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The Historical Problem & Mathematical
Solution

For every 1,000 migrants who moved to London in the 1770s-80s, how many would we expect to come
from each English county? For every 1,000 tons of coffee exported from Colombia in 1950, how much
would we expect to go to each of the Western Hemisphere's 21 independent countries?

Both of these historical questions are about movements - people or goods - and are concerned with
the resultant distribution from those movements. There are many ways to answer these types of
questions, the simplest of which is to assume uniform distribution (25.64 migrants per county, or 47.61
tons of coffee per country). But this is unlikely to be accurate.

Standardising by population may improve accuracy of estimates. How many migrants there were per
10,000 inhabitants? Or how many pounds of coffee was imported per person? While better, it does not
provide the full picture because other forces are influencing the outcome (Figure 1). In the first
example, the English county of Westmorland had a relatively small population (38,000), and it was also



quite far from London (365km). Because of this and other factors, it was unlikely to send as many
migrants to London as Berkshire, which had more people (102,000) and was proximal (62km).
Population and distance from London were almost certainly factors affecting the number of migrants.

For coffee exports, population is also important. In 1950, the population of Canada (14 million) and the
United States (152 million) meant that it was unlikely that they imported the same amount of coffee.
Nevertheless, with no domestic supply and a strong coffee-drinking culture, Canada and the United
States probably had more in common than they do with many South and Central American countries,
who grew their own coffee and had less need to import it. So population, coffee culture, and domestic
supply are all relevant variables, as are other factors (Figure 1).
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Figure 1: Example A - A map of historic English counties, showing Westmorland, Berkshire, and

London. It would be unlikely for both counties to send the same number of migrants to London given
differences in population and distance from the capital. Example B - Some of the countries are coffee-
producing, and that would affect their need to import, skewing the distribution. Meanwhile, population
varies widely between countries. ‘person’ icon by Jens Tarning, '‘Coffee Bean' by Abdo, ‘Cup’ by
alvianwijaya, all from the Noun Project.

To arrive at a more realistic distribution, the approach must take into account several relevant
influencing factors. One such approach is a “gravity model”, a mathematical formula based on

regression analysis (https://en.wikipedia.org/wiki/Regression_analysis) and probability theory
(https://en.wikipedia.org/wiki/Probability_theory) that incorporates relevant push, pull, or economic

factors into consideration when suggesting a probable distribution between the various territories.
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The term “gravity” invokes the idea of forces pulling entities together, as in [saac Newton'’s falling_apple
(https://en.wikipedia.org/wiki/Newton%27s law_of universal gravitation). In that case, the relevant
factors for calculating gravitational pull were the mass of the apple, the mass of the earth, and the

distance between the two. Assuming environmental factors are constant, the apple will always
experience the same gravitational pull (or close enough for our purposes). This “universal” law of
gravity is represented mathematically by a simple formula:

mim
F=Gg>="2
T2
A gravity model of migration or trade is similar in its aim (seeking to understand and measure the
forces influencing movement), but is unable to attain the same degree of reliability or repeatability
because it measures the results of a series of unpredictable human decisions based on free will

(https://en.wikipedia.org/wiki/Free_will) rather than the laws of physics

(https://en.wikipedia.org/wiki/Physical_law). The model is fairly good at predicting how populations will

act, but any number of things could influence individual decisions, meaning that the resultant
distribution will always be somewhat unpredictable. If you could re-run a realistic migration simulation,
you would always end up with slightly different results because you can never account for every
relevant variable. Nor do you necessarily want to. The goal is not to build an overly deterministic
(https://en.wikipedia.org/wiki/Determinism) view of migration or trade, but to get enough information

about the key influences to have a historical conversation about meaningful patterns and unexpected
discoveries.

So gravitational pull and gravity models are different. As physics is dependable and humans are not,
the formula for gravitational pull is simple algebra, whereas the one for gravity modelling of migration
or trade draws upon probability theory and is thus part of a different branch of mathematics. Despite
this, the term “gravity” is a useful reminder that this approach is about understanding the forces that
influence movement.

A gravity model's goal is to tell the user: given a number of influencing forces (distance, cost of
living) affecting migration or movement of a large number of entities of the same type
(people, coffee beans, widgets) between a set number of points (39 counties and London or
Colombia and various countries), the model can suggest the most probable distribution of
those people, coffee beans, or widgets. It operates on the principle that if you know the volume
of movement, and you know the factors influencing it, you can predict with reasonable accuracy
the outcome of even complex movement within a confined system.

If you also know how many migrants did come from each county, or now much coffee did go to each
nation, the model allows you to identify regional anomalies by comparing the estimated to the
observed values. Those might be regions that, given the various contributing factors, were sending
more or fewer migrants than we would expect, or consuming disproportionately more or less coffee.
These anomalies can then become the subject of scholarly investigation, leading to historical
conclusions.

The Need for a Tutorial
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While popular with some geographers and economists, and while gravity models have tremendous
potential for historians, they have as yet been used very rarely in historical studies. The author was only
able to identify two historical migration studies that employed a gravity model as an integral part of
the analysis:

1. AA. Lovett, ID. Whyte, and K.A. Whyte, “Poisson regression analysis and migration fields: the
example of the apprenticeship records of Edinburgh in the seventeenth and eighteenth
centuries”, Transactions of the Institute of British Geographers, 10 (1985), pp. 317-32.

2. Adam Crymble, Adam Dennett, Tim Hitchcock, “"Modelling regional imbalances in English
plebeian migration to late eighteenth-century London”, Economic History Review, 71, 3 (2018), pp.
747-771: https://doi.org/10.1111/ehr.12569 (https://doi.org/10.1111/ehr.12569).

Given the lack of exposure historians have to gravity models, this tutorial seeks to provide an
accessible introduction by providing a walk-through of the example used in my article listed
immediately above. This approach allows the reader to try a working gravity model, with the aim of
understanding what it is and how it is put together, while also being able to turn to the published
literature to see how the modelling process led to scholarly findings.

Lesson Requirements
Software®

You will require the following software:

e R programming language
MASS package for R
Spreadsheet (Excel or Open Office)

a scientific calculator (or online equivalent)

The R (https://www.r-project.org/) programming language is a specialist language designed for
statistical work. MASS (https://www.rdocumentation.org/packages/MASS/versions/7.3-47) is an add-on

code package for R that allows us to conduct certain advanced statistical processes very efficiently.
MASS is short for “Modern Applied Statistics with S” and was written in 2002 by William Venables and
Brian Ripley. There are many sets of instructions online for how to install R and R packages, including
Taryn Dewar's tutorial on R Basics with Tabular Data (/en/lessons/r-basics-with-tabular-data).

