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Abstract- An approach for the construction of optimal analog wavelet bases is presented. First, the 

definition of an analog wavelet is given. Based on the definition and the least-squares error criterion, a 

general framework for designing optimal analog wavelet bases is established, which is one of difficult 

nonlinear constrained optimization problems. Then, to solve this problem, a hybrid algorithm by 

combining chaotic map particle swarm optimization (CPSO) with local sequential quadratic 

programming (SQP) is proposed. CPSO is an improved PSO in which the saw tooth chaotic map is used 

to raise its global search ability. CPSO is a global optimizer to search the estimates of the global 

solution, while the SQP is employed for the local search and refining the estimates. Benefiting from 

good global search ability of CPSO and powerful local search ability of SQP, a high-precision global 

optimum in this problem can be gained. Finally, a series of optimal analog wavelet bases are 

constructed using the hybrid algorithm. The proposed method is tested for various wavelet bases and 

the improved performance is compared with previous works. 

 
Index Terms- Wavelet transform, Analog wavelet base, Optimization methods, Particle swarm optimization 

(PSO), Saw tooth chaotic map, Sequential quadratic programming (SQP). 
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I.    INTRODUCTION 

 

The Wavelet Transform (WT) has been proven very useful in many fields due to the ability of 

wavelets to resolve localized signal content in both scale and space [1-5]. The conventional 

method of implementing WT is by means of digital signal processing systems (DSP) with the 

required A/D or D/A converters. For WT, emerging applications such as low power sensor 

networks [6]and [7], next-generation cochlear implants [8] and [9], and implantable pacemakers 

[10]continue to challenge its implement method with ever more stringent requirements-ultra low 

power cost, very small size, and real-time performance. With modern advances in the area of 

programmable and reconfigurable analog VLSI technologies, it is feasible to implement complex 

signal processing employing analog systems with very low power and small size [13-18]. 

Application requirements and novel analog circuit technologies provide a motivation for realizing 

WT based on analog systems, and a number of attempts have been made so far.  

Previous studies on analog hardware implementation of WT can be divided into two categories, 

namely time-domain approach [19-21] and frequency-domain approach [22-31]. The latter is now 

the mainstream approach and the performance of such implementation primarily depends on the 

accuracy of the corresponding wavelet approximations. In fact, it is a nonlinear constrained 

optimization problem to approximate wavelets. Some approaches based on optimization 

techniques for wavelet approximations have been reported, which  include mainly L2 

approximation method [26], network function method [23],[25], differential evolution method 

[30], [31] and simulated annealing method [31]. However, these methods are difficult to ensure a 

global initial value, which may result in a local optimal result. So, some more effective 

technologies to get optimal wavelets for analog hardware implementation should be explored. 

In this paper, we are interested in the analog hardware implementation frequency -domain of WT 

and the constructing the optimal analog wavelets. The innovative aspects of this paper are 

threefold. First, by extending author's previous work [27] and [28] we propose a general 

framework of constructing optimal analog wavelet bases. Based on linear system theory and 

wavelet transform theory, the definition of analog wavelet base is given. Then applying the 

least-squares error criterion, mathematical model of designing optimal analog wavelet bases is 

established, which is a typical complex function nonlinear constrained optimization problem. 

Second, a hybrid optimization algorithm by combining chaotic map Particle Swarm Optimization 
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[33] (CPSO) with local sequential quadratic programming (SQP) [32] is presented to solve the 

optimization problem. CPSO is an improved PSO in which the saw tooth chaotic map is used to 

avoid premature problem of PSO and raise its global search ability. Finally, based on the 

proposed hybrid algorithm and the general frame, a series of optimal analog wavelet bases are 

constructed. CPSO is a stochastic optimization technique with powerful global search ability. 

Using CPSO to find a global initial value for SQP which is a powerful nonlinear programming 

algorithm, we can get high-precision optimal analog wavelets and overcome these limitations in 

previous methods. Experimental results confirmed this.  

The paper is organized as follows: In sections 2, we give the definition of analog wavelet base. In 

sections 3, the general frame of constructing optimal analog wavelet bases is set up. In sections 4, 

we propose a hybrid optimization algorithm by combining CPSO and SQP. In sections 5, we 

construct many optimal analog wavelet bases using the proposed hybrid algorithm, and compare 

the performance of proposed method with other method. 

 

II.   ANALOG WAVELET TRANSFORM AND ANALOG WAVELET BASE 

 

The definition of the continuous wavelet transform (CWT) for a real valued time signal ( )x t  is 

given as [2] 

*1WT ( , ) ( ) ( )x
ta x t dt

aa
τ

τ ψ
∞

−∞

−
= ∫  (1) 

where a  is scale parameter ( (0, )a∈ R ) and τ  is translation parameter (τ ∈R ). The basis 

function ( )tψ ( 2( ) ( )t Lψ ∈ R ) is called the mother wavelet or wavelet base. The mother wavelet 

used to generate all the basis functions is designed based on some desired characteristics 

associated with that function. The translation parameter τ  relates to the location of the wavelet 

function as it is shifted through the signal. The wavelet base must satisfy two restriction 

conditions. One is 

( ) 0t dtψ
∞

−∞
=∫  (2) 

This ensures the mother wavelet has no DC component and is fast in decaying rate. The other is 

the admissibility condition, i.e. 
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2| ( ) |
| |

w dw
w

∞

−∞

Ψ
< ∞∫            (3) 

where ( )wΨ is the Fourier transform of the mother wavelet ( )tψ . The second restriction in equation 

(3) is stronger than the first one. The reason for requiring this condition is to guarantee that the 

reconstruction of the original time signal from the continuous wavelet transform is possible. 

