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ABSTRACT 
 

There is great interest in the benefits of Structural Health and Usage Monitoring in the Aerospace Industry 
both from a safety point of view and because of the possibility of extending the life of aerospace structural 
components. Although fail-safe and damage tolerance approaches to design are extensively used and have 
great advantages, there are never the less components and circumstances where a safe life approach remains 
appropriate. This leads to an approach to fatigue clearance whereby a component will be taken out of 
service after a certain number of hours usage irrespective of the environment it has experienced having 
been cleared based on very conservative loading assumptions. If the actual loads experienced by critical 
parts of a structure can be derived from a Structural Health and Usage Monitoring System (SHUMS), this 
then leads to the possibility of extending the time for which the component can remain in service with 
consequent cost savings. In this paper, a number of fundamental approaches to loads prediction using data 
available from a Structural Health and Usage Monitoring Systems are reviewed, with the particular 
application in mind being that of an air-carried guided weapon. Approaches considered will include time-
domain and frequency-domain based methods making use of a structural model, together with machine 
learning based approaches. Their different strengths, weaknesses and pitfalls will be highlighted together 
with ways to overcome them. Practical aspects of their possible implementation will also be addressed.  

 
NOMENCLATURE 
 
ai Generalise mass 
Fk Force acting at location k 
Icg Missile pitching moment of inertia 
M Missile mass 
qi Generalised coordinate 
t Time 
x Distance from datum along missile 
xk Distance from datum along missile of 
 location k. 
xcg Missile centre of gravity location 
z Bending displacement 
B Matrix relating F and �̈�𝐙 
F Vector of loads at a set of times and 
 locations 
U Left-hand matrix in singular value 
 decomposition of B 
V Right-hand matrix in singular value 
 decomposition of B 
Z Vector of displacements at a set of times 
 and locations 
Σ Matrix of singular values 
Σk Modified matrix of singular values in 
 regularisation 
α Tikhonov Regularisation parameter 
ϕi Mode shape 
ζi Modal critical damping ratio 
σi ith singular value 

ω Frequency 
ωi Natural frequency 
ωdi Damped natural frequency 
τ Time 
 
1. INTRODUCTION 
 
There is great interest in the benefits of Structural 
Health and Usage Monitoring in the Aerospace 
Industry both from a safety point of view and 
because of the possibility of extending the life of 
aerospace structural components. In the defence 
sector, this technology is potentially of particular 
relevance to air-carried guided weapons. At present, 
a safe life approach is adopted with a missile taken 
out of service after a certain number of hours of air 
carriage irrespective of the load environment it has 
experienced. These hours are determined based on 
a conservative fatigue clearance approach. 
However, it is anticipated that the actual loads 
experienced will generally be much lower than 
those used in the fatigue clearance. Hence if these 
loads can be predicted, then air carry life can 
potentially be extended. A major issue is that 
structural responses at critical locations cannot 
easily be directly measured, and hence an 
alternative is to predict the input forces on the 
missile based on structural responses that can be 
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measured. This paper considers two approaches to 
doing this. 
 
The first approach involves a structural model 
relating input loads to measured structural 
responses at known locations – for example through 
the use of accelerometers. The model is then used 
to predict the loads given the responses. This may 
be done either in the time domain or frequency 
domain. Examples of the former include [1] – [7] 
and examples of the latter include [8] – [12]. A 
feature of these kinds of approaches to loads 
prediction is that they lead to ill-conditioned 
problems, which require the use of regularisation 
methods to address the issue, and this is highlighted 
in many of [1] – [12]. The second approach is 
through machine learning, whereby a relationship 
is established between measurements and input 
forces based on a ‘training’ process such as 
Gaussian Process Regression. This has the 
advantage of dispensing with the need for a 
structural model. Examples of this approach are 
[13] - [15]. This is but a sample of the extensive 
literature in the field, and a broad review of loads 
reconstruction techniques is to be found in [16]. 
 