The tutorial also uses a spreadsheet programme, and a scientific calculator or software or a website
that can replicate one. Your calculator should have at least the options highlighted yellow in Figure 2.
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Figure 2: The Google calculator, with the keys used in this tutorial highlighted in yellow. You can use

any calculator that has these keys as a minimum.

The associated material for use in this tutorial is introduced as needed. You can also download it all
here:

e VagrantsExampleData.csv (/assets/gravity-model/VagrantsExampleData.csv)

¢ weightingCalculation.r (/assets/gravity-model/weightingCalculation.r)

Mathematical Concepts®

This tutorial uses a number of mathematical concepts and operations. To understand a gravity model
and how it works, you will have to become comfortable with the following concepts and mathematical
operations (though it is possible to follow along without all of this knowledge):

e Cartesian coordinates (https://en.wikipedia.org/wiki/Cartesian_coordinate_system)
e exponential function (https://en.wikipedia.org/wiki/Exponential_function)

e mean (https://en.wikipedia.org/wiki/Mean)
e natural logarithm (https://en.wikipedia.org/wiki/Natural logarithm)

e order of operations (https://en.wikipedia.org/wiki/Order_of operations)

e Pearson’s correlation coefficient (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient)
e probability distribution (https://en.wikipedia.org/wiki/Probability_distribution)

e regression analysis (https://en.wikipedia.org/wiki/Regression_analysis)

e slope (https://en.wikipedia.org/wiki/Slope)

e square root (https://en.wikipedia.org/wiki/Square_root)

e standard deviation (https://en.wikipedia.org/wiki/Standard_deviation)

e y-intercept (https://en.wikipedia.org/wiki/Y-intercept)
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The Historical Case Study

While gravity models can be used in a range of different migration and trade studies, this tutorial uses
a specific historical case study of migration based on the history of vagrancy in eighteenth century
London as an example for readers to follow. The materials used in this case study are built from:

1 - Adam Crymble, Adam Dennett, Tim Hitchcock, “Modelling regional imbalances in English plebeian
migration to late eighteenth-century London”, Economic History Review, 71, 3 (2018), pp. 747-771:
https://doi.org/10.1111/ehr.12569 (https://doi.org/10.1111/ehr.12569) (Paywall until July 2019).

2 - Adam Crymble, Louise Falcini, Tim Hitchcock, “Vagrant Lives: 14,789 Vagrants Processed by the
County of Middlesex, 1777-1786", Journal of Open Humanities Data, vol. 1, no. 1 (2015),
http://doi.org/10.5334/johd.1 (http://doi.org/10.5334/johd.1).

The Vagrancy Act of 1744 gave communities in England and Wales the right to expel outsiders back
from whence they came. This was an important right because welfare was distributed locally at the
time, and it was paid for by local taxes with the intention of supporting local people. That meant that a
large influx of poor outsiders could financially cripple communities that attracted a lot of migration
(such as those in London). This restriction on internal migration was only really used against the poor,
and constables and local magistrates had tremendous powers of discretion over who they labelled a
“vagrant” and who they left alone. As of the time of writing, a version of this law is still on the books in
England, and it is still used by the police to arrest people who are begging or who they otherwise feel
need to be removed from a situation. People in the late eighteenth century who were arrested under
the 1744 act are therefore evidence of internal migration between the various counties of England and
London. The question is: were any counties sending more or fewer vagrants to London than we would
expect?

This example will model the probable distribution of 3,262 lower-class migrants to London between
1777 and 1786. These “vagrants” were probably visibly poor, but not necessarily to the degree of
beggarliness or homelessness. All of them were forcibly expelled from London under the 1744
Vagrancy Act, and sent back to their place of origin.2 They represent a group of failed migrants to the
city, and understanding their distribution means we can identify which parts of England sent
proportionately higher numbers of vagrants to London. In turn this can help us to understand which
parts of the country were under economic stress.

A sample of the primary sources that detail these individuals’ journeys can be seen in Figure 3. At the
time of their expulsion from London, each vagrant had his or her name and place of origin recorded,
providing a unique account of the lives of thousands of failed migrants to the London area.
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Figure 3: A sample list of vagrants expelled from Middlesex. ‘Middlesex Sessions Papers - Justices’
Working Documents’, (January 1778), London Lives, 1690-1800, LMSMPS50677PS506770118
(www.londonlives.org, version 2.0, 18 August 2018), London Metropolitan Archives.

As part of the "Vagrant Lives (http://www.migrants.adamcrymble.org/the-project/)” project, the original

vagrancy lists were converted into a scholarly dataset and published as:

e Adam Crymble, Louise Falcini, Tim Hitchcock, “Vagrant Lives: 14,789 Vagrants Processed by the
County of Middlesex, 1777-1786", Journal of Open Humanities Data, vol. 1, no. 1 (2015),
http://doi.org/10.5334/johd.1 (http://doi.org/10.5334/johd.1).

Readers are invited to download and explore this published dataset

(https://zenodo.org/record/1217600) and its documentation to understand the types of primary

sources being modelled in this example.

Important Notes about the Dataset:&

Gravity models will only return meaningful results if constructed for case studies that meet certain
conditions. While it is not feasible to provide an exhaustive list, there were a few decisions the authors
had to make when working with this dataset of vagrants, and they are worth repeating as a warning to
readers who might be thinking about their own study.

e These historical data in the "Vagrant Lives” dataset are not complete. 42 of a possible 65 such
lists survive for the period 1777 to 1786, which represents approximately 75% of all vagrants
expelled for whom there should be a record. The remaining primary sources are lost. It is
important that the records one uses are either a complete or representative sample
(https://en.wikipedia.org/wiki/Sample_(statistics)). The authors of the dataset believe the 75% of
records that survived are representative of what we would find if we had all 100%. If this was not

the case, modelling may not be appropriate.

e The authors believe that migrants from all counties were equally likely to be arrested as vagrants,
and that the total number of vagrants from a county is proportional to the amount of migration
from that county. In other words, we do not believe that people from Cornwall, for example, were
more likely to be arrested as vagrants than people from Leicestershire. Again, if this was not the
case, modelling may not be appropriate.

e The dataset contains details of vagrants from 32 of the 39 historic English counties (see Figure 4).
The remaining 7 counties were not included in the analysis because of possibly incomplete data,
and the reasons for this are cited in the original paper.2 If the missing counties had not been
geographically clustered as they are, a gravity model might not have been appropriate.

e The dataset contains very few “recidivists” - repeat offenders. Some migration channels in various
points in history and places in the world include a great deal of seasonal, temporary, or repeat
migration. If the migration you are attempting to model includes any of these, and you believe
them to be distributed unevenly across your possible origin and destinations, a gravity model
might not be appropriate.
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Figure 4: A map of historic English counties, showing counties excluded from the analysis

e A model of this sort should always contain moving entities that are of the same type as one
another whenever possible (coffee beans and coffee beans, not coffee beans and bananas).
Despite the fact that all of these individuals appear on the same types of lists, the “vagrants” in
the sources represent three distinct types of people.