The above equation (1) shows that the wavelet transform performs the convolution operation of 

the signal and the basis function. Let 1 / ( / )a t aψ −  be a linear analog filter impulse response

( ) 1 / ( / )h t a t aψ= − , then WT ( , )x a τ of signals under scale a can be achieved through the 

implementation of a linear analog filter. Here, the linear filter ( )h t   is called analog wavelet 

filter.  So, by transforming equation (1), we can obtain the definition of analog wavelet 

transform: 

1WT ( , ) ( ) ( )xA A
ta x t
aa

τ ψ= ∗ −  (4) 

where ( )A tψ  is the analog wavelet base and∗denotes the convolution. Figure 1 shows analog 

wavelet transform realization block diagram using analog filter banks.  

1( , )xAWT a τ

2( , )xAWT a τ

( , )xA nWT a τ

( )x t

11log : ( ) ( )an A n
n

ana filter n h t a t
a
ψ −= −

1
2 2

2

1log 2 : ( ) ( )a Aana filter h t a t
a
ψ −= −

1
1 1

1

1log 1: ( ) ( )a Aana filter h t a t
a
ψ −= −

 
Figure 1.  Block diagram of analog wavelet transform 

 

For obvious physical reasons, only the analog hardware implementation of causal stable filters is 

feasible. Thus, analog wavelet bases must satisfy some other conditions besides the admissibility 

condition. First, ( )A tψ −  needs to possess a rational Laplace transform, i.e. 
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1 0
1

1 1 0

( ) ( )
m

st m
A n n

nR

b s b s b
H s t e dt

s a s a s a
ψ −

−
−

+ + +
= − =

+ + +∫


            (5) 

which has all its poles in the complex left half plane. Second, ( )A tψ −  is causal signal. In other 

word, ( )A tψ  must be zero for positive t. From the discussion described above, we define the 

analog wavelet base as follows: 

Definition 1 The function ( )A tψ  is an analog wavelet base if ( )A tψ  satisfies all following 

conditions:      

2

2

1 0
1

1 1 00

2

1) ( ) ( )

( )
2) ( ) 0

3) ( )

4) | ( ) | , 5) ( ) 0, 0

A

A
A

R

m
st m

A n n
n

A A

t L R

w
C dw or t dt

w

b s b s b
t e dt

s a s a s a

t dt t t

ψ

ψ

ψ

ψ ψ

∞

Ψ
−∞

∞
−

−
−

∞

−∞

 ∈


Ψ
= < ∞ =


 + + +

− =
+ + +


 − < ∞ = >


∫ ∫

∫

∫



          (6) 

Up to now, various versatile wavelet bases with excellent qualities have been designed since the 

wavelet transform theory was put forward, such as Marr wavelet, Gaussian wavelet, and Morlet 

wavelet, etc. and have been successfully applied to the signal processing and analysis [1]. 

However, these versatile wavelets usually do not satisfy some conditions for analog wavelets in 

equation (6). In order to meet new application requirements for low-power, small size and 

real-time, how to construct analog wavelet bases as fine as versatile wavelets has gradually 

become a popular research topic.  

   

III.     THE GENERAL FRAMEWORK OF CONSTRUCTING OPTIMAL ANALOG 

WAVELET BASES 

 

To obtain analog wavelet bases with excellent properties, we naturally think of the approach 

method. If the analog wavelets constructed can approach the versatile wavelet well in time 

domain, we will easily find good analog wavelet bases. According to the linear system theory, a 

analog wavelet base ( )A tψ  possessing the Laplace transform expression in Eq.(5) may typically 
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have the following form: 

1 1
( ) [ sin( ) cos( )] ( 2 , 0)j ji

k m
d t d tb t

A i j j j j
i j

t a e c e f t g e f t k m N tψ
= =

= + − + − + = ≤∑ ∑       (7) 

where the parameters ib and jd must be strictly negative for reasons of stability, and N is the 

order of analog wavelet filter. When the expression of desired versatile wavelet includes cosine 

term )cos(A tΩ (or )sin(A tΩ ), such as the Morlet wavelet, the )(A tΨ  may be given by: 

0
1 1

( ) [ [ sin( ) cos( )]]cos( ( )) (2 2 , 0)j ji

k m
d t d tb t

A i j j j j
i j

t a e c e f t g e f t t t k m N tψ − −−

= =

= + + Ω + + = ≤∑ ∑  (8) 

Note above expression only can get wavelet filter with even order. If to design the odd order one, 

we only need to move the term ib t
ia e−∑  to the outside of the bracket and transform the form of 

equation (8). Let 2 ( , )ε a,b,c,d, f g  be the least-squares error between ( )A tψ −  and 0( )t tψ − +

