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1 Introduction

In recent years we observe an increased interest in understanding Conformal Field Theories

(CFT) in dimensions higher than two. One of the most prominent developments comes from

the conformal bootstrap approach [1–3]. This term stands for a method of constraining the

CFT data, namely dimensions and structure constants of primary operators, purely using

symmetries of the model: conformal symmetry, unitarity, the structure of the Operator

Product Expansion (OPE) and, most importantly, crossing symmetry of the four-point

correlators (or equivalently associativity of the OPE). The latter can be encoded in the

so-called bootstrap equation which has already led to numerous numerical predictions for
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the conformal dimensions [4] and structure constants [5–7], most notably for the three-

dimensional Ising model [8, 9]. This approach has been extended also to supersymmetric

conformal theories, in various space-time dimensions in [5, 10–23]. In this paper we focus

on the case of maximally supersymmetric conformal field theories in four dimensions —

N = 4 SCFT. The prime example of such theory is N = 4 super-Yang-Mills (SYM),

which attracted a lot of interest in recent years after it emerged as the first example of the

AdS/CFT duality [24].

One of the reasons CFTs attract so much attention is the fact that conformal sym-

metry significantly simplifies the form of correlators in such theories. In particular, it

completely fixes the space-time dependence of two- and three-point correlators and con-

strains all higher-point functions to depend non-trivially only on conformal cross-ratios. In

N = 4 SCFT conformal symmetry is enhanced to a larger superconformal symmetry. Such

enhancement helps to further constrain the structure of correlators. The implications of

supersymmetry are most studied for operators belonging to short supermultiplets — su-

permultiplets satisfying BPS shortening conditions. One of those are the so-called “chiral”

primary, half-BPS operators which are of most interest for this paper. For these operators

superconformal symmetry leads to various non-renormalizability properties [25–30]. This

can be traced back to the fact that these supermultiplets are shorter than generic ones and

as such depend only on half of the fermionic coordinates of N = 4 superspace (8 instead

of 16). It can be shown that all correlators which have less than 32 fermionic degrees

of freedom — number of supercharges for N = 4 superalgebra — are completely fixed

by supersymmetry and they do not acquire any quantum correction. This is the case for

two- and three-point correlators of half-BPS supermultiplets. It follows that for all opera-

tors in these supermultiplets the conformal dimensions as well as structure constants are

independent of the coupling constant and they are fixed completely by their classical con-

tributions. In the case when the number of fermionic degrees of freedom equals the number

of supercharges, we get partial non-renormalizability. Such correlators will depend only on

one non-trivial function of the coupling constant. This is the case of four-point correlators

of four half-BPS supermultiplets and also for three-point correlators of two half-BPS and

one generic supermultiplet [31] or two-point correlators of generic multiplets. The latter

implies that for a generic supermultiplet the conformal dimensions of all descendants are

related to the conformal dimension of parent superconformal primary.

One of the main features of any CFT is the fact that its OPE expansion simplifies.

The space-time structure of the OPE is completely fixed by the conformal symmetry and

structure constants for the descendants are fixed by structure constants of their primaries.

It allows in particular to expand four-point correlators in conformal partial waves, after

taking a double OPE expansion, as a weighted sum of conformal blocks over all multiplets

present in the OPE of external operators. Conformal blocks resum contributions coming

from a complete multiplet from the OPE expansions. In the presence of supersymmetry

it is a natural question to ask whether it is possible to write four-point functions as a

sum of superconformal blocks. This is not always possible since for generic operators the

three-point functions of superdescendants are not fixed by their superconformal primaries

(as opposed to their dimensions). As we mentioned before it is, however, true when two of

the operators belong to a short supermultiplet. It is possible then to define superconformal
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blocks at least in the case of the four-point function of four half-BPS supermultiplets. This

is indeed the goal of this paper. The study of the relation between conformal blocks and

supersymmetry was started in the series of papers by Dolan and Osborn [32, 33].1 Their

work was based on previous results on superconformal Ward identities, see [35]. As a result

of their analysis, Dolan and Osborn defined a function they called a superconformal block

which enters in the partial wave decomposition of the lowest component of the four-point

correlator of four half-BPS superfields. In this paper we call the superconformal block a

function defined on the full superspace, depending also on the fermionic degrees of freedom.

Note that this terminology differs from the one of Dolan and Osborn who focused on the

lowest component of superconformal block defined here. We will construct such a function

before the end of this paper. Then, any four-point correlator of half-BPS supermultiplets

can be decomposed as a weighted sum of such superconformal blocks, which encode the

contribution of superconformal primaries and all their superconformal descendants.

The closed form of ordinary conformal blocks is known in four dimensions [36]. In their

work on superconformal blocks, Dolan and Osborn used superconformal Ward identities

to relate various conformal blocks for operators belonging to the same superconformal

multiplet. Afterwards, they were able to sum all such contributions and obtain a closed

expression for the full supermultiplet. There exists, however, an alternative approach

to finding superconformal block which will be used in this paper. As for the ordinary

conformal blocks, it is possible to find their form using the fact that they are eigenvectors

of the two-particle quadratic Casimir, see e.g. [16, 19]. In this paper we construct the

quadratic Casimir for the psu(2, 2|4) algebra — the N = 4 superconformal algebra in

four dimensions. It will provide us with a differential equation, defined on the analytic

superspace, which we subsequently solve and give an explicit form of the superconformal

blocks. It turns out that there are two solutions of this equation, one corresponding to

the long representations and the other to the short representations. When we evaluate the

lowest component of these blocks we recover formulas found in [33].

The paper is organized as follows: in section 2 we introduce our notations and explain

the general strategy of the paper. In section 3 we define the analytic superspace which will

provide us with a proper set of variables to describe superconformal blocks. We also write

the explicit form of the Casimir represented on that space. Section 4 focuses on the OPE

of two half-BPS supermultiplets and is followed by the discussion on superconformal Ward

identities in section 5. After gathering all ingredients of our construction, we proceed in

section 6 with the explicit form of the Casimir differential equation and solutions of it. We

end with conclusions and outlook. The main text is followed by two appendices with some

technical details of the construction.