1. The "vagabond poor” - the stereotypical poor individual from elsewhere.

2. Demobilised soldiers who used the vagrancy system for a free ride home.

3. Individuals expelled back to London from other counties (not relevant to the original research
question and excluded here).

The first two groups represent migrants from elsewhere, but because they came to London via quite
different paths - one as an economic migrants and one dumped on the docks after finishing work
overseas - they were modelled separately in the original article. Splitting these two types of vagrants
into two models meant more defensible results. Those were not the only two subsets we could have
modelled, as any subset for which there was an intellectual case would also do (e.g. men and women).

For the sake of brevity, this tutorial will take readers through the modelling of the 3,262 “vagabond
poor”, though the process for modelling the demobilised soldiers is exactly the same.

Preview of the Finished Model®

The result of the modelling process can be seen in Figure 5. As you can see on the map, there are in
fact regional anomalies. There is a cluster of counties in the West Midlands (four blue counties) that
were over-sending migrants to London. There were also a number of counties in the centre of the map
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and towards the north that were under-sending migrants (red), and there are a few regional anomalies
sprinkled around the country. The remainder of this tutorial will walk you through the process of
making those types of discoveries from a set of historical data, starting with the mathematics that
allow us to do this type of work.

Regional Anomaly

B Sending More than Expected
[ ] Sending As Expected

- Sending Fewer than Expected

Excluded from
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data
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Figure 5: The anomalous counties in the original study, showing areas with fewer migrants than
expected, more migrants than expected, and about the expected number.

The formula used to arrive at that result is provided below, with the following sections outlining the
origins and rationale of that formula.

pij = exp(By + B1In(P;) + Byln(d;) + BsWh; + ByWa; + BsWaT;)
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Regression Modelling, and the
Mathematics Behind the Model

The following section outlines the intellectual origins of the gravity model formula, and will help
you to understand the branch of mathematics from which it comes. This will allow you to
develop the vocabulary and background needed to discuss the model's mathematics at a basic
level. If you are not familiar or comfortable with mathematical operations, you may find it helpful
to read or refresh your knowledge of orders of operation

(https://en.wikipedia.org/wiki/Order_of operations), as this knowledge is needed to solve the

mathematical equations correctly.

The example used in this tutorial is one of many “gravity models” or “spatial interaction models” that
measure the way entities (often people) use spaces. They are part of what A.G. Wilson referred to as a
“family of spatial interaction models”, and were developed from R.G. Ravenstein’s 1885 attempts to
derive “laws” of migration that could explain or even predict the movement of populations, including
an assertion that both distance and population are key factors in the flows of migration between two
points 2. Wilson outlines many different equations (models), depending on what type of movement is
under investigation and what information is known or unknown. For example, you would need to use a
different or adapted model (equation) if your case study involved movement between multiple
locations and multiple destinations. Gravity models are also the subject of active research, and scholars
continue to refine their underlying mathematics as new ideas emerge. The formula used here is based
upon the latest research to date, at the time the article was written. It is particularly indebted to earlier
work by Tobler, Flowerdew, Aiken, Lovett, Abel, and Congdon, variously published between 1970 and
20104

From a mathematical perspective, our gravity model is a type of regression analysis
(https://en.wikipedia.org/wiki/Regression_analysis), a means of comparing sets of variables in search of

relationships between them. While not all gravity models use regression, the example in this tutorial
does. This section covers in brief regression analyses, moving from a simple linear regression, to a
multivariate linear regression, and finally to the negative binomial regression which is the basis of our
model. Each builds upon the other.

e simple linear regression
e multivariate linear regression
e negative binomial regression (our gravity model)

Simple Linear Regression@

The most basic regression analysis is a simple linear regression

(https://en.wikipedia.org/wiki/Simple_linear regression) analysis. A simple linear regression of two

variables (eg, county population, and number of vagrants) provides a way to quantify the relationship
between those two variables. When you plot the values on a scatter plot
(https://en.wikipedia.org/wiki/Scatter_plot) (eg, county population on the x-axis, and number of

vagrants on the y-axis), looking at the graph makes it clear that there is a loose but reasonably obvious
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linear relationship between them (Figure 6). Generally speaking, the greater the population, the more
vagrants you find. The purpose of a simple linear regression is to calculate the formula that best
represents the straight line that comes as close to as many of the points on the graph as possible.
Since not all points fall directly on the line, but most are fairly close, Figure 6 suggests that population
is a good, but not a perfect predictor of the number of vagrants from a given county.
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Figure 6: A simple linear regression of county population (x-axis) and number of vagrants observed,

1777-1786 (y-axis). To make this graph more readable, Yorkshire has been excluded because of its very
large population.

There are many websites that provide calculator functions that will do this for you automatically, and
proprietary software including Microsoft Excel and SPSS can also perform this calculation. The formula
for a simple linear regression is:

y=oa+pr

y is a value on the y-axis (humber of vagrants, in the example above).

a is the y-intercept (https://en.wikipedia.org/wiki/Y-intercept). This is the value of y when z = 0.

B is the slope (https://en.wikipedia.org/wiki/Slope) of the regression line.

x is a value on the x-axis (the population of the county).
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Many tutorials can teach you to conduct simple linear regressions.2 When you know « and 3, you can
choose a value for either x (population) or y (hnumber of vagrants), and then calculate the other. You
can do that mathematically using the formula above, or you can eyeball it by looking at the graph in
Figure 6 if you only need a rough measure. If you want to know the estimated number of vagrants for
a county with a population of 200,000 (A. on Figure 6), then you find where z and y meet (B.), and
finally the y-intercept for that value (C'.). In other words: if population is 200,000, how many vagrants
would we expect? According to the graph, about 90.

