
Differentiating through Conjugate Gradient

Bruce Christianson
b.christianson@herts.ac.uk

University of Hertfordshire, Hatfield, England

December 2017

Abstract

We show that, although the Conjugate Gradient (CG) Algorithm has
a singularity at the solution, it is possible to differentiate forward through
the algorithm automatically by re-declaring all the variables as truncated
Taylor series, the type of active variable widely used in Automatic Dif-
ferentiation (AD) tools such as ADOL-C. If exact arithmetic is used, this
approach gives a complete sequence of correct directional derivatives of
the solution, to arbitrary order, in a single cycle of at most n iterations,
where n is the number of dimensions. In the inexact case the approach
emphasizes the need for a means by which the programmer can commu-
nicate certain conditions involving derivative values directly to an AD
tool.

1 Truncated Taylor CG

It is generally supposed to be problematic to differentiate naively through sin-
gularities1. The Conjugate Gradient (CG) Algorithm [1] has a singularity at
the solution2, in the sense that an attempt to run the algorithm starting at the
solution will produce a divide-by-zero error.

Although practitioners sometimes discuss (in conversation) occasions when
their CG code did, or didn’t, converge to correct derivative values when it was
forward-differentiated, there seems to be no theoretical analysis of this problem
in the published literature. Gratton et al [2] consider first derivatives with
respect to b of the successive CG approximations xk to the solution x∗ of Ax = b,
but do not take account of the effect of convergence of the underlying problem
on the derivatives, and do not consider derivatives of xk with respect to A.

We show that, although the CG Algorithm has a singularity at the solution,
it is nevertheless possible to differentiate through the algorithm automatically,
even in case the algorithm is started at the solution itself. This allows us to

1For the case of the Euclidean norm at the origin see [3] p. 357 Table 14.9 and p. 363
Exercise 14.1.

2Unlike Newton algorithms, for instance, which do not.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/287580867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

obtain correct directional derivatives of the solution, to arbitrary order r, in a
single cycle of at most n iterations, where n is the number of dimensions. Our
approach involves re-declaring the active variables as truncated Taylor series, as
used in ADOL-C [4] and elsewhere, and making adjustments (which we specify
below) to the method of calculating certain coefficients, and to the stopping
criteria.

Suppose that we wish to use CG to solve the linear equations Ax = b for x
at t = 0, where A and b are smooth non-linear functions of some variable t, and
at the same time to compute directional derivatives ẋ, ẍ with respect to t, also
at t = 0. These derivatives satisfy

Aẋ+ Ȧx = ḃ Aẍ+ 2Ȧẋ+ Äx = b̈

and so on for higher order derivatives. The trick is to re-purpose a conventional
implementation of CG. For example, we shall denote the value of b at t = 0 by
b(0) (simply adding a notational superscript) and write

b(1) = ḃ, b(2) =
1

2!
b̈, . . . b(r) =

1

r!

r×•
b

to construct the truncated Taylor vector

b = b(0) + b(1)t+ b(2)t2 + . . .+ b(r)tr

Similarly for A. Now solving the truncated Taylor equation Ax = b for x will
give the solution x(0) to the original equation at t = 0 along with the correct
derivatives

ẋ = x(1), ẍ = (2!)x(2), . . .
drx

dtr
= (r!)x(r).

We refer to a truncated Taylor series such as α whose elements α(k) are scalars
as a taylor. In practice any implementation must use Taylor series truncated
to some finite order. Although the analysis in this section and the next also
applies to untruncated (infinite) Taylor series (subject to some care with radius
of convergence arguments), the construction is designed to allow all the taylor
values calculated during the course of the algorithm to be computed only to
the same fixed order r, with a small number of exceptions3. There are some
occasions in the proofs where, in order to establish a particular identity, we
must imagine that we have calculated elements of higher order4 than r, but
these values are not used by the algorithm itself. We write α = 0 to mean that
α(k) = 0 for all k; for a truncated taylor of order r, α(k) = 0 for k > r by
convention.

