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ABSTRACT: Accurate Highway road predictions are necessary for timely decision making by the transport authorities. 
In this paper, we propose a traffic flow objective function for a highway road prediction model. The bi-directional flow 
function of individual roads is reported considering the net inflows and outflows by a topological breakdown of the 
highway network. Further, we optimise and compare the proposed objective function for constraints involved using 
stacked long short-term memory (LSTM) based recurrent neural network machine learning model considering different 
loss functions and training optimisation strategies. Finally, we report the best fitting machine learning model parameters 
for the proposed flow objective function for better prediction accuracy.  
 
KEY WORDS: Intelligent Transportation Systems, Machine Learning, LSTM, Flow Estimation, Hyper Parameter 
Optimisation. 

I.INTRODUCTION 
 
With the understanding of how intelligent transport systems (ITS) operate in a modern city, their reliance on an accurately 
predicted regional traffic flow and congestions changes have become inevitable. This gives rise to the quest for finding 
the better formula to forecast traffic parameters for as close as possible to the real world observed parameters [1]. But for 
ITS and transport operators to rely on traffic parametric forecasts, systems must be reliable, and this is only possible 
when the forecasting systems represent the traffic network on a smallest unit as offered by the network which consists of 
junction and the inter road links. Based on this criterion we set out the flow of this paper. We report the unique 
significance of the proposed system in section II, section III sheds a detailed light on what has already been done in the 
relevant subject in response to the advancements in machine learning technique and traffic flow predictions. Section IV 
list the proposed strategy along with the subsequent subsections detailing the dataset and pre-processing involved along 
with the system design and performance metrics are considered. Sections V and VI deal with the experimental results 
and their conclusion with future suggestions respectively. 
 

II. SIGNIFICANCE OF THE SYSTEM 
 

The paper mainly focuses on predicting the real traffic flow based on retaining the traffic network topology in the form 
of a dynamic objective function and using data driven time series spatiotemporal machine learning model to optimise it 
for more accurate highway network individual road flow predictions. 
 

III. LITERATURE SURVEY 
 
Traffic flow forecasting has been in research discussions for quite some time. Traffic flow forecasting can be broadly 
classified into two distinct categories which are as follows:  
Parametric: Conventional approaches that use statistical methods for time series forecasting are normally termed as 
parametric model approaches. The prior knowledge of data distribution is assumed in parametric approaches. Most 
notable of these approaches are auto regressive integrated moving average (ARIMA) and its variant seasonal auto 
regressive integrated moving average (SARIMA) [2], Kalman filters [3] and  exponential smoothing [4]. The problem 
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with most of these parametric approaches is that they can effectively be employed for only one-time interval prediction 
and cannot predict well enough due to the stochastic and nonlinear nature of the traffic data. This can better suit short 
term forecasts only which are well biased towards the most recent observations in the data, thus this makes the parametric 
approaches incapable of handling real world trends. 
Non-Parametric: A few years ago machine learning (ML) strategy based traffic parameter prediction algorithms have 
been utilised [5]. These data driven approaches are also termed as non-parametric approaches. The most commonly tested 
non-parametric approaches for spatiotemporal traffic forecasting includes the k-nearest neighbours (KNN) [6][7] and 
support vector regression (SVR)[4]. However, these shallow ML algorithms work in a supervised manner which makes 
their performance dependent upon the dataset manual feature selection criteria. 
With the advancement in the ML algorithms, a bit more sophisticated dense supervised learning approach is applied for 
traffic predictions by using back propagation techniques in artificially connected neural networks (ANN) [8][9]. Although 
ANN out performs conventional linear parametric models but struggles with simple time series data learning and finding 
global minimum. Recently, deep recurrent neural networks (RNN) have shown some great promises for dynamic 
sequential modelling especially in the field of speech recognition [10][11]. Simple RNNs however suffer from gradient 
explosion for extra-long sequence training which results in information loss and reduced performance [12]. Fu R et al 
[13], have used the RNN variants called long short term memory (LSTM)[14] and gated recurrent units (GRU) for the 
traffic forecasting because of their ability to retain and pass on the information that is necessary and forget what is 
redundant using the output and  forget gates. Haiyang Yu et al. proposed the spatiotemporal traffic feature learning 
utilising the deep convolutional LSTM network where LSTM network learns the temporal dependent patterns in the data. 
This makes the LSTM vanishing gradient problem during back propagation problem to fade off during error training with 
the usage of LSTM memory blocks and makes it able to predict with much accuracy for longer sequences [15]. For the 
very reason we employ LSTM in our proposed methodology to learn the temporal features whereas to keep the training 
and the model architecture simple we incorporate the feed forward connected ANN layer at the end for the spatial feature 
learning and then we train the whole architecture in a back-propagation manner. This is further discussed in the system 
design section. 
 