Multivariate Linear Regression®

A multivariate linear regression (https://en.wikipedia.org/wiki/Multivariate_statistics) (multiple variable)

is a more powerful version of the above. Instead of handling two variables (y and z), it can handle an
unlimited number. The principles are exactly the same as the simple linear regression above. Again,
there are online calculators that can conduct a multivariate linear regression, or we can calculate it
using the following equation:

y = By + Bi(z1) + Ba(z2)+- .. +8,(xp)

The formula works the same way, and the symbols mean exactly the same as above, with the exception
of B, and p.

e [, is the y-intercept in a multivariate linear regression (represented as « in the Simple Linear
Regression formula). From our perspective, it is the same.

e p simply stands for “the last/final variable” and is used to show that there is no upper limit to the
number of possible variables.

Unlike in the simple linear regression formula, in this example, there are multiple variables, each of
which has a line of best fit (https://en.wikipedia.org/wiki/Line fitting), each of which has a slope
(https://en.wikipedia.org/wiki/Slope) of the line that has to be calculated (8;, B,, etc). It is difficult to
draw a multivariate linear regression on a scatterplot because you would need a new dimension for

each added variable. In principle it is the same as the simpler version, but with more axes.

You can add and remove the number of variables to suit your own needs. Keeping in mind that y
counts as one of the variables (vagrants observed, in this case), a three, four, and five variable version
of the above equation looks like this:

Three Variable (y Plus 2 Independent Variables):
y =By + (B1z1) + (Baz2)
Four Variable (y Plus 3 Independent Variables):
y =By + (B1z1) + (By22) + (B373)
Five Variable (y Plus 4 Independent Variables):

y = By + (B1z1) + (B2m2) + (B33) + (B424)
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This is not quite our model yet. However, the model we will use is very like this and includes five
independent variables plus the number of observed vagrants for each county, described below in
detail. For our model, taking a multivariate approach to regression allows us to ask much more
complex questions, such as, how many vagrants would we expect if:

if population is 200,000

e distance from London is 55km

e average wages are 80 shillings per month

e and they have risen by 12% in recent years

e while the local price of wheat is 65 shillings per bushel?

If this imaginary county existed, the answer is: about 206 vagrants. That's very different than the 90
estimated by the simple linear regression, suggesting other factors apart from population had a big
influence on the distribution. The next section will explain how we know that 206 is the most likely
value for this imaginary county.

Negative Binomial Regression®

The formula used in our gravity model is extremely similar to the one above. It uses a negative
binomial regression model,2 which is a multivariate regression model with some tweaks. These tweaks
are necessary because the nature of our sample data is most likely to follow a Negative Binomial

Distribution (https://en.wikipedia.org/wiki/Negative_binomial_distribution).

In probability statistics, there are a number of different probability distributions

(https://en.wikipedia.org/wiki/List of probability_distributions). These are often represented visually as

a curve, which shows the likelihood of each possible outcome in a given test. These curves vary widely
- some are long and low, others have a sharp peak in the middle and very short tails, while others still
take on more interesting patterns. Statisticians have come to recognise that certain types of tests using
certain types of data are more likely to follow certain probability distributions. Knowing this means that
statisticians have been able to tweak formulas to different types of probability tests, to return the most
likely outcome. As historians we can use their findings to apply the best possible model to our
historical data.

As it happens, our vagrants are best suited to a negative binomial distribution. The reasons for this are
that they represent count data (1, 2, 53 vagrants) that must be whole numbers (no 0.5 vagrants) and
cannot be negative (no -9 vagrants). Earlier gravity modelling conducted in the 1980s tended to use a
Poisson Distribution (https://en.wikipedia.org/wiki/Poisson_distribution) for modelling human

migration. The best approach for gravity models is still a point of academic debate, with some scholars
opting for a Negative Binomial approach, and others sticking with the Poisson distribution.Z It is
possible that another probability distribution entirely is most appropriate for your own data. If you
were modelling trade surpluses or deficits (which could be + or -), your data may not follow a negative
binomial distribution, and the author recommends speaking to a statistician about the most
appropriate option.

What this means for us in this example is that the formula changes slightly. In particular, we no longer

solve for y, but for the natural logarithm (https://en.wikipedia.org/wiki/Natural logarithm) (In) of the
population mean (http://www.statisticshowto.com/population-mean/) (u). You can read more about
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this type of formula in Michael L. Zwilling's work&.

Multivariate Regression Model:

Negative Binomial Regression Model:

In(p) =...

The full formula looks like this:

In(u) = By + (B171) + (Box2) + (B3x3) + (Bszs) + (B525)

To make it easier to solve, we can rewrite this formula to isolate p on the left side of the equation by
counteracting the natural log (In) - effectively removing it from the calculation. To do so, we must
perform the inverse of natural log on both sides of the equation. The inverse of a natural log (In) is the
exponential function (https://en.wikipedia.org/wiki/Exponential_function) (exp). This means multiplying
natural log by the exponential function on the left side of the equation (resulting in 1, and making it
redundant since 1(u) is ). You must also do the same on the right side.

This means everything on the right side of the new equation must be multiplied by exp():

p = exp(By + (B1z1) + (Baza) + (B3z3) + (Bazs) + (B5x5))

The above is the basis of the equation used in the Economic History Review article upon which this
tutorial is based, and should be the starting point for your own studies if you are modelling data that
follows a negative binomial distribution. You may notice this is slightly different than the model used in
the original article, which is seen below and explained in the next section. The differences are largely
superficial and tailored to the very specific case study.2

The Final Gravity Model:
pij = exp(By + (Bun(P) + (Boln(dij) + (BsWhi) + (BsWai) + (B5)WaT3))

pi; stands for the population interaction between origin ¢ and destination j - in this case, the number

of vagrants moving to London from that area. The remaining symbols represent each of the five
variables used in the example case study, and will be explained more fully below.

The Three Steps of Gravity Modelling

To make this method as accessible as possible, we will take a step-by-step approach to understand the
components of the formula and how to calculate it for the example data, which we will begin to
compile in the next step.

In order to determine the most likely distribution of migrants across the 32 counties, the modelling
process involves three steps:

1. Deciding on variables and gathering the relevant data.
2. Determining the relative importance (weighting) of each variable.


https://en.wikipedia.org/wiki/Exponential_function

3. Applying the weightings for each county to get a predicted number of movements.

Each of those three steps will involve finding certain parts of the equation so that we can ultimately
solve it mathematically. This three-step process provides a numerical estimate of migrants (or coffee
beans/widgets) for each territory in the model, allowing for a final step: historical interpretation.

Step 1 - Deciding on Variables and Gathering the
Relevant Data®$

The first step is to decide which independent variables / influencing factors to include in the model.
These are the variables that we think will influence the distribution of our migrants. How many
variables you choose to include and what they are is part art, part science, and part luck.