2 General framework

2.1 Definition of operators

In this paper we focus on the half-BPS states in N = 4 SCFT. The most natural setting to

describe these operators and their correlators is the analytic superspace [37, 38]. To define

1The same results for four dimensional N = 4 SYM have been obtained also in [34].
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it, in addition to the Minkowski space parametrized by xαα̇, one introduces an auxiliary

bosonic space with coordinates yaa
′
, that parametrize the SU(4) R-symmetry. This bosonic

space is extended to full analytic superspace by including eight Grassmann-odd coordinates

which we denote by λαa
′

and πaα̇. All indices α, α̇, a, a′ are two-component spinor indices,

see appendix A for our conventions.

The superfields are naturally expressed in the analytic superspace as

T (p)(x, y, λ, π) = exp(λαa
′
Qαa′ + πaα̇Qaα̇)O(p)(x, y) (2.1)

= O(p)(x, y) + λαa
′
Ψ

(p)
αa′(x, y) + πaα̇Ψ̄

(p)
aα̇ (x, y) + . . . , (2.2)

where the lowest components are single-trace, half-BPS scalar operators O(p) built out

completely of the six elementary fields φAB = −φBA with A,B = 1, . . . , 4 and belonging to

the [0, p, 0] representation of the SU(4) R-symmetry group. In order to keep track of the

R-symmetry indices we introduce auxiliary Y-variables. Explicitly, the fields take the form

O(p)(x, y) = OA1B1,...,ApBpY
A1B1 . . . Y ApBp , (2.3)

where Y AB are related to the analytic space coordinates as

Y AB =

(
εab −yab′

yba
′

εa
′b′y2

)
. (2.4)

The operators OA1B1,...,ApBp are symmetric traceless rank p tensors formed out of gauge

invariant traces of the elementary scalar fields φAB. The remaining terms in the expan-

sion (2.2) are superconformal descendants of O(p)(x, y) and for future reference we write

explicitly just the first two fermionic components Ψ and Ψ̄. Of most interest is the case

when p = 2, since in that case the superfield contains as its components both conserved

currents of the theory and the stress-energy tensor. The superfield (2.1) satisfies a half-

BPS shortening condition and as a consequence it depends only on 4 chiral and 4 antichiral

Grassmann-odd variables, instead of the 16 Grassmann-odd parameters of the full super-

space.

2.2 Correlation functions of half-BPS states

Having defined the operators of interest we proceed to study their correlation functions.

Similar to the standard conformal case, the symmetry of the model restricts the form of such

correlators significantly. It turns out that superconformal symmetry is sufficient to com-

pletely fix the form of the two-point and three-point correlation functions of T (p), namely,

they are protected from quantum corrections [39–43]. The first non-trivial unprotected

quantity is the four-point correlator

A{pi} = 〈T (p1)(x1, y1, λ1, π1)T (p2)(x2, y2, λ2, π2)T (p3)(x3, y3, λ3, π3)T (p4)(x4, y4, λ4, π4)〉 ,
(2.5)

which will be of main interest in this paper. For brevity we have introduced the notation

{pi} = (p1, p2, p3, p4). The superconformal symmetry restricts the form of four-point cor-

relator, which in turn depends only on its lowest component given by the correlator of the
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scalar fields [44]

A{pi}(xi, yi) = A{pi}|λi=πi=0 = 〈O(p1)(x1, y1)O(p2)(x2, y2)O(p3)(x3, y3)O(p4)(x4, y4)〉 . (2.6)

Four-point correlators of all other components of the supermultiplet are related to (2.6) by

superconformal Ward identities [44, 45].

2.3 Partial wave decomposition

One of the main features of quantum field theories is the notion of Operator Product

Expansion. For a generic CFT the coefficients appearing in the OPE are related to the

three-point structure constants and as such allow to fix any four-point correlator using

only information of lower-point functions. Moreover, in N = 4 SCFT, the three-point

function of two half-BPS operators with any non-protected operator is related to three-point

function of these half-BPS operators with the superconformal primary of the latter [31].

Hence superconformal symmetry allows us to organize the expansion as a decomposition

in superconformal blocks

A{pi} =
yp1+p2

12 yp3+p4
34

xp1+p2
12 xp3+p4

34

(
x24y14

x14y24

)p12
(
x14y13

x13y14

)p34 ∑
∆,`,R

cp1,p2

∆,`,Rc
p3,p4

∆,`,R g
{pi}
∆,`,R(xi, yi, λi, πi) ,

(2.7)

with pij = pi− pj and where the sums runs over all superconformal primaries appearing in

the OPE of O(p1)×O(p2) as well as O(p3)×O(p4), labeled by their dimension ∆, spin ` and the

R-symmetry representation R. The coefficients c
pi,pj
∆,`,R are properly normalized three-point

functions of O(pi) and O(pj) with the intermediate superconformal primary O∆,`,R. The

superconformal blocks g
{pi}
∆,`,R(xi, yi, λi, πi) depend on the dimensions of external operators

{pi} as well as the dimension ∆, spin ` and the R-symmetry representation R of the

intermediate states. Notice that the superconformal symmetry implies that the lowest

component of the superconformal block

g
{pi}
∆,`,R(u, v, σ, τ ) = g

{pi}
∆,`,R(xi, yi, λi, πi)|λi=πi=0 (2.8)

is a function of the conformal cross-ratios

u =
x2

12x
2
34

x2
13x

2
24

= z z̄ , v =
x2

23x
2
14

x2
13x

2
24

= (1− z)(1− z̄) , (2.9)

as well as the harmonic cross-ratios2

σ =
y2

12y
2
34

y2
13y

2
24

= α ᾱ , τ =
y2

23y
2
14

y2
13y

2
24

= (1− α)(1− ᾱ) . (2.10)

Here, we introduced a convenient parametrization of cross-ratios with the use of z, z̄, α, ᾱ,

which turns out to be a natural set of variables to describe superconformal blocks.

2We would like to bring the reader attention to the fact that our conventions differ from the standard

definition one can find in the literature, see e.g. [35].
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2.4 Superconformal Casimir

The aim of this paper is to find an explicit form of the superconformal blocks g
{pi}
∆,`,R. These

blocks are the eigenfunctions of the two-particle quadratic Casimir C12 of the maximal

superconformal algebra in four dimension, namely, psu(2, 2|4)

C12 G
{pi}
∆,`,R(xi, yi, λi, πi) = κ∆,`,RG

{pi}
∆,`,R(xi, yi, λi, πi) , (2.11)

with

G
{pi}
∆,`,R(xi, yi, λi, πi) =

(
x24y14

x14y24

)p12
(
x14y13

x13y14

)p34

g
{pi}
∆,`,R(xi, yi, λi, πi) . (2.12)

Here and in the following we use capital letters, e.g. G, to distinguish expressions containing

the inhomogeneous prefactor as in (2.12), while lower case letters, such as g, denote func-

tions invariant under the action of dilatation. We call both objects superconformal blocks.