IV. METHODOLOGY 
 
In this Section, we represent a traffic model as consisting of a set of nodes and input-output links.  The traffic flow of a 
set of input links will have an influence on the traffic flow of the output links.  This model acts as a black box interpreting 
and manipulating the system inputs. A system is governed by  a set of rules associated with a combination of the inputs 
fixed and dynamic states mapped to outputs and represented in mathematical terms [16]. Such a system can be modelled 
as an objective function consisting of variable parameters is shown in figure 1. 

 

                                                                Figure 1. A general function definition. 

A) Definitions 
 

We consider a highway junction spatially with inflows and outflows to be an independent system and designate each 
junction system as a node denoted by   𝑁𝑁. The links 𝐿𝐿  serves as both the inputs as well as outputs of a node in 
bidirectional highway links. As an example, consider a single sample node of an actual highway junction in Hertfordshire, 
UK, shown in figure 2.a and its equivalent representation using the nodes and links configuration is given in figure 2.b. 
Further, the bidirectional arrows indicate bidirectional traffic flow of the node. Here outflow implies traffic flow moving 
away from the node and inflows to those moving into the node.  
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a)                                                                                                      b) 

Figure 2. a) Highway junction under consideration (Google Maps, 2018).  b) Node illustration retaining junction 
original topology. 

B) Flow Estimation Function  
 

To predict the outflow of traffic for each individual link on a single node, all the incoming link flows are to be considered 
for the output flow forecast objective function. The outflow of a node’s link is determined by the summation of inflows 
of individual links of the node. Figure 2.b shows that the output flow associated with a link is dependent on the inflows 
of every other link in the same node. The estimated traffic outflow for link 𝐿𝐿1 is given by equation (1) showing the 
dependency of the objective function on the inflows associated with the rest of the links of the same node. Equation (2) 
is a more general objective function mathematical representation which describes the conservation of flow with a node 
system where 𝑥𝑥 is the link for which the flow is being calculated and 𝑛𝑛 is the total number of links on the same 𝑁𝑁. This 
makes the objective function retain the correlations in the flow characteristics for each individual node link when the 
single node is considered as a basic unit level in the traffic network.  
 
                        𝐿𝐿1𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑓𝑓(𝐿𝐿2𝑖𝑖𝑖𝑖 + 𝐿𝐿3𝑖𝑖𝑖𝑖 + 𝐿𝐿1𝑖𝑖𝑖𝑖)    { 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3 𝜀𝜀 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑁𝑁) }                                           (1)                        
                                   𝐿𝐿(𝑥𝑥)𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑓𝑓( 𝐿𝐿(𝑛𝑛 − 𝑥𝑥)𝑖𝑖𝑖𝑖)      � 𝑥𝑥,𝑛𝑛  𝜀𝜀 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑁𝑁 )

𝑠𝑠𝑛𝑛𝑛𝑛 𝑥𝑥 < 𝑛𝑛
                                                                       (2)

                      
a)                                                                                                     b) 

Figure 3. a) Extension of traffic network at node i showing three links and their associated inflows and outflows. 
b) A simple traffic network at a node i with 3 links. It shows the distribution of incoming traffic dispersed as 
outgoing traffic at the node. 

With reference to figure 2.b, let us consider a node i consisting of a set of links 𝐿𝐿(𝑗𝑗) that are associated with bi-directional 
traffic flow 𝐹𝐹𝑖𝑖. Each link 𝐿𝐿(𝑗𝑗) at the node i is associated with traffic inflow 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖) and a corresponding outflow
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 indicated by 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑜𝑜𝑜𝑜𝑜𝑜). The function for the traffic flow of links 𝐿𝐿(𝑗𝑗) considers the fact that the traffic inflow of every 
link contributes partially (to a certain degree) to the outflow of each of the other links at the same node. In other words, 
the traffic outflow of a link is a function of the traffic inflow of all the other links including its own at the node. This 
notion is modelled as follows: 
 
                                                         𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑜𝑜𝑜𝑜𝑜𝑜) =  ∑ 𝐹𝐹′(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)

𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)�𝑖𝑖
𝑗𝑗=1                                                                    (3) 

where 𝐹𝐹
′(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)

𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)�  represents a fraction of the traffic inflow that contributes to an outflow of a specific link. 
As an example, consider figure 3.b, in which the circle represents a node i with three links. The thick blue arrow indicates 
the traffic inflow of link 𝐿𝐿(1)𝑖𝑖𝑖𝑖 that gets dispersed into the node and flows through the rest of the links. They contribute 
to the outflows of the rest of links including itself. This dispersion is indicated by thin blue arrows in Fig 3.b. The outflow 
of each of the links in shown in green arrows. The symbol ∃1−𝑗𝑗  indicates that part of the inflow of link 𝐹𝐹(𝐿𝐿(1)𝑖𝑖𝑖𝑖)  
contributes to the outflow of the links 𝐿𝐿(𝑗𝑗)𝑜𝑜𝑜𝑜𝑜𝑜. The sum of the traffic flow of 𝐹𝐹(𝐿𝐿(1)𝑖𝑖𝑖𝑖) inside the node represented by 
thin blue arrows is equal to the traffic inflow of 𝐿𝐿(1) represented by a thick blue arrow, at a time instant. This applies to 
the traffic inflow of all other links at the node as shown in figure 3.b. 
 
We will show in the sub-section E, the use of the above model in the proposed system design. 
 
C) Dataset Description 

 
We perform all the experiments on the traffic flow dataset for the chosen Hatfield Hertfordshire UK area junction as 
shown in figure 1. The dataset is obtained from Gov.uk open datasets which contains public sector information licensed 
under the Open Government Licence v3.0 [17]. The used dataset contains traffic flow information for two-hour timed 
aggregated intervals from start of 1st April 2015 to the end of 31st Dec 2015 for the highway roads. First three and last 
three raw dataset plots for links are shown in figure 4. The data is collected for the number of passing vehicles using the 
loop detectors installed on both the ends of the selected highway links. 
  
D) Dataset Pre-processing 

                                                   Figure 4. First and last three days of pre-processed data. 

The raw dataset is taken through a series of data preprocessing steps: 

Data Cleaning: As with every real world gathered data the links flow raw dataset had approximately 15% of values that 
were missing. Due to the ongoing trends comprising of seasonality and other environmental factors it is very important 
to retain the inherit trends in the traffic data. So, these values are imputed using the backward fill approach. The backward 
filling approach takes the value from next interval logged value and make an imputation for the previous interval. This 
imputing process continues until all the missing imputes are done through which all the inconsistencies are resolved. 
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• Data Integration: A total of 3252 data samples are used for each considered link. Using equation (1) they are 
reshaped to form an array of dimensions 3252x4. Where 4 corresponds to the links considered as given by equation 
(1). The sample plot from dataset containing the newly shaped 𝐿𝐿1𝑖𝑖𝑖𝑖 and two outflows i.e.(𝐹𝐹(𝐿𝐿(1)𝑜𝑜𝑜𝑜𝑜𝑜 , 𝐿𝐿(2)𝑜𝑜𝑜𝑜𝑜𝑜)) for 
first and last three days of the gathered dataset are shown with twelve two-hour intervals as shown in figure 4. 

• Data Transformation: After the data aggregation and reshaping is done it is further generalized and normalized by 
scaling for the minimum and maximum values among each data column. i.e. intra flow links normalization. Further 
the reshaped dataset is lagged by one-time interval to make it suitable for supervised training.  

• Data Reduction: With the aim to generate the training and validation sets to train and validate the ML model we 
consider 20% of the original dataset as the validation set. Since it’s a time series consecutive interval data the order 
of training and validation ensemble is very important. Therefore, we consider the tail end 20% for the validation of 
trained model after each training iteration. 

• Data Discretization: Among the originally reported dataset there are twelve intervals in a twenty-four-hour time 
window we consider only the twelve intervals which are two hours apart each to make the ML model training not 
only fast but a more generalized representation of the sequential data throughout the day 

 
E) System Design 
In this section the machine learning model used to fit the pre-processed data is discussed. We discuss the architecture of 
LSTM and the proposed architecture based on the combination of LSTM and the NN architectures. 
• Feed Forward-Long Short-Term Memory (LSTM): As the first part we just consider the recurrent neural network 

(RNN) variants called long short-term memory (LSTM) units in training for feed forward data iteration as the main 
time series data learners of our ML architecture along with conventional connected feed forward neural networks 
(NN). The hybrid LSTM-NN architecture is shown in figure 6. This part of the architecture consists of two layers of 
LSTM units and one layer of densely connected NN. In between each layer is an activation function. The LSTM 
model is defined [12] by the following set of equations: 
 

 𝑓𝑓𝑜𝑜 =  𝜎𝜎�𝑤𝑤𝑓𝑓 . [ℎ𝑜𝑜−1, 𝑥𝑥𝑜𝑜] + 𝑏𝑏𝑓𝑓� (4),  𝑖𝑖𝑜𝑜 = 𝜎𝜎(𝑤𝑤𝑖𝑖 . [ℎ𝑜𝑜−1, 𝑥𝑥𝑜𝑜] + 𝑏𝑏𝑖𝑖) (5), 