The layout of this paper is as follows. Section 2 
considers the structural modelling method 
including a description of the model, the loads 
prediction and regularisation approaches, after 
which illustrative results are presented using both 
the time domain and frequency domain 
methodologies. Section 3 considers the application 
of Gaussian Process Regression and presents 
results for the same case consider in Section 2. 
Concluding remarks are given in Section 4 in which 
the wider aspects of the possible implementation of 
these methods will also be discussed. 
 
2. STRUCTURAL MODELLING 
 METHOD 
 
2.1 STRUCTURAL MODEL 
 
A guided weapon in external air carriage is subject 
to loads transmitted to it via its attachments to the 
carrier aircraft, sometimes referred to as hangers, 
together with aerodynamic loadings. For the studies 
considered here, the missile structure is modelled as 
a beam and the applied loads are represented as 
discretised forces applied on the missile centre line 

as shown in Fig. 1. It should be noted that it is 
assumed that the missile is restrained on the 
launcher by simple supports, and hence there are no 
rotational constraints. Motion in a plane only is 
considered, although extension to more general 
scenarios is readily achievable. 
 
       z 
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            x 
 
       xcg 
 

Fig. 1 Missile Under External Loading 
 
Analysis is carried out on the basis of modal 
analysis. Thus, the free-free modes ϕi(x), natural 
frequencies ωi  generalised masses ai and 
stiffnesses are first determined (where i = 1, 2, …). 
Hence the equations of motion may be written as: 
 
 
 
 
where n is the number of applied forces, Fk is the 
kth force which is applied at station xk, and ζi is the 
critical damping ratio of the ith mode. It may be 
noted that as free-free modes are used, the first two 
modes are rigid body modes and it is possible to 
write these, together with the corresponding natural 
frequencies and generalise masses as: 
 
 
 
 
 
where M is the missile mass, and  Icg the missile 
pitching moment of inertia about the Centre of 
Gravity whose location is xcg. The model may be 
generated through finite element analysis or 
through modal testing. In the study considered here, 
loads prediction is assumed to be based on 
measurements from accelerometers placed along 
the length of the missile. The acceleration at any 
point on the missile centre-line may then be written: 
 
 
 
 

�̈�𝑞𝑖𝑖 + 2ζ𝑖𝑖𝜔𝜔𝑖𝑖�̇�𝑞𝑖𝑖 + 𝜔𝜔𝑖𝑖
2𝑞𝑞𝑖𝑖 = �

𝐹𝐹𝑘𝑘
𝑎𝑎𝑖𝑖
𝜙𝜙𝑖𝑖(𝑥𝑥𝑘𝑘)
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(1) 

 

𝜙𝜙1(𝑥𝑥) = 1;      𝜙𝜙2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥𝑐𝑐𝑐𝑐  
𝜔𝜔1 = 𝜔𝜔2 = 0 

𝑎𝑎1 = 𝑀𝑀       𝑎𝑎2 = 𝐼𝐼𝑐𝑐𝑐𝑐  

 
(2) 

 

�̈�𝑧(𝑥𝑥, 𝑡𝑡) = �𝜙𝜙𝑖𝑖(𝑥𝑥)𝑞𝑞�̈�𝑖

∞

𝑖𝑖=1

(𝑡𝑡) 
 

(3) 

 



In the time domain, the acceleration response at any 
point along the missile may be related to force input 
through the Equation: 
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(4) 

 
 

where: 
 

𝐾𝐾(𝑡𝑡, 𝜏𝜏) = −
1
𝜔𝜔𝑑𝑑𝑖𝑖

�2𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝜔𝜔𝑑𝑑𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝑑𝑑𝑖𝑖 (𝑡𝑡 − 𝜏𝜏)

−𝜔𝜔𝑖𝑖
2𝜁𝜁𝑖𝑖2𝑐𝑐𝑖𝑖𝑛𝑛𝜔𝜔𝑑𝑑𝑖𝑖 (𝑡𝑡 − 𝜏𝜏)

