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ABSTRACT This paper proposes a Fully Probabilistic control framework for stochastic systems with
multiplicative noise and external disturbance. The proposed framework consists of two main steps, the
disturbance observer based compensator to reject the modelled disturbance, and the Fully Probability Design
(FPD) controller to achieve the regulation objective. The disturbance observer is developed based on Bayes’
theory following a probabilistic framework. Compared with the conventional FPD, the new procedure in
this paper is extended to deal with multiplicative noise, and at the same time improve the performance
of the control system by rejecting external disturbances. The convergence analysis of the estimation and
control processes is also provided. Finally, a numerical example is given to illustrate the effectiveness of the
proposed control method.

INDEX TERMS Fully Probabilistic Design, Disturbance Observer Based Control, Stochastic systems
control, Multiplicative Noise.

I. INTRODUCTION

Many real-world systems are inherently stochastic, affected
by external disturbances and noise, and operate under high
levels of uncertainty [1]–[4]. Therefore, stochastic con-
trol methods have attracted much attention in the last few
decades, mostly focusing on designing robust controllers
that take knowledge about disturbances and uncertainty into
consideration. To deal with the effect of the disturbance,
disturbance-observer-based control (DOBC) strategies have
been considered since the 1980s [5]. They have also been
successfully applied to various practical systems such as
mechatronic systems [6]–[8] and aerospace systems [9]–[11].
Basically, the control task in DOBC is usually divided into
two subtasks. In the first subtask, a disturbance observer is
designed to estimate the disturbance and then later used to
cancel its effect on the dynamics of the system. The second
subtask considers the design of a controller that will achieve
the main control objectives such as making the system state
follow a predefined desired state values, or regulating the
system state around its fixed point. Under this framework,
a large amount of literature and research ideas have been
investigated. For instance, in [12], a novel control method

has been proposed for Markovian jump systems with mul-
tiple disturbances by combining DOBC with H∞ control.
Besides, a Lyapunov-based nonlinear disturbance observer
for unknown two link manipulator has been studied in [13].
The work in [14] considered the design of robust variance-
constrained composite control problem for linear uncertain
discrete-time stochastic systems. Despite some of the re-
markable developments and the intensive research work on
DOBC, most of the DOBC based approaches are presented
for continuous systems and more important developed in
a deterministic way. Thus they lack consideration of noise
effects, which have limited their applications to real-world
stochastic systems.

On the other hand, the development of more effective
control algorithms for stochastic systems with random noises
is another critical topic in stochastic systems control. Con-
sequently, a considerable amount of literature has been pub-
lished focusing on minimising the effect of systems noises.
Examples include the linear quadratic Gaussian (LQG)
method [15], the minimum entropy control [1], [2], and the
H2 /H∞ control [16].

To address the above limitations of the currently devel-
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oped DOBC methods, this paper proposes a comprehensive
approach for the development of an active control algorithm
that can take multiplicative noises into consideration in the
derivation of the optimal control law as well as reject the
effect of any external disturbances that might be acting on
the system. The proposed approach is following a fully prob-
abilistic framework where a randomised controller is derived
from dealing with systems noises and uncertainties and a
probabilistic model is used to estimate and reject the effect
of the disturbance. The first part of designing the randomised
controller is based on the probabilistic description of the
closed-loop system. Here the randomised controller is the
minimiser of the Kullback–Leibler divergence (KLD) of the
system closed–loop description to the desired one. The idea
of FPD is not new. It was initially proposed by Karny [17],
and then further developed and applied in much literature.
For example, a novel distributed FPD approach is presented
in [18] for large, complex, noisy and highly connected sys-
tems. In [19], a generalised fully probabilistic controller
design was studied for stochastic linear Gaussian systems
where the uncertainty introduced by the model discrepancy
is estimated as a function of the system inputs. Moreover,
[20] and [21] investigated a probabilistic Dual Heuristic
Programming (DHP) adaptive critic method to minimise the
computational loads of FPD caused by the evaluation of the
randomised optimal controller which involves multivariate
integration steps. However, current and previous develop-
ments on FPD have not considered the class of stochastic
systems with multiplicative noise, despite its relevance to var-
ious physical systems such as biological movement systems
[22]. For these systems, more robust controllers need to be
developed to minimise the effects of the multiplicative noises
[23]. Therefore, an additional contribution to this paper is to
further develop the FPD control method such that it takes the
multiplicative noise into consideration in the derivation of the
randomised optimal controller.

To summarise, the regulation problem for a class of
stochastic systems with multiplicative noise and external
disturbance will be considered in this paper. For this purpose,
a fully probabilistic framework is proposed where a ran-
domised controller is designed following the FPD approach
and a probabilistic DOBC are combined together. The archi-
tecture of the proposed control framework is shown in Fig 1.
As can be seen from this Figure 1, the proposed framework
consists of two main components: the disturbance observer
compensator to eliminate the effect of the disturbances on
the system dynamics and the FPD to bring all the system
states back to zero and at the same time ensure that they
track the desired distribution. Unlike most existing literature
on DOBC, the proposed disturbance observer in this paper
is developed following a probabilistic approach using Bayes
theory that is more appropriate for stochastic systems. In
addition, the FPD procedure is extended in this paper to take
multiplicative noises into consideration when deriving the
optimal randomised controller.

