, R-CDI; 39, NR-CDI), and

more than 70% of the isolates were resistant to ciprofloxacin (�8 mg/L), moxifloxacin (�8

mg/L), erythromycin (�8 mg/L), clindamycin (�8), and rifampin (�32 mg/L). All isolates

were susceptible to tetracycline (�4 mg/L) and metronidazole (�8 mg/L).

The isolates from R-CDI patients showed a greater reduced susceptibility to vancomycin

(>2 mg/L) than the isolates from NR-CDI patients (27.78 and 9.09%, respectively). No other

difference was observed between the R-CDI and NR-CDI isolates (Table 4).

Minimum inhibitory concentrations of the biofilm

In C. difficile biofilm isolates without microbiota, a reduced susceptibility to vancomycin was

observed in 91.0% (101/102) of isolates and to linezolid in 89.21% (91/102) of isolates.

The BMICs were up to 100-fold higher for vancomycin and 20-fold higher for linezolid

than the corresponding MICs. No differences between R-CDI and NR-CDI isolates were

observed (Table 5).

Expression of spo0A, sigH, slpA, cwp84, agrD1, and luxS
The relative expression of spo0A, sigH, cwp84, and agrD1 was higher in R-CDI than in

NR-CDI isolates (Fig 1). Overexpression of spo0A (70%, 7/10), sigH (70%, 7/10), cwp84 (40%,

4/10), and agrD1 (70%, 7/10) was higher in R-CDI than in NR-CDI isolates. No significant dif-

ference was detected in the expression levels of slpA and luxS between R-CDI and NR-CDI iso-

lates (Fig 1).

Discussion

Although some bacterial species that cause recurrent or chronic infections have been studied

for their ability to form biofilms in vivo and in vitro [6], C. difficile biofilms have not been

widely studied. In the present study, we evaluated biofilm formation by C. difficile and detected

that most isolates were biofilm producers (strong adherent), independent of the ribotype or

whether the strains were isolated from R-CDI or NR-CDI patients. These results reflect those

of other previous studies that found no correlation between the ribotype, the strain virulence,

or relapse of infection [16].

The expression of quorum sensing regulators and adhesion-associated factors were deter-

mined from biofilm culture. agrD1 and cwp84 were overexpressed in R-CDI isolates, both of

Table 3. Ribotype distribution between R-CDI and NR-CDI strains.

Genotype PCR-Ribotype (n)

R-CDI (n = 36) tcdA+, tcdB+, tcdC Δ18+, cdtA+/cdtB+ 027 (30)

tcdA+, tcdB+, tcdC Δ18−, cdtA-/cdtB- 003 (1), 001 (1), 076 (1), NT (2)

tcdA+, tcdB+, tcdC Δ18−, cdtA+/cdtB+ 353 (1)

NR-CDI

(n = 66)

tcdA+, tcdB+, tcdC Δ18+, cdtA+/cdtB+ tcdA+,

tcdB+,

027 (53),

tcdA+, tcdB+, tcdC Δ18−, cdtA-/cdtB- 002 (3), 014 (2) 003 (2), 220 (2), 076 (1), NT

(1)

tcdA+, tcdB+, tcdC Δ39+, cdtA+/cdtB+ 078 (2)

https://doi.org/10.1371/journal.pone.0220671.t003

Sporulation and overexpression of virulence factors in biofilms and reduced susceptibility in R-CDI

PLOS ONE | https://doi.org/10.1371/journal.pone.0220671 July 31, 2019 7 / 14

https://doi.org/10.1371/journal.pone.0220671.t003
https://doi.org/10.1371/journal.pone.0220671


which were previously shown to regulate colonization, virulence, and relapses in in vivo mod-

els [8, 16, 18–20]. By contrast, luxS and slpA expression was similar in R-CDI and NR-CDI iso-

lates. It would be valuable in the future, to analyze the transcription of toxins A and B

involving isolates overexpressing agrD1 and cwp84 from R-CDI and NR-CDI isolates.