+ 𝜔𝜔𝑑𝑑𝑖𝑖
2 𝑐𝑐𝑖𝑖𝑛𝑛𝜔𝜔𝑑𝑑𝑖𝑖 (𝑡𝑡 − 𝜏𝜏)�  

× 𝑒𝑒𝑥𝑥𝑒𝑒{−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖(𝑡𝑡 − 𝜏𝜏)} 
 

 
 
 

(5) 

 

and: 

𝜔𝜔𝑑𝑑𝑖𝑖 = 𝜔𝜔𝑖𝑖�1 − 𝜁𝜁𝑖𝑖2 
(6) 

 

for i ≥ 3. For i = 1, 2,  : 
 

�̈�𝑞𝑖𝑖(𝑡𝑡) = �𝜙𝜙𝑖𝑖

𝑛𝑛

𝑘𝑘=1

(𝑥𝑥)
𝐹𝐹𝑘𝑘(𝑡𝑡)
𝑎𝑎𝑖𝑖

 
(7) 

 

In the frequency domain, the acceleration response 
at any point along the missile may be related to 
force input through the Equations: 
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(8) 

 

 
where ℱ denotes a Fourier transform. 
 

2.2 LOADS PREDICTION APPROACH 
 
Loads prediction based on the mathematical model 
of Section 2.1 may be carried out in either the time 
or frequency domain. 
  
When working in the time domain, given a set of 
accelerations at times t1, t2, ….., tm at a number of 
locations on the missile, loads are obtained using 
Equations (3) and (4). The integral in (4) may be 
written as a sum of integrals over intervals [tj, tj+1] 
for j = 1, …, m-1. Each of these integrals may be 
approximated so that they become functions of 
Fk(tj) and Fk(tj+1). This may be done in a variety of 
ways such as, for example, the trapezium rule or 
zero or first order hold. This then leads to a system 
of linear simultaneous equations enabling each Fk 
to be determined at each time tj.  The order of the 
system depends on the number n of forces to be 
obtained, the number of accelerometers, and 
number of samples, m, in the time interval. 
 
When working in the frequency domain, the set of 
acceleration time histories are converted into the 
frequency domain by Fast Fourier Transform. 
Frequency response functions such as those given 
in Equation (8) are then determined so that at each 
frequency within a chosen range, the aim is to find 
the Fourier transform of the applied loads. This 
leads to a large set of small systems of linear 
simultaneous equations at each frequency in the 
range of interest, the size of which depends on the 
number of accelerometers used and the number of 
forces to be predicted. The resultant Fourier 
transforms of the forces are then inverted to obtain 
loads in the time domain.  
 
Whether working in the time domain or the 
frequency domain, the applied forces, characterised 
by a vector F, are determined, given the 
acceleration measurements, from an equation of the 
form: 

�̈�𝐙 = 𝐁𝐁𝐁𝐁    (9) 
 
where the left hand side of (9) denotes a column 
vector of acceleration measurements, either in the 
time or frequency domain and B is a matrix derived 
from Equations (3) and (4) for time domain analysis 
and Equation (8) for frequency domain analysis. 
Typically, the dimension of the left hand side of (9) 
is greater than that of F (ie the number locations 



where acceleration is measured is greater than the 
number of input forces) so that a least squares 
problem is to be solved. This then results in the 
following equation for F: 
 

𝐁𝐁 = �𝐁𝐁ʹ𝐁𝐁�
−𝟏𝟏
𝐁𝐁ʹ�̈�𝐙  (10) 

 
2.3. REGULARISATION 
 
It is not usually as straightforward to determine F 
as might at first appear because in inverse problems 
of this type, the matrix BʹB is often nearly singular 
so that the problem is ill-conditioned – thus small 
errors, from whatever source, can lead to large 
changes to F. This issue may be addressed by 
regularisation. 
 