(time-shifted versatile wavelet), then 

2 22
0 0( , ) ( ) ( ) ( ) ( )A At t t t t t dtε ψ ψ ψ ψ

∞

−∞

= − − − + = − − − +∫a,b,c,d, f g        (9) 

where 1 2 3( )T
ka a a a= a , 1 2 3( )T

kb b b b= b 、 1 2 3( )T
mc c c c=c  , 

1 2 3( )T
md d d d= d , 1 2 3( )T

mf f f f= f and 1 2 3( )T
mg g g g= g  are all undetermined 

parameters vectors in ( )A tψ . By minimizing the 2 ( , )ε a,b,c,d, f g in equation (9), the target to 

construct optimal ( )A tψ  will be reached. To apply numerical optimization technologies, we 

sample 2 ( , )ε a,b,c,d, f g  in time with M points and obtain the sum of squares error (MSE) 

between the analog wavelet base and the desired versatile wavelet: 
1

2
0

0
( , ) [ ( ) ( ( ))]

M

A
n

E n T n T tψ ψ
−

=

= − ∆ − − ∆ −∑a,b,c,d, f g         (10) 

The fitness function to be minimized using the numerical optimization algorithms is given: 
1

2
0

0
( , ) ( , ) [ ( ) ( ( ))]

M

A
n

F E n T n T tψ ψ
−

=

= = − ∆ − − ∆ −∑a,b,c,d, f g a,b,c,d, f g      (11) 

Then, combining all the conditions in equations (6)-(8), and (11), a general optimization 

mathematical model of constructing analog wavelet bases in time domain is described as: 
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1
2

0
0

1 1

1 1

min ( ) [ ( ) ( ( ))]

. . 0, 0, 1, 2 , 1, 2 ,

( ) 0,

( ) [ sin( ) cos( )]

( ) [ [ sin( )

j ji

ji

M
A

n

i j

A

k m d t d tb t
A i j j j j

i j
k m d tb t

A i j j j
i j

F n T n T t

s t b d i k j m

t dt

t a e c e f t g e f t or

t a e c e f t g e

ψ ψ

ψ

ψ

ψ

−

=

∞
−∞

− −−

= =

−−

= =

= − ∆ − − ∆ −

< < = ==

=

− = + +

− = + +

∑

∫

∑ ∑

∑ ∑

 

a,b,c,d, f, g

0

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

cos( )]]cos( ( )) ( 2 , 0),

( ) , ( ) , ( )

( ) , ( ) , ( ) .

jd t
j

T T T
k k m

T T T
m m m

f t t t k m N t

a a a a b b b b c c c c

d d d d f f f f g g g g

−















Ω − + = ≥


 = = =

 = = =

  

  

a b c

d f g

 (12) 

This is a typical high-dimensional, nonlinear, multimodal complex functions nonlinear 

constrained optimization problem. It is very difficult to search the accurate global optimal 

solution using common numerical optimization techniques, which in general provide no global 

optimality guarantee and give different local optima with different starting points. After 

establishing a good mathematical model, whether we are able to get the optimal analog wavelet 

bases depends greatly on the performance of the optimization algorithm used to solve the 

problem. 

 

IV.    THE HYBRID OPTIMIZATION ALGORITHM 

 

The methods for solving nonlinear optimization problems are mainly divided into two categories: 

deterministic and stochastic search algorithms. Deterministic search methods include feasible 

direction method, gradient projection method and local sequential quadratic programming (SQP) 

so on [32]. The SQP belongs to the most powerful nonlinear programming algorithms we know 

today for solving differentiable nonlinear programming problems with nonlinear constrains, but 

whether the solution is optimal or not depends greatly on the initial value. Stochastic search 

algorithms include simulated annealing [34], genetic algorithm (GA)[35] and recently proposed 

Particle Swarm Optimization (PSO) [33]etc. Although GA is a good global searching method, it 

is too complex in coding and time consumption. PSO characterized by its less parameter, 

simplicity and efficiency, being insensitive to initial value, has already been successfully used in 

many real-world problems [36]. The PSO is very well for global optimization, but it is not good 

at searching the high-precision solution. As in [37] demonstrated by Van den Bergh, PSO also 
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has the weakness of premature convergence like other search algorithms. The chaotic map can be 

used to improve the performance of standard PSO to avoid premature convergence,  The 

proposed improved PSO based on chaotic map is called CPSO. To solve the constrained 

nonlinear optimization problem in equation (12), a hybrid optimization algorithm by combining 

CPSO with local SQP is presented. CPSO can be viewed as the global optimizer while the local 

SQP is employed for the local search. Thus, the possibility of exploring global optima in equation 

(12) with more local optima is increased. Benefit from the fast globally converging 

characteristics of CPSO and the effective local search ability of local SQP. Thus, the hybrid 

algorithm can obtain the global optimal results of optimization problem in equation (12) quickly. 

 

a. Standard PSO Algorithm 

PSO was originally inspired in the way crowds of individuals move towards predefined 

objectives, and it is better viewed using a social metaphor. Each potential solution is also 

assigned a randomized velocity, and the potential solutions, call particles, corresponding to 

individuals. Each particle in PSO flies in the D-dimensional problem space with a velocity which 

is dynamically adjusted according to the flying experiences of its own and its colleagues. The 

location of the ith particle is represented as ( )1 D,  , ,  ,  i i id ix x x= … …X , where

[ ] [ ]id x , ,d 1,  D , ,d d d dl u l u∈ ∈  are the lower and upper bounds for the d th dimension, respectively. 