Differences in spore formation in biofilms aged 7–10 days compared to vegetative cultures

have been reported previously, including higher viable counts, higher temperature tolerance,

Table 4. Antimicrobial susceptibility (mg/L) from R-CDI and NR-CDI strains.

Antimicrobial agent R-CDI NR-CDI p value

Ciprofloxacin GM 111.43 61.71

Range 8->128 1->128

MIC90 >128 >128

Resistant (%) 96.15 89.74 0.342

Moxifloxacin GM 18.78 14.22

Range 1–32 1–32

MIC90 32.00 32.00

Resistant (%) 92.31 87.23 0.506

Erythromycin GM 190.21 87.70

Range 1->128 1->128

MIC90 >128 >128

Resistant (%) 81.81 95.23 0.152

Clindamycin GM 150.97 66.75

Range 1->128 0.5->128

MIC90 >128 >128

Resistant (%) 90.48 81.82 0.383

Vancomycin GM 2.16 1.76

Range 1–4 0.25–4

MIC90 4.00 2.00

Resistant (%) 27.78 9.09 0.013�

Metronidazole GM 1.59 1.39

Range 0.25–4 0.25–4

MIC90 4.00 2.00

Resistant (%) 0.00 0.00 NA

Linezolid GM 3.92 4.00

Range 0.5–32 0.03–32

MIC90 16.00 16.00

Resistant (%) 38.89 19.70 0.036�

Rifampin GM 13.55 16.02

Range 0.001->128 0.002->128

MIC90 >128 128.00

Resistant (%) 70.59 79.41 0.484

Tetracycline GM 0.26 0.16

Range 0.06–8 0.06–8

MIC90 4.00 0.13

Resistant (%) 0.00 0.00 NA

Breakpoints were as follows: moxifloxacin and clindamycin�8 mg/L, tetracycline�16 mg/L, metronidazole�32 mg/L according to CLSI (2019); vancomycin >2 mg/L

according to EUCAST (2019), erythromycin�8 mg/L according to CLSI (2013); ciprofloxacin,�8 mg/L [28], linezolid�16 mg/L [29] and rifampicin�32 mg/L [30].

�Significant difference p value <0.05

https://doi.org/10.1371/journal.pone.0220671.t004
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and pleiomorphic biofilm structures (thin, thick exosporium surrounding the spores in the

biofilm) [32, 33]. Further studies to compare germination efficiency with co-germinants in

this biofilm model need to be done. In the present study, we analyzed 7-day old biofilms and

found that sporulation was greater in the R-CDI strains than in the NR-CDI strains. In addi-

tion, sporulation was associated with overexpression of the key regulators of the initial steps of

the sporulation pathway, spo0A and sigH, suggesting their involvement in the overproduction

of spores in the biofilm. According to our results, the production of spores can be associated

with recurrent CDI isolates.

In the present study, a high proportion of resistance was detected against ciprofloxacin,

moxifloxacin, erythromycin, clindamycin, and rifampin, and all isolates were susceptible to

tetracycline and metronidazole. No differences were detected between NR-CDI and R-CDI

strains for these antimicrobial susceptibilities.

Conversely, lower susceptibility to linezolid was observed in R-CDI strains than in NR-CDI

strains, and this result is relevant because linezolid is considered to be a possible drug for treat-

ment with CDI. Interestingly, our study population has no records of exposure to this antimi-

crobial agent in the 12 weeks before the diagnosis of CDI. The cfr gene has been associated

with resistance to linezolid and has been detected in C. difficile with a MIC up to 16 mg/L [34].

Further studies are underway to clarify the molecular mechanisms associated with this drug

resistance.

In our study, the isolates from R-CDI patients showed lower susceptibility to vancomycin

(MIC > 2 mg/L) more frequently than isolates from NR-CDI patients (27.78 and 9.09%,

respectively); and this result is important given the wide use of vancomycin for treatment of

CDI.