Denoting by JBi,A the generators of the psu(2, 2|4) algebra acting on the operator at

position i, the schematic form of the two-particle Casimir is

C12 =
∑
A,B

(
JB1,A + JB2,A

) (
JA1,B + JA2,B

)
. (2.13)

In the following we give an explicit form of the generators and the Casimir itself realized

as differential operators acting on the analytic space. In that case the eigenproblem (2.11)

reduces to solving a second order differential equation.

2.5 Superconformal Ward identities

As we pointed out already, it is enough to specify the four-point correlator of the lowest

component in the supermultiplet and use the superconformal Ward identities to recover

the full supermultiplet. The same statement holds true for the superconformal block. In

the following we will focus on the scalar block (2.8) corresponding to the decomposition

of the lowest component four-point function A{pi} as in (2.6). However, even in that case

our starting point is the full superconformal block equation (2.11), since the action of the

Casimir operator mixes various components of the multiplet. As we will see soon the only

relevant elements of the expansion of the superconformal block are

G
{pi}
∆,`,R(xi, yi, λi, πi) = G

{pi}
∆,`,R(xi, yi) + λ1 π2Q

{pi}
∆,`,R(xi, yi) + π1 λ2 Q̄

{pi}
∆,`,R(xi, yi) + . . . ,

(2.14)

where . . . stands for the contributions which decouple after substituting into the equa-

tion (2.11) and projecting to its lowest component. Notice that we suppressed all the in-

dices in (2.14) and following formulas, however, it is straightforward to reintroduce them.

Here, the function G
{pi}
∆,`,R is the block entering in the decomposition of the lowest four-

point function

A{pi}(xi, yi) =
yp1+p2

12 yp3+p4
34

xp1+p2
12 xp3+p4

34

∑
∆,`,R

cp1,p2

∆,`,Rc
p3,p4

∆,`,RG
{pi}
∆,`,R(xi, yi) , (2.15)
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while the functions Q
{pi}
∆,`,R(xi, yi) and Q̄

{pi}
∆,`,R(xi, yi) enter into an analogous decomposition

of 〈Ψ(p1)Ψ̄(p2)O(p3)O(p4)〉 and 〈Ψ̄(p1)Ψ(p2)O(p3)O(p4)〉, respectively.

In order to find the form of the superconformal block we disentangle the lowest com-

ponent and write an explicit equation for G
{pi}
∆,`,R. To do this we use superconformal Ward

identities which relate both Q
{pi}
∆,`,R and Q̄

{pi}
∆,`,R to G

{pi}
∆,`,R. In the analytic space the solution

to Ward identities was written explicitly in [45]. Combining the superconformal Casimir

equation and the superconformal Ward identities amounts of having a second order differ-

ential equation for the scalar block G
{pi}
∆,`,R.

Moreover, the possible structure of the four-point function of the lowest component

is determined also by superconformal Ward identities [35]. We define a function of the

cross-ratios Â{pi}(u, v, σ, τ ) in the following way

A{pi}(xi, yi) =
yp1+p2

12 yp3+p4
34

xp1+p2
12 xp3+p4

34

(
x24y14

x14y24

)p12
(
x14y13

x13y14

)p34

Â{pi}(u, v, σ, τ ) . (2.16)

Now, we can use superconformal Ward identities, together with the symmetries of the

four-point function under the exchange of z and z̄ as well as α and ᾱ and the fact that the

four-point function depends polynomially on the R-symmetry variables, to fix the structure

of Â to be

Â{pi}(z, z̄, α, ᾱ) =
(αᾱ
zz̄

)p34

2
k +

(αᾱ
zz̄

)p34

2 (z − α)(z − ᾱ)(z̄ − α)(z̄ − ᾱ)

(α− ᾱ)(z − z̄)
×

×
(
− f(z, α)

α z (z̄ − ᾱ)
+

f(z, ᾱ)

ᾱ z (z̄ − α)
+

f(z̄, α)

α z̄ (z − ᾱ)
− f(z̄, ᾱ)

ᾱ z̄ (z − α)

)
+ (z − α)(z − ᾱ)(z̄ − α)(z̄ − ᾱ)F (z, z̄, α, ᾱ) , (2.17)

where the functions F (z, z̄, α, ᾱ), f(z, α) and k are arbitrary. In section 6.2 we will see how

to interpret the various contributions in (2.17).

3 Superconformal algebra in analytic superspace

The maximal superconformal algebra in four dimensions is psu(2, 2|4). It is composed of

the bosonic Poincaré and R-symmetry subalgebras, together with 32 supercharges. For

the half-BPS operators half of the supercharges annihilates the operators. This leads to

significant simplifications compare with generic, non-protected operators and allows to

restrict the full N = 4 superspace to its analytic subspace defined in [37, 38]. As we

already pointed out, the analytic superspace consists of the Minkowski space together with

an auxiliary space, locally identical to the Minkowski space, which parametrizes the SU(4)

R-symmetry of the model. This bosonic space is then supplemented by 8 Grassmann-odd

variables λαa
′

and πaα̇, half of the full superspace coordinates. Here, we split the SU(4)

index A = (α, α̇), this however does not break the SU(4) R-symmetry. Analytic superspace

coordinates can be nicely combined in the (2|2)× (2|2) supermatrix(
xα α̇ λαa

′

πa α̇ ya a
′

)
, (3.1)
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where all indices can take just two values: α = 1, 2, α̇ = 1̇, 2̇, a = 1, 2, a′ = 1′, 2′. All

superfields are now defined as functions of these coordinates, more precisely, as polynomials

in fermionic and y variables, and a generic function on the Minkowski space.