The best previous position of the ith  particle is recorded and represented as

( )1 D , ,  ,  ,  i i id ip p p= … …P , which is also called pbest. The index of the best particle among all the 

particles in the population is represented by the symbol Pg .The location 

( )1 iD, ,  ,  ,  i i idpg pg pg= … …Pg  is also called gbest. The velocity for the i th particle is represented 

as ( )1 D, , ,  ,  i i id iv v v= … …V , is clamped to a maximum velocity ( )max 1 D, , ,  ,  max maxd maxv v v= … …V , 

which is specified by the user. The particle swarm optimization concept consists of, at each time 

step, changing the velocity and location of each particle toward its pbest and gbest locations 

according to the equations (13) and (14), respectively: 

1 2() ( ) () ( )id id id id id idv w v c rand p x c rand pg x= ⋅ + ⋅ ⋅ − + ⋅ ⋅ −     (13) 

 id id idx x v= +          (14) 

where w is inertia weight, c1 and c2 are acceleration constants, and rand() is a random function in 

the range[0, 1].  
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b.  The improved chaotic map PSO algorithm (CPSO) 

In order to overcome the premature convergence, a logistic map-based chaotic particle swarm 

optimization (LPSO) [38] has been described and it can lead to the effective enhancement of the 

searching efficiency, as well as great improvement of the searching quality. Here, we will put 

forward our exploration on saw tooth chaotic map [39] particle swarm optimization (CPSO), 

exhibiting even higher convergence and accuracy. A chaotic map is a map that exhibits some sort 

of chaotic behavior. Maps may be parameterized by a discrete-time or a continuous-time 

parameter. Discrete maps usually take the form of iterated functions. In this paper, a saw tooth 

chaotic map, which has better ergodic property than the well-known logistic equation, is 

employed for improving the global search ability of PSO. The saw tooth map is defined by the 

discrete-time relationship that maps present state ( )x n  into next state ( 1)x n + according to  

( 1) [ ( )] [2 ( )] mod1x n F x n x n+ = =       (15) 

where function ( )F x  evaluates the non-integer part of the product of present state ( )x n by 2. It 

is apparent that function ( )F x  maps state space [0, 1] into itself. 

The CPSO algorithm is outlined in the following steps: 

1) Initialization: the particle swarm size is set to be I, the iteration time is set to be N, n=1, i=1, 

m=1, initialize velocity iV ; Chaotic searching iteration number is set to be G, the premature 

convergence parameter is set to beη . 

2) Generate I particles randomly, and compute the fitness function: 
( ) ( ) ( )
1 2( ), ( ) ( )n n n

IF FF X X X . 

3) Let ( )n
i i=P X , { }{ }( ) ( ) ( )

1 2| ( ) ( ), ( ), , ( )n n n
i i IF MIN F F F= = Pg P P X X X . 

4) Let n=n+1, and compute ( )n
iV  and ( )n

iX  according to the formulas (13) and (14). 

5) Compute ( )( )n
iF X . If ( )( ) ( )n

i iF F>X P , go to Step6, otherwise, let ( )n
i i=P X  and go to step 5). 

6) If ( )( ) ( )n
iF F<X Pg , let ( )n

i=Pg X . 

7) According to equation (16), compute fitness variance 2σ of current particles: 

( ) ( )( )
2 1 1

1

max ( ) max ( ) 1( )
,

1

n nnI i avg i avgi avg i I i m

i

F F if F FF F
FA

FA
σ ≤ ≤ ≤ ≤

=

 − − >− = = 


∑
X XX

else
 (16) 

where avgF  is the average fitness. If 2σ η< , implement the chaotic search according to 
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equation (17) and (18) until n equals G, then let ( )GC=Pg Pg . Otherwise go to step 7). 
( 1) ( )[2 ] mod1k k+ = Pg Pg       (17) 

( 1) ( 1)
min mi min( )k k

axC C C C+ += + −Pg Pg Pg Pg Pg     (18) 

8) Let i=i+1. If i > I , go to step 7), otherwise go to step 3). 

9) If n > N, output the result and the algorithm ends, otherwise, go to step 3). 

 

c. Hybrid algorithm based on CPSO and local SQP 

By introducing the saw tooth chaotic map, we avoid premature problem of PSO and improve its 

global search ability. But its local search capabilities are limited. The local SQP algorithm has 

strong local search ability, but it is sensitive to initial value and easy to fall into local optimum 

and can not obtain the global optimum. Combining the advantages of both algorithms, we 

proposed a novel hybrid algorithm which consists of two steps: First, employ CPSO to obtain 

estimates of the global solution. Secondly, applying the estimates from CPSO as the initial value, 

employ the local SQP algorithm to further refine the solution, and ultimately get precise global 

optimal solution. The flow chart of the proposed hybrid optimization algorithm is shown in 

Figure 2. 