A taylor vector such as b can be thought of as a truncated Taylor series
whose elements b(k) are vectors, although it may in practice be implemented

3These exceptions are confined to certain intermediate quantities involved in the calculation
of the taylor values designated αi and βi; these exceptions require calculation to order less
than 2r in all cases, as we shall see.

4But even in these cases, we need never consider elements of higher order than 4r.

2

as a vector whose components are taylors. Similarly A can be thought of as a
truncated Taylor series whose entries are the matrices A(k), but implemented
as a matrix composed of taylors.

If u, v are taylor vectors then we write c = u · v to denote the taylor with

c(k) =

k∑
`=0

u(`) · v(k−`),

u2 denotes u · u, and so on for all the usual vector and matrix linear algebra
notations. The usual algebraic identities lift to taylors, so for example (αu) ·v =
α(u ·v). For further information on calculating taylor values see [3], Section 3.2:
as an example, if α(0) 6= 0 and γ = 1/α then the elements of γ can be recursively
calculated as

γ(0) =
1

α(0)
; γ(k) =

−1

α(0)

k−1∑
`=0

γ(`)α(k−`)

Truncated Taylor Conjugate Gradient Algorithm (TTCG)

As usual we assume A(0) to be symmetric and positive definite. The TTCG
algorithm to solve Ax = b looks just like the conventional CG algorithm, but
the variables A, b, xi, gi, pi, αi, βi, etc. are taylors.

start:
set i := 0
let x0 be an initial approximation to x
g0 = Ax0 − b
p1 = −g0

loop:
i := i+ 1
choose αi to solve αi(p

T
i Api) = g2i−1

xi = xi−1 + αipi
gi = Axi − b = gi−1 + αiApi

if gi = 0 then terminate
choose βi to solve βig

2
i−1 = g2i

pi+1 = βipi − gi
go to loop

We prove various properties of this algorithm formally in the next section,
but give here a brief overview of our route to the main result of this paper. We
already know from the conventional (order zero) case of CG that the truncated
Taylor CG algorithm produces (if arithmetic is exact) an orthogonal sequence

g
(0)
i . In a space of finite dimension n we therefore must have for some i0 that

3

g
(0)
i0

= 0. However truncated Taylor CG need not terminate at this point5 as

the fact that g
(0)
i0

= 0 does not imply that g = 0 to order r. Continuing on with

the algorithm from this point produces a further sequence of gi with g
(0)
i = 0.

For each i, define g(ki) to be the first non-zero element of gi if there is one,

so g
(ki)
i 6= 0 and g

(`)
i = 0 for all ` : 0 ≤ ` < ki ≤ r, and define g

(∗)
i = g(ki) in this

case; define g
(∗)
i = 0 iff gi = 0, in which case ki is undefined.

We shall show in section 2 that, provided we use exact arithmetic, the g
(∗)
i

form an orthogonal sequence, with ki monotone non-decreasing with i, and so
for some i∗ ≤ n we must have gi∗ = 0. At this point TTCG will terminate and
give correct values for x, ẋ, ẍ and so on to order r. In section 3 we consider
briefly some of the consequences of using inexact arithmetic, particularly on
re-formulating the stopping criterion and the adjustment of ki.

We conclude this section by remarking on the calculation of αi and βi. As
soon as ki−1 > 0, these calculations involve taking the quotient of two taylors
which are both divisible by a power of t. Although we only need to calculate
αi, βi themselves as far as the element of order r − ki−1, the cancellation of
t requires6 us to compute the intermediate elements g2i−1, g

2
i , piApi to order

r + ki−1. A simple implementation is to store certain truncated taylor vectors
in a “normalized form” and re-normalize automatically when we operate on
them: for example we may represent gi = vtki explicitly as the pair (ki, v),
where v(0) 6= 0 unless gi = 0, and similarly for pi.

2 Termination and Convergence

Throughout this section, we shall assume that the arithmetic used is exact.