The next step in our construction is to describe how the psu(2, 2|4) superconformal

algebra is realized on the analytic superspace [29]. We write the explicit form for all

generators in the appendix B. They can be organized as the (4|4)× (4|4)-supermatrix, all

elements being differential operators acting on the analytic superspace, in the following way
L β
α Pαβ̇ Q b

α Qαb′

Kα̇β L̄α̇
β̇

Sα̇ b Sα̇b′

S β
a Qaβ̇ R b

a P ′a b′

Sa
′β Qa

′

β̇
K ′a

′b R̄a
′
b′

 . (3.2)

This has to be supplemented by the dilatation operator D and its R-symmetry counterpart

D′. The upper-left part of (3.2) is the Poincaré algebra while the lower-right corner describe

R-symmetry.

All operators in N = 4 SCFT are organized by the superconformal symmetry into

supermultiplets which are highest weight representations of the psu(2, 2|4) algebra. They

consist of a unique superconformal primary operator which is annihilated by all positive

roots of the algebra, namely, by all generators:

{Sα̇b′ , S β
a , Sα̇b, Sa

′β ,Kα̇β ,K ′a
′b, L β

α (α > β), L̄α̇
β̇
(α̇ > β̇), R b

a (a > b), R̄a
′
b′(a
′ > b′)} . (3.3)

The action of the diagonal generators in (3.2) on the superconformal primary specifies rep-

resentation labels, while the negative roots create new operators (descendants) belonging

to the same highest-weight module. All representations of the superconformal algebra are

parametrized by two SU(2) spins j1, j2, conformal dimension ∆ as well as R-symmetry

representation labels [r1, q, r2]. In our derivation we distinguish two types of supermulti-

plets. Firstly, we have external half-BPS operators which take the form (2.1). These are

protected operators, i.e. they do not acquire any anomalous dimension, which are annihi-

lated by half of the lowering supercharges, in addition to positive roots (3.3). Secondly,

there are the operators which appear in the OPE decomposition of external fields that

can be either protected (half- and quarter-BPS) or non-protected. In our discussion all

relevant operators have j1 = j2 ≡ `, since in the OPE of two supermultiplets (2.1) there

are only completely symmetric traceless tensors of rank `. For the external operators the

R-symmetry labels are given by [0, p, 0]. In the intermediate channel we can have, however,

more general operators transforming in a [r, q, r] R-symmetry representation.

Superconformal blocks are eigenvectors of the quadratic Casimir of the psu(2, 2|4) al-

gebra. The latter is an element of the universal enveloping algebra, quadratic in generators

and commutes with all of them and was introduced for the psu(2, 2|4) algebra in [46]. With

our notation it takes the following form, see e.g. [47],

C12 = L β
α L

α
β + L̄α̇

β̇
L̄β̇α̇ − {Pαβ̇ ,K

β̇α}+D2 −R b
a R

a
b − R̄a

′
b′R̄

b′
a′ − D̄2 + {P ′ab′ ,K ′ b

′a}

+ [Q b
α , S

α
b ] + [Qαb′ , S

b′α]− [Sα̇b, Qbα̇]− [Sα̇b′ , Q
b′
α̇ ] . (3.4)
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In order to write down the eigenproblem equation for superconformal blocks (2.11) we need

also to know the eigenvalue of quadratic Casimir κ∆,`,[r1,q,r2] for a given supermultiplet with

dimension ∆, spin ` and in the R-symmetry representation R = [r1, q, r2]. It is given by

κ∆,`,[r1,q,r2] = (∆ + 4)∆ + `(`+ 2)− 1

2
r1(r1 + 2)− 1

2
r2(r2 + 2)

− 1

4
(2q + r1 + r2)2 − 2(2q + r1 + r2) . (3.5)

4 Structure of the OPE

In this paper we study the four-point function of half-BPS scalar operators of any pro-

tected dimension p1, p2, p3 and p4. Using the OPE, we can decompose this four-point

function into all possible SU(4) R-symmetry representations appearing both in the tensor

product [0, p1, 0]× [0, p2, 0] and [0, p3, 0]× [0, p4, 0]. The tensor product of two R-symmetry

representations takes the following form [48]

[0, p1, 0]× [0, p2, 0] =

p1∑
r=0

p1−r∑
s=0

[r, p2 − p1 + 2s, r] , (4.1)

for p2 ≥ p1. The operators appearing in the product (4.1) in general belong to different

supermultiplet [35]. Schematically, the OPE of two half-BPS operators organizes as3

B[0,p1,0] × B[0,p2,0] =
∑

0≤m≤n≤p1
`=0

B[n−m,p2−p1+2m,n−m] +
∑

0≤m≤n≤p1−1
`≥0

C[n−m,p2−p1+2m,n−m],`

+
∑

0≤m≤n≤p1−2
`≥0

A[n−m,p2−p1+2m,n−m],∆,` . (4.2)

where various supermultiplets on the right hand side of (4.2) match elements of the full

classification of unitary irreducible representations of psu(2, 2|4) introduced in [49]:

• The supermultiplet B[r,q,r] is called short and it contains half-BPS operators if r =

0 and quarter-BPS operators if r > 0, all with spin ` = 0. The dimension of

the corresponding highest-weight state is fixed and depends on the representation,

more precisely

[0, q, 0] :∆ = q ,
1

2
-BPS , (4.3)

[r, q, r] :∆ = q + 2r ,
1

4
-BPS . (4.4)

• The supermultiplet C[r,q,r],` is called semi-short and it contains current-like operators,

which can be half-BPS or quarter-BPS. The dimension is also protected from quantum

correction and it is given by

∆ = `+ 2 + 2r + q . (4.5)
3Notice that we are interested in unitary representations, therefore we are left only with short and

semi-short multiplet of type B and C. For a detailed discussion on this point see [48].
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• The supermultiplet A[r,q,r],∆,` is called long. The operators belonging to this su-

permultiplet generically acquire an anomalous dimension. However, unitarity im-

plies that

∆ > `+ 2 + 2r + q . (4.6)

Notice that in general it is possible to consider any particular semi-short multiplets as

a part of long multiplet at the expense of introducing another semi-short multiplet [48].

This generates ambiguities in defining the conformal partial wave expansion in free field

theories. However, this fact will not influence our further discussion.

5 Superconformal Ward identities

The explicit form of the N = 4 SYM half-BPS supermultiplet is given in (2.1) where each

component of the superfield can be expressed as a differential operator acting on the low-

est component of the superfield. The specific form of this differential operator is given by

solving the superconformal Ward identities. The same statement is true for correlation

functions involving any component of the supermultiplet: they are all related to the corre-

lation function of the lowest component of the multiplet. For our purposes we need to find

the form of the differential operator which relates the correlators 〈Ψ(p1)Ψ̄(p2)O(p3)O(p4)〉
and 〈Ψ̄(p1)Ψ(p2)O(p3)O(p4)〉 to 〈O(p1)O(p2)O(p3)O(p4)〉.4 In order to do that we will follow

the same logic put forth in [45]. In the following we recall the main steps of the derivation.