It is art because you understand your data better than anyone, so should have an idea of the factors
that might be most important. It is science because for most types of migration or trade, other scholars
have already published about push or pull factors that are known to influence those types of
distributions.22 And luck because in order to use a given factor, you need to have reliable historical
data for each and every territory in your model. If those data do not exist, or the records do not allow
you to create a complete set for a given variable, you are unable to include it.

Influencing factors need to be considered on a case by case basis and to draw on your subject
specialist expertise. There is not a right answer when it comes to the number or types of variables to
use, but it is a good idea not to try to over-model with a long list. A few very relevant factors is
probably better than many weak markers.

There are also a number of wrong ways you can include variables. A gravity model will not work unless
each variable meets the following criteria:

e Numerical
e Complete
e Reliable

Numerical Data Only

As the gravity model is a mathematical equation, all input variables must be numerical. That could be a
count (population), spatial measure (area, distance, etc), time (hours from London on foot), percentage
(wage increase/decrease), currency value (wages in shillings), or some other measure of the places
involved in the model.

Numbers must be meaningful and cannot be nominal categorical variables

(https://en.wikipedia.org/wiki/Categorical variable) which act as a stand-in for a qualitative attribute.
For example you cannot arbitrarily assign a number and use it in the model if the number doesn’t have
meaning (eg, road quality = good, or road quality = 4). Though the latter is numerical it is not a
measure of road quality. Instead, you might use the average travel speed in miles per hour as a proxy
for road quality. Whether average speed is a meaningful measure of road quality is up to you to
determine and defend as the author of the study.

Generally speaking, if you can measure it or count it, you can model it.
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Complete Data Only

All categories of data must exist for each point of interest. That means that all of the 32 counties under
analysis must have reliable data for each push and pull factor. You cannot have any gaps or blanks,
such as one county where you don't have the average wage.

Reliable Data Only

The computer science adage “garbage in, garbage out” also applies to gravity models, which are only
as reliable as the data used to build them. Beyond choosing robust and reliable historical data from
sources you can trust, there are lots of ways to make mistakes that will render the outputs of your
model meaningless. For example, it is worth making sure that the data you have exactly match the
territories (eg, county data to represent counties, not city data to represent a county).

Depending on the time and place of your study, you may find it difficult to obtain a reliable set of data
upon which to base your model. The further back in the past one’s study, the more difficult that may
be. Likewise, it may be easier to conduct these types of analyses in societies that were heavily
bureaucratic and left a good surviving paper trail, such as in Europe or North America.

To ensure data quality in this case study, each variable was either reliably calculated or derived from
published peer-reviewed historical data (see Table 1). Exactly how these data were compiled can be
read in the original article where it was explained in depth.tL

Our Five Model Variables®

With the above principles in mind, we could have chosen any number of variables, given what we knew
about migration push and pull factors. We settled on five (5), chosen based on what we thought would
be most important, and which we knew could be backed up with reliable data.

Variable Source

population at origin 1771 values, Wrigley, “English county populations”, pp. 54-5.12

distance from London calculated with software

price of wheat Cannon and Brunt, “Weekly British Grain Prices"%3

average wages at origin Hunt, “Industrialization and Regional Inequality”, pp. 965-6.14

trajectory of wages Hunt, “Industrialization and Regional Inequality”, pp. 965-6.12

Table 1: The five variables used in the model, and the source of each in the peer reviewed literature

Having decided on these variables, the co-author of the original study, Adam Dennett, decided to
rewrite the formula to make it self-documenting so that it was easy to tell which bits pertained to each
of these five variables. This is why the formula shown above looks different than the one in the original
research paper. The new symbols can be seen in Table 2:

Symbol Meaning

1 the county of origin

J London (destination)

p Population at origin (z)

d Distance from origin (¢) to London (3)



Symbol Meaning
Wh Price of Wheat at origin (z)
Wa Average wages at origin (z)

Wal Wage trajectory at origin (z)

Table 2: The symbols used in the gravity
model equation to self-document the
formula, and their meanings.

Two additional variables ¢ and j, mean “at point of origin” and “at London” respectively. Wa; means
“wage levels at the point of origin” whereas Wa; would mean “wage levels in London”. These seven
new symbols can replace the more generic ones in the formula:

pij = exp(By + (B15;) + (Badij) + (BsWhy) + (BsWa;) + (BsWaT;))

This is now more verbose and a slightly self-documented version of the previous equation. Both solve
mathematically in exactly the same way, as the changes are purely superficial and for the benefit of a
human user.

The Completed Variable Dataset®

To make the tutorial quicker easier to complete, the data for each of the 5 variables and each of the 32
counties have already been compiled and cleaned, and can be seen in Table 3 or downloaded as a csv
file (/assets/gravity-model/VagrantsExampleData.csv). This table also includes the known number of

vagrants from that county, as observed in the primary source record:

4 km to Wa Average WaTl Wage W h Wheat
County Vagrants London Population Wage Trajectory 1767-95 Price
(persons) (shillings) (% change) (shillings)
Bedfordshire 26 61.9 54836 87 1.149 61.79
Berkshire 111 61.7 101939 90 4.44 63.07
Buckinghamshire 79 46.7 95936 96 -8.33 63.09
Cambridgeshire 32 86.8 80497 88 11.36 60.05
Cheshire 34 2551 158038 80 35.00 69.19
Cornwall 40 364.6 142179 81 14.81 67.94
Cumberland 13 407.3 96862 78 38.46 64.42
Derbyshire 28 196.9 122593 75 48.00 68.02
Devon 98 2725 279652 89 -7.87 69.98
Dorset 27 176.8 97262 81 22.22 67.30
Durham 25 380.7 119779 78 33.33 63.16
Gloucestershire 162 157.1 215576 81 0.88 66.54
Hampshire 78 1024 166648 96 6.25 61.45
Herefordshire 45 190.5 81882 70 28.57 62.05
Hertfordshire 99 353 95868 90 4.44 63.82
Huntingdonshire 21 87.5 35370 89 7.87 58.72

Lancashire 94 281.8 301407 78 55.13 71.65
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Wa Average WaTl Wage Wh Wheat

County Vagrants Lond:: Population Wage Trajectory 1767-95 Price
(persons) (shillings) (% change) (shillings)
Leicestershire 20 146.1 107028 79 65.82 64.84
Lincolnshire 41 179.8 181814 84 26.19 58.73
Northamptonshire 33 107.6 128798 78 21.79 63.81
Northumberland 58 440.0 148148 72 70.83 58.22
Nottinghamshire 31 187.5 98216 108 0.00 61.30
Oxfordshire 78 86.8 99354 84 25.00 64.23
Rutland 2 1325 15123 90 10.00 64.12
Shropshire 75 2140 147303 76 18.42 66.50
Somerset 159 180.4 234179 77 3.90 68.29
Staffordshire 82 1853 175075 76 18.42 67.80
Warwickshire 104 149.3 152050 96 -3.13 65.05
Westmorland 5 365.0 38342 74 62.16 71.05
Wiltshire 99 1317 182421 84 20.24 63.64
Worcestershire 94 1644 130757 81 25.93 65.78
Yorkshire 127 282.2 651709 80 58.33 61.87

Table 3: The five variables used in the model, for each of the 32 counties. These are the data that go
into the model to calculate the result.