Definition 1 Let v be a taylor (scalar or vector). For k ≥ 0 we say that tk

divides v, and write tk|v iff v(`) = 0 for all ` : 0 ≤ ` < k. For v 6= 0 we define
the order of v to be the largest value of k such that tk|v. If v(0) 6= 0 then the
order of v is zero; 1 = t0 divides every v because in this case the quantification
over ` is empty.

Definition 2 For each i, we define ki as the order of gi.

Theorem 2.1 At each stage i ≥ 1, αi and βi are well defined with α
(0)
i 6= 0;

ki ≥ ki−1; pi+1 is of order ki; gi−1 · gi = 0; pTi+1Api = 0; and gi · pi = 0.

5For example, set x0 = 0 and suppose that b(0) is an eigenvector of A(0) but that b(1) is

not. Terminating the algorithm as soon as g
(0)
i = 0 may give wildly incorrect values for the

derivatives of x.
6For example if ki = r then naive computation of αi using taylors of order r will suffer

from an underflow when computing g2i , which has order 2r, even though α
(0)
i 6= 0.

4

Proof The proof is by induction: for i ≥ 2 we suppose the case for i− 1 and
deduce it for i. We first show that αi is well defined and not divisible by t.
The order of pi is ki−1 by the induction hypothesis, the order of gi−1 is ki−1

by definition. Since A(0) is positive definite, we have that pTi Api and g2i−1 both
have order exactly 2ki−1, whence αi is a well defined taylor not divisible by t.

Hence tki−1 divides gi = gi−1 + αiApi whence ki ≥ ki−1. So let ki =
ki−1 + δ ≥ ki−1 with δ ≥ 0. (The case where δ > 0 corresponds to a step i
where ki has a jump.) We have βi = g2i /g

2
i−1 so βi is well-defined and t2δ divides

βi, by definition of order. Since tki−1 divides pi it follows that tki = tδ.tki−1

divides βipi, and hence tki divides pi+1 = βipi − gi.
We show that gi−1 · gi = 0.

gTi gi−1 = (gi−1+αiApi)
T gi−1 = g2i−1+αip

T
i A(βi−1pi−1−pi) = g2i−1−αipTi Api = 0

by the induction hypothesis pTi Api−1 = 0 and the definition of αi.
We show that βi satisfies βip

T
i Api = gTi Api. Write P for pTi Api, then

g2i Pβi = gTi (gi − gi−1)Pβi = gTi ApiαiPβi = gTi Apig
2
i−1βi = gTi Apig

2
i

since gi−1 · gi = 0 and αiP = g2i−1. We never calculate g2i Pβi as a truncated
taylor in the course of the TTCG algorithm, but let us imagine that we calculate
it now, to order r + 2ki + ki−1. We have that gi = vtki with v(0) 6= 0, so
g2i = v2t2ki . Divide both sides of the equation g2i Pβi = gTi Apig

2
i by t2ki and

multiply by the truncated taylor 1/(v2) to give the assertion for βi to order
r − ki−1.

We show that pTi+1Api = 0.

pTi+1Api = (βipi − gi)TApi = βip
T
i Api − gTi Api = 0

We show that pi · gi = 0.

pTi gi = (βi−1pi−1−gi−1)T gi = βi−1p
T
i−1gi = βi−1p

T
i−1(gi−1+αiApi) = βi−1pi−1·gi−1 = 0

by the induction hypotheses.
We show that pi+1 has order exactly ki. We already have that tki |pi+1.

Suppose for a contradiction that tki+1|pi+1. Certainly tki |gi so then t2ki+1

divides pi+1 · gi = βipi · gi − g2i = −g2i , but this has order exactly 2ki by
definition.

This completes the inductive proof of case i. It remains to establish the base
case i = 1. Since p1 = −g0 the order of p1 is k0. Since A(0) is positive definite,
we have that pT1 Ap1 and g20 both have order exactly 2k0, whence α1 is a well
defined taylor not divisible by t. We have g1 ·g0 = −g1 ·p1 = g20−α1(pT1 Ap1) = 0.