First, we strip off the part of four-point function which carries conformal weight

A(p1,p2,p3,p4) =
yp1+p2

12 yp3+p4
34

xp1+p2
12 xp3+p4

34

(
x24y14

x14y24

)p12
(
x14y13

x13y14

)p34

Â (xi, yi, λi, πi) , (5.1)

and introduce the function Â (xi, yi, λi, πi) which should be annihilated by the supercharges

Qbα, Qαb′ , S
α̇b and Sα̇b′ as well as Qaβ̇ , Qa

′β̇ , Sa
′β and Sβa to ensure its invariance under

superconformal transformations. Following [45], it is enough to impose annihilation by half

of the supercharges and the unique form for Â (xi, yi, λi, πi) is given by

Â (xi, yi, λi, πi) = Q4Q′4S4S′4λ4
1λ

4
2λ

4
3λ

4
4B(xi, yi) , (5.2)

where

Q4 =
1

12
QαaQ

b
αQ

β
bQ

a
β , Q′4 =

1

12
Qαa′Q

b′
αQ

β
b′Q

a′
β , QAB =

4∑
i=1

QAi,B , (5.3)

S4 =
1

12
Sα̇a S

b
α̇S

β̇
b S

a
β̇
, S′4 =

1

12
Sα̇a′S

b′
α̇S

β̇
b′S

a′

β̇
, SAB =

4∑
i=1

SAi,B , (5.4)

λ4
i = λαia′λ

b′
iαλ

β
ib′λ

a′
iβ , (5.5)

4The relation between these four-point functions appears in [32], where the authors derived it by studying

the supersymmetry transformation variations.
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and B(xi, yi) is an arbitrary scalar function of the bosonic variables only. By equating

the lowest component of (5.1) to A{pi}(xi, yi), it is possible to find the relation between

the function B(xi, yi) and A{pi}(xi, yi). In order to simplify the computation we can fix a

frame in which xαα̇3 , yaa
′

3 = 0 and xαα̇4 , yaa
′

4 →∞. In this frame the function B(xi, yi) reads

B(xi, yi) =
xp1+p2

12 xp3+p4
34

yp1+p2
12 yp3+p4

34

(
x24y14

x14y24

)p21
(
x14y13

x13y14

)p43 A{pi}(xi, yi)

x4
1x

4
4y

4
1y

4
4(z−α)(z−ᾱ)(z̄−α)(z̄−ᾱ)

.

(5.6)

Notice that we do not take any limit in the prefactor. We can now apply this procedure

to the correlation functions we are interested in and obtain

〈Ψ(p1)Ψ̄(p2)O(p3)O(p4)〉 =
yp1+p2

12 yp3+p4
34

xp1+p2
12 xp3+p4

34

(
x24y14

x14y24

)p12
(
x14y13

x13y14

)p34

M
(
B(xi, yi)x

4
4y

4
4

)
,

(5.7)

where M is a differential operator which takes into account the projection on Ψ and Ψ̄ of

the expression (5.1). In the chosen frame it takes the form

Mαa′,aα̇ = ∂
xβα̇2

K β
αa′,a , (5.8)

with

K β
αa′,a = x1,αα̇x

βα̇
2

(
y1,aa′(x

2
12y

2
2 − x2

2y
2
12) + y12,aa′(y

2
1x

2
2 − y2

2x
2
1)
)

− x2,αα̇x
βα̇
2

(
y2, aa

′(x2
1y

2
12 − x2

12y
2
1) + y21,aa′(x

2
2y

2
1 − y2

2x
2
1)
)
. (5.9)

One can also obtain an analogous relation for the correlator 〈Ψ̄(p1)Ψ(p2)O(p3)O(p4)〉. In

principle, we could reintroduce the dependence on x3, y3 and x4, y4 in the above expressions

since we know the structure of free indices of M and the expressions for cross-ratios in the

chosen frame: u = x12/x
2
1 and v = x2

2/x
2
1. We will, however, postpone it and write in full

generality the final expressions in the following section.

6 Solution to the Casimir equation

6.1 Deriving the differential equation

In the previous sections we collected all ingredients necessary to find the solution to the

Casimir equation (2.11). In this section we use them in order to find an explicit form

of the superconformal blocks. The strategy is to disentangle the lowest component of

the superconformal block and write a differential equation for it. We accomplish it by

projecting both sides of (2.11) to the lowest component, namely, evaluating it for λi = 0

and πi = 0. On the right hand side of (2.11) it can be done immediately. The left

hand side demands some work since the Casimir operator mixes various components of the

superconformal block.

Let us first understand which components of the superconformal block are relevant

in our discussion. We can think about the superconformal block as a polynomial in

Grassmann-odd variables λ and π. Each component of the block is then multiplied by a
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Grassmann-odd polynomial of particular degree. Let us split the action of the two-particle

Casimir in three pieces:

C12 = C↑ + C0 + C↓ , (6.1)

where operators C↑, C↓ and C0 increases, decreases and preserves the Grassmann-odd degree,

respectively. First, it is easy to see that we do not need the operator C↑ at all, since it will

produce a non-zero power of λ or π, which eventually will vanish when projecting (2.11)

on its lowest component. Second, the only relevant action of C0 is when we apply it on

the lowest component of G{pi}∆,`,R. Finally, by inspecting the explicit form of the Casimir

operator C↓ we see that the only form it can take is b(x, y)∂λi∂πj for i 6= j with some

function b(x, y).5 Since the two-particle Casimir C12 acts only on the first two particles

there are only two relevant contributions coming from C↓, namely,

C↓ ∼ b(x, y)∂λ1∂π2 + b̄(x, y)∂λ2∂π1 , (6.2)

This explains why we need only G
{pi}
∆,`,R, Q

{pi}
∆,`,R and Q̄

{pi}
∆,`,R in (2.14). To summarize, when

projecting the Casimir eigenproblem (2.11) on its lowest component we end up with

C0G
{pi}
∆,`,R + b(x, y)Q

{pi}
∆,`,R + b̄(x, y) Q̄

{pi}
∆,`,R = κ∆,`,RG

{pi}
∆,`,R , (6.3)

where G
{pi}
∆,`,R, Q

{pi}
∆,`,R and Q̄

{pi}
∆,`,R are defined in (2.14).