Premature test

endestimates of the 
global solution

Renew the pbest 
using the results

Chaotic search using 
sawtooth map

Evaluation and 
update of particles

Initialization

Stop judging

N

YN

Y

Run SQP optimazer 
with the  initial 

value equal to the 
estimates 

 
Figure 2. Flow chart of proposed hybrid optimization algorithm 
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d. Hybrid algorithm testing 

The performance of the proposed hybrid algorithm is tested using three famous benchmark 

functions: schaffer function, rosenbrock function and rastrigrin function.PSO, LPSO (PSO based 

logistic chaotic map), and the proposed hybrid algorithm are utilized to find the minimum of 

above three functions respectively. For every algorithm, 30 experiments are carried out. Chaotic 

search numbers is set to 50 to treat premature problem in PSO. Test results are given in Table 1. 

It is clear that the proposed hybrid algorithm based on CPSO and local SQP is superior to the 

standard PSO, and the LPSO. It demonstrated that the obtained results of hybrid algorithm for the 

all functions are much better than the other algorithms and it can reach a high-precision global 

optimal solution faster. Moreover, the proposed hybrid algorithm is showing a higher capability 

of escaping local minima. 

 

Table 1: Performance comparison of PSO, CPSO and hybrid algorithm 

 

 

 

 

 

 
 

 

 

 

 

 

 

V. CONSTRUCTION OF OPTIMAL ANALOG WAVELET BASES 

 

Using the proposed hybrid algorithm to solve the problem in equation (12) and find out the global 

optimum, the construction of optimal analog wavelet bases will be realized. The total performing 

process is shown by the flowchart in Figure 3. First, determine what analog wavelet base to be 

function algorithm 
optimal 

result 

average optimal 

result 

succeed 

ratio 

schaffer 

PSO -0.5 -0.4121 86% 

LPSO -0.5 -0.4578 92% 

hybrid algorithm -0.5 -0.498 97% 

rosenbrock 

PSO 0.81 0.926 79% 

LPSO 0.62 0.714 88% 

hybrid algorithm 0 0.00482 96% 

rastrigrin 

PSO 0.089 0.1254 82% 

LPSO 0.045 0.0862 91% 

hybrid algorithm 0 0.00271 96% 
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designed, for example, if you plan to construct the analog wavelet ( )A tψ  with the same 

characteristics as the Gaussian wavelet ( )tψ  (versatile wavelet), Gaussian wavelet will be 

chosen as the approached object. Correspondingly, this analog wavelet is called Gaussian-like 

analog wavelet. Second, set up the optimization mathematical model for constructing analog 

wavelet according to equation (12). Finally, employ the proposed hybrid algorithm to solve the 

optimization problem and finish the construction of optimal analog wavelet bases. Based on the 

method, some real and complex analog wavelet bases designing will be discussed as follows. 

 
a. Optimal real analog wavelet construction 

 

a.i  Marr-like analog wavelet base 

To demonstrate the construction of optimal analog wavelet bases, we first discuss how to design 

Marr-like analog wavelet base. Marr wavelet is a favorite choice in many signal processing 

applications. The Marr wavelet ( )tψ is the second derivative of a Gaussian probability density 

function: 
2

2 2( ) (1 ) ,
t

t t e tψ
−

= − −∞ < < ∞  (19) 

Select the time-shift t0 = 4, get time-reversed and time-shifted Marr wavelet (4 )tψ − . Let 1( )A tψ  

be the Marr-like analog wavelet to be designed and the order of analog wavelet filter N be 9, then 

the parameterized class of functions 1( )A tψ − given by  

8 82 4 4

16 1612 12

1 1 3 5 6 5 7 9 10 9

11 13 14 13 15 17 18 17

( ) sin( ) cos( ) sin( ) cos( )

sin( ) cos( ) sin( ) cos( ) ( 0)

x t x tx t x t x t
A

x t x tx t x t

t x e x e x t x e x t a e x t x e x t

x e x t x e x t x e x t x e x t t

ψ − = + + + + +

+ + + ≥ (20) 
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Figure 3. Construction strategy of optimal analog wavelet bases 

 

Note that choice of order of wavelet filter involves an important trade-off between optimal 

solution and complexity of filter circuits. If N is chosen too small, the designed analog wavelet 

may be far away from the versatile wavelet. On the other hand, if N is chosen too large, a more 

complex analog IC is demanded to realize wavelet transform. We define the distance between 

1( )A tψ −  and ( 4)tψ − : 

2 2
1 1

0

( ) ( ) ( 4) [ ( ) ( 4)]A AD t t t t dtψ ψ ψ ψ
∞

= − − − = − − −∫x      (21) 

where 1 2 3 18( )Tx x x x= x is an undetermined parameter vector. To sample ( )D x , the fitness 

function is given: 
1799

2
1

0
min ( ) min [ ( ) ( ( 4))]A

n
F n T n Tψ ψ

=

= − ∆ − − ∆ −∑x                   (22) 

According to analog wavelet stability and admissibility criterion, the optimization model of 

constructing Marr-like analog wavelet base is described as 
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2 4 8 12 16

1 3 5 4 6 7 9 8 10
2 2 2 2

2 4 5 8 9

11 13 12 14 15 17 16 18
2 2 2 2

12 13 16 17

1 2 3 18

min ( )
. . 0, 0, 0, 0, 0

0

( ) ,T
i

F
s t x x x x x
x x x x x x x x x
x x x x x

x x x x x x x x
x x x x

x x x x x R




 < < < < <

− + − +
+ +

+ +
 − + − +
+ + =

+ +
 = ∈ 

x

x

   (23) 