𝐶𝐶�̅�𝑜 = tanh(𝑤𝑤𝑐𝑐 . [ℎ𝑜𝑜−1, 𝑥𝑥𝑜𝑜] + 𝑏𝑏𝑐𝑐) (6),  𝐶𝐶𝑜𝑜 =  𝑓𝑓𝑜𝑜⨂𝐶𝐶𝑜𝑜−1 + 𝑖𝑖𝑜𝑜⨂𝐶𝐶�̅�𝑜                           (7), 

𝑜𝑜𝑜𝑜 =  𝜎𝜎(𝑤𝑤0[ℎ𝑜𝑜−1, 𝑥𝑥𝑜𝑜] + 𝑏𝑏0)                      (8),  ℎ𝑜𝑜 =  𝑜𝑜𝑜𝑜⨂ tanh (𝐶𝐶𝑜𝑜)                                (9). 

LSTM’s general purpose can be defined as the estimation of the conditional probability 
𝑝𝑝 �𝑦𝑦1 ,𝑦𝑦2, … 𝑦𝑦

𝑇𝑇′
| 𝑥𝑥1,𝑥𝑥2, … 𝑥𝑥𝑇𝑇�  given that (𝑥𝑥1,𝑥𝑥2, … 𝑥𝑥𝑇𝑇)  is an input sequence and (𝑦𝑦1,𝑦𝑦2, … 𝑦𝑦

𝑇𝑇′
)  is the 

corresponding output sequence. The lengths of 𝑇𝑇′and 𝑇𝑇 may differ. The deep LSTM computes the conditional 
probability by first computing the fixed 
dimensional input representations 𝑣𝑣 , of 
the input sequence, from the last hidden     
memory state of the LSTM layer [18]. 
The hidden states  ℎ𝑜𝑜 for each individual 
LSTM unit is calculated as given by the 
equation (9). Accordingly, for the 
proposed objective function in 

Figure 5. Structural data flow in a Long Short-Term Memory (LSTM) 
unit [11]. 
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(3), standard LSTM network for the 𝑖𝑖𝑜𝑜ℎ  node with internal hidden states 𝑣𝑣  of corresponding inputs 
�∑ ( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)1𝑖𝑖

𝑗𝑗=1 ,∑ ( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)2𝑖𝑖
𝑗𝑗=1 … ,∑ ( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)𝑇𝑇𝑖𝑖

𝑗𝑗=1 � is given by equation (10) : 

        where 𝑘𝑘  in the  𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜) represents the output, 
link being considered by the LSTM for the output flow 
conditional probability estimations. As shown    in the 
system design (refer figure 6.) the LSTM layers are 
cascaded with NN layers. Equation (10) can now be 
interpreted for our flow problem as given by equation (11) 
which forms the model for traffic flow. Note that in 
equation (13), 𝑓𝑓𝑜𝑜 and 𝑓𝑓ℎ represent the output and hidden 
layer activation functions respectively. 𝐻𝐻𝑗𝑗 in equation (12) 
and 𝑂𝑂𝑘𝑘  in equation (13) define the hidden layer and 
output layer outputs. 
 
It is to be noted that there are two LSTM layers stacked 
model followed by a NN model in this architecture. We 
later show that the choice of the number of nodes of the 
hidden layers in each of these models can impact the 
system performance. Both models try to learn spatial and 
temporal features respectively.                                                                                                                     
    
 

 
 
From (10), we have the input 𝑋𝑋𝑗𝑗 = 
𝑝𝑝 � 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)1,  𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)2, … ,  𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)𝑇𝑇′ � �∑ ( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)1𝑖𝑖

𝑗𝑗=1 ,∑ ( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)2𝑖𝑖
𝑗𝑗=1 … ,∑ ( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)𝑇𝑇𝑖𝑖

𝑗𝑗=1 �� (11) 

𝐻𝐻𝑗𝑗 = 𝑓𝑓�𝐼𝐼𝑗𝑗�;    𝐼𝐼𝑗𝑗 = ∑ 𝑊𝑊𝑘𝑘𝑗𝑗𝑋𝑋𝑗𝑗𝑖𝑖
𝑗𝑗=1  

 
(12) 

 
𝑂𝑂𝑘𝑘 = 𝑓𝑓(𝐼𝐼𝑘𝑘);    𝐼𝐼𝑘𝑘 =  �𝑊𝑊𝑘𝑘𝑗𝑗𝐻𝐻𝑗𝑗

𝑖𝑖

𝑗𝑗=1

 
 

(13) 