The final difference between this formula and the one used in the original article, is that two of the
variables happen to have a stronger relationship with vagrancy when plotted naturally logarithmically.
They are population at origin (P) and distance from origin to London (d). What this means is that for
the data in this study, the regression line (sometimes called line of best fit) is a better fit when the data
has been logged than when it has not been. You can see this in Figure 7, with the non-logged
population figures on the left, and the logged version on the right. More of the points are closer to the
line of best fit on the logged graph than on the non-logged one.
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Figure 7: Number of Vagrants plotted against population at origin (left), and natural log of population
of origin (right) with a simple regression line overlayed on both. Note the stronger relationship
between the two variables visible on the second graph.

Because this is the case with this particular data (your own data in a similar type of study may not
follow this pattern), the formula was adjusted to use the naturally logged versions of these two
variables, resulting in the final formula used in the gravity model (Figure 8). We could not possibly have
known about the need for this adjustment until after we had collected our variable data:

A, =exp(f, + B/ InF + 5, In dg,f + o Wh + pWa, + pWal)

(/images/gravity-model/figure8.png)
Figure 8: The final gravity model formula broken down by steps and colour-coded. Elements in black

are mathematical operations. Elements in Blue represent our variables, which we have just gathered
(Step 1). Elements in Red represent the weightings of each variable, which we must calculate (Step 2),
and the Element in Orange is the final estimate of vagrants from that county, which we can calculate
once we have the other information (Step 3).

The values in Table 3 give us everything we need to fill in the Blue parts of each equation in Figure 8.
We can now turn our attention to the Red parts, which tell us how important each variable is in the
model overall, and gives us the numbers we need to complete the equation.

Step 2: Determining the Weightings®

The weightings for each variable tell us how important that push/pull factor is relative to the other
variables when trying to estimate the number of vagrants that should have come from a given county.
The B parameters must be determined across the whole data set from the known data. With these to
hand we will be able to compare individual origin-specific observations with the general model. We
can then examine these and identify over and under predicted flows between the various origins and
the destination.

At this stage we do not know how important each is. Perhaps wheat price is a better predictor of
migration than distance? We will not know until we calculate the values of 81 through $5 (the
weightings) by solving the equation above. The y-intercept (50) only possible to calculate once you
know all of the others (81 — 85). These are the RED values in Figure 8 above. The weightings can be
seen in Table 4 and in Table A1 of the original paper.£2 We will now demonstrate how we came to
these values.

Variable Weighting Symbol
y-intercept -3.84678 30
population 1.235208 p1

distance -0.541863 (2
wheat price  -0.023957 33
wages -0.025184 p4

wage trajectory-0.013779 f5
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Table 4: The parameter weightings
for the five variables (81 to 85) and
the y-intercept (50), used to solve
the gravity model equation.

To calculate these values long-hand requires an incredible amount of work. We will use a quick
solution in the R programming language that takes advantage of William Venables and Brian Ripley's
MASS package that can solve negative binomial regression equations like our gravity model with a
single line of code. However, it is important to understand the principles behind what one is doing in
order to appreciate what the code does (note the following sections do not DO the calculation, but
explain its steps for you; we will do the calculation with the code further down the page).

Calculating the Individual Weightings (in Principle)

B1. Bs, etc, are the same as B in the Simple Linear Regression model above, which is the slope
(https://en.wikipedia.org/wiki/Slope) of the regression line (the rise over the run, or how much y

increases when z increases by 1). The only difference here between a Simple Linear Regression and our
gravity model is that we have to calculate 5 slopes instead of 1.

A Simple Linear Regression y = a + Pz

We will need to solve for each of these five slopes before we can calculate the y-intercept in the next
step. That is because the slopes of the various 3 values are part of the equation for calculating the y-
intercept.

The formula for calculating 8 in a regression analysis is:

B=r()

Sz

We already know that § is the slope, which is what we are trying to calculate.
r is Pearson’s correlation coefficient

(https://en.wikipedia.org/wiki/Pearson_correlation_coefficient), which we are going to compute

s, is the standard deviation of y

s, is the standard deviation of z
Pearson’s Correlation Coefficient

Pearson’s correlation coefficient can be calculated long-hand but it's a rather long calculation in this
case, requiring 64 numbers. There are some great video tutorials in English available online if you
would like to see a walk-through of how to do the calculations long-hand.1Z There are also a number
of online calculators that will calculate r for you if you provide the data. Given the large number of
digits to compute, I would recommend a website with a built in tool designed to make this calculation.
Make sure you choose a reputable site, such as one offered by a university.

Calculating s, & s, (Standard Deviation)
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Standard deviation (https://en.wikipedia.org/wiki/Standard_deviation) is a way of expressing how much

variation from the mean (average) there is in the data. In other words, is the data fairly clustered
around the mean, or is the spread much wider?

Again, there are online calculators and statistical software packages that can do this calculation for you
if you provide the data.

With the above values, you can calculate ;. This will have to be done once for each of the five
variables 3; to B5. These values allow you to calculate the y-intercept, 5,

Calculating 3, (the y-Intercept)

Next, we have to calculate the y-intercept. The formula for calculating the y-intercept in a Simple
Linear Regression is:

Bo=y—Bxz

However, the calculation becomes much more complicated in a multiple regression analysis, as each
variable influences the calculation. This makes doing it by hand very difficult, and is one of the reasons
we opt for a programmatic solution.

The Code for Calculating the Weightings¢®

The MASS statistical package, written for the R programming language, has a function that can solve
negative binomial regression equations, making it very easy to calculate what would otherwise be a
very difficult long-hand formula.

This section assumes you have installed R and have installed the MASS package. If you have not done
so you will have to before proceeding. Taryn Dewar’s tutorial on R Basics with Tabular Data
(/en/lessons/r-basics-with-tabular-data) includes R installation instructions.