The remainder of this paper is organised as follows. Sec-

FIGURE 1. System structure

tion II formulates the problem statement. Section III inves-
tigates the disturbance observer design while Section IV
describes the FPD. In Section V, the convergence analysis is
stated. Finally, the proposed algorithm is applied to a numer-
ical example in Section VI to demonstrate its effectiveness
and the conclusion is summarised in Section VII.

II. PROBLEM STATEMENT
This paper considers the following class of stochastic linear
discrete time systems,

xk = Axk−1 +B(uk−1 + dk−1) + Fxk−1vk−1, (1)

where xk ∈ <n is the system state, uk ∈ <m is the control
input, and A, B, and F are the parameter matrices with
appropriate dimensions. Also, vk ∈ < is a Gaussian noise
with zero mean and covariance matrix Q, and dk ∈ <m is an
external disturbance which is assumed to be described by the
following state space model,

τk−1 = Wτk−2 +Hδk−2, (2)
dk−1 = V τk−1, (3)

where τk−1 ∈ <l represents the disturbance state, W , H and
V are assumed to be known constant matrices with appro-
priate dimensions and δk ∼ N(0, R) is a Gaussian random
noise. In addition, δk and vk are mutually independent with
each other.

For stochastic systems where the disturbance term dk−1
in Equation (1) does not exist, it is usually sufficient to
design a single controller that can be optimised in order to
achieve the required performance of the system. However, for
stochastic systems that are affected by external disturbances
as stated in Equation (1), although a single controller might
be able to drive the system state in a prespecified required
manner, but it might not be robust to sudden effects that may
result from the external disturbance. Under these conditions,
researchers considered the design of an additional controller
that is designed to cancel the disturbance effect as its primary
objective. Here, we follow the same approach of designing
an additional controller, but in addition since the system
described in Equation (1) is not only affected by disturbance,
but also inherently stochastic our main controller will be
designed following a fully probabilistic approach. In order to
cancel the effect of the disturbance, our secondary controller
will be based on designing an observer that can predict the
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disturbance that will affect the system and then cancel its
effect. Because the system is stochastic, we again adhere to
our probabilistic framework; thus we design a probabilistic
observer based on Bayes’ theorem. The design procedure of
the controllers will be discussed in the following sections,
but first we discuss the design process of the probabilistic
disturbance observer.

III. DISTURBANCE OBSERVER DESIGN
The objective of this section is to discuss the design proce-
dure of the probabilistic observer that is required to estimate
the disturbance dk defined in Equation (3). As discussed ear-
lier once this estimate of the disturbance becomes available,
it will be taken as the negative of the second control input,
the DBOC, thus eliminating the effect of the disturbance on
the system dynamics. However, as can be seen from Equation
(3), the disturbance dk can only be observed through its state
τk. Therefore, the observer of τk is developed here instead
of dk. Consequently, the state of the disturbance, τk can be
estimated by observing its effect on the system state, xk
which is assumed to be measurable in this paper. For this
purpose we design a fully probabilistic observer that is based
on the Bayes’ theorem as follows,

P (τk−1|xk) ∝ P (xk| τk−1, xk−1)P (τk−1|xk−1), (4)

where P (τk−1|xk) represents the posterior distribution,
P (xk| τk−1, xk−1) is the likelihood, and P (τk−1|xk−1) de-
notes the prior distribution of τk−1.

The recognition of Equation (4) implies that in order to
evaluate the posterior distribution of τk−1, both its prior
and the likelihood distributions need to be evaluated. The
evaluation of the prior can be achieved by noting that at time
k− 1, the probability distribution of τk−1 can be represented
as,

P (τk−1|xk−1) ∼ N(τ̂k−1, Pk−1), (5)

where τ̂k−1 and Pk−1 are the expectation and variance of
(τk−1|xk−1), respectively. They can be easily evaluated to
give,

τ̂k−1 = Wτ̂k−2,

Pk−1 = WPk−2W
T +HRHT (6)

The evaluation of the likelihood function, P (xk| τk−1, xk−1)
on the other hand can be done by firstly defining ek as the
error in predicting xk from τ̂k−1 as follows,

ek = xk − x̂k = xk −Axk−1 −Buk−1 −BVWτ̂k−2, (7)

where x̂k is the estimation of xk using the estimated τ̂k.
Given the fact that A, B, xk−1, uk−1, V , W , and τ̂k−2 are
all known or have been estimated, observing xk is equivalent
to observing ek. Therefore, the approach we will follow here
to calculate the posterior of τk is to use P (ek| τk−1, xk−1)
as the likelihood function instead of P (xk| τk−1, xk−1).

Consequently Eq.(4) can be rewritten in the following form
by replacing xk with ek,

P (τk−1|xk) =P (τk−1| ek)

∝P (τk−1|xk−1)P (ek| τk−1, xk−1). (8)

Using Equation (3) in Equation (1) and then substituting the
result in Equation (7) yields the following expression for the
error ek,

ek = BV (τk−1 −Wτ̂k−2) + Fxk−1vk−1. (9)

From Eq.(9), the likelihood can be represented as,

P (ek| τk−1, xk−1)

∼ N(BV (τk−1 −Wτ̂k−2), Fxk−1Qx
T
k−1F

T ), (10)

withBV (τk−1 −Wτ̂k−2) being the mean andFxk−1QxTk−1F
T

being the variance.
Having evaluated the prior and the likelihood functions,

the posterior P (τk−1| ek) can then be calculated following
the Bayes’ theorem as follows,

P (τk−1| ek) =
P (ek| τk−1, xk−1)P (τk−1|xk−1)∫

P (ek, τk−1|xk−1)dτk−1
, (11)

However it is worth noting that the direct evaluation of the
the posterior P (τk−1| ek) from Equation.(11) requires heavy
effort and high computational cost. Nonetheless, because
τk−1 and ek are multivariate Gaussian random variables, then
the conditional distribution of τk−1 conditioned on ek and
xk−1 can be shown to be given by the following proposition.