Substituting (11) and (12) in (13), we get: 
  

𝑂𝑂𝑘𝑘 = 𝑓𝑓𝑜𝑜 �∑ 𝑊𝑊𝑘𝑘𝑗𝑗  𝑓𝑓ℎ �∑ 𝑊𝑊𝑘𝑘𝑗𝑗 𝑝𝑝�
 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)1,  𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)2, … ,  𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)𝑇𝑇′  |

 �
∑ ( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)1𝑖𝑖
𝑗𝑗=1 ,∑ ( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)2𝑖𝑖

𝑗𝑗=1 … ,
∑ ( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)𝑇𝑇𝑖𝑖
𝑗𝑗=1

� �𝑖𝑖
𝑗𝑗=1 � 𝑖𝑖

𝑗𝑗=1 �                                    (14)                                                            

 
The activation functions  𝐹𝐹𝑖𝑖  tested for the scope of this paper are given in table 1 along with their mathematical 
representation. In our model the pre-processed data of shape (2602, 1, 4) with three inflows and one outflow according 
to equation (1) is be fed into the model and the respective link inflow and outflow values for the next time interval can 
be generated through the LSTM-NN. The shape dimensional values in (2602,1,4) represents the number of samples, 
batch number, variable features or corresponding link values, respectively. For each model iteration a separate validation 
set of similar shape (650, 1, 4) as of training data is used for the performance analysis measures. The final model 
parameters including the number of LSTMs and NNs chosen along with activation function are further discussed in the 
experiments section. 
 
 

� 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)1,  𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)2, … ,  𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)𝑇𝑇′  |  ��( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)1

𝑖𝑖

𝑗𝑗=1

,�( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)2

𝑖𝑖

𝑗𝑗=1

… ,�( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑗𝑗)𝑖𝑖𝑖𝑖)𝑇𝑇

𝑖𝑖

𝑗𝑗=1

� � 
 

=  �𝑝𝑝
𝑇𝑇′

𝑜𝑜=1

 ( 𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)𝑜𝑜  | 𝑣𝑣,  𝐹𝐹𝑖𝑖(𝐿𝐿(𝑘𝑘)𝑜𝑜𝑜𝑜𝑜𝑜)𝑜𝑜−1)             
 
(10) 

Figure 6. Proposed System Architecture  
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 Activation Function (g) Mathematical Implementation 

1.  sigmoid 𝜎𝜎(𝑥𝑥) =  1
1+𝑒𝑒−𝑥𝑥

;  𝜎𝜎(𝑥𝑥)  ∈ [0,1] 
2.  softmax 𝜎𝜎(𝑥𝑥)𝑗𝑗 =  𝑒𝑒𝑥𝑥𝑗𝑗

∑ 𝑒𝑒𝑥𝑥𝑘𝑘𝐾𝐾
𝑘𝑘=1

; 𝑗𝑗 = 1,2, … ,𝐾𝐾;  𝜎𝜎(𝑥𝑥)𝑗𝑗 ∈ [0,1] 

3.  tanh tanh(𝑥𝑥) = 1−𝑒𝑒−2𝑥𝑥

1+𝑒𝑒−2𝑥𝑥
; tanh(𝑥𝑥) ∈ [−1, +1] 

4.  relu 𝑓𝑓(𝑥𝑥) = max(0, 𝑥𝑥) ; 𝑓𝑓(𝑥𝑥) ∈ [0,∞) 
Nomenclature: softmax represents the normalised exponential function for multiclass logistic function flow values in our case, that makes K-
dimensional vector x to have values in range [0, 1] that all add up to 1.  

                                                              Table 1. Layer activation functions considered. 

• Feed Backward-Loss and Optimiser Function: The second part of the system design considers the optimisation 
function and the loss function while updating the feed forward model weights before the next iteration. The iterative 
back-propagation allows the LSTM architecture to learn the temporal correlations amongst the intra node links 
whereas as the connected NN layer help learns the spatial dependencies. A set of optimisation strategies and loss 
functions considered in the experiments are given in table 2 & 3, respectively whose relative performances are 
evaluated in the process. 