To use this code, you will need to download a copy of the dataset of the five variables plus the number
of observed vagrants from each of the 32 counties. This is available above as Table 3, or can be
downloaded as a .csv file (/assets/gravity-model/VagrantsExampleData.csv). Whatever mode you

choose, save the file as VagrantsExampleData.csv. If you are using a Mac make sure you save it as a
Windows format .csv (https://superuser.com/questions/385265/whats-the-difference-between-csv-ms-

dos-csv-macintosh-csv-comma-delimi) file. Open VagrantsExampleData.csv and familiarise yourself

with its contents. You should notice each of the 32 counties, along with each of the variables we've
discussed throughout this tutorial. We will be using the column headers to access this data with our
computer programme. I could have called them anything, but in this file they are:

vagrants
population
distance
wheat

wages

O vk wN

wageTrajectory
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In the same directory as you saved the csv file, create and save a new R script file (you can do this with
any text editor or with RStudio, but do not use a word processor like MS Word). Save it as
weightingsCalculations.r.

We will now write a short programme that:

1. Installs the MASS package

2. Calls the MASS package so we can use it in our code

3. Stores the contents of the .csv file to a variable that we can use programmatically
4. Solves the gravity model equation using the dataset

5. Outputs the results of the calculation.

Each of these tasks will be achieved in turn with a single line of code

install.packages("MASS")
library(MASS)

gravityModelData <- read.csv("VagrantsExampleData.csv")

gravityModel <- glm.nb(vagrants~log(population)+log(distance)+wheat+wages+wageTrajectory,
data=gravityModelData)
summary(gravityModel)

Copy the above code into your weightingsCalculations.r file and save. You can now run the code using

your favourite R environment (I use RStudio (https://www.rstudio.com/)) and the results of the
calculation should appear in the console window (what this looks like will depend upon your
environment). You may need to set the Working_Directory,

(https://en.wikipedia.org/wiki/Working_directory) of your R environment to the directory containing

your .csv and .r files. If you are using RStudio you can do this via the menus (Session -> Set Working
Directory -> Choose Directory). You can also achieve the same with the command:

setwd(PATH) #change "PATH" to the full location on your computer where the files can be
found

Notice that line 4 is the line that solves the equation for us, using the glm.nb (https://stat.ethz.ch/R-

manual/R-devel/library/MASS/html/glm.nb.html) function, which is short for “generalized linear model
- negative binomial”. This line requires a number of inputs:

e our variables using the column headers as written in the .csv file, along with any logging that
must be done to them ( vagrants , log( population ), log( distance ), wheat , wages,
wageTrajectory ). If you were running a model with your own data, you would adjust these to
reflect your column headers in your dataset.

e where the code can find the data - in this case a variable we've defined in line 3 called
gravityModelData .

The outputs of the calculation can be seen in Figure 9:
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Deviance Residuals:
Min 10 Median 30 Maox
-2.1439 -0.7417 -0.1237 ©.3859 2.1113

Coefficients:

Estimate Std. Error t value Pr(=Itl)
(Intercept) -3.84814 .33149 -1.651 ©.11887
log(population) 1.23523 .13159 9,387 7.78e-10 *=#

= M

log(distance) -8.54166 @.15353 -3.528 0.00158 **
wheat -0.82397 ©.02392 -1.002 ©.32554
wages -0.02518 @.91286 -1.959 0.06097 .

=

wageTrajectory -0.01378 00505 -2.729 0.01123 *

Signif. codes: @ “***' @.001 ‘**' .01 ‘*’ ©.05 ‘. ©.1 ¢ ' 1

(Dispersion parameter for Negative Binomial(9.4544) family taken to be 1.235632)
Null deviance: 151.821 on 31 degrees of freedom

Residual deviance: 31.631 on 26 degrees of freedom

AIC: 286.2

Number of Fisher Scoring iterations: 1
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Figure 9: The summary of the above code, showing the weightings for each variable and the y-
intercept, listed under the ‘Estimate’ heading (3 to B5. This summary also shows a number of other
calculations, including statistical significance (https://en.wikipedia.org/wiki/Statistical significance).

Step 3: Calculating the Estimates for Each County
9

Because we now have the y-intercept (80), the weightings (81 — 5), and the 5 variable values for each
county (P, d, Wh, Wa, WaT), we have all the numbers we need to solve for the model’s predicted
value for a county: the final result.

We have to do this once for each of the 32 counties.

You could do this with a scientific calculator, by creating a spreadsheet formula, or writing a computer
programme. To do this automatically in R, you can add the following to your code and re-run the
programme. This for loop calculates the expected number of vagrants from each of the 32 counties
in the example and prints the results for you to see:


https://programminghistorian.org/images/gravity-model/figure9.png
https://en.wikipedia.org/wiki/Statistical_significance

for (entry in c(gravityModelData$County)){
print(paste("Result for County "
(exp(-3.848
+ (1.235 * log(gravityModelData$population[entry]))
+ (-9.542 * log(gravityModelData$distance[entry]))
(-9.024 * gravityModelDatag$wheat[entry])
(-0.025 * gravityModelData$wages[entry])
(-9.014 * gravityModelData$wageTrajectory[entry])

, gravityModelData$County[entry],

+ + +

))
))
}
To build understanding, I suggest doing one county long-hand. This tutorial will use Hertfordshire as

the long-hand example (but the process is exactly the same for the other 31 counties).

Using the data for Hertfordshire in Table 3, and the weightings for each variable in Table 4, we can now
complete our formula, which will give the result of 95:

estimated vagrants =
exp(y-intercept
+ (#population calculation)
+ (#distance calculation)
+ (#wheat price calculation)
+ (#wages calculation)
+ (#wage trajectory calculation)

)

First, let's swap out the symbols for the numbers, taken from the tables mentioned above.

estimated vagrants =

exp(-3.848 #ty-intercept

+ (1.235 * 1n(97389)) #population calculation

+ (-0.542 * 1n(35.3)) #tdistance calculation

+ (-9.024 * 63.82) #wheat price calculation

+ (-9.025 * 909) #wages calculation
+ (-9.014 * 4.44) #wage trajectory calculation

)

Then, start to calculate values to get to the estimate. Remembering mathematical order of operations,
multiply values before adding. So start by calculating each variable (you can use a scientific calculator
for this):

estimated vagrants =

exp(-3.848 #ty-intercept

+ (14.185788655431) #population calculation

+ (-1.93162456646) #distance calculation

+ (-1.53168) #twheat price calculation

+ (-2.25) #wages calculation
+ (-0.06216) #wage trajectory calculation

)