The same arguments used in the induction step now give k1 ≥ k0; β1 well-
defined; β1p

T
1 Ap1 = gT1 Ap1; pT2 Ap1 = 0; p2 has order k1; and we are done.

qed

Corollary 2.2 (of the Proof) For all i ≥ 1, βi satisfies βip
T
i Api = gTi Api.

5

Theorem 2.3 For all i, j with 1 ≤ i ≤ j we have gi−1·gj = 0 and pTi Apj+1 = 0.

Proof Assume that there is a counter-example, and consider one with the
smallest value of j.

If j = i then gTj gi−1 = 0 by Theorem 2.1, otherwise

gTj gi−1 = (gj−1 + αjApj)
T gi−1 = gTj−1gi−1 + αjp

T
j A(βi−1pi−1 − pi) = 0

by the assumption on j. In the base case gTj g0 when i = 1, replace β0p0− p1 by
−p1.

Similarly, if j = i then pTj+1Api = 0 by Theorem 2.1, otherwise, for i > 1

pTj+1Api = (βjpj − gj)TApi = −gTj Api
by the assumption on j, whence

αip
T
j+1Api = −gTj A(αipi) = −gTj (gi − gi−1) = −gTj gi + gTj gi−1 = 0

by the case already proven. Now by Theorem 2.1 we have that the taylor αj is
not divisible by t, and hence has a taylor inverse α−1

j . Multiplying by this, it

follows that pTi Apj+1 = 0 and so there is no counter-example.
qed

Corollary 2.4 If j > i then g
(ki)
i · g(kj)j = 0

Proof We do not calculate elements of gi to order greater than r in the TTCG
algorithm itself, but this does not prevent us using their values in a proof. So,
let us imagine for a moment that we executed the algorithm to order 2r instead
of to order r. By Theorem 2.3, gi · gj = 0, so

(gi · gj)(ki+kj) = g
(0)
i · g

(ki+kj)
j + . . .+ g

(ki)
i · g(kj)j + . . .+ g

(ki+kj)
i · g(0)j = 0

But g
(`)
i = 0 for ` < ki, and g

(`)
j = 0 for ` < kj , so g

(ki)
i · g(kj)j = 0

qed

Lemma 2.5 For some i∗ ≤ n we have gi∗ = 0,

i.e. g
(k)
i∗

= 0 for all k : 0 ≤ k ≤ r.

Proof This follows from Corollary 2.4 by the orthogonality of the sequence

g
(ki)
i . There are at most n linearly independent directions in the space.

qed

Theorem 2.6 The TTCG algorithm terminates after at most n steps, re-

gardless of the value of r. Let xi∗ be the terminal value for x. Then x
(0)
i∗

is the

solution of A(0)x(0) = b(0) and x
(1)
i∗

is the correct directional derivative ẋ of x

for the given directional derivatives Ȧ = A(1), ḃ = b(1), and so on for the higher
derivatives.

6

Proof At each stage gi is the residual Axi−b. Since for i = i∗ we have gi∗ = 0,
it follows that Axi∗ = b to order r, so

A(0)x
(0)
i∗

= b(0) A(1)x
(0)
i∗

+A(0)x
(1)
i∗

= b(1)

and so on, as required.
qed

3 Knowing When to Stop

The arithmetic used in AD is not usually exact, and so we must decide at which
point to treat elements of gi as zero: this amounts to deciding whether or not gi
is divisible by tki−1+1, based on the sizes of the relevant elements. For example,
when calculating the taylor βi = g2i /g

2
i−1 we must decide whether to take

β
(0)
i =

(g2i)(0)

(g2i−1)(0)
, or β

(0)
i =

(g2i)(2)

(g2i−1)(2)

where in the second case we use l’Hospital’s rule (twice) to divide through by

t2 on the ground that g
(0)
i is appropriately “small”.