The degree-preserving part of the Casimir C0 can further be written as

C0 = Cx − Cy , (6.4)

where Cx (resp. Cy) is a differential operator depending only on variables x (resp. y) and

equals the conformal symmetry quadratic Casimir (resp. R-symmetry Casimir). The latter

was constructed in e.g. [50] and its action on G
{pi}
∆,`,R reads

CxG{pi}∆,`,R = Cx g{pi}∆,`,R + (p12 − p34)

(
(1 + u− v)

(
u
∂

∂u
+ v

∂

∂v

)
− (1− u− v)

∂

∂v

)
g
{pi}
∆,`,R

+
1

2
p12 p34 (1 + u− v)g

{pi}
∆,`,R , (6.5)

with the action on any function of cross-ratios given by

1

2
Cx g{pi}∆,`,R = −

(
(1− v)2 − u(1 + v)

) ∂
∂v
v
∂

∂v
g
{pi}
∆,`,R − (1− u+ v)u

∂

∂u
u
∂

∂u
g
{pi}
∆,`,R

+ 2(1 + u− v)u v
∂2

∂u∂v
g
{pi}
∆,`,R + 4u

∂

∂u
g
{pi}
∆,`,R . (6.6)

To get expressions for Cy we replace in (6.5) and (6.6): u → σ, v → τ , p12 → −p12 and

p34 → −p34. The final step is to use the solution of superconformal Ward identities (5.8)

together with (5.9) and combine it with the action of Casimir C↓. We find

b(x, y) q
{pi}
∆,`,R + b̄(x, y) q̄

{pi}
∆,`,R = Cfer g

{pi}
∆,`,R , (6.7)

5In general we expect also to find contributions with i = j. However, these cancel in the final form of

the Casimir.
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where lower case functions q
{pi}
∆,`,R and q̄

{pi}
∆,`,R are defined in analogy with (2.12). The explicit

form of the operator on the right hand side of (6.7) is

Cfer =
4z(z − 1)(z(α+ ᾱ)− 2αᾱ)

(z − α)(z − ᾱ)

∂

∂z
+

4z̄(z̄ − 1)(z̄(α+ ᾱ)− 2αᾱ)

(z̄ − α)(z̄ − ᾱ)

∂

∂z̄

− 4α(α− 1)(α(z + z̄)− 2zz̄)

(α− z)(α− z̄)

∂

∂α
− 4ᾱ(ᾱ− 1)(ᾱ(z + z̄)− 2zz̄)

(ᾱ− z)(ᾱ− z̄)

∂

∂ᾱ
, (6.8)

where the subscript fer refers to the fact that this contribution originates from fermionic

degrees of freedom of N = 4 SCFT. We use variables z, z̄, α and ᾱ to write (6.8) since it

takes a simpler form compared to the original cross-ratios.

Summarizing, we end up with the following equation for the lowest component of the

superconformal block

C0 g
{pi}
∆,`,R + Cfer g

{pi}
∆,`,R = κ∆,`,R g

{pi}
∆,`,R , (6.9)

where C0 is given in (6.4), (6.5) and (6.6), Cfer is given in (6.8) and κ∆,`,R in (3.5). We solve

this equation in the following subsection. Finally, let us mention a simple yet important

observation: from the explicit expressions for the Casimir (6.5) and (6.8) the symmetry

between u ↔ σ, v ↔ τ , or equivalently between z ↔ α, z̄ ↔ ᾱ, is manifest. It turns

out that the solutions to the Casimir eigenproblem, namely superconformal blocks, have

the same symmetry and the only difference between space-time and R-symmetry parts are

boundary conditions. More precisely, solutions to (6.9) are polynomials in variables y but

more complicated functions of x, not even meromorphic.

6.2 Solutions to the Casimir equation

From the study of superconformal Ward identities we know that there are two possible

structures which can result in our study of conformal blocks. One is associated with long

representations exchanges in the intermediate channel

g
{pi}
∆,`,RL ∼ (z − α)(z − ᾱ)(z̄ − α)(z̄ − ᾱ)F (u, v, σ, τ ) , (6.10)

while the other is related to exchange of protected operators

g
{pi}
∆,`,RS ∼

(σ
u

) p34
2

(
−(z − α)(z − ᾱ)(z̄ − α)f(z, α)

α z (α− ᾱ)(z − z̄)
+

(z − α)(z − ᾱ)(z̄ − ᾱ)f(z, ᾱ)

ᾱ z (α− ᾱ)(z − z̄)

+
(z − α)(z̄ − α)(z̄ − ᾱ)f(z̄, α)

α z̄ (α− ᾱ)(z − z̄)
− (z − ᾱ)(z̄ − α)(z̄ − ᾱ)f(z̄, ᾱ)

ᾱ z̄ (α− ᾱ)(z − z̄)

)
. (6.11)

6.2.1 Long representations

In order to solve (6.9) for long representations we plug in the form (6.10) and notice that we

can solve the derived equation for F (u, v, σ, τ ) using the separation of variables technique.

A similar equation has been obtained in the study of standard conformal blocks [50] and

we can closely follow here their derivation of solutions. We write

F (u, v, σ, τ ) = H
{pi}
∆,` (u, v)Y {pi}nm (σ, τ) . (6.12)
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Then one can find that the solution, up to an undetermined overall constant, is given by

H
{pi}
∆,` (u, v) = (zz̄)

∆−`
2 g∆+4,`(z, z̄) , (6.13)

where the function g is the conformal block for non-supersymmetric CFTs and is given by

g∆,`(z, z̄) =
1

z − z̄

[(
−z
2

)`
z k∆+`(z)k∆−`−2(z̄)−

(
−z̄
2

)`
z̄ k∆+`(z̄)k∆−`−2(z)

]
, (6.14)

with

kβ(x) = 2F1

(
β − p12

2
,
β + p34

2
, β, x

)
. (6.15)

The R-symmetry part is given by

Y {pi}nm (σ, τ) =
P

(a,b)
n+1 (y)P

(a,b)
m (ȳ)− P (a,b)

m (y)P
(a,b)
n+1 (ȳ)

y − ȳ
σ
p34
2
−2 , (6.16)

where

a =
p12 − p34

2
, b =

−p12 − p34

2
, y =

2

α
− 1 , ȳ =

2

ᾱ
− 1 , (6.17)

and P
(a,b)
n (y) is the Jacobi polynomial.