High MICs have been reported for moxifloxacin, rifampicin, vancomycin, and clindamycin

in ribotypes 001, 017, 027, 176, 078, and 014 [35, 36]. In the present study, high MICs were

detected for the same antibiotics in addition to ciprofloxacin and erythromycin. Most of the

isolates obtained were ribotype 027. No difference in ribotype was found between the R-CDI

and NR-CDI groups. In our population, 027 strains are associated with higher mortality rates

and greater probability of R-CDI [37].

C. difficile isolates from the present study had high exposure to clindamycin, and this expo-

sure has been associated in prior studies with a high excretion of C. difficile spores [38]. There-

fore, the high use of clindamycin in our clinical setting of Mexico may be associated with the

high sporulation detected.

In a 3-day biofilm model of C. difficile, the susceptibility to vancomycin has been reported,

with BMICs up to 100 times higher than the corresponding planktonic MICs [8, 39, 40]. In the

present study, we confirmed a reduced susceptibility to vancomycin in most strains, with

BMICs up to 100 times higher than MICs. Reduced susceptibility of C. difficile [27, 41] and

Table 5. Distribution of MICs and BMICs between R-CDI and NR-CDI strains.

Vancomycin Linezolid

Range GM Resistant (%) p value Range GM Resistant (%) p value

R-CDI MIC 1.00–4.00 1.88 10/36 (27.78) 0.000 0.50–32.0 3.92 3/36 (8.33) 0.000��

BMIC 2.00–256 109.08 35/36 (97.22) 4.00–256.0 87.34 29/36 (80.55)

NR-CDI MIC 0.25–4.00 1.85 6/66 (9.09) 0.000 0.03–32.0 4.02 13/66 (20.0) 0.000��

BMIC 2.00–256 108.35 66/66 (100) 2.00–256.0 89.63 62/66 (95.38)

Data are mg/L of an antimicrobial agent unless otherwise noted.

��Significant difference p value <0.01

https://doi.org/10.1371/journal.pone.0220671.t005
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BMIC values six times higher than MIC have been reported for metronidazole [14]. Despite

our patients having been treated with metronidazole before the diagnosis of CDI, we did not

find isolates with reduced susceptibility to this antimicrobial agent in either planktonic or bio-

film MIC experiments.

Several risk factors have been described for the development of CDI [42]. In our study,

the consumption of cephalosporins and a greater number of previous antibiotics were risk

Fig 1. Expression levels of spo0A, sigH, cwp84, slpA, agrD1, and luxS transcripts between R-CDI and NR-CDI strains. Relative

mRNA transcripts expression means of spo0A (p = 0.003), sigH (p = 0.007), cwp84 (p = 0.001), slpA (p = 0.066), agrD1 (p = 0.001) and

luxS (p = 0.400) from R-CDI and NR-CDI strains. ��Significant difference p value<0.01.

https://doi.org/10.1371/journal.pone.0220671.g001
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factors for R-CDI. In addition, patients with NR-CDI more frequently used fluoroquinolones

(p = 0.000) and vancomycin (p = 0.024) than those with R-CDI.

The primary limitation of this study was that cultures were not performed on fresh samples.

Instead, they were frozen and stored at −20˚C for up to two years with at least two freeze-thaw

cycles, which could explain the low recovery of C. difficile.
In conclusion, the sporulation and overexpression of sigH, spo0A, and agrD1 were greater

in R-CDI than in NR-CDI isolates. The R-CDI isolates had more reduced susceptibility to van-

comycin and linezolid than the NR-CDI isolates in both planktonic cells and biofilm isolates.

These factors may affect the recurrence of the infection because a greater sporulation in the

protected biofilm may facilitate less spore washout from the gut and a higher likelihood of C.

difficile remaining after CDI therapy has ceased.
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Project administration: Laura Tijerina-Rodrı́guez, Licet Villarreal-Treviño, Rayo Morfı́n-

Otero, Adrián Camacho-Ortı́z, Samantha Flores-Treviño, Elvira Garza-González.
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Maldonado-Garza, Eduardo Rodrı́guez-Noriega, Elvira Garza-González.
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