Proposition 1: The conditional distribution of τk−1 con-
ditioned on ek and xk−1 can be shown to be given by

P (τk−1| ek, xk−1) ∼ N(τ̂k−1, Pk−1), (12)

where,

τ̂k−1 = Wτ̂k−2 + (WPk−2W
T +HRHT )TV TBT

× [Fxk−1Qx
T
k−1F

T +BV (WPk−2W
T

+HRHT )TV TBT ]−1ek, (13)

and where,

Pk−1 = WPk−2W
T +HRHT − (WPk−2W

T +HRHT )T

× V TBT [Fxk−1Qx
T
k−1F

T +BV (WPk−2W
T

+HRHT )TV TBT ]−1BV (WPk−2W
T +HRHT ).

(14)

Proof: The proof of the above proposition is given in
Appendix A.

A. ALGORITHM OF THE PROPOSED PROBABILISTIC
DISTURBANCE OBSERVER
To summarise the detailed implementation procedure of the
proposed probabilistic disturbance observer discussed in Sec-
tion III, we introduce the following definitions τ̂−k andP−k for
the prior estimation and prior covariance matrix respectively,
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and τ̂+k−1 and P+
k−1 for the posterior estimation and the pos-

terior covariance matrix respectively. Using these definitions,
Equations (13) and (14) can be rewritten as follows,

τ̂+k−1 = τ̂−k−1 + Lk−1ek, (15)

P+
k−1 = P−k−1 − Lk−1BV P

−
k−1, (16)

where,

τ̂−k−1 = Wτ̂+k−2, (17)

P−k−1 = WP+
k−2W

T +HRHT , (18)

Lk−1 = (P−k−1)TV TBT [Fxk−1Qx
T
k−1F

T

+BV (P−k−1)TV TBT ]−1. (19)

Then the following algorithm can be readily applied,

1 Initialize x0, u0, τ̂−0 and P−0 ;
2 Calculate the prior estimation τ−k−1 using Equation

(17);
3 Calculate the prior covariance matrix P−k−1 from

Equation (18);
4 Calculate ek using the new obtained xk following

Equation (7), repeated here,

ek = xk −Axk−1 −Buk−1 −BV τ̂−k−1; (20)

5 Calculate the observer gain Lk−1 following Equa-
tion (19);

6 Update the prior estimation of τ̂+k−1 from Equation
(15);

7 Update the posterior covariance matrix P+
k−1 ac-

cording to Equation (16);
8 Move to the next sampling instant k = k + 1 and

update the system using step 2.

Remark 1. Please note that the delay between the measured
variable xk and the latent hidden state variable, τk−2 is 2
as can be seen from Equations (1), (2) and (3). Therefore
to allow the exploitation of the Kalman filter approach to
develop the required disturbance observer we use the prior
distribution to predict the τk values instead of using the
posterior distribution as in the conventional Kalman filter
approach.

IV. CONTROLLERS DESIGN
As discussed previously, the control applied to the system
needs to be designed such that it cancels the effect of the
disturbance on the system dynamics and at the same time
achieves the control objective which is defined in this paper
to be the regulation of the system state to zero. Therefore, the
control input is designed to be consisting of two parts,

uk−1 =u1k−1
+ u2k−1

, (21)

where u2k−1
is designed to cancel the disturbance and u1k−1

is designed to achieve the control objective as will be dis-
cussed in the next sections.

A. DISTURBANCE BASED OBSERVER CONTROL
Once the disturbance observer has estimated the disturbance
that affects the system dynamics, it can be used to design
a control input to cancel the effect of this disturbance as
follows,

u2k−1
=− V τ̂−k−1, (22)

Using Equation (21) and Equation (22) the system state as
given by Equation (1) can be rewritten as follows,

xk = Axk−1 +B(u1k−1
+ u2k−1

+ V τk−1) + Fxk−1vk−1,

= Axk−1 +Bu1k−1
+BV εk−1 + Fxk−1vk−1, (23)

where,

εk−1 = τk−1 − τ̂−k−1. (24)

Following the cancellation of the system disturbance using
the control input u2k−1

as stated in Equation (22), the other
control input that will achieve the control objective can be
designed as discussed in the next section.

B. PROPOSED GENERALISED FULLY PROBABILISTIC
CONTROL DESIGN
The designed control input defined in Equation (22) is de-
veloped such that it cancels the effect of the disturbance on
the system dynamics. However, it will not be expected to
control the system and make it performs in a prespecified
desired manner. To be able to control the system and make
it achieve a desired response, this section will explain the
design procedure of the main controller of the system that
will be designed to achieve this objective. Because of the
stochasticity of the system, the main controller, u1k−1

will be
designed here following the fully probability design approach
as discussed earlier.

Using Equation (22) in Equation (1), the system state
based on the estimated disturbance from the disturbance
observer can be seen to be given by,

xk = Axk−1 +Bu1k−1
+BV εk−1 + Fxk−1vk−1, (25)

where εk−1 as defined in Equation (24) is the disturbance
estimation error. Since the prior disturbance estimation τ̂−k−1
is applied to the system in Equation (25), the covariance of
εk−1 is the prior covariance P−k−1 as defined in Equation
(18). This means that εk−1 is subjected to the following
distribution,

εk−1 ∼ N(0, P−k−1). (26)

Consequently the conditional distribution of the system dy-
namics of Equation (25) can be described by a Gaussian
distribution with mean µk and covariance Σk,

s
(
xk|u1k−1

, xk−1
)
∼ N (µk, Σk) , (27)
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where,

µk =Axk−1 +Bu1k−1
, (28)

Σk =cov(xk|u1k−1
, xk−1)

=E{(xk − µk) (xk − µk)T }
=BV P−k−1V

TBT + Fxk−1Qx
T
k−1F

T , (29)

and where P−k−1 can be evaluated using Equation (18).
As can be seen from Equation (25), the system state at

time k is affected by random noises thus its value can only
be specified entirely using pdfs. One efficient method for
designing robust controller under these conditions is the FPD
method [17]. However, in its original form, the FPD method
is not developed to deal with the stochastic systems that are
affected by multiplicative noises such as those considered in
this paper. Therefore, the following sections will discuss how
to extend the conventional FPD method such that it can take
the multiplicative noises into consideration in the derivation
of the optimal control law. Similar to the conventional FPD
method we start here by defining the Kullback-Leibler di-
vergence (KLD) between the actual joint pdf f(D) of the
observed data D = (x(H), u(H)) and the ideal joint pdf
f I(D) on a set of possible D as the performance index to be
optimised,

D(f
∥∥f I ) =

∫
f(D) ln(

f(D)

f I(D)
)dD, (30)

withH being the control horizon. According to the chain rule
for pdfs [24], the joint distribution of the probabilistic closed-
loop description of the system dynamics could be evaluated
as follows:

f(D) =
H∏
k=1

s(xk
∣∣u1k−1

, xk−1 )c(u1k−1
|xk−1 ), (31)

where c(u1k−1
|xk−1 ) is the actual conditional pdf of the

system controller u1k−1
. Similarly, the ideal probabilistic

closed-loop pdf can be expressed in the same form as Equa-
tion (31) with ideal system model pdf sI(xk

∣∣u1k−1
, xk−1 )

and ideal controller pdf cI(u1k−1
|xk−1 ),

f I(D) =
H∏
k=1

sI(xk
∣∣u1k−1

, xk−1 )cI(u1k−1
|xk−1 ). (32)

Using the Kullback-Leibler divergence (30), the closed loop
joint pdf (31) and the desired closed loop joint pdf (32),
the performance index can be formalised to be given by the
following expression:

− ln(γ(xk−1)) = min
c(u1k−1

|xk−1 )

∫
s(xk

∣∣u1k−1
, xk−1 )

× c(u1k−1
|xk−1 )

[
ln

(
s(xk

∣∣u1k−1
, xk−1 )c(u1k−1

|xk−1 )

sI(xk
∣∣u1k−1

, xk−1 )cI(u1k−1
|xk−1 )

)
− ln(γ(xk))

]
d(xk, u1k−1

), (33)

where the first item in parenthesis in Equation (33) stands
for the partial cost while the second item is the expected
minimum cost-to-go function. The recursive formulation of
the performance index (33) is similar to the Dynamic pro-
gramming. Full derivation of Equation (33) can be found
in [20]. The minimisation of the performance index (33)
yields the following closed form solution for the required
randomised controller u1k−1

,

c∗(u1k−1
|xk−1 ) =

cI(u1k−1
|xk−1 ) exp[−β1(u1k−1

, xk−1)− β2(u1k−1
, xk−1)]

γ(xk−1)
,

(34)

where,

γ(xk−1) =

∫
cI(u1k−1

|xk−1 ) exp[−β1(u1k−1
, xk−1)

− β2(u1k−1
, xk−1)]du1k−1

,

β1(u1k−1
, xk−1) =

∫
s(xk

∣∣u1k−1
, xk−1 )

× [ln
s(xk

∣∣u1k−1
, xk−1 )

sI(xk
∣∣u1k−1

, xk−1 )
]dxk,

β2(u1k−1
, xk−1) =−

∫
s(xk

∣∣u1k−1
, xk−1 ) ln(γ(xk))dxk.

(35)

This solution is the general solution to the fully probabilistic
control design irrespective of the type of distribution describ-
ing the system dynamics or whether the system is linear or
nonlinear. The specific solution of the FPD for linear Gaus-
sian systems will be derived in the next section for stochastic
systems with multiplicative noise. It will be extended to
consider this multiplicative noise in the derivation of the
randomised controller.

C. GENERALISED PROBABILISTIC CONTROL FOR
LINEAR SYSTEMS WITH MULTIPLICATIVE NOISE
Based on the FPD algorithm described by Equation (35),
the generalised fully probabilistic control solution of the
regulation problem for the stochastic linear system defined
in Equation (25) with multiplicative noise is derived in this
section. The regulation problem is considered here, which
means that the objective of the controller is to return the
system states to zero from their initial values. Therefore, the
ideal distribution of the system described by Equation (25) is
specified as,

sI(xk|u1k−1
xk−1) ∼ N (0, Σ2) , (36)

where Σ2 is a given covariance matrix.
The ideal distribution of the controller can also be defined

as follows,

cI
(
u1k−1

|xk−1
)
∼ N (0, Γ) , (37)

where Γ is the ideal covariance of the control input. Note
that the covariance Γ indicates the allowed range of optimal
control input.
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Remark 2. Note that Σk−Σ2 is assumed to be a positive def-
inite matrix, reflecting our objective to decrease the variance
of the system and reduce the system randomness. Both Σ2 and
Γ are chosen based on the requirement of the system. Usually
we choose Σ2 as small as the required system randomness
and we choose Γ based on the constraints that are associated
to the cost of the control input.

Before we design the controller, some assumptions and
lemmas are given as follows.

Lemma 1. With positive definite matrix ∆, the following
equation holds [25],

ln(det(∆)) = tr(ln(∆)). (38)

Assumption 1. For the considered regulation problem, it is
expected that at steady state the covariance of the system
dynamics, Σk will become close to the covariance of the
specified ideal distribution, Σ2. This means that the following
inequality holds, ∥∥ΣkΣ2

−1 − I
∥∥ < 1. (39)

Because of the linearity of the system defined in Equation
(25) and the Gaussian form of its probabilistic descrip-
tion, the performance index (33) can be assumed to have a
quadratic form which is described by the following theorem.

Theorem 1. Under Assumptions 1, using the ideal distribu-
tion of the system dynamics (36), the ideal distribution of
the controller (37) and the real distribution of the system
dynamics (27) into Equation (35), the performance index (33)
can be shown to be given by,

− ln (γ (xk)) = 0.5xTk Skxk + 0.5wk, (40)

where,

Sk−1 = −AT (Σ−12 + Sk)B[BT (Σ−12 + Sk)B + Γ−1]−1BT

× (Σ−12 + Sk)TA+AT (Σ−12 + Sk)A+M2, (41)

wk−1 = wk + ln(2Γ) + tr(SkBV P
−
k−1V

TBT )

+ ln(0.5[BT (Σ−12 + Sk)B + Γ−1]), (42)

and where,

M2 =FTSkQF, (43)

Remark 3. Compared with the conventional FPD, the de-
rived Riccati Equation, (41), in this work has an additional
term M2. The manifestation of this additional term is due
to the consideration of the multiplicative noise in the opti-
misation process of the randomised controller. This means
that the derived control solution takes the covariance of the
multiplicative noise into consideration and at the same time
it works on making this covariance smaller as the noise is
state dependent and can be made smaller.

The derivation details of the results given in Equations (40)
to (43) are discussed below.

Proof. Recall Equation (35), we have,

γ (xk−1) =

∫
cI(u1k−1

|xk−1 )exp[−β1
(
u1k−1

, xk−1
)

− β2(u1k−1
, xk−1)]du1k−1

. (44)

As we can see from Equation (44), the evaluation of
β1
(
u1k−1

, xk−1
)

and β2(u1k−1
, xk−1) are essential for the

calculation of γ (xk−1). Therefore, using the second equa-
tion in Equation (35), β1

(
u1k−1

, xk−1
)

can be evaluated as
follows,

β1
(
u1k−1

, xk−1
)

=

∫
s
(
xk|u1k−1, xk−1

)
× ln

s
(
xk|u1k−1,

xk−1
)

sI
(
xk|u1k−1

xk−1
)dxk,

=

∫
N(µk, Σk)

[
− 0.5 ln(|Σk| |Σ2|−1)

− 0.5(xk − [Axk−1 +Bu1k−1
])T (Σk)−1

× (xk − [Axk−1 +Bu1k−1
])− 0.5xk

T (Σ2)
−1
xk

]
dxk.

(45)

By using Lemma 1, ln(|Σk| |Σ2|−1) in Equation (45) can be
further expressed as,

ln(|Σk| |Σ2|−1) = ln(
∣∣ΣkΣ2

−1∣∣)
=tr(ln(ΣkΣ2

−1)). (46)

Based on Lemma 2.6 in [26] and Assumption 1, the
following holds,

tr(ln(ΣkΣ2
−1)) ≈ tr(ΣkΣ2

−1 − I) ≈ tr(ΣkΣ2
−1)− n,

(47)

where n is the dimension of x.
Then β1 can be obtained by substituting Equation (47) into

Equation (45) and evaluating the integral.

β1(u1k−1
, xk−1) =

∫
N(µk, Σk)

(
− 0.5tr(ΣkΣ2

−1) + 0.5n

+ 0.5xk
T (Σ−12 − Σ−1k )xk − 0.5[Axk−1 +Bu1k−1

]
T

Σ−1k

× [Axk−1 +Bu1k−1
] + xk

TΣ−1k [Axk−1 +Bu1k−1
]

)
dxk

= −0.5[Axk−1 +Bu1k−1
]TΣ−1k [Axk−1 +Bu1k−1

]

− 0.5tr[ΣkΣ2
−1] + 0.5n+ 0.5

∫
N(µk,Σk)xTk

× (Σ−12 − Σ−1k )xkdxk

= 0.5[Axk−1 +Bu1k−1
]TΣ−12 [Axk−1 +Bu1k−1

]. (48)
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Next the calculation of β2 can be obtained using the third
equation in Equation (35) as follows,

β2
(
u1k−1

, xk−1
)

= −
∫
s
(
xk|u1k−1

xk−1
)

ln (γ (xk)) dxk

=

∫
N (µk, Σk)

[
0.5
(
xTk Skxk + wk

)]
dxk

= 0.5[Axk−1 +Bu1k−1
]TSk[Axk−1

+Bu1k−1
] + 0.5tr (SkΣk) + 0.5wk

= 0.5[Axk−1 +Bu1k−1
]TSk[Axk−1

+Bu1k−1
] + 0.5xTk−1M2xk−1 + 0.5wk

+ 0.5tr(SkBV P
−
k−1V

TBT ), (49)

where we used,

tr[SkΣk] = tr[Sk(BV P−k−1V
TBT + Fxk−1Qx

T
k−1F

T )]

= tr(SkBV P
−
k−1V

TBT ) + xTk−1M2xk−1, (50)

where M2 is defined in Equation (43).
Therefore, substituting Equation (48) and Equation (49)

into Equation (44) and using Equation (37), we obtain,

γ (xk−1) =

∫
cI
(
u1k−1

|xk−1
)

exp[−β1
(
u1k−1

, xk−1
)

− β2
(
u1k−1

, xk−1
)
]du1k−1

= (2πΓ)
− 1

2 exp{−0.5xTk−1[AT (Σ−12 + Sk)A

+M2]xk−1 − 0.5wk − 0.5tr(SkBV P
−
k−1V

TBT )}

×
∫

exp{−0.5u1k−1

T [BT
(
Σ−12 + Sk

)
B + Γ−1]

× u1k−1
− xTk−1AT

(
Σ−12 + Sk

)
Bu1k−1

}du1k−1
,

(51)

By completing the square with respect to u1k−1
, the integral

in Equation (51) can be evaluated to give,∫
exp{−0.5u1k−1

T (BT
(
Σ−12 + Sk

)
B + Γ−1)u1k−1

− xTk−1

×AT
(
Σ−12 + Sk

)
Bu1k−1

}du1k−1

= exp{0.5xTk−1AT
(
Σ−12 + Sk

)
B[BT

(
Σ−12 + Sk

)
B

+ Γ−1]−1BT (Σ−12 + Sk)TAxk−1 + 0.5 lnπ

− 0.5 ln(0.5(BT (Σ−12 + Sk)B + Γ−1))}. (52)

Substituting Equation (52) back into Equation (51), γ(xk−1)
can be finally obtained as,

γ(xk−1) = exp{0.5xTk−1(AT (Σ−12 + Sk)B[BT (Σ−12 + Sk)B

+ Γ−1]−1BT (Σ−12 + Sk)TA

−AT (Σ−12 + Sk)A−M2)xk−1 − 0.5wk

− 0.5tr(SkBV P
−
k−1V

TBT )− 0.5 ln(2Γ)

− 0.5 ln(0.5(BT (Σ−12 + Sk)B + Γ−1))}
= exp{−0.5xTk−1Sk−1xk−1 − 0.5wk−1}. (53)

Equating quadratic terms in xk−1 in the right and left hand
side of Equation (53) yields the difference of Sk−1 defined in
Equation (41) and the concerned terms in Equation (53) gives
wk−1 defined in Eq.(42). This completes the proof.

Based on the quadratic form of the performance index (53)
and the ideal distribution of the controller (37), the optimal
controller form can be evaluated by substituting Equation
(48) and Equation (49) in Equation (34), which yields the
following theorem.

Theorem 2. The distribution of the optimal controller for
system (25) that minimizes the performance index (53) is
given by,

u1k ∼ N(−Kkxk,Γk), (54)

where,

Kk = (Γ−1 +BTMkB)−1BTMT
k A,

Mk = Σ−12 + Sk

Γk = Γ−1 +BTMkB (55)

Proof. Substituting Equation (37), Equation (48), Equation
(49) and Equation (53) into Equation (34) yields,

c∗
(
u1k−1

|xk−1
)

= exp(−0.5{u1k−1

T (Γ−1

+BT (Σ−12 + Sk)B)u1k−1
+ 2xTk−1A

T (Σ−12 + Sk)Bu1k−1

+ xTk−1(AT (Σ−12 + Sk)A+M2 − Sk−1)xk−1

+ wk − wk−1 + tr((SkBV P
−
k−1V

TBT )− ln(2πΓ)}).
(56)

Defining Mk = Σ−12 + Sk, and substitute the Sk−1 and
wk−1 as described in Equation (41) and Equation (42) into
Equation (56), the equation can be expressed as,

c∗
(
u1k−1

|xk−1
)

= (2π[BTMkB + Γ−1])−0.5

× exp(−0.5{(u1k−1
+ (Γ−1 +BTMkB)−1

×BTMT
k Axk−1)T

(
Γ−1 +BTMkB

)
(u1k−1

+ (Γ−1 +BTMkB)−1BTMT
k Axk−1).

(57)

It can be seen that the distribution given in Equation (57) is
the optimal control distribution as specified by Equation (55).
End of proof.

V. ALGORITHM OF THE PROPOSED FPD CONTROL
FRAMEWORK
Following the derivation of the main controller given in
Equation (57) and the secondary controller given in Equation
(22), the following algorithm for the implementation of the
proposed fully probabilistic control framework for stochastic
systems with multiplicative noise and external disturbance
can then be summarized as follows,

1 Initialize the system states, including the observer
parameters and the FPD Riccati matrix S0;

2 Design the disturbance observer following the pro-
vided procedure Equation (15)-Equation (19) and
obtain u2k ;

3 Evaluate the Riccati matrix Sk using Equation (41);
4 Calculate the FPD controller gain Kk by Equation

(54) and obtain u1k ;
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FIGURE 2. Flow chart of the implementation steps of the proposed fully
probabilistic control framework

5 Formulate the controller signal uk using Equation
(21);

6 Move to the next sampling instant k = k + 1 and
update the system using step 2.

A flow chart is shown in Figure 2 to help explaining the
implementation steps of the proposed probabilistic control
framework.

VI. CONVERGENCE ANALYSIS
In this section, the convergence of the developed disturbance
observer will be analysed. Therefore, the following condi-
tioned theorem is introduced.

Theorem 3. If there exists a positive definite symmetric
matrix P̃ which can make the following inequality hold, the
output of the proposed disturbance observer τ̂−k in Equation
(17) will converge to the real disturbance state value τk.

Ξ =

 Ξ11 (W −WLkBV )
T
P̃H Ξ13

∗ HT P̃H HT P̃WLkF
∗ ∗ Ξ33

 < 0,

(58)

where,

Ξ11 = (W −WLkBV )
T
P̃ (W −WLkBV )− P̃ , (59)

Ξ13 = (W −WLkBV )
T
P̃WLkF, (60)

Ξ33 = FTLTkW
T P̃WLkF. (61)

Proof. The residual error which is given by Equation (24)
between the output of proposed disturbance observer τ̂−k and
the real disturbance state value τk can be further expressed as
follows,

εk = τk − τ̂−k
= Wτk−1 +Hδk−1

−W (τ̂−k−1 + Lk−1(xk −Axk−1 −Buk−1 −BV τ̂−k−1))

= (W −WLk−1BV )εk−1 +Hδk−1 −WLk−1Fxk−1vk−1.
(62)

Define a Lyapunov function Ṽk as follows,

Ṽk = εTk P̃ εk. (63)

The derivation of the Lyapunov function is then given by,

∆Ṽk = Ṽk+1 − Ṽk
= εTk+1P̃ εk+1 − εTk P̃ εk
= ((W −WLkBV )εk +Hδk −WLkFxkvk)T P̃

× ((W −WLkBV )εk +Hδk −WLkFxkvk)− εTk P̃ εk
= zTk Ξzk, (64)

where we have introduced the definition, zk =

 εk
δk
xkvk

.

To satisfy the condition in Equation (58), there should exist
a small positive number 0 < σ < λmax(P̃ ) that makes the
following inequality holds.

Ξ < −σI, (65)

where λmax(P̃ ) is the maximum eigenvalue of the matrix
(P̃ ). Then we have,

E[∆Ṽk] ≤ −σE[‖zk‖2] ≤ −σE[‖εk‖2], (66)

where E[·] represents the mathematics expectation. Also,
based on Equation (63) we have the following inequality,

λmin(P̃ )E[‖εk‖2] ≤ E[Ṽk] ≤ λmax(P̃ )E[‖εk‖2]. (67)

Combining Equation (66) and Equation (67), we have,

E[Ṽk+1]− E[Ṽk] ≤ − σ

λmax(P̃ )
E[Ṽk], (68)

which yields,
E[Ṽk+1] ≤ θE[Ṽk], (69)

where θ = 1 − σ
λmax(P̃ )

and 0 < θ < 1. The following
inequality can be easily obtained,

E[Ṽk] ≤ θk−1E[Ṽ1]. (70)

From Equation (70), it can be concluded that,

lim
k→∞

E[Ṽk] = E[εTk P̃ εk] = 0, (71)

which competes the proof.
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VII. SIMULATION RESULTS
This section demonstrates the effectiveness of the proposed
generalized probabilistic framework to control and reject the
disturbance effect on a stochastic system with multiplicative
noise. The system is described by the following stochastic
discrete time dynamical equation,

xk+1 = Axk +B(uk + dk) + Fxkvk, (72)
τk = Wτk−1 +Hδk−1, (73)
dk = V τk, (74)

with A =

[
1.7 1
−0.7 0

]
, B =

[
1

0.5

]
, F =[

0.01 0.012
0.021 0.023

]
, W =

[
0 0.78

−0.78 0

]
, V =[

1.8 0.2
]
, H =

[
0.5
0.4

]
.

Here xk ∈ <2 and uk ∈ < stand for the system measurable
states and system controlled input, respectively. dk ∈ < is
the observable disturbance while τk ∈ <2 is the disturbance
state. vk ∈ < and δk ∈ < represent the independent Gaussian
noise with zero mean and variance Q = 0.14 and R = 0.23
,respectively. The initial state of the system state x0 is taken
to be

[
0.5 0.6

]T
while the initial state of the disturbance

τ0 is taken to be
[

4 2
]T

. Moreover, the ideal variance
of controller Γ is set to 0.2 for faster converging speed. The
ideal covariance of the state Σ2 should be chosen small and

the value we chose is Σ2 =

[
0.00001 0

0 0.00004

]
.

The simulation results are shown in Fig 3 - Fig 7. The
system states (blue solid line) are presented by Fig 3 and
Fig 4. To show the advantages of the DOBC framework, the
system states which are generated without the compensative
controller u2 are also given by a red dashed line in the same
figures in Fig 3 and Fig 4. From Fig 3 and Fig 4, it can be seen
that after k = 20 the values of system states stay around zero.
It means that the FPD algorithm successfully brings all the
states from initial values back to zero. In addition, compared
with the states without u2, the DOBC based system states
have much less randomness, which indicates that the dis-
turbance observer-based controller narrows down the system
disturbance, and the DOBC framework has achieved the de-
sired performance. Fig 5 and Fig 6 show the real disturbance
states (blue dashed line) and the estimated disturbance states
(red solid line). We can see that the estimated disturbance
states have become identical to the real disturbance states
after the first few steps, which means that the proposed
disturbance observer works well. Moreover, Fig 7 provides
the DOBC based FPD optimal gain, which converges to a
steady state value which indicates the convergence of the
whole control process. Hence, these results confirm that the
DOBC is successfully designed combining the FPD and all
the desired results have been reached.

VIII. CONCLUSION
A novel approach has been provided in this paper by com-
bining DOBC and FPD for a class of stochastic systems with
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FIGURE 3. System State x1 with the compensative controller (dashed, blue)
and System State x1 without the compensative controller (solid, red)
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FIGURE 4. System State x2 with the compensative controller and System
State x2 (dashed, blue) without the compensative controller (solid, red)
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FIGURE 5. Disturbance State τ1 (solid, blue) and estimated τ1 (dashed, red)
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FIGURE 6. Disturbance State τ2 (solid, blue) and estimated τ2 (dashed, red)
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FIGURE 7. Optimal gain K

multiplicative noises. The control framework is composed of
two parts, where the first one is an anti-disturbance observer
to cancel the modelled disturbance in the input channel,
while the other is the FPD controller designed to bring all
the states back to zero. Both DOBC and FPD have been
designed based on Bayesian theory. Moreover, the FPD has
been extended to deal with systems that are affected by
multiplicative noise through the modification of the Riccati
equation. Besides, the procedure of the disturbance observer
and the procedure of the whole control framework has been
provided with specific details. Moreover, the convergence
analysis has been provided. To verify the proposed control
algorithm, the associated simulation results have been pro-
duced via a numerical example and the expected results have
been obtained. Future work will consider the application of
the proposed methodology to real world systems.

.

APPENDIX A PROOF OF THE PROPOSITION 1
Proof. To obtain the distribution of P (ek| τk−1, xk−1), the
following lemma [27] is applied.

Lemma 2. Given that Y1 and Y2 have a bivariate normal
distribution with means µ1 and µ2, respectively, and a co-

variance matrix, (
Σ11 Σ12

Σ21 Σ22

)
. (75)

This is described by(
Y1
Y2

)
∼ N

[(
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
. (76)

Then the conditional distribution of Y1 given Y2 is,

(Y1|Y2 = y2) ∼ N(µ̃, Σ̃). (77)

where,

µ̃ = µ1 + Σ12Σ−122 (y2 − µ2), (78)

Σ̃ = Σ11 − Σ12Σ−122 Σ21. (79)

Eq.(78) is the regression function while the term Σ12Σ−122 is
the coefficient of the least squares regression of Y1 on y2.

To apply Lemma 2 to our case, we let Y1 corresponds to ek
and Y2 corresponds to τk−1. Based on Equation.(6), we can
see that,

µ2 ⇔Wτ̂k−2,

Σ22 ⇔WPk−2W
T +HRHT . (80)

Replace Y1, Y2, µ2 and Σ22 by ek, τk−1, Wτ̂k−2 and
WPk−2W

T +HRHT , then according to Eq.(10), the mean
value in Eq.(78) becomes,

µ1 + Σ12Σ−122 (τk−1 −Wτ̂k−2)⇔ BV (τk−1 −Wτ̂k−2),
(81)

which yields,

µ1 = 0, (82)

Σ12 = BV Σ22 = BV (WPk−2W
T +HRHT ). (83)

Similarly, given Eq.(10) and Eq.(79),

Σ11 − Σ12Σ−122 Σ21 ⇔ Fxk−1Qx
T
k−1F

T , (84)

This yields,

Σ11 = Fxk−1Qx
T
k−1F

T

+BV (WPk−2W
T +HRHT )TV TBT , (85)

where we used the fact that Σ21 = ΣT12 =
(WPk−2W

T +HRHT )V TBT since its a covariance ma-
trix. Then by switching the position of Y1 and Y2 in Eq.(76),
the joint distribution of τk−1 and ek conditioned on xk−1 can
be described by the following form,(

τk−1
ek

∣∣∣∣xk−1) ∼ N [( Wτ̂k−2
0

)
,

(
Σ22 Σ21

Σ12 Σ11

)]
.

(86)

Applying Eq.(77) to Eq.(86), setting ek as the condition we
get,

(τk−1| ek, xk−1) ∼
N [µ2 + Σ21Σ−111 (ek − µ1),Σ22 − Σ21Σ−111 Σ12]. (87)
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Substituting Σ11, Σ12, Σ21, Σ22, µ1 and µ2 into Eq.(12), the
observation of τk−1 can be presented as,

τ̂k−1 = µ2 + Σ21Σ−111 (ek − µ1)

= Wτ̂k−2 + (WPk−2W
T +HRHT )TV TBT

× [Fxk−1Qx
T
k−1F

T +BV (WPk−2W
T

+HRHT )TV TBT ]−1ek, (88)

where,

Pk−1 = Σ22 − Σ21Σ−111 Σ12

= WPk−2W
T +HRHT − (WPk−2W

T +HRHT )T

× V TBT [Fxk−1Qx
T
k−1F

T +BV (WPk−2W
T

+HRHT )TV TBT ]−1BV (WPk−2W
T +HRHT ).

(89)
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[17] M. Kárnỳ and T. Kroupa, “Axiomatisation of fully probabilistic design,”
Information Sciences, vol. 186, no. 1, pp. 105–113, 2012.
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