The next step is to add the numbers together:

estimated vagrants = exp(4.56232408897)
And finally, to calculate the exponential function (use a scientific calculator):



estimated vagrants = 95.8059926832

We have dropped the remainder and declared that the estimated number of vagrants from
Hertfordshire in this model is 95. You have to conduct the same calculations for each of the other
counties, which you could speed up by using a spreadsheet program. Just to make sure you can do it
again, I've also included the numbers for Buckinghamshire:

Hertfordshire

95 = estimatedvagrants = exp(—3.848 + (1.235 * In(97389)) + (—0.542 * In(35.3))
4 (—0.024 + 63.82) + (—0.025 % 90) + (—0.014 + 4.44))

Buckinghamshire

83 = estimatedvagrants = exp(—3.848 + (1.235 x In(95936)) + (—0.542 x In(46.7)) + (—0.024 * 63)
+(—0.025 * 96) + (—0.014 x —8.33))

I recommend choosing one other county and calculating it long-hand before moving on, to make sure
you can do the calculations on your own. The correct answer is available in Table 5, which compares
the observed values (as seen in the primary source record) to the estimated values (as calculated by
our gravity model). The “Residual” is the difference between the two, with a large difference suggesting
an unexpected number of vagrants that might be worth a closer look with one’s historian’s hat on.

County Observed Value Estimated Value Residual
Bedfordshire 26 41 -15
Berkshire 111 76 35
Buckinghamshire 79 83 -4
Cambridgeshire 32 48 -16
Cheshire 34 44 -10
Cornwall 40 42 -2
Cumberland 13 21 -8
Derbyshire 28 36 -8
Devon 98 121 -23
Dorset 27 36 -9
Durham 25 31 -6
Gloucestershire 162 123 39
Hampshire 78 92 -14
Herefordshire 45 39 6
Hertfordshire 99 95

Huntingdonshire 21 18 3
Lancashire 94 84 10
Leicestershire 20 28 -8
Lincolnshire 41 86 -45
Northamptonshire 33 78 -45
Northumberland 58 29 29

Nottinghamshire 31 28 3



County Observed Value Estimated Value Residual

Oxfordshire 78 52 26
Rutland 2 4 -2
Shropshire 75 66 9
Somerset 159 145 14
Staffordshire 82 85 -3
Warwickshire 104 70 34
Westmorland 5 5 0
Wiltshire 99 95

Worcestershire 94 53 41
Yorkshire 127 207 -80

Table 5: The "Observed" and "Estimated” number of vagabond
poor from each county, as well as the residual (difference
between the two) Available as Table 3 in the original article.

Step 4 - Historical Interpretation@

At this stage, the modelling process is complete and the final stage is historical interpretation.

The original published article upon which this case study was based, is devoted primarily to
interpreting what the results of the modelling mean to our understanding of lower class migration in
the eighteenth century. As seen in the map in Figure 5, there were parts of the country that the model
strongly suggested were either over- or under-sending lower class migrants to London.

The co-authors offered their interpretations as to why those patterns may have appeared. These
interpretations varied by place. In areas of the North of England that were rapidly industrialising, such
as Yorkshire or Manchester, the opportunities locally appeared to give people fewer reasons to leave,
resulting in lower than expected migration to London. In declining areas to the west, such as Bristol,
the lure of London was stronger as more people left seeking work in the capital.

Not all of the patterns were expected. Northumberland in the far north east proved to be a regional
anomaly, sending far more (female) migrants to London than we would expect to see. Without the
outputs of the model, it is unlikely that we would have thought to consider Northumberland at all,
particularly because it was so far from the Metropolis and we presumed would have weak ties to
London. The model thus provided new evidence for us to consider as historians and changed our
understanding of the London-Northumberland relationship. A full discussion of our findings can be
read in the original article.1

Taking Your Knowledge Forward

After having tried this example problem, you should have a clear understanding of how to use this
example formula, as well as whether or not a gravity model might be an appropriate solution for your
research problem. You have the experience and vocabulary to approach and discuss gravity models
with an appropriately mathematically literate collaborator should you need to, who can help you to
adapt it to your own case study.



If you are fortunate enough to also have data about migrants moving to late eighteenth century
London and you want to model it using the same five variables listed above, this formula would work
as-is - there's an easy study here for someone with the right data. However, this model does not only
work for studies about migrants moving to London. The variables can change, and the destination
does not need to be London. It would be possible to use a gravity model to study migration to ancient
Rome, or twenty-first century Bangkok, if you have the data and the research question. It does not
even need to be a model of migration. To use the Colombian coffee case study from the introduction,
which focuses on trade rather than migration, Table 6 shows a viable use of the same formula,

unaltered.
Criteria Coffee Exporting Example
ONE point
'p. coffee exports from the port of Barranquilla, Colombia
of origin
MULTIPLE
finite the 21 countries of the Western Hemisphere in 1950

destinations

FIVE (1) number of Atlantic Ocean ports in receiving country (2) miles from Colombia, (3) Gross
explanatory Domestic Product of receiving country, (4) Domestic Coffee grown in tons, (5) coffee
variables  shops per 10,000 people

Table 6: An example of how the formula used above could be repurposed for a study of Colombian
coffee exporting patterns in 1950.

There is a long history of gravity models in academic scholarship. To use one effectively for research,
you need to understand the basic theory and mathematics behind them and the reasons that they
have developed as they have. It is also important to understand their limits and conditions for using
them properly, some of which were discussed above. It might also help to know:

e A gravity model like the one used in this example can only work in an enclosed system. The
above model had only 32 possible points of origin, making it possible to run the model 32 times.
An unknown or infinitely large number of points of origin (or destinations depending on your
model), would require a different equation.

e The gravity model concept is also built on the premise that movements (migration, trade, etc) are
based on a collection of voluntary individual decisions that might be influenced by outside
factors, but are not wholly controlled by them. For example, voluntary migrations or purchases
made of free will could be modelled using this technique, but forced migration, compulsory
purchase, or natural processes such as bird migration or river flow may not follow the same
principles and therefore a different type of model may be needed.

e Gravity models can be used to predict the behaviour of populations but not individuals, and
therefore attempts to model data should include a large number of movements to ensure
statistical significance.

There are many more pitfalls, but also tremendous possibilities. It is my hope that this walk-through of
a gravity model, and its accompanying published research, will make this powerful tool more
accessible for historians. If you are planning to use a gravity model in your scholarly research, the
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