 
 Optimisation Function (X) Mathematical Representation 
1.  Stochastic Gradient Descent (SGD) 𝑤𝑤𝑜𝑜+1 = 𝑤𝑤 − 𝜂𝜂 �∑ ∇𝑄𝑄(𝑤𝑤𝑖𝑖)𝑡𝑡

N
𝑁𝑁
𝑖𝑖=1 � +  𝛼𝛼Δ𝑤𝑤;  

2.  Adaptive Gradient Algorithm (Adagrad) 𝑤𝑤𝑜𝑜+1 =  𝑤𝑤𝑜𝑜 −
𝜂𝜂

�𝐺𝐺𝑡𝑡+𝜀𝜀
 ⨀𝑔𝑔𝑜𝑜 

3.  Root Mean Squared Propagated Gradient Descent (RMSprop) 𝑤𝑤𝑜𝑜+1 = 𝑤𝑤𝑜𝑜 −
𝜂𝜂

�𝐸𝐸(𝐺𝐺𝑡𝑡)+𝜖𝜖
 ⨀𝑔𝑔𝑜𝑜 

Nomenclature: 𝒘𝒘𝒊𝒊 = (𝒚𝒚�𝒊𝒊 −  𝒚𝒚𝒊𝒊)𝟐𝟐 , 𝜂𝜂  is the learning rate, 𝛼𝛼 is the learning momentum factor, 𝑔𝑔𝑜𝑜 is the iteration gradient,𝐺𝐺𝑜𝑜 = ∑ 𝑔𝑔2𝑜𝑜,𝑖𝑖
𝑁𝑁
𝑖𝑖=1  is the diagonal. 

Table 2. Optimisation Strategies considered. 
 

 Loss Function (𝑱𝑱) Mathematical Loss Representation 
1.  Mean Squared Error (L2 loss) 𝑀𝑀𝑀𝑀𝑀𝑀 =  1

𝑁𝑁
∑ ( 𝑦𝑦𝑖𝑖 −  𝑦𝑦𝚤𝚤�)2𝑁𝑁
𝑖𝑖=1  

2.  Mean Absolute Error (L1 loss) 
𝑀𝑀𝑀𝑀𝑀𝑀 =  

1
𝑁𝑁

  �𝑠𝑠𝑏𝑏𝑠𝑠
𝑁𝑁

𝑖𝑖=1

( 𝑦𝑦𝑖𝑖 −  𝜆𝜆(𝑥𝑥𝑖𝑖)) 

3.  Mean Squared Logarithmic Error 
𝑀𝑀𝑀𝑀𝐿𝐿𝑀𝑀 =  

1
𝑁𝑁

 �(log(𝑦𝑦�𝑖𝑖 + 1) −  log(𝑦𝑦𝑖𝑖 + 1))2
𝑖𝑖

𝑖𝑖=1

 

4.  Poisson 
𝑝𝑝𝑜𝑜𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛 =  

1
𝑁𝑁

 �(𝑦𝑦�𝑖𝑖 −  𝑦𝑦𝑖𝑖) ∗ 𝑙𝑙𝑜𝑜𝑔𝑔 (𝑦𝑦�𝑖𝑖 +  𝜀𝜀)
𝑁𝑁

𝑖𝑖=1

 

5.  Cosine 𝑐𝑐𝑜𝑜𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠 =   𝑐𝑐𝑜𝑜𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠(𝑦𝑦�𝑖𝑖 −  𝑦𝑦𝑖𝑖) 
6.  Cosine Proximity or Cosine Distance 

𝑐𝑐𝑝𝑝 =  −
∑ (𝑦𝑦�𝑖𝑖𝑁𝑁
𝑖𝑖=1 ∗  𝑦𝑦𝑖𝑖)

�∑ (𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1  ∗   �∑ (𝑦𝑦�𝑖𝑖)2𝑁𝑁

𝑖𝑖=1

 

7.  Logarithmic Hyperbolic Cosine 
𝑙𝑙𝑜𝑜𝑔𝑔𝑐𝑐𝑜𝑜𝑠𝑠ℎ =  � log (cosh (𝑦𝑦�𝑖𝑖 −  𝑦𝑦𝑖𝑖))

𝑁𝑁

𝑖𝑖=1

 

8.  Hinge 
ℎ𝑖𝑖𝑛𝑛𝑔𝑔𝑠𝑠 =  

1
𝑁𝑁
�max (0,𝑠𝑠 − 𝑦𝑦�𝑖𝑖 ∗ 𝑦𝑦𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

9.  Kullback Leibler Divergence 
𝑘𝑘𝑙𝑙 =

1
𝑁𝑁

 �(𝑦𝑦𝑖𝑖 ∗ log(𝑦𝑦𝑖𝑖)) −  
1
𝑁𝑁

 �(𝑦𝑦𝑖𝑖 ∗ log(𝑦𝑦�𝑖𝑖)) 
𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 

Nomenclature: 𝒚𝒚�𝑖𝑖 is the model last layer predicted value, 𝒚𝒚𝒊𝒊 is the actual value, 𝝀𝝀 is the rate of absolute change set initially m is the threshold margin 
value already set for the hinge cost function. 