 

This is a nonlinear constrained optimization question. Using the proposed hybrid algorithm to 

solve equation (23), the parameters for CPSO are set as: Population size I =100, Inertia weight 

factor min max0.4, 0.9w w= = , acceleration constant 1 2 2c c= = , maximum iteration N =9000, chaotic 

iteration number G=100, premature parameter 0.025η = . The position and the velocity of the i th 

particle and the fitness function of corresponding sampling point in the nth iteration are denoted 

by ( ) ( )
1 2 18( , )n n

i ix x x= x , ( )n
iV and ( ) ( )( ) ( )n n

iF E=x x  respectively. Its local best position and the 

global best position of the particle swarm are denoted as iP and gP respectively. The maximum 

iteration for local SQP is set as M =1000. Then, The CPSO optimization program is run first in 

MATLAB 7.1. Because CPSO is a stochastic algorithm, it is difficult to guarantee a global 

optimal solution only by a certain experiment. Here, the number of experiments is set to 20. After 

finishing many times test, the best estimates of the global solution 0 0 0 0 0
1 2 3 18( )Tx x x x= x  are 

selected, which is shown in Table 2. The search process of CPSO for the results is given in Figure 

4. Then, local SQP optimizer is run with the initial values 0x , and the optimal parameters 
* * * * *

1 2 3 18( )Tx x x x= x   of Marr-like analog wavelet base are finally achieved. Experimental 

results are shown in Table 3. To replace the parameters in equation (20) with *x  in Table 3, the 

following Marr-like analog wavelet base and filter transfer function (Laplace transform of 

1( )A tψ −  ) can be obtained. 

app:ds:stochastic
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Figure 4. Search process of CPSO for Marr-like analog wavelet 

 

 Marr-like analog wavelet base- 1( )A tψ : 

0.5559 0.6923 0.6923 0.6533
1

0.6533 0.6675 0.6675

0.5593

( ) 1.277 0.7839 sin(1.5376 ) 10.16 cos(1.5376 ) 5.523 sin(0.8171 )
5.4571 cos(0.8171 ) 3.1099 sin(2.2809 ) 3.4948 cos(2.2809 )
0.6426 sin(

t t t t
A

t t t

t

t e e t e t e t
e t e t e t
e

ψ = − − + −

− + −

− 0.5593

15
1

3.1158 ) 0.0609 cos(3.1158 ) ( 0)

Admissibility condition : ( ) 2.415 10

t

A

t e t t

t dtψ
∞

−

−∞

+ ≤

= ×∫
 (24) 

 

Marr-like analog wavelet filter- 1( )AH s (N=9): 

8 7 6 5 4 3 2

1 9 8 7 6 5 4 3 2

0.0087 0.1178 1.8405 8.4464 47.829 100.258 259.412 3.382( )
5.7 32.37 101.6 271.56 487.54 683.46 625.13 374.8 97.91A

s s s s s s s sH s
s s s s s s s s s
− + − + − + − +

=
+ + + + + + + + + (25) 

 

Where 1( )AH s  is the wavelet filter to realize WT (1, )xA τ  under scale 1. By the theory of Laplace 

transform, the transfer function of analog wavelet filter under certain scale a is expressed as

1( )AaH as . The ime-domain waveform of Marr-like analog wavelet in Figure 5 and the 

magnitude of frequency response in Figure 6 show the constructed analog wavelet base possess 

finite support both in time domain and frequency domain. Because Marr-like analog wavelet 

approaches Mar wavelet very well with MSE=0.0021, it inherits the excellent qualities of Mar 

wavelet. Meanwhile 15
1( ) 2.415 10 0A t dtψ

∞
−

−∞

= × ≈∫  and 2 4 8 12 16, , , , 0a a a a a <  demonstrate 1( )A tψ

satisfies the admissibility condition and stable condition. 
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Table 2: Estimates of the global solution 0x from CPSO ( 1( )A tψ ) 
i  0

ix  i  0
ix  i  0

ix  

1 -0.0561 7 -1.1791 13 -2.4678 

2 -0.1998 8 -0.3967 14 -0.4662 

3 0.093 9 -0.7917 15 -0.6442 

4 -0.4752 10 -1.2784 16 -1.402 

5 -1.5458 11 1.9627 17 -2.7045 

6 3.8367 12 -0.4813 18 -2.0219 

 MSE between 1( )A tψ  and (4 )tψ − : 0.0208  

 
 

Table 3: Optimum *ix from SQP ( 1( )A tψ ) 
i  *ix  i  *ix  i  *ix  

1 -1.2772 7 -5.523 13 -2.2809 

2 -0.5559 8 -0.6533 14 -3.4948 

3 -0.7839 9 -0.8171 15 -0.6426 

4 -0.6923 10 -5.4571 16 -0.5593 

5 -1.5376 11 3.1099 17 -3.1158 

6 10.1595 12 -0.6675 18 0.0609 

 MSE between 1( )A tψ  and (4 )tψ − : 0.00091348 

 