It is easy to check that plugging this solution back in (2.11) we find

κ∆,`,R = (∆ + 4)∆ + `(`+ 2)− 2(m(m+ 1) + n(n+ 3)) + 2p34(n+m+ 2) + p2
34 , (6.18)

which is the eigenvalue of Casimir operator for long representation with dimension ∆, spin

` and R-symmetry representation R = [n−m, 2m− p34, n−m], as expected.

6.2.2 Short representations

For short and semi-short contributions we take (6.11) and plug it to the equation (6.9). In

order to find the solution to this equation we focus on the leading expansion around z̄ ∼ ᾱ,

which will allow us to find the function f(z, α). Once again we can use the separation

of variables

f(z, α) = fλ(z)Pµ(α) , (6.19)

and we find, up to an unfixed normalization, the following solution

fλ(z) = zλ+1+
p34
2 2F1

(
λ+ 1− p12

2
, λ+ 1 +

p34

2
, 2λ+ 2, z

)
, (6.20)

and

Pµ(α) = P (a,b)
µ (y) , (6.21)

where P
(a,b)
µ (y) is again the Jacobi polynomial and a, b, y are given in (6.17). It is easy

to check that when plugging this solution back in (6.9) we get the following eigenvalue of

Casimir operator

κ∆,`,R = 2(λ+ 1)λ− 2

(
µ+ 1− p34

2

)(
µ− p34

2

)
. (6.22)
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It can be compared with the eigenvalue we expect for short and semi-short contributions.

For short supermultiplets described in (4.4) we get

κ2n,0,[n−m,m− p34
2
,n−m] = 2

(
n− p34

2
+ 1

)(
n− p34

2

)
− 2

(
m− p34

2
+ 1

)(
m− p34

2

)
, (6.23)

which corresponds to

λ = n− p34

2
, µ = m. (6.24)

For semi-short representations in (4.5) the eigenvalue is

κ2n+`+2,`,[n−m,m− p34
2
,n−m]

= 2

(
n+ l + 2− p34

2
+ 1

)(
n+ l + 2− p34

2

)
− 2

(
m− p34

2
+ 1

)(
m− p34

2

)
,

(6.25)

which agrees with our solution for

λ = n+ l + 2− p34

2
, µ = m. (6.26)

A particular case of operator belonging to short representation is the identity operator. In

this case the contribution is trivially given by the constant k in (2.17) which comes from

the contribution

f−1(z)P0(α) = const . (6.27)

7 Conclusions and outlook

In this paper we have studied superconformal blocks of operators belonging to the half-

BPS supermultiplet of N = 4 SCFT. We use the fact that superconformal blocks, as their

conformal counterparts, are eigenfunctions of the two-particle quadratic Casimir operator

of the superconformal algebra. We explicitly construct the two-particle quadratic super-

Casimir operator. The action of this operator on the four-point function of operators in

the half-BPS multiplets leads to a differential equation whose solutions give the form of

the superconformal blocks. The way in which we computed superconformal blocks for the

full supermultiplet is reminiscent of what was done for four-point functions. Also in that

case, it is enough to know the four-point function of the lowest dimensional component

of the supermultiplet to recover the four-point function of any other component of the

supermultiplet by acting with a suitable differential operator [44].

To be more precise, having found the superconformal blocks one can expand the four-

point function in superconformal partial waves as

A{pi} =
yp1+p2

12 yp3+p4
34

xp1+p2
12 xp3+p4

34

(
x24y14

x14y24

)p12
(
x14y13

x13y14

)p34 ∑
∆,`,R

cp1,p2

∆,`,Rc
p3,p4

∆,`,R g
{pi}
∆,`,R(xi, yi, λi, πi) ,

(7.1)

where the sum runs over the quantum numbers (dimension, spin and SU(4)R representation

labels) of the superconformal primaries appearing in the OPE of O(p1) × O(p2). Here the
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superconformal block is completely fixed by its lowest component and the superconformal

Ward identity to be

g{pi} (xi, yi, λi, πi) = Q4Q′4S4S′4λ4
1λ

4
2λ

4
3λ

4
4 g
{pi}(u, v, σ, τ ) . (7.2)

We would like to stress a difference in terminology compared to the results already present

in the literature. In [32] the notion of superconformal block was used to denote the function

which appears in the decomposition of the lowest component of four-point function (2.5),

namely (6.12). In this paper we define as superconformal block the full eigenfunction of

the supercasimir operator in such a way that it is possible to write down a decomposition

of the form (7.1), in full analogy with the conformal case. Then superconformal blocks

are functions defined on the full analytic superspace and as such allow for instance to

decompose in partial waves any component of the four-point function (2.5).

As we discussed already, for the superconformal blocks of the four-point function lowest

component, the expression (7.1) reduces to two distinctive contributions

A{pi}(xi, yi) =
yp1+p2

12 yp3+p4
34

xp1+p2
12 xp3+p4

34

(
x24y14

x14y24

)p12
(
x14y13

x13y14

)p34

×

( ∑
∆,`,Rs

cp1,p2

∆,`,RSc
p3,p4

∆,`,RS g
{pi}
∆,`,RS (z, z̄, α, ᾱ)

+
∑

∆,`,RL

cp1,p2

∆,`,RLc
p3,p4

∆,`,RL g
{pi}
∆,`,RL(z, z̄, α, ᾱ)

)
, (7.3)

where the subscript S and L denotes the contributions corresponding to the presence in the

OPE of superconformal primaries belonging to short/semi-short and long representations,

respectively. Notice that superconformal primaries which belong to long representations

transform in smaller number of SU(4)R representations, as it is evident from the OPE

decomposition (4.2). Obviously superconformal descendants can transform in any repre-

sentation consistent with the OPE.

Since the three-point functions and the dimensions of half-BPS and quarter-BPS are

protected from quantum correction, there is a subset of the sum in (7.3) which can be

resumed to give an explicit, calculable function which depends only on variables z, z̄, α and

ᾱ and possibly on N , rank of the gauge group. This is a non-trivial fact and it made possible

to obtain a vast variety of results in the context of the numerical bootstrap [12–14, 51].