                                               Table 3. Cost / loss estimation functions considered. 
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A shallow LSTM-NN architecture is effective in capturing the spatio-temporal dependencies on node level with defined 
topological link order and this can be extended to further inter connected nodes and links. Thus, in the next section we 
perform experiments with varying parameters including loss function and activations which are given in table 1 and 2 
respectively. The experimental run involves searching for the best parameters for both the two defined stages from that 
we hope to analyse the performance measures for best data driven objective function determination. 
 
F) Performance Metrics 

 
For the performance measure for the proposed model, we consider the root mean square error (RMSE) as widely used by 
researcher’s community in the field of machine learning. We consider validation RMSE as our major model performance 
indicator. The formula given in equation (15) is the mathematical representation of RMSE. 

                                                                 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 =   �1
𝑁𝑁
∑ (|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖|)2𝑁𝑁
𝑖𝑖=1 �

1
2�                                                                   (15) 

 
where in equation (15), N represents the number of validation samples used for the error calculation, 𝑦𝑦𝑖𝑖 is the predicted 
output and 𝑦𝑦𝑖𝑖 is the original value observed by model.  
 

V. EXPERIMENTAL RESULTS 
 
In this section we show how the hyper-parameters of the proposed LSTM-NN network are optimised based on the 
network’s performance using the Hatfield node junction data. The following notation is observed. Let 
𝑔𝑔 → 𝑀𝑀ctivation Function, 𝑋𝑋 → Optimisation Function, 𝐽𝐽 → Loss Function, 𝑛𝑛 → Number of nodes in hidden layer, 𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐 
and 𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐  are the optimised output values of 𝐽𝐽 and 𝑋𝑋 respectively. 
 
Hyper-parameters optimisation is carried as a three-stage process whereby we first determine optimal values of 𝐽𝐽 and 
𝑋𝑋 using Algorithm A.  These optimal parameters are in turn used by Algorithm B to determine the optimal parameters of 
𝑛𝑛. It is worth noting that 𝑛𝑛 takes only 2 sets of values in Algorithm A to determine 𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐 and 𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐  whereas in principle 
several other combinations exist, and they are not considered at this point; instead they are optimised in the second stage 
using Algorithm B. 
 

A) Finding Best Fitting Loss and Optimisation Functions 
 

Firstly, we compare the performance measure by changing the loss functions 𝐽𝐽along with the optimisation techniques 𝑋𝑋. 
We compare nine different loss functions for our data model including the most common ones majorly used in data 
regression problems like mean square error, mean absolute error, mean squared logarithmic error, Poisson, cosine and 
the probability based logarithmic hyperbolic cosine, cosine proximity, hinge and lastly the cross entropy based Kullback-
Leibler divergence. The best performing loss function  𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐 is declared based on the minimum RMSE error.  
 
The hybrid LSTM-NN model training is carried out by two different layer configurations of 𝑛𝑛 = (35, 5, and 5) and (45, 
20, 20) at different instances each with three different optimisers used. Each layer configuration corresponds to the 
(LSTM-layer1, LSTM-layer2, and NN-layer) respectively. But for each of them the activation function 𝑔𝑔   for the 
respective layers was taken as constant i.e. (sigmoid, sigmoid, sigmoid) for the loss function versus the optimiser function 
performance test. The optimiser we used are the simple stochastic gradient descent (SGD), to the adaptive gradient 
algorithm (Adagrad) and running average-based root mean squared propagated gradient descent (RMSprop). 
Performance bar graphs in figure 7 shows that the minimum validation RMSE is achieved by the RMSprop among all 
the three optimiser which indeed is true in our case as the learning rate of the optimiser better adapts to the running 
average of time series then just simply considering the previous time interval. And the least RMSE is achieved by the 
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(45, 20, 20) layer configuration. The training loss, accuracy and validation RMSE for each of the instances are shown in 
figure 7.  All three metrics reflect one and the same result.   
 

Algorithm A: Hyper parameter Optimization - Loss (𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐, ) and Optimisation Functions (𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 ) 
function Hyper parameter Optimisation ( 𝑱𝑱,𝑿𝑿,𝒈𝒈,𝒏𝒏, 𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐,𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 ) 
1. Input: Performance evaluate loss functions 𝑱𝑱 (dimensionality=9)  
2. Compute RMSE 
3. Output:  𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐 