A well-known approach is Tikhonov regularisation, 
which involves solving the following problem: 
 

𝐁𝐁 = �𝐁𝐁ʹ𝐁𝐁 + 𝛼𝛼𝐈𝐈�
−𝟏𝟏
𝐁𝐁ʹ�̈�𝐙  (11) 

 
α is the regularisation parameter and needs to be 
chosen carefully. Its effect is to produce a less 
singular matrix so that the effect of errors is 
significantly reduced. However, it has to be chosen 
appropriately – if α is too small, the problem will 
still be ill-conditioned. If α is too large, the term αI 
will swamp the other terms. Various methods for 
choosing α have been developed, with the L-curve 
method perhaps being one of the best known and 
this will be one of the approaches adopted here. 
 
2.4. RESULTS 
 
In this section, results are presented using both the 
time domain and frequency domain approaches. In 
each case, a uniform beam representative of a 
missile structure is used having the following 
characteristics: 
 
• Mass: 90 kg; Length: 3.1 m 
• Flexural Rigidity: 350 kNm2 
• CG position: 1.55 m from nose 
• Pitching moment of inertia: 72.075 kgm2 
• Accelerometer locations: 0.2 m, 0.6 m, 1.5 m, 

2.0 m, 2.4 m, 2.9 m  
• Force locations: 

-Two Forces – 1.2 m, 2.4 m 
-Three Forces – 0.2 m, 1.3 m, 2.4 m 

with the locations being measured from the nose. 
The number of force locations taken reflects a 
missile in external carriage being supported at 
either two or three points. In these studies, a beam 
element finite model is used to predict acceleration 
responses for given force inputs and the loads 
prediction methodology is then used to recover the 
loads which may then be compared with the 
originally defined forces. Section 2.4(a) presents 
results from time domain analysis and 2.4(b) results 
from the frequency domain approach. 
 
2.4 (a) Time Domain Prediction 
 
An example of two force prediction is first 
presented. The following force input is used: 
 

𝐹𝐹1 = 100𝑐𝑐𝑖𝑖𝑛𝑛(3.25𝜋𝜋𝑡𝑡) + 150𝑐𝑐𝑐𝑐𝑐𝑐(7.1𝜋𝜋𝑡𝑡) 
 

𝐹𝐹2 = 200𝑐𝑐𝑖𝑖𝑛𝑛(4.2𝜋𝜋𝑡𝑡) + 150𝑐𝑐𝑐𝑐𝑐𝑐(9.2𝜋𝜋𝑡𝑡) 

(12) 

 

over a time interval of 5 seconds. The geometry, 
inertial and stiffness data is as given above in this 
Section and with a critical damping ratio ζi of 0.05 
taken for all elastic modes. 5 modes, including the 
two rigid body modes, were used in the analysis. 
No regularisation has been applied. Discretisation 
of Equations (3) and (4) is by zero order hold. The 
results are shown below in Figs. 2 and 3, and the 
load prediction is good. This might be anticipated 
given that this problem is statically determinate. 
 

 
 

Fig. 2. Load Prediction – Force 1 
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Fig. 3. Load Prediction – Force 2 

 
An example of three force prediction is now 
presented. The following force input is used: 
 
 
 
 
 
 
 
over a time interval of 1 second. The geometry, 
inertial, stiffness and damping data is as given 
above for the two input force case. Again, 5 modes, 
including the two rigid body modes were used in 
the analysis. Results in the absence of 
regularisation are first shown below in Figs. 4 to 6. 
While there is no evidence of numerical instability, 
the predictions are poor at some points. As this is 
now a statically indeterminate system this might be 
expected. 
 

 
               time (s) 
 

Fig. 4. Load Prediction – Force 1 – No Regularisation 
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Fig. 5. Load Prediction – Force 2 – No Regularisation 
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Fig. 6. Load Prediction – Force 3 – No Regularisation 
 
Regularisation is now applied to improve the results. 
The approach adopted is through truncated singular 
value decomposition. Thus, B in Equation (9) is 
decomposed as follows: 
 

𝐁𝐁 = 𝐔𝐔𝐔𝐔𝐔𝐔ʹ  (14) 