Using the similar method, some other real optimal analog wavelet bases have been designed as 

follows: 

 

a.ii Gaussian-like analog wavelet base 

Gaussian wavelet: 2

( ) 1.7864 ( )tt te tψ −= − −∞ < < ∞  

Gaussian -like analog wavelet base- 2 ( )A tψ : 

0.95 0.76 0.76
2

0.896 0.896

17
2

( ) 2.5 1.746 sin(2.76 ) 0.32 cos(2.76 )
4.735 sin(1.33 ) 2.17 cos(1.33 ) ( 0)

Admissibility condition : ( ) 5.55 10

t t t
A

t t

A

t e e t e t
e t e t t

t dt

ψ

ψ
∞

−

−∞

= − − +

− ≤

= ×∫
 (26) 
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Gaussian -like analog wavelet filter- 2 ( )AH s (N=5): 

4 3 2

2 5 4 3 2

0.014 1.597 3.727 30.89( )
4.257 16.618 31.35 38.65 19.92A

s s s sH s
s s s s s

− + −
=

+ + + + +  (27) 

 

a.iii Morlet-like analog wavelet base 

Morlet wavelet: 20.5( ) cos(5 ) tt t e tψ −= −∞ < < ∞  

Morlet -like analog wavelet base- 3 ( )A tψ : 
0.77 0.739 0.739

3
0.619 0.619

17
3

( ) [(4.81 1.713 sin(0.89 ) 5.68 cos(0.89 )

0.749 sin(1.88 ) 0.88 cos(1.88 ))] cos(5 15) ( 0)

Admissibility condition : ( ) 2.51 10

t t t
A

t t

A

t e e t e t

e t e t t t

t dt

ψ

ψ
∞

−

−∞

= + − −

+ ⋅ + ≤

= ×∫

 (28) 

Morlet -like analog wavelet filter- 3 ( )AH s (N=10): 

9 8 7 6 5 4 3 2

3 10 9 8 7 6 5 4 3 2
0.01 0.11 2.88 18.77 74 254.4 4883 10482 34459( )

6.97 155.55 787.28 8582 30633 208060 481500 2175400 2543600 7582200A
s s s s s s s s sH s

s s s s s s s s s s
− + − + − + + − +

=
+ + + + + + + + + +  

 (29) 
The time-domain waveforms and frequency responses of constructed these optimal analog 

wavelets are given in Figure 7-10 respectively. 
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Figure 5. Time-domain waveform of 1( )A tψ −  Figure 6. Frequence response of 1( )AH s  
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b. Performance evaluation 

To illustrate the performance of the proposed method for constructing optimal analog wavelet 

bases, we investigated the relation of analog wavelet filter orders to the approximate error and the 

wavelet admissibility condition. Some experiments were conducted upon constructing three sorts 

of optimal analog wavelet bases with various orders. The experimental result data of Gauss-like 

analog wavelet, Morlet-like analog wavelet, and Marr-like analog wavelet are given in Tab.4-6 

respectively. The relation curves between orders and the approximate error in Fig. 11- 13 show 

approximate errors always decrease as filter orders become larger. This is because higher order 

results in more accurate and sophisticated optimization model in equation (12). Given an accurate 

model, the proposed hybrid algorithm always seeks out the global high-precision solution. 

However, it is not always feasible to get more optimal analog wavelet by continually increasing 

the order. The relation of orders to the wavelet admissibility condition shown in Fig.14-16 

confirms this. The monotonically increasing curve in Fig.16 illustrates that increasing order will 

degrade the admissibility condition of Morlet-like analog wavelet. Such as Morlet-like analog 
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Figure 9. Time-domain waveform of 3( )A tψ −  Figure 10. Frequence response of 3( )AH s  

Figure 7. Time-domain waveform of 2 ( )A tψ −  Figure 8. Frequence response of 2 ( )AH s  
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wavelet with order 12, MSE is on the level of 10-4 but the admissibility condition on the level of 

10-7 is still far away the desired value 0 in low order wavelet with larger MSE.For the sake of 

complex constrained optimization problem, we can’t meet MSE and admissibility condition 

simultaneously. There is always a trade-off between MSE and admissibility condition and our 

experimental result data provide a reference for the optimal analog wavelet design.  

We also compare our method with the state-of-the-art in designing analog wavelet, namely L2 

approximation method [26], network function method [23], [25], differential evolution method 

[30] and simulated annealing method [31].The relation curve also is given in Fig.11-13. For low 

order analog wavelet, L2 approximation method is in the ascendant, especially for Marr-like and 

Morlet-like wavelets. But For high order analog wavelet, our method is superior to the other 

methods. Applying the CPSO algorithm, we have successfully overcome the problem in [26], [25] 

and [31] that an improper initial value will result the local optimum. The use of SQP algorithm 

guarantees the accuracy of optimal solution. 