This is essentially similar to the problem we face with conventional CG in
deciding when to terminate, and we may use similar heuristics to decide. For

example we may decide to increment ki whenever g
(ki−1)
i becomes small relative

to g
(k0)
0 . At each of these jumps in the value of ki, the exact arithmetic version

of the TTCG algorithm implicitly freezes the values for elements of x of order
below ki, which has the same effect as performing an internal CG restart at

order ki using the current value of g
(ki)
i . It would be convenient in the case of

inexact arithmetic to have a way of doing this explicitly as a result of a run-
time test. Similarly we may decide to restart the complete TTCG algorithm

from the beginning, with x0 as the current value of xi, whenever g
(ki)
i loses

orthogonality with g
(k0)
0 . However the programmer needs a way to communicate

these intentions effectively to the AD tool, and we also need a way of deciding
when to terminate the algorithm on the ground that gi is “close enough” to 0.
A simple way of representing this is by defining a suitable norm on the taylor
vector gi (see the postscript following.)

The interesting feature of differentiating directly through the CG algorithm,
beside conceptual and programming simplicity, is that both the solution and all
its directional derivatives are obtained together in at most n iterations, where
n is the dimension of x.

The approach of applying AD straight through removable singularities is
likely to be exploitable along similar lines for other algorithms, once suitable
mechanisms exist to allow AD tools to manage and adapt the order and norm
of taylor variables.

7

A Postscript on Taylor Norms

Whenever we apply forward-mode AD to an iterative algorithm, we must be
careful in the stopping condition to use a norm that is appropriate for taylor
vectors. (Moré and Wild [5] present examples of what goes wrong if this is
not done.) In particular ‖g‖ must be non-zero and well-conditioned in the case
when g(0) is very close to 0 but g(1) is still relatively large. This case may occur
as a result of round-off error even when g(0) is analytically zero. One option
(see p. 309 of [3]) is to define

|α|γ =

r∑
`=0

γ`|α(`)|, ‖g‖γ =

r∑
`=0

γ`‖g(`)‖, ‖A‖γ =

r∑
`=0

γ`‖A(`)‖ etc

where we generally take the underlying vector norm ‖.‖ to be the 1− or 2−norm.
Unlike t, which is a formal symbol, γ is a positive real number such as 1.0 or
0.5; an alternative possibility is a Sobolev-style p-norm with 1 ≤ p ≤ ∞:

‖g‖pk,p = ‖g(0)‖pp + ‖g(1)‖pp + . . .+ ‖g(k)‖pp
As mentioned earlier, for the Euclidean norm we need to be careful when

g(0) is close to 0, and we risk numerically unstable behaviour if we first use AD
to calculate ε =

√
g · g as a Taylor series, and then evaluate |ε|. The first step

gives

ε = ‖g(0)‖+ (ĝ(0) · g(1))t+O(t2) where ĝ(0) =
g(0)

‖g(0)‖
and the term in t, which results from the cross-terms in the inner product g · g,
may take any value between 0 and ‖g(1)‖: the moral is that we really do need
to calculate the norm of the taylor vector directly, as an atomic step.

References

[1] Loyce Adams and Larry Nazareth (eds), Linear and Non-linear Conjugate
Gradient-Related Methods, Society for Industrial and Applied Mathematics,
1996.

[2] Serge Gratton et al., Differentiating the Method of Conjugate Gradients,
SIAM. J. Matrix Anal & Appl., 35(1), 110–126, 2014.

[3] Andreas Griewank and Andrea Walther, Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation, Society for Industrial and
Applied Mathematics, 2nd edition, November 2008.

[4] Andreas Griewank and Andrea Walther, Getting started with ADOL-C,
Combinatorial Scientific Computing, Chapman-Hall CRC Computational
Science, 2012

[5] Jorge Moré and Stefan Wild, Do You Trust Derivatives or Differences, J.
Comp. Physics, 273, 268–277, September 2014.

8