 

where: 
𝐔𝐔 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑐𝑐{𝜎𝜎1,𝜎𝜎2, … … . ,𝜎𝜎𝑛𝑛} (15) 

 

with σ1 > σ2 > ….. >σn. Small values of σj can give 
rise to ill-conditioning of BʹB. Regularisation is 
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𝐹𝐹1 = 100𝑐𝑐𝑖𝑖𝑛𝑛(20𝜋𝜋𝑡𝑡) + 200𝑐𝑐𝑐𝑐𝑐𝑐(8𝜋𝜋𝑡𝑡) 
 

𝐹𝐹2 = 200𝑐𝑐𝑖𝑖𝑛𝑛(20𝜋𝜋𝑡𝑡) + 100𝑐𝑐𝑐𝑐𝑐𝑐(8𝜋𝜋𝑡𝑡) 
 

𝐹𝐹3 = 150𝑐𝑐𝑖𝑖𝑛𝑛(20𝜋𝜋𝑡𝑡) + 250𝑐𝑐𝑐𝑐𝑐𝑐(8𝜋𝜋𝑡𝑡) 

 
 

(13) 

 



carried out by solving Equation (10) with Σ given 
by: 
 

𝐔𝐔𝒌𝒌 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑐𝑐{𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑛𝑛−𝑘𝑘 … . ,𝜎𝜎𝑛𝑛−𝑘𝑘} (16) 

 
 

for k = 1, 2, 3, …. The effect of this is to improve 
the conditioning of the matrix B as k is increased. 
An L-curve is then determined by plotting 
 
   
against 
 
   
 
For k = 1, 2, 3, ….. The resulting curve is shown in 
Fig. 7 for k from 1 to 20. An appropriate value of k 
will correspond to the corner of the L-curve, and in 
this case, k = 8 was identified by determining where 
the radius of curvature of the L-curve was smallest. 
 

 

 
       
 

Fig. 7. L-Curve for Load Prediction with 3 Forces 
 
The effect of regularisation is then shown in Figs. 8 
to 10 and show that the force predictions are 
improved by the regularisation process. 
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Fig. 8. Load Prediction – Force 1 – With Regularisation 
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Fig. 9. Load Prediction – Force 2 – With Regularisation 
 
Force (N) 

 
           time (s) 
 

Fig. 10. Load Prediction – Force 3 – With Regularisation 
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2.4 (b) Frequency Domain Prediction 
 
Two force prediction for input forces given by (12) 
is now carried out in the frequency domain over a 
time interval of 5 seconds. No regularisation has 
been applied. The results are shown below in Figs. 
11 and 12, and as in the time domain case, the load 
prediction is good. 
 

 
Fig. 11. Load Prediction – Force 1 

 

 
Fig. 12. Load Prediction – Force 2 

 
Three force prediction for input forces given by 
(13) is now carried out in the frequency domain 
over a time interval of 1 second. Without 
regularisation, significant numerical instability 
occurs, and this can be attributed to a very high 
condition number when solving Equation (10) for 
zero frequency. This might be expected because of 
the static indeterminacy of the problem. It was 
found that an effective form of regularisation was 
to obtain an L-curve for the first non-zero 
frequency and then choosing the regularisation 
parameter α to correspond to the corner of that L-

curve. This regularisation parameter was then 
applied for all frequencies. The results of this 
regularisation process are shown in Figs. 13 to 15 
and results in good agreement between input force 
and predicted force.  
 

 
Fig. 13. Load Prediction – Force 1 

 
Fig. 14. Load Prediction – Force 2 

 

 
 

Fig. 15. Load Prediction – Force 3 
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3. GAUSSIAN PROCESS REGRESSION 
 
In this Section, the three loads prediction problem 
considered in Section 2 is tackled using Gaussian 
Process Regression [15]. The process works by 
having a training dataset which contains observed 
response data; in this case the applied forces, and 
the input which is taken as accelerations. The 
algorithm used for this project was developed by 
Rasmussen [17]. Figs. 16 to 18 represent the 
predicted loads generated using Gaussian Process 
Regression at the three locations and are compared 
with the original input forces used to generate the 
acceleration response. It may be seen that the 
agreement between input and predicted forces is 
very good. Additionally, confidence intervals for 
the predictions are shown in green. These indicate 
less confidence in the predictions for Force 2 than 
for Forces 1 and 3. It is interesting to note that Force 
2 predictions were poorer than those for Forces 1 
and 3 when using the structural modelling approach 
in Section 2. 
 