Table 4. Results of optimal Gauss-like analog wavelet with various orders 

Order Optimal parameters 1 2* ( * , * , )x x= x  in analog wavelet MSE 
Admissibilit

y condition 

5 

(2.5046,-0.946,1.7458,-0.7593,2.7601,-0.3195,-4.7347,-0.896,

1.3294, 

-2.171) 

0.0472 5.55e-17 

6 

(4.2135,-0.9427,0.7136,-3.9403,0.3453,-0.8681,-3.4150,-0.98

01,0.7027, 

-0.9818,2.0061,4.8399) 

0.0041 2.48e-8 

7 

(0.7431,-0.7800,-0.5701,-0.9368,3.4553,-0.9153,-0.9797,-0.89

52,-0.9251, 

-4.3375,-0.6989,-0.9965,-2.1360,4.4316) 

0.0036 6.2e-7 

8 

(4.2773,-1.1959,2.9009,-3.5686,1.7549,-0.8087,0.3695,1.8968

,0.2370,-1.7156,-3.6027,2.5709,7.9810,-1.0967,-1.4645,-0.973

4) 

0.0028 1.07e-7 

10 

(3.6510,-2.6285,-0.3092,2.0647,2.7263,-0.8760,0.7304,-3.812

2,1.1089,     

-0.6774,-1.6236,0.2033,-2.6920,-0.9739,-2.5390,1.4423 

-0.6565,-0.9954,    3.8415,0.0358) 

0.0017 6.8e-7 
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12 

(-3.0498,-0.8455,-0.5633,-0.9414,-1.5220,-0.7367,1.4656,0.47

35,-1.5039, 

-0.8142,1.9832,1.4677,-2.9995,-2.2083,3.1065,-1.7487,-4.10

02,-1.2691,-2.9493,-1.8700,-0.3216,-1.5653,3.8567,2.5573) 

0.0008

3 
2.103e-9 

 

Table 5. Results of optimal Marr-like analog wavelet with various orders 

Order Optimal parameters 1 2* ( * , * , )x x= x  in analog wavelet MSE 
Admissibilit

y condition 

5 
(1.5093,-1.149,-2.0658,-0.3386,1.191,-0.3842,0.9354,-0.3125,

2.0426, -0.9757) 
1.05 0 

6 
(-0.4346,-0.3475,0.9838,-1.6504,1.8897,-0.4183,1.7258,1.648

3,0.8491,-0.3646   -2.5271,-0.0729) 
0.21 0 

7 
(-0.1144,-0.2557,1.0929,-0.40,-2.4774,-0.26,-1.9753,-0.4762,-

1.6569,2.9117,   -0.548,-0.4443,-0.8937,-2.6129) 
0.0806 0 

8 

(-29.8211,-0.845,1.4219,5.6572,-1.2556,-0.5304,2.6319,1.232

3,24.8199,-0.844,1.7063,-9.4782,-2.46,-0.5291,-0.5625,2.6146

) 

0.0207 7.5e-9 

10 

(8.6315,-2.0442,2.4847,0.0942,-2.3096,-0.7499,0.4105,11.824

,-1.4686,-0.6908,-3.0935, 

-0.1844,20.769,-0.7855,-1.2481,1.8219,-0.0762,-0.8003,-2.1

072,-13.5564) 

0.0005

6 
2.66e-8 

12 

(-3.0397,-1.4765,-2.4955,-18.2849,2.6465,-0.8695,1.5359,31.

4718,13.1634,-0.7754,0.5745,15.9316,-17.4771,-0.9416,2.45

22,7.8356,-11.5649,-1.4333,0.669,-36.3192,0.3121,-0.7428,-

3.4430   ,-0.6401) 

0.0003

4 
1.59e-10 

 

Table 6. Results of optimal Morlet-like analog wavelet with various orders 

Ord

er 
Optimal parameters 1 2* ( * , * , )x x= x  in analog wavelet MSE 

Admissibilit

y condition 

5 (1.9548,-0.3308,0.5301,-0.6596,-0.5394,-15.8213) 1.1 0 

6 (1.8494,-0.4666,-0.9625,-0.391,1.0468,-1.4535) 0.41 0 

7 (1.9145,-0.4832,0.936,-0.4112,1.0240,-1.6404,0, -0.0008) 
0.084

2 
3.46e-18 
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8 
(1.1707,-0.4878,-1.477,0.8262,-4.7917,-0.5964,-0.4718,-0.8629,0.

0469) 

0.025

7 
1.27e-17 

10 
(4.8141,-0.7705,1.7134,-0.739,-0.8994,-5.6811,0.7495,-0.619,1.8

803,0.8807) 

0.002

9 
2.51e-17 

12 

(-5.8282,-2.304,9.4056,-0.9102, 

-1.0298,-6.1537,-1.2851,-0.7518,-2.1017,-0.2955,12.2828,-0.9721

) 

0.000

53 
1.44e-9 
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VI.    CONCLUSION 

 

Based on the proposed hybrid optimization algorithm and the general framework for designing 

analog wavelets, a series of optimal analog wavelet bases including Marr-like analog wavelet 

base, Gaussian-like analog wavelet base, Morlet-like analog wavelet base, have been constructed. 

These constructed analog wavelets possess optimal local time-frequency characteristics and most 

of properties in them are almost close to the properties owned by corresponding versatile 

wavelets. Currently, we are working on utilizing methods in this paper to construct orthogonal 

analog wavelet bases. The further work is to design analog wavelet transform chip utilizing 

advanced analog circuit technology for some practical application such as sensor networks and 

next-generation cochlear implants.   
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