 
4. Input: 𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐,𝒈𝒈 (𝒅𝒅𝒊𝒊𝒅𝒅𝒅𝒅𝒏𝒏𝒅𝒅𝒊𝒊𝒐𝒐𝒏𝒏𝒅𝒅𝒅𝒅𝒊𝒊𝒐𝒐𝒚𝒚 = 𝟒𝟒),𝒏𝒏 (𝒅𝒅𝒊𝒊𝒏𝒏𝒅𝒅𝒅𝒅𝒊𝒊𝒐𝒐𝒏𝒏𝒅𝒅𝒅𝒅𝒊𝒊𝒐𝒐𝒚𝒚 = 𝟐𝟐),𝑿𝑿(𝒅𝒅𝒊𝒊𝒅𝒅𝒅𝒅𝒏𝒏𝒅𝒅𝒊𝒊𝒐𝒐𝒏𝒏𝒅𝒅𝒅𝒅𝒊𝒊𝒐𝒐𝒚𝒚 = 𝟑𝟑) 
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Figure 7.  Performance report comparing three different optimisation techniques versus the loss functions with 
two different layer configurations. 

B) Layers LSTM Units 

Algorithm B: Hyper parameter Optimisation – Number of Hidden Layer Nodes, 𝒏𝒏𝒊𝒊 of LSTM Layers   
function Hyper parameter Optimisation ( 𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐,𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐, 𝒏𝒏𝒐𝒐𝒐𝒐𝒐𝒐) 
5. Input: Performance evaluate Number of Hidden Layer Nodes, 𝒏𝒏 (dimensionality =20) 
6. Compute RMSE 
7. Output:  𝒏𝒏𝒐𝒐𝒐𝒐𝒐𝒐 

 
 

Figure 8. Performance Evaluation of Hyper-parameter 𝒏𝒏 (Layer1, Layer2)  
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In the second stage, we consider experimenting with 𝑛𝑛 , the varied number of layer one, layer two LSTM units and NN 
layers. Using the optimal performing (𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜)  RMSprop optimisation technique and the best performing (𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜) Mean 
Absolute Error (MAE) as a loss function we quest for the best suited LSTM layer unit numbers (𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜) that minimises the 
validation RMSE exhibited by the model. The final performance plot in the form of boxplot with mean and median of 
four iteration runs made with each configuration is shown in figure 8. As before, any of the performance metrics may be 
used, but we show all three metrics for better clarity. Figure 8 has a notation [Neurons_L1, Neurons_l2] in which 
Neurons_L1 refers to the number of units in the hidden layers of both LSTM layers and Neurons_L2 refers to that of the 
NN layer as shown in the system design in figure 6.  

 
C) Effect of Layer Activation functions  

 
In the third stage, we analyse the architecture based on the choice of different layer activation functions, 𝑔𝑔. From 
Algorithms A and B, we consider the determined optimum performing RMSprop optimiser (𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜  ), MAE as a loss 
function (𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜) and 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 = (65,65, 5) as the chosen final layer LSTM unit configuration. This is because the (65,65,5) 
combination exhibits the lowest mean validation RMSE out of all the configurations tested as shown in figure 8. 
Algorithm C tests all the combination of layer activation functions from table 1. We find that the least validation RMSE 
of 0.1398 is exhibited by the relu-tanh-relu configuration as shown in figure 9. The experimental result heat map in figure 
8 shows that tanh does generalise the objective function well enough compared to softmax and sigmoid. This is because 
tanh as given in table 1 has a range of [-1, 1] and the negative first derivative is not a constant which is the property 
common to both sigmoid and softmax activation functions.  

 

Algorithm C: Hyper parameter Optimisation – Activation Function (𝒈𝒈 ) 
function Hyper parameter Optimisation ( 𝑱𝑱,𝑿𝑿,𝒏𝒏, 𝑱𝑱𝒐𝒐𝒐𝒐𝒐𝒐,𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 ,𝒈𝒈𝒐𝒐𝒐𝒐𝒐𝒐 ) 
1. Input: Performance evaluate activation functions 𝒈𝒈 (dimensionality=4)  
2. Compute RMSE 
3. Output:  𝒈𝒈𝒐𝒐𝒐𝒐𝒐𝒐 

 

Figure 9. Performance Comparison of activation function combinations. 
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                                               VI. CONCLUSION AND FUTURE WORK 
 

To forecast the traffic flow in transportation networks several methods have been proposed by many researchers. During 
the survey it is seen that the flow prediction using conventional statistical and latest machine learning techniques starting 
from simple KNN to the latest deep ANN and time series LSTMs are highly effective in determining the spatiotemporal 
features which are crucial to traffic flow forecasting. In this paper we showed the spatiotemporal flow data remodelling 
in the form of topological objective function and exhibited the performance comparison of LSTM-NN with architecture 
parameter tunings. LSTM and ANN learns the temporal and spatial features respectively.  The network is simple and fast 
enough for online data learning with dedicated geographical junction weight matrices for future training models. Future 
recommendations might include the local weather and incident data in combination with the objective function. 
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