 
 

Fig.16. Load Prediction – Force 1 

 

 
 

Fig.17. Load Prediction – Force 2 
 

 
 

Fig.18. Load Prediction – Force 3 
 
4. CONCLUSIONS 
 
In this paper, two kinds of approaches have been 
presented for loads prediction on a guided weapon 
in air carriage, namely, a structural modelling 
approach and Gaussian Process Regression. The 
structural modelling approach may be sub-divided 
into two methods, based on time domain and 
frequency domain analysis respectively. For the 
illustrative example given, each method has been 
shown to be successful, with Gaussian Process 
Regression giving the best predictions. Each 
approach has its own strengths and drawbacks. 
 
The structural modelling approach relies on a 
model of the missile, which can be provided by 
Finite Element Analysis or Structural Testing data. 
As a consequence, assumptions could be made 
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which may not be warranted, for example with 
regard to the attachments of the missile to the 
aircraft. Both time domain and frequency domain 
techniques have been demonstrated to be effective. 
In both cases, regularisation was applied. It was 
interesting to note that in the time domain case, 
there was no evidence of numerical instability 
without regularisation, but regularisation via 
Singular Value Decomposition could be used to 
improve the predictions, while in the frequency 
domain case, regularisation was essential to avoid 
numerical instability. The frequency domain 
approach may be more efficient as it involves the 
solution of a series of small least squares problems, 
rather than a single large one as in the case of the 
time domain approach. The structural modelling 
approach can use sensor inputs from 
accelerometers, gyros or strain gauges – potentially 
either from the missile or carrier aircraft. Although, 
only attachment loads have been considered here, 
aerodynamic loads could potentially be included 
also, augmented by appropriate assumptions about 
the aerodynamic load distribution along the length 
of the missile. 
 
Gaussian Process Regression is founded on the 
training data used, and hence makes no explicit 
modelling assumptions. The method can potentially 
use a wide range of sensors and input variables 
from both missile and carrier aircraft, ie not only 
from accelerometers, gyros or strain gauges, but 
also aerodynamic data such as dynamic pressure 
readings, flight Mach number, angles of incidence 
and sideslip, if available. The method also 
generates a confidence interval providing an 
indication of reliability of the predictions. There are 
drawbacks – for example, the training phase can be 
computationally expensive and may need to 
account for missile location on aircraft and effects 
of different store configurations.  
 
Beyond the study reported in this paper, a number 
of other studies have been carried out and issues 
addressed in this research. These include theoretical 
studies looking at a range of input load types 
including effect of frequency and effect of noise in 
accelerometer measurements. The methods have 
been applied in two experimental studies for the 
two force inputs case and one of these studies is 
reported in [15]. In the structural modelling 
approach, the sensitivity of the predictions with 

respect to the structural model has been 
investigated – in particular the impact of using a 
simple theoretical model, rather than a model based 
on test measurements. Some investigation of the 
effect of modelling assumptions has also been 
carried out – in particular, the effect of assuming a 
rigid launcher in three load input studies, which 
introduces an additional constraint. The impact of 
drop-out of a sensor signal has also been 
investigated. 
 
Whichever approach is chosen, the ultimate aim is 
for loads predictions to be used to estimate fatigue 
damage accumulation. In any practical 
implementation of a loads prediction methodology, 
efficiencies may be achievable on the basis that 
fatigue damage accumulates at some determined 
rate below a threshold level of force magnitude and 
the monitoring system is only triggered beyond this. 
In practice, it will also be necessary to extending 
the method to handle loads and responses in more 
than one plane. 
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