There are several ways in which our results can be useful:

• Having the explicit form of the superconformal blocks it is possible to use numerical

bootstrap techniques to obtain further bounds on dimensions and OPE coefficients

of superconformal primaries appearing in the OPE of any two operators belonging to

the half-BPS multiplet of N = 4 SCFT. Moreover, due to the effectiveness and the

success of the study of mixed correlators [52, 53] our results can be a starting point

to perform such analysis also for four-dimensional N = 4 SYM.

• Recently the bootstrap equations have been studied also analytically [54–60]. In

many of these studies, the form of the conformal blocks is crucial! Therefore one may
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hope to extract more analytic information for dimensions or OPE coefficients from

the superconformal bootstrap equations.

• Although in our construction we have not referred to any perturbative methods, one

can extract perturbative CFT data using our superconformal blocks. The starting

point would be to compute perturbatively four-point correlators of half-BPS states of

the form we discuss in this paper. Then, using the superconformal partial wave de-

composition, it is straightforward to extract the anomalous dimensions and the OPE

coefficients, in a perturbative expansion, of the superconformal primaries appearing

in the OPE of two external operators. Since we give the partial wave expansion for

the full supermultiplets, it is possible using our results to compute these observables

for more general classes of operators. Eventually, this may be of interest also in com-

plementing results and techniques obtained using the powerful integrability methods

in N = 4 SYM.

• Our construction is based on the structure of the maximal superconformal symmetry

algebra in four dimensions. It is, however, straightforward to generalize our formal-

ism to theories with less amount of supersymmetry, as for example N = 2 conformal

theories in four dimensions. Moreover, our study can be generalized to superconfor-

mal field theories living in different space-time dimensions, for instance three or six.

Also for these cases it should be in principle possible to apply the same reasoning,

provided that we found the solution to the superconformal Ward identities.

• Lastly and more importantly, we believe that the approach used in this paper can

be seen as a preliminary step in studying the superconformal blocks associated to

four-point functions of generic long operators in N = 4 SYM. In that case there are

several obstacles to overcome, as for example understanding the form of three-point

function of two long operators and any operator appearing in their OPE. Differently

from the case that we studied, those three-point functions are in general not related

for different components of the same supermultiplet. However, pursuing such analysis

would be very important to understand several features of non-perturbative N = 4

SYM data.
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A Conventions

Throughout the paper we use two-component spinor notation for both, Minkowski and

R-symmetry indices. We adopt the following conventions for lowering and raising indices:

ξα = εαβξβ , ξα̇ = εα̇β̇ξβ̇ , ξa = εabξb , ξa
′

= εa
′b′ξb′ , (A.1)
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with Levi-Civita symbol normalized as

εαβ = εαβ = −εα̇β̇ = −εα̇β̇ = εab = εab = −εa′b′ = −εa′b′ = 1 . (A.2)

Then, all distances are given by

x2 =
1

2
xαβ̇xαβ̇ , y2 =

1

2
yab
′
yab′ . (A.3)

B Form of generators

In this appendix we give the explicit form of generators of psu(2, 2|4) superconformal al-

gebra realized as differential operators acting on the analytic superspace. All indices run

over two values.

B.1 Conformal algebra

The conformal subalgebra consist of two su(2) rotations L β
α and L̄α̇

β̇
, translations Pαβ̇ ,

boosts Kα̇β and the dilatation D:

L β
α = xββ̇

∂

∂xαβ̇
+ λβα

′ ∂

∂λαa′
, (B.1)

Pαβ̇ =
∂

∂xαβ̇
, (B.2)

Kα̇β = xγα̇xβγ̇
∂

∂xγγ̇
+ xγα̇λβc

′ ∂

∂λγc′
+ πcα̇xβγ̇

∂

∂πcγ̇
+ πcα̇λβc

′ ∂

∂ycc′
, (B.3)

L̄α̇
β̇

= xβα̇
∂

∂xββ̇
+ πaα̇

∂

∂πaβ̇
, (B.4)

D = xαα̇
∂

∂xαα̇
+

1

2

(
λαa

′ ∂

∂λαa′
+ πaα̇

∂

∂πaα̇

)
. (B.5)

B.2 R-symmetry algebra

The R-symmetry algebra is realized in the analytic superspace in a direct analogue with

the Minkowski space:

R b
a = yba

′ ∂

∂yaa′
+ πbα̇

∂

∂πaα̇
, (B.6)

P ′aa′ =
∂

∂yaa′
, (B.7)

K ′ a
′a = yba

′
yab
′ ∂

∂ybb′
+ yba

′
πaβ̇

∂

∂πbβ̇
+ λβa

′
yab
′ ∂

∂λβb′
+ λβa

′
πaβ̇

∂

∂xββ̇
, (B.8)

R̄a
′
b′ = yaa

′ ∂

∂xab′
+ λαa

′ ∂

∂λαb′
, (B.9)

D′ = yaa
′ ∂

∂yab′
+

1

2

(
λαa

′ ∂

∂λαa′
+ πaα̇

∂

∂πaα̇

)
. (B.10)
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B.3 Supercharges

Supercharges split in two families: supertranslations Q and superboosts S:

Q b
α = πbα̇

∂

∂xαα̇
+ yba

′ ∂

∂λαa′
, (B.11)

Qαb′ =
∂

∂λαb′
, (B.12)

Qaβ̇ =
∂

∂πaβ̇
, (B.13)

Qa
′

β̇
= λαa

′ ∂

∂xαβ̇
− yaa′ ∂

∂πaβ̇
, (B.14)

Sα̇b = xβα̇πbβ̇
∂

∂xββ̇
+ xβα̇ybb

′ ∂

∂λβb′
− πcα̇πbβ̇ ∂

∂πcβ̇
− πcα̇ybb′ ∂

∂ycb′
, (B.15)

Sα̇b′ = xαα̇
∂

∂λαb′
− πaα̇ ∂

∂yab′
, (B.16)

S β
α = xβα̇

∂

∂πaα̇
+ λβa

′ ∂

∂yaa′
, (B.17)

Sa
′β = yba

′
λβb

′ ∂

∂ybb′
+ yba

′
xββ̇

∂

∂πbβ̇
− λγa′λβb′ ∂

∂λγb′
− λγa′xββ̇ ∂

∂xγβ̇
. (